
c© The British Computer Society 2015. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 30 November 2015 doi:10.1093/comjnl/bxv106

Virtual Machine Customization and
Task Mapping Architecture for Efficient

Allocation of Cloud Data
Center Resources

Sareh Fotuhi Piraghaj1∗, Rodrigo N. Calheiros1, Jeffrey Chan2,
Amir Vahid Dastjerdi1 and Rajkumar Buyya1

1Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and
Information Systems, The University of Melbourne, Melbourne, Australia

2School of Computer Science and Information Technology, RMIT University, Melbourne, Australia
∗Corresponding author: s.fotuhipiraghaj@student.unimelb.edu.au

Energy usage of large-scale data centers has become a major concern for cloud providers. There has
been an active effort in techniques for the minimization of the energy consumed in the data centers.
However, most approaches lack the analysis and application of real cloud backend traces. In existing
approaches, the variation of cloud workloads and its effect on the performance of the solutions are
not investigated. Furthermore, the focus of existing approaches is on virtual machine migration and
placement algorithms, with little regard to tailoring virtual machine configuration to workload char-
acteristics, which can further reduce the energy consumption and resource wastage in a typical data
center. To address these weaknesses and challenges, we propose a new architecture for cloud resource
allocation that maps groups of tasks to customized virtual machine types. This mapping is based on
the task usage patterns obtained from the analysis of the historical data extracted from utilization
traces. In our work, the energy consumption is decreased via efficient resource allocation based on the
actual resource usage of tasks. Experimental results show that, when resources are allocated based on

the discovered usage patterns, significant energy saving can be achieved.

Keywords: cloud computing; energy efficiency; workload characterization; virtualization

Received 23 October 2014; revised 3 September 2015
Handling editor: Alan Marshall

1. INTRODUCTION

Cloud computing is a realization of utility-oriented delivery
of computing services on a pay-as-you-go basis [1]. As stated
by Armbrust et al. [2], cloud computing has the potential to
transform a large part of the IT industry while making software
even more attractive as a service. However, the major concern
in cloud data centers is the drastic growth in energy consump-
tion, which is a result of the rise in cloud services adoption and
popularity. An average data center consumes as much energy as
25 000 households, as reported by Kaplan et al. [3]. This energy
consumption results in increased Total Cost of Ownership and
consequently decreases the Return of Investment (ROI) of the
cloud infrastructure. Apart from low ROI, energy consumption

has a great impact on carbon dioxide (CO2) emissions, which
are estimated to be 2% of global emissions [4].

There has been a growing effort in decreasing cloud data cen-
ters’ energy consumption while meeting Service Level Agree-
ments (SLA). The energy wastage in data centers is caused
by various reasons such as inefficiency in data center cooling
system [5], network equipments [6] and server utilization [7].
In this paper, we mainly focus on the efficient utilization of
computing resources, since servers are still the main power
consumers in a data center [8].

One of the key features introduced in data centers that can
decrease their energy consumption is virtualization technology.
This technology enables efficient utilization of resources and

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 209

load balancing via migration and consolidation of workloads.
Therefore, a considerable amount of energy is saved with vir-
tual machine migrations from underloaded servers by putting
them in a lower power state. Many approaches utilize this tech-
nology, along with various heuristics, concentrating solely on
virtual machine migrations and VM placement techniques with
the objective of decreasing the data center power consumption.
However, these approaches ignore tailoring virtual machine
configurations to workload characteristics and the effect of
such tailoring on the energy consumption and resource wastage
in a typical data center.

User-defined virtual machine configuration is an available
option for most cloud service models. Therefore, one of the
challenges is to propose a method for defining the most efficient
virtual machine configuration for a given application.

Apart from VM configuration, the other factor impacting
the efficiency of resource utilization is the application of the
knowledge obtained from the analysis of the real world clouds
trace logs. This analysis enables an understanding of the vari-
ance of workloads that should be incorporated in solutions, as
they affect the performance of proposed resource management
approaches.

