

Visual Parameteric Modeler for Rapid Composition of Parameter-
Sweep Applications for Processing on Global Grids

Shoaib Burq1, Steve Melnikoff1, Kim Branson2, and Rajkumar Buyya1,*

1 Grid Computing and Distributed Systems Lab
Dept. of Computer Science and Software Engg.

The University of Melbourne, Australia

2 Structural Biology
Walter and Eliza Hall Institute
Parkville, Melbourne, Australia

Abstract. Grids are emerging as a platform for the next-generation parallel and
distributed computing. Large-scale parametric studies and parameter sweep
applications find a natural place in the Grid’s distribution model. There is little
or no communication between jobs. The task of parallelising and distributing
existing applications is conceptually trivial. These properties of parametric
studies make it an ideal place to start developing integrated development
environments (IDEs) for rapidly Grid-enabling applications. However, there is a
lack of the availability of IDEs for scientists to Grid-enable their applications,
without the need of developing them as parallel applications explicitly. This
paper presents a Java based IDE called Visual Parameteric Modeler (VPM),
developed as part of the Gridbus project, for rapid creation of parameter sweep
applications. It supports automatic creation of parameter script and
parameterisation of input data files, which is compatible with the Nimrod-G
parameter specification language. The usefulness of VPM is demonstrated by a
case study on a composition of molecular docking application as a parameter
sweep application. Such applications can be deployed on clusters using the
Nimrod/enFuzion system and on global Grids using the Nimrod-G grid resource
broker.

1. Introduction
As high-speed networks become ubiquitous and research in middleware technologies
matures, new windows of opportunity for application scientists to run their
applications on parallel and distributed computing environments, such as clusters and
Grids [3], are increasing. The underlying infrastructure, providing the low-level
facilities to run applications in a heterogeneous and distributed environment; and
high-level tools that facilitate the creation of Grid applications and their deployment
on distributed resources, makes up the Grid.

 There exist a number of models for the construction of parallel and distributed
applications. Parameter sweep is one of the simplest and most practical of the models
that can yield powerful results. Parameter sweep applications consist of programs that
are run independently on different nodes with different input parameters or data sets.
There are numerous application areas where parametric studies find a use. Some
application scenarios include:

* Correspondence to: Rajkumar Buyya, email: raj@cs.mu.oz.au

• molecular biologist (drug designer) looking for compounds, in a large
chemical data sets , that best dock with a particular protein [8];

• geologist looking at the change in the density and depth of ore-body and the
overlying rock’s density to optimize cost and production;

• aerospace engineer understanding the role of geometry parameters in the
aerodynamic design and optimization process [11];

• high energy physicist investigating on the origin of mass by analysing
petabytes of data generated by high-energy accelerators such as the LHC
(Large Hadron Collider) [14]; and

• neuroscientist performing brain activity analysis by conducting pair-wise
cross co-relation analysis of MEG (Magneto-EncephaloGraphy) sensors data
[13].

The practical implications of performing parametric studies make it difficult for
an application scientist, who has little or no knowledge of distributed computing, to
use it effectively. The vision of the Grid is precisely to bridge this gap by providing a
seamless access to compute and other scientific resources without the need of users
concerning about the lower-level details of the computing infrastructure or the
resource management issues [1]. High-level tools for creation of distributed
applications and their deployment on the Grid make up an essential part of this vision.
Currently, there is still lack of the availability of integrated development
environments (IDEs) with visual interface for scientists to rapidly Grid-enable their
existing applications.

This paper presents a Java based IDE called Visual Parameteric Modeler (VPM),
developed as part of the Gridbus project, for rapid creation of parameter sweep
applications. VPM provides a simple visual interface for the manipulation of scripts or
input files of existing applications. Users can assign parameters to certain values by
highlighting them. They can select from a number of different data types and domains
to describe their parameters. VPM also incorporates a task editor for creating the tasks
carried out by different jobs during different stages of a distributed execution. The
parameters and tasks together provide the basis of each run. VPM allows the rapid
creation and manipulation of the parameters. While being flexible, it is also simple
enough for a non-expert to create a parameter script, known as a plan file. The
parameter sweep applications composed using VPM can be deployed on global Grids
using the Nimrod-G resource broker that supports scheduling based on the user’s
quality of service (QoS) requirements—such as the deadline, budget, and optimization
preference—and the access price of resources.

The rest of this paper is organised as follows. Section 2 presents related tools and
their capabilities including differences. The VPM architecture is discussed in Section
3 and the design and implementation is discussed in Section 4. The use of VPM for
composing molecular docking application as a parameter sweep application is
presented in Section 5, followed by a conclusion in Section 6.

2. Related Work
VPM draws inspiration from or builds on the concepts developed in Nimod [2] and its
commercial version (Enfuzion [1]); and its Grid-enabled version (Nimrod-G [9]) that

support the creation and execution of parametric applications on clusters and Grids
respectively. A declarative language, called parameter specification language,
supported by Nimrod describes the parameters and the tasks that make up the plans.

For the creation of plans, Enfuzion takes a wizard approach. Enfuzion will take a
user through the operation of creating a job specification file step-by-step, because it
is too complex for novice users to create parameter script on their own. In the input
file to the application, the user must change the value assigned to a parameter to a
place marker. Although simple and less prone to error, this approach is too rigid, slow
and cumbersome for someone working on several input files at the same time. As the
parameter script and parameterized input data files generated by VPM confirm to the
Nimrod parameter specification language, it serves as a complimentary tool. This
ensures that VPM can be used by EnFuzion and Nimrod-G users.

Using VPM, the users can select all application input data/configuration files and
parameterise easily. The users can drag and select the value in the input file that they
wish to assign a parameter to, or they can create parameters independent of an input
file. This gives the user a great deal of flexibility and control. By giving the user fields
to input their parameter configuration and then generating the plan specification
automatically we can prevent errors. Even if the users create parameter script in their
favorite editor, VPM allows them to import and make use of its capabilities. Once the
plan specification is created, the users proceed to execution phase during which they
have an option of changing values assigned parameters. Like enFuzion, the VPM will
automatically create application jobs each with different parameter values will be
created. Such jobs can be analysed on clusters or Grids using enFuzion or Nimrod-G
respectively.

Other related works include, APST (AppLeS Parameter Sweep Template) [10]
and NASA IPG (Information Power Grid) parameter process specification tool [11].
APST expects application scientists to explicitly create jobs and assign parameter
values to them. IPG provides graphical environment for parameterising the data files.
Both the APST and IPG schedulers use traditional system centric policies for resource
allocation. As VPM confirms to the Nimrod-G parameter specification language, it
enables the users to harness Grid resources using the Nimrod-G resource broker
depending on their QoS requirements and the access price of resources. Thus, it
supports the Grid economy, which is essential for management and allocation of
resources based on the supply and demand.

3. Architecture
The visual parameteric modeler architecture and parameter sweep application creation
flow model is shown in Figure 1. VPM supports the creation of a new parameter
sweep applications from scratch or the utilisation of the existing parameterised
application plans with further update. In the first case, the users can add all those files
to be parameterised and use VPM to parameterise data items of interest. In the second
case, the users can import the existing parameteric plans and pass through the VPM
scanner and parser that identify parameters and make them available for further
update. The users can use the VPM task editor to create a task to be associated with
jobs. Based on parameter types and their values a number of jobs, each representing a
different parameter scenario, are generated automatically.

(Task definition)
GBTask Creation

(Parameterization)
ParamObject Creation

Experiment
Editor

ProjectObject
Input files

GBTask ParamObject

Via Task Editor

Import input
file

Input file
dependent

File independent Via Import Plan
Specification

Via Import Plan
Specification

PFScanner

Import Plan
Specification

Plan spec. PFParser

Tokens

Generate Plan
Spec.