In this paper, we propose an end-to-end architecture for
energy-efficient resource allocation and management in data
centers. Because of the predefined software and applications
that are executed in the data center, there exist similarities
between the tasks’ usage patterns and hence similar tasks can
be grouped together using clustering algorithms. Our proposed
solution decreases the resource wastage in data centers via
virtualization and efficient resource allocation policies.

For defining virtual machine types and their capacity, we
leverage similarities in the utilization patterns reported in the
Google traces, which is confirmed by previous studies [9–12].
These similarities enable tasks to be grouped based on average
resource usage via clustering techniques. Then the cluster-
ing output is used for the determination of customized virtual
machine types. The actual resource utilization of tasks is
considered during the grouping process, since there is a consid-
erable gap between the actual reported resource usage and the
requested amount of resources for task execution in the studied
trace. In this respect, considering the actual resource utilization
during the task execution will result in less resource wastage
and consequently less energy consumption, which is one of the
objectives of the proposed architecture.

In order to apply information of real cloud backend traces in
our solution and on its evaluation, we utilized Google traces.
The first Google log provides the normalized resource usage
of a set of tasks over a 7-h period. The second version of the
Google traces, which was released in 2012, contains more
details in a longer time frame. Therefore, the data set used in
this paper is derived from the second version of the Google
cloud trace log [13] collected during a period of 29 days.
The log consists of data tables describing the machines, jobs
and tasks.

Recent work analyzing Google traces focused on various
objectives such as characterization of task usage [14], task
grouping for workload prediction and capacity planning [9],
characterization of applications [12], modeling and synthesis of
task placement constraints [15] and workload characterization
for simulation parameter extraction and modeling [11,16,17].
Our work contributes to the current research area by introduc-
ing an architecture that utilizes the knowledge obtained from
the workload characterization to determine efficient virtual
machine configurations. The key contributions of our work are:

(i) We propose an end-to-end architecture for efficient allo-
cation of requests on data centers that reduces the infras-
tructure’s energy consumption.

(ii) We present an approach, applied to the proposed archi-
tecture, to identify virtual machine configurations
(types) in terms of CPU, memory and disk capacity
via clustering tasks, taking into consideration usage
patterns of each cluster.

(iii) We propose an approach for the identification of VM
task capacity, which is the maximum number of tasks
that can be accommodated in a virtual machine, con-
sidering different estimates, including the average
resource usage of tasks in each cluster.

An evaluation of the proposed architecture shows that the
policy that considers the actual reported usage results in less
energy consumption in the data center. This policy showed 73%
improvement when comparing to a policy that allocates the
virtual machine’s resources based on the resource estimation
provided by users.

The rest of the paper is organized as follows. Section 2
presents the related work in this area. Section 3 introduces the
system model, the proposed architecture and its components.
In Section 4, the implementation details of the task clustering
is presented. In Section 5, we explain how the virtual machine
configurations are defined, followed by a brief discussion on
the resource allocation policies in Section 6. Section 7 describes
the experiment set up including the data center’s server con-
figurations and the power consumption model of the servers.
Then, the results of the algorithms’ performance in terms of the
energy and task execution efficiency are discussed in Section 8.
Finally, Section 9 presents conclusions and discusses future
research directions.

2. RELATED WORK

There is a considerable body of literature on power management
in virtualized and non-virtualized data centers via hardware- and
software-based solutions [18–20]. Most of the prior research in
the area do not apply the knowledge obtained from the analysis
of real cloud backend traces, nor the variance of the cloud work-
loads in their proposed solutions.

In 2009, Yahoo! released traces from a production MapRe-
duce cluster to a selection of universities. In the same year,

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


210 S.F. Piraghaj et al.

Google made the first version of its traces publicly available.
Google trace’s release resulted in a variety of research inves-
tigating the problems of capacity planning and scheduling
via workload characterization and statistical analysis of the
planet’s largest cloud backend traces [13].