Generate Run
…

Jobs
Jobs

Jobs
Jobs

Figure 1: The visual parameteric modeler architecture.

VPM consists of three major visual components: Project, Input Files and Tasks.
These components are represented as Project Window, Input File Window and Task
Editor, respectively. The design of VPM, shown in Figure 2, allows a single project to
have several input data files and tasks.

These visual components provide the user access to the objects that encapsulate
the plan’s information-model, namely to ParamObject and GBTask. ParamObject is
created and manipulated from the project window or input file window, while the
GBTask is created and manipulated using the TaskEditor.

A plan consists of parameters and task. In VPM, parameters are internally
represented as ParamObjects and tasks as GBTasks. ParamObjects are created by any
of the following three methods.

• File dependent parameterization

• File independent parameterization

• Via imported plan specification
File dependent parameterization
Once an input file or a script file is imported into VPM, values that have to be
assigned parameters are highlighted and the parameter defined and assigned by a
simple click of mouse.

Figure 2: Basic visual components of VPM.

File independent parameterization
New parameters may also be created by simply defining its properties.
Via imported plan specification
VPM contains a LALR (Look Ahead, Left to Right) parser for plan specification that
confirms to the Nimrod parameter specification language. This allows the reuse of an
existing plan file (parameter script). The parser translates each parameter definition
into a ParamObject and each task description into a GBTask (see Figure 1).
Experiment editor and job generation
Once a plan specification is completed, VPM can generate a run specification. This
enumerates every value lying within the range of the parameters described by the
plan, and a description of the jobs in terms of the values assigned to them. Hence, the
run specification describes the distribution model of the application parameterized
using VPM.

4. Design and Implementation
VPM is coded in Java and MVC (Model-View-Controller) architecture [12] design
pattern that decouples the data model from the component that represents it on the
screen. The graphical user interfaces are created using the Java Swing component set
that uses MVC architecture consistently.

Besides the above-mentioned objects, VPM has various components that
facilitate the creation of a plan specification (parameter script) and parameterisation
on input data files. VPM consists of many packages and associations and reverse-
associations between them are shown in Figure 3. The arrow heads point at the
dependent packages. Notice, a single class, Jobs, in GBJobs package, is responsible
for the production of Grid enabled jobs. This can be extended to support creation of
job specification for different scheduling systems.
ExperimentEditor
This contains the GUI classes for the ExperimentEdior. It also contains a controller
class (following the classic MVC architecture) that processes the user input.

Project Task Editor 1 1

Input File

0..*

1

GridBusVPM

ExperimentEditor

GenRunControler

ParamObject

ParamObject

GBTasks

GBJobs

Jobs

ObserverPattern

PFParser

PFScanner

ProjectObject

java_cup.runtime

interface

VPM package

Non-VPM package

Associations/Reverse Associations

Figure 3: VPM package associations and reverse-associations.

GBJobs

This contains a single class, Jobs. “Jobs” takes as its input a count (N) of those
parameters that have a range of values and an array of integers of size N containing
the maximum value taken by each of these parameters.
GBTask

This package contains a single class, GBTask. It is a serializable object. It
encapsulates the commands that execute during different phases of the distributed run.
GridBus
This is the largest package containing mostly the GUI classes for VPM. Following the
MVC architecture, it contains all the “view” components. It also includes a utility
class, called GBFileManager, for handling all file operations within VPM. In
addition, this package contains the class that has VPM’s main method, named
Project.
ObserverPattern

This package contains two interfaces Observer and Subject. This facilitates the
implementation of MVC architecture, by decoupling related objects [4]. A subject
may have a number of observers. All observers are notified when the subject
undergoes a state change. In response, the observer may query the subject to
synchronize its state with the subject. The observer implements the update()
method while the subject implements the addObserver() and
removeObserver() method. On a state change, the subject calls each observer’s
update method.