2.1. Google trace research works

The research on Google cluster traces falls in three major cat-
egories, namely statistical analysis, workload modeling and
characterization and simulation and modeling. They are further
discussed in this section.

2.1.1. Statistical analysis
The first version of the Google traces contains the resource con-
sumption of tasks, whereas the second version of Google traces
covers more details including machine properties and task
placement constraints. These constraints limit the machines
onto which tasks can be scheduled [13]. In order to measure
the performance impact of task placement constraints, Sharma
et al. [15] synthesized these constraints and machine proper-
ties into performance benchmarks of Google clusters in their
approaches.

Garraghan et al. [21] investigated server characteristics
and resource utilization in the Google cluster data. They also
explored the amount of resource wastage resulted from failed,
killed and evicted tasks for each architecture type over dif-
ferent time periods. The average resource utilization per day
lies between 40 and 60% as stated by Reiss et al. [22], and the
CPU wastage on average server architecture type lies between
4.52 and 14.22%. These findings justify investigation of new
approaches for improving resource utilization and reducing
resource wastage.

Di et al. [23] investigated the differences between a cloud
data center and other Grid/HPC systems considering both
workload and host load in the Google data center. An analysis
of the job length and jobs resource utilization in various system
types, along with job submission frequency, shows that the
host load in a cloud environment faces higher variance resulted
from higher job submission rate and shorter job length. As a
result, the authors identified three main differences between
cloud and grid workloads: firstly, Grid tasks are more CPU
intensive, whereas cloud tasks consume other resources, such
as memory, more intensively. Secondly, CPU load is much
noisier in clouds than in Grids. Thirdly, the host load stability
differs between infrastructures, being less stable in clouds.
These differences make the analysis of cloud traces crucial
for researchers, enabling them to verify the applicability of
heuristics in real cloud backend environments.

2.1.2. Workload modeling and characterization
Mishra et al. [9] and Chen et al. [10] explored the first version
of the Google cluster traces and two approaches were intro-
duced for workload modeling and characterization. Mishra

et al. [9] used the clustering algorithm K-means for forming
the groups of tasks with more similarities in resource consump-
tions and durations. Likewise, Chen et al. [10] used K-means
as the clustering algorithm. In their experiments, the authors
classified jobs1 instead of tasks. Di et al. [12] characterized
applications, rather than tasks, running in the Google cluster.
Similarly to the two previous approaches, the authors chose
K-means for clustering, although they optimized the K-means
result using the Forgy method.

Moreno et al. [16] presented an approach for the characteriza-
tion of the Google workload based on users and task usage pat-
terns. They considered the second version of the Google traces
and modeled the workload for two days of it. Later in 2014 [11],
authors extended the work with an analysis of the entire tracelog.
The main contribution of the work is considering information
about users along with the task usage patterns. Moreno et al. [11,
16] also used K-means for grouping purpose. They estimated
the optimal k with the quantitative approach proposed by Pham
et al. [24].

The previous study demonstrated that there are similarities in
task usage patterns of Google backend traces. Therefore, in our
proposed architecture, likewise previous approaches [9,10],
we group tasks with similarities in their usage patterns using
clustering. In typical clustering, the number of clusters is a
variable that is data-dependent and has to be set beforehand.
Approaches noted in [11,16] use K-means and vary the number
of clusters considering a finite range, for example 1–10. Then,
the optimal value of k is derived considering the degree of
variability in derived clusters [11,16] and Within cluster Sum
of Squares [12]. Although these approaches could be applied
here, we aimed to make the architecture as autonomous as
possible and thus we avoided manual tuning of the number
of clusters for each dataset like previous studies [11,12,16].
Pelleg and Moore [25] proposed X-means, a method that com-
bines K-means with BIC. The latter is used as a criterion to
automatic selection of the best number of clusters. Hence, we
utilize X-means rather than existing approaches based solely on
K-means [11,12,16]. It is worth mentioning that the workload
modeling part of the architecture can be substituted, without
changes in other components of the proposed architecture, by
other approaches available in the literature [9–12,16].