ParamObject

This package contains a single class: ParamObject. The ParamObject is the
heart of VPM. It is a serializable object encapsulating the state of a parameter, it
contains two key methods: makePlanStep() and makeRunStep(). These
methods are responsible for automating the process of plan and run specification
creation. The makePlanStep method converts the fields of the ParamObject into a
line of the simple declarative language following the grammar of Figure 4.
makeRunStep converts a parameter’s declaration into a statement of a run
specification. This declaration identifies the possible value(s) taken by the parameter.
Currently makeRunStep generates a Nimrod-G readable statement.

RPARENexpr LPAREN|NUMBERfactor

factor|factor TIMES termterm

term| termMINUSexpr | termPLUSexpr expr

NUM |QUOTE |IDvalue_opt

 | value_optSTEP | value_optPOINTS domain2

value_opt|value_listvalue_opt tsdefault_op

| value_optPOINTSpoints_opt

jitp_expr JITP |

expr COMPUTE|

 points_opt_|

__|

__|

domain2_|

_

|||

||

||

||

→
→
→

→
→

→
→

→
→
→

→
→
→

ε

ε

ε

ε

valuesrangeRANDOM

optdefaultlistvalueSELECTONE

optsdefaultlistvalueSELECTANY

valuesrangeRANGE

optvalueDEFAULTdomain

FILETEXTFLOATINTEGERtype

QUOTEQUOTELABELlabel

SEMIdomaintypelabelIDPARAMETERplanStep

newlinetaskBlockplanSteprest

errorrestplanplan

Figure 4: Context free grammar for plan specification.

PFScanner
PFScanner, (plan file scanner) created using an open source tool called JLex [5],
performs lexical analysis of the plan specification. It comes into play when the user
wishes to import an existing plan specification into VPM. It interfaces with the
PFParser (discussed below) providing it with a stream of identified tokens.
PFParser
PFParser, (plan file parser) written using an open source tool called CUP [6],
interfaces with the PFScanner and attempts to match the stream of tokens to a
complete parameter or task definition as described by the A context-free grammar
shown in grammar in Figure 4. All caps denote the terminals. In doing so, it generates

new ParamObjects or GBTasks. It contains two public methods for the retrieval
of ParamObject and GBTasks: getParams() and getTasks().
ProjectObject

ProjectObject encapsulates all the attributes necessary to describe a VPM
project. It contains the ParamObjects, GBTasks, paths to input files and other
attributes that uniquely identify a project.

5. Use Case Study – Molecular Docking Application
Molecular modeling for drug design involves screening millions of ligand records or
molecules of compounds in a chemical database (CDB) to identify those that are
potential drugs. This process is called molecular docking [7]. It helps scientists
explore how two molecules, such as a drug and an enzyme or protein receptor, fit
together. Docking each molecule in the target chemical database is both a compute
and data intensive task. In [8], a virtual laboratory environment has been developed
and demonstrated distributed execution of molecular docking application on Global
Grids. The application has been formulated as a parameter sweep application using a
simple parameter specification language and deployed on global Grids using the
Nimrod-G resource broker.

We now discuss how the application has been parameterized (i.e., the creation of
parameter script and parameterisation of data files) using the VPM. In [8], the creation
of parameter script and parameterisation of data/configuration files has been carried
out manually using a text editor. Although this task is simple, it becomes cumbersome
when an application contains multiple data files and has a large number of data entries
to be parameterised. This approach is also prone to creating parameter script with
syntax errors. The use of visual modeler helps overcome these limitations and aids in
the rapid parameterisation of the molecular docking application such as the “Dock”
[7] software package.