The concept of task clustering has been previously investi-
gated and proved to be effective outside of cloud computing
area [26–28]. Our approach is different from them in terms
of the objective and the target virtualized environment. For
example, Singh et al. [26] and Muthuvelu et al. [27] utilized
the technique for reducing communication overhead for sub-
mission of tasks in Grid systems, which are geographically
distributed, in contrast with our application for energy mini-
mization in a centralized cloud data center. Task clustering is
also utilized by Wang et al. [28] to improve energy efficiency

1 A job is compromised of one or more tasks [13].

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 211

in clusters via dynamic frequency and voltage (DVFS) tech-
niques targeting parallel applications. Our approach, on the
other hand, is agnostic to the application model and achieves
energy-efficiency via consolidation and efficient utilization
of data center resources. Furthermore, our work goes beyond
these previous approaches on clusters and Grids by leveraging
virtualization and mapping groups of tasks to VMs.

2.1.3. Simulation and modeling
Di et al. [17] proposed GloudSim as a distributed cloud simu-
lator based on Google traces. This simulator leveraged virtual-
ization technology and modeled jobs and their usage in terms
of the CPU, memory and disk. It supports simulation of a cloud
environment, that is, as similar as possible to Google cluster.

Moreno et al. [11,16] proposed a methodology to simu-
late the Google data center. Authors leveraged their modeling
methodology to build a workload generator. This generator
is implemented as an extension of the well-known cloud dis-
crete simulator CloudSim [29] and is capable of emulating the
user behavior along with the patterns of requested and utilized
resources of submitted tasks in Google cloud data center.

In this paper, we present an end-to-end architecture aiming at
efficient resource allocation and energy consumption in cloud
data centers. In this architecture, the cloud provider utilizes the
knowledge obtained from the analysis of the cloud backend
workload to define customized virtual machine configuration
along with maximum task capacity of virtual machines.

In the proposed architecture, likewise the discussed related
work [11,16,17], we assume availability of virtualization
technology and therefore tasks are executed on top of virtual
machines instead of physical servers. This architecture can also
be implemented utilizing the aforementioned simulation mod-
els [11,16,17]. Our work is different since we aim at decreasing
energy by defining the virtual machines configurations along
with their maximum task capacity.

3. SYSTEM MODEL AND ARCHITECTURE

Our proposed architecture targets Platform as a Service data
centers operating as a private cloud for an organization. Such
a cloud offers a platform where users can submit their appli-
cations in one or more programming models supported by the
provider. The platform could support, for example, MapRe-
duce or Bag of Tasks applications. Here, users interact with the
system by submitting requests for execution of applications sup-
ported by the platform. Every application in turn translates to
a set of jobs to be executed on the infrastructure. In our studied
scenario, the job itself can be composed of one or more tasks.

3.1. User request model

In the proposed model, users of the service submit their appli-
cation along with estimated resources required to execute it and

receive back the results of the computation. The exact infras-
tructure where the application executes is abstracted away from
users. Parameters of a task submitted by a user are:

(i) scheduling class;
(ii) task priority;

(iii) required number of cores per task;
(iv) required amount of RAM per task and
(v) required amount of storage per task.

All the aforementioned parameters are present in Google
Cluster traces [13].

3.2. Cloud model

In the presented cloud model, system virtualization technol-
ogy [30] is taken into consideration. This technology improves
the utilization of resources of physical servers by sharing them
among virtual machines [31]. Apart from this, live migration of
VMs and overbooking of resources via consolidation of multi-
ple virtual machines in a single host reduce energy consumption
in the data center [32]. The other benefit of virtualization is
the automation it provides for application development [33].
For example, once a virtual machine is customized for a spe-
cific development environment, the VM’s image can be used
on different infrastructures without any installation hassles.
Therefore, as long as the virtual machine is able to be placed
on the server, homogeneity of the environment offered by
the VM image is independent of the physical server and its
configuration. These characteristics and advantages of the
virtualization technology persuade us in applying this in our
proposed architecture.

Our focus is on data centers that receive task submissions and
where tasks are executed in virtual machines instead of physi-
cal servers, a model that has been widely explored in the area
of cloud computing [34,35]. Since these tasks might be differ-
ent in terms of running environments, it is assumed that tasks
run in containers [13] that provide these requirements for every
one of them. However, in our model, these containers run inside
the virtual machines instead of the physical machines. This can
be achieved with the use of Linux containers or tools such as
Docker [36], an open platform for application development and
whose containers can run inside the virtual machine or on phys-
ical hosts.

3.3. System architecture

The objective of the proposed architecture (shown in Fig. 1)
is to execute the workload with minimum wastage of energy.
Therefore, one of the challenges is finding optimal VM configu-
rations, in such a way that the accommodated tasks have enough
resources to be executed and resources are not wasted during
the operation. Since the proposed model has been designed to
operate in a private cloud, the different number and types of

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


212 S.F. Piraghaj et al.

applications can be controlled, and there is enough information
about submitted tasks so that cloud usage can be profiled.

3.4. System components

The proposed architecture is presented in Fig. 1, and their com-
ponents are discussed in the rest of this section.

3.4.1. Pre-execution phase
We discuss the components of the proposed architecture that
need to be tuned or defined before the system runtime:

(i) Task classifier: this component is the entry point of the
streaming of tasks being processed by the architecture.
It categorizes tasks arrived in a specified time frame
into predefined classes. The classifier is trained with
the clustering result of the historical data before sys-
tem start up. The clustering is performed considering
average CPU, memory and disk usage together with the
priority, length and submission rate of tasks, obtained
from the historical data. The time interval for the clas-
sification process is specified by the cloud provider
according to the workload variance and task submis-
sion rate. Once the arriving task is classified in terms of
the most suitable virtual machine type for processing
it, it is forwarded to the Task Mapper to proceed with
the scheduling process. The Task Mapper component
is discussed in the execution phase.

(ii) VM Type Definer: this component is responsible for
defining the virtual machines’ configuration based on
the provided historical data. Determining the optimal
VM configuration requires analysis of task usage pat-
terns. In this respect, the identification of groups of
tasks with similar usage patterns reduces the complex-
ity of estimating the average usage for new tasks. These
patterns, which identify groups of tasks that have a
mutual optimal VM configuration, are obtained with
application of clustering algorithms.

(iii) VM Types Repository: in this repository, the available
virtual machine types, including CPU, memory and

disk characteristics, are saved. These types are specified
by the VM Type Definer considering workload speci-
fications and is derived from historical data used for
training the task classifier component.

3.4.2. Execution phase
The components that operate during the execution phase of the
system are discussed:

(i) Task Mapper: the clustering results from the Task Clas-
sifier are sent to the Task Mapper. The Task Mapper
operation is presented in Algorithm 1. Based on avail-
able resources in the running virtual machines and the
available VM types in the VM Types Repository, this
component calculates the number and type of new vir-
tual machines to be instantiated to support the newly

Algorithm 1: Overview of the Task Mapper operation
process.
Input: KilledTasks, AvailablevmCapacity, NewTasks,

VMTypeRepository
Output: NumberofvmsToInstatiate

1 foreach ProcessingWindow do
2 foreach Task in NewlyArrivedTasks do
3 if There is a vm in AvailablevmCapacity then
4 vm.Assign(Task)
5 vm.CheckStatus
6 Delete Task from NewlyArrivedTasks

7 foreach Task in KilledTasks do
8 if There is a vm in AvailablevmCapacity then
9 vm.Assign(Task)

10 vm.CheckStatus
11 Delete Task from KilledTasks

12 LeftTasks = Append KilledTasks to NewlyArrivedTasks
13 foreach Task in LeftTasks do
14 Calculate the NumberofvmsToInstantiate