Figure 5 shows the parameterisation of docking application configuration input
file using VPM. First, the configuration input file is imported into the VPM. When the
value of a data item to be parameterised is selected (see the highlighted text “S_1” in
Figure 5), it appears in the dialogue box where the parameter name can be defined
along with the attributes (data type and values). In this example, the name of a data
item, “ligand_atom_file”, indicates the molecule to be screened. As the aim of
parameterisation is to screen multiple molecules, this parameter need to be defined as
the “range” data type and then assign values for index start, end, step. For example, to
screen the first 2000 molecules in the chemical data base, the initial values to be
assigned are 1, 2000, and 1 respectively. VPM will automatically create a parameter
statement and add to the script (see the highlighted statement in Figure 6). A task
specification creation module provides dialogue facility selection of appropriate
commands associated with the execution of a parametric job (see a small window in
Figure 6).

Figure 5: The parameterisation of docking configuration input file.

Figure 6: The creation of docking parameter script.

6. Conclusion
In this paper, we outlined the need for the development of IDEs and other applications
and tools in order to provide the applications scientist with user-friendly environments
to run their code on the Grid. We introduced VPM developed to provide one such
environment for parameter sweep applications. We identified its key features, while
giving some of its implementation details. Finally, we showed how application
scientists can use VPM to parameterise their applications. Such parameterised
applications can be deployed on Global Grids using the Nimrod-G resource broker.

Acknowledgements
We thank Srikumar Venugopal, Elan Kovan, Anthony Sulistio, and Sarana Nutanong
for their comments. We thank anonymous reviewers for providing excellent
comments.

References
[1] D. Abramson et. al., EnFuzion Tutorial, Chapter 4, EnFuzion Manual, 2002. Available at:

http://www.csse.monash.edu.au/cluster/enFuzion/tutorial.htm

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: A Tool for Performing
Parameterised Simulations using Distributed Workstations, Proceedings of the 4th IEEE
Symposium on High Performance Distributed Computing, Virginia, August 1995.

[3] I. Foster and C. Kesselman (editors), The Grid: Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

[4] G. Krasner and S. Pope, A cookbook for using the model-view controller user interface
paradigm in Smalltalk-80, Journal of Object-Oriented Programming, 1(3):26–49,
August/September 1988.

[5] E. Berk, JLex: A lexical analyzer generator for Java(TM), Department of Computer
Science, Princeton University Version 1.2.5, September 6, 2000
http://www.cs.princeton.edu/~appel/modern/java/JLex/

[6] S. E. Hudson, CUP: LALR Parser Generator for Java(TM), GVU Center, Georgia Tech.
Version 0.10, July 1999 http://www.cs.princeton.edu/~appel/modern/java/CUP

[7] T. Ewing (editor), DOCK Version 4.0 Reference Manual, University of California at San
Francisco (UCSF), USA, 1998. Online version:
http://www.cmpharm.ucsf.edu/kuntz/dock.html

[8] R. Buyya, K. Branson, J. Giddy, and D. Abramson, The Virtual Laboratory: Enabling
Molecular Modelling for Drug Design on the World Wide Grid, Journal of Concurrency
and Computations: Practice and Experience, Wiley, USA, Jan 2003.

[9] R. Buyya, D. Abramson, and J. Giddy, Nimrod-G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid, The 4th
International Conference on High Performance Computing in Asia-Pacific Region (HPC
Asia 2000), Beijing, China, May 2002.

[10] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid, Proceedings of the Super Computing (SC
2002) Conference, Dallas, USA.

[11] M. Yarrow, K. McCann, R. Biswas, and R. Van der Wijngaart, An Advanced User
Interface Approach for Complex Parameter Study Process Specification on the
Information Power Grid, Proceedings of the 1st Workshop on Grid Computing (GRID
2002), Bangalore, India, Dec. 2000.

[12] Java and MVC architecture, http://javanook.tripod.com/patterns/java-mvc.html

[13] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, and D. Abramson, Economic
and On Demand Brain Activity Analysis on Global Grids, Technical Report, Grid
Computing and Distributed Systems (GRIDS) Lab, The University of Melbourne,
Australia, Jan. 2002.

[14] CERN, the LHC Grid Project, http://lcg.web.cern.ch/LCG/