FIGURE 1. Proposed system architecture and its components.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 213

arrived tasks. Apart from new VM instantiation when
available VMs cannot support the arriving load, this
component also reschedules rejected tasks that are
stored in the killed task repository to the available vir-
tual machines of the type required by the VM (if any).
This component prioritizes the assignment of newly
arrived tasks to available resources before instantiating
a new virtual machine. However, in order to avoid star-
vation of the rejected tasks, the component assigns the
newly arrived tasks to the available virtual machines
and the killed tasks are assigned to newly instantiated
VMs. The operation of this component on each process-
ing window (Algorithm 1) has complexity O(n× m),
where n is the total number of tasks to be mapped (i.e.,
tasks in the KilledTaskDictionary along with the tasks
received in the processing window) and m is the number
of VMs.

(ii) Virtual Machine Instantiator: This component is
responsible for the instantiation of a group of VMs with
the specifications received from the Task Mapper. This
component decreases the start-up time of the virtual
machines by instantiating a group of VMs at a time
instead of one VM per time.

(iii) Virtual Machine Provisioner: This component is
responsible for determining the placement of each vir-
tual machine on available hosts and turning on new
hosts if required to support new VMs.

(iv) Killed Task Repository: Tasks that are rejected by the
Controller are submitted to this repository, where they
stay until the next upcoming processing window to be
rescheduled by the Task Mapper.

(v) Available VM Capacity Repository: IDs of virtual
machines that have available resources are registered
in this repository. It is used for assigning tasks killed
by the Virtual Machine Controller along with newly
arrived ones to available resource capacity.

(vi) Power Monitor: This component is responsible for esti-
mating the power consumption of the cloud data center
based on the resource utilization of the available hosts.

(vii) Host Controller: It runs on each host of the data center.
It periodically checks virtual machine resource usage
(which is received from the Virtual Machine Con-
trollers) and identifies underutilized machines, which
are registered in the available resource repository. This
component also submits killed tasks from VMs running
on its host to the Killed Task Repository so that these
tasks can be rescheduled in the next processing win-
dow. Finally, this component also sends the host usage
data to the Power Monitor.

(viii) Virtual Machine Controller (VMC): The VMC runs on
each VM of the cloud data center. It monitors the usage
of the VM and, if the resource usage exceeds the virtual
machine capacity, it kills a number of tasks with low pri-
orities so that high priority ones can obtain the resources

they require in the virtual machine. In order to avoid task
starvation, this component also considers the number of
times a task has been killed. The Controller sends killed
tasks to the Host Controller to be submitted to the global
killed task repository. As mentioned before, killed tasks
are then rescheduled on an available virtual machine in
the next processing window. The operation of this com-
ponent is shown in Algorithm 2 and it has complexity
O(n× m), where n is the number of running tasks and
m is the number of VMs.

Algorithm 2: Virtual Machine Controller Process.
Input: RunningTaskList, TaskUsage
Output: CPUUsage,MemoryUsage,DiskUsage,

KilledTasksList
1 foreach Processingwindow do
2 foreach Task in RunningTaskList do
3 vm.updateUsage()
4 vm.updateState()

5 foreach vm whose state is OverLoaded do
6 foreach Task in RunningTaskList do
7 if TaskPriority equals to LowestPriority and

has MinNumberofKills then
8 vm.killTask()
9 vm.updateState()

4. TASK CLUSTERING

In this section, we discuss the selected clustering feature set and
the clustering algorithm utilized for clustering tasks with more
details.

4.1. Clustering feature set

As our feature set, we used the following characteristics of each
task:

(i) Task Length: The time during which the task was run-
ning on a machine.

(ii) Submission Rate: The number of times that a task is sub-
mitted to the data center.

(iii) Scheduling Class: This feature shows how latency sen-
sitive the task/job is. In the studied traces, the scheduling
class is presented by an integer number between 0 and 3.
Tasks with a 0 scheduling class are non-production task.
The higher the scheduling class is, the more latency sen-
sitive is the task.

(iv) Priority: The priority of a task shows how important a
task is. High priority tasks have preference for resources
over low priority ones [13]. The priority is an integer
number between 0 and 10.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


214 S.F. Piraghaj et al.

(v) Resource Usage: The average resource utilization UT of
a task T in terms of CPU, memory and disk, which is
obtained using Equation (1). In this equation, nr is the
number of times that the task usage (uT ) is reported in the
studied 24 h period and u(T ,m) is the mth observation of
the value of utilization uT in the traces.

UT =
∑nr

m=1 u(T ,m)

nr
. (1)

The selected features of the dataset were used for the estima-
tion of the number of task clusters and determination of the suit-
able virtual machine configuration for each group. Application
of data from other days of the trace, as well as utilization of other
parameters from the trace for classification purposes, is the sub-
ject of our future work.

4.2. Clustering algorithm

Clustering is the process of grouping objects with the objective
of finding the subsets with the most similarities in terms of the
selected features. In this respect, both the objective of the group-
ing and the number of groups affect the results of clustering. In
our specific approach, we focus on finding groups of tasks with
similarities in their usage pattern so that available resources can
be allocated efficiently. For discovering the other factor, namely
definition of the most effective number of clusters, the X-means
algorithm is utilized.

4.2.1. X-means clustering algorithm
Pelleg et al. [25] proposed the X-means clustering method as
the extended version of K-means [37]. In addition to group-
ing, X-means also estimates the number of groups present in a
typical dataset, which in the context of the architecture is the
incoming tasks.

K-means is a computationally efficient partitioning algo-
rithm for grouping N-dimensional dataset into k clusters via
minimizing within-class variance. However, supplying the
number of groups (k) as an input of the algorithm is challenging
since the number of existing groups in the dataset is generally
unknown. Furthermore, as our proposed architecture aims for
automated decision making, it is important that the number of
input parameters is reduced and that the value of k is automati-
cally calculated by the platform. For this reason, we opted for
X-means.

As stated by Pelleg et al. [25], X-means efficiently searches
the space of cluster locations and number of clusters in order to
optimize the Bayesian information Criterion (BIC). BIC is a cri-
terion for selecting the best fitting model amongst a set of avail-
able models for the data [38]. Optimization of the BIC criterion
results in a better fitting model.

X-means runs K-means for multiple rounds and then clus-
tering validation is performed using BIC to determine the
best value of k. It is worth mentioning that X-means has been
successfully applied in different scenarios [39–42].

5. IDENTIFICATION OF VM TYPES FOR THE VM
TYPE REPOSITORY

Once clusters that represent groups of tasks with similar char-
acteristics in terms of the selected features are defined, the next
step is to assign a VM type that can efficiently execute tasks that
belong to the cluster. By efficiently, we mean successfully exe-
cuting the tasks with minimum resource wastage. Parameters of
interest of a VM are number of cores, amount of memory and
amount of storage. Since tasks in the studied trace need small
amount of storage, the allocated disk for virtual machines are
assumed to be 10 GB, which is enough for the OS installed on
the virtual machine and the tasks disk usage.

5.1. Determination of number of tasks for each VM type

Algorithm 3 details the steps taken for the estimation of the
number of tasks for each virtual machine type. In order to
avoid overloading the virtual machines, the maximum number
of tasks in each VM is set to 150. This amount is allowed to
increase if the resource demand is small compared with the VM
capacity. Then, for each allowed number of tasks i (i between
1 and 150), i random tasks are selected from the cluster of task
and the average CPU utilization is calculated for this selection.
The CPU error is then reported and stored in temperror.

Next, according to the temperror, the algorithm finds the
value of i that has the lowest CPU usage estimation error as the
VM’s number of tasks. This process is repeated for 500 itera-
tions, which enables enough data to be collected for drawing
conclusions. The VM’s number of tasks in each iteration is then
saved in Minerror. According to Minerror, the number of task for
each VM type would be the number which shows the minimum
estimation error in most of the iterations. In other words, the
algorithm selects the number of tasks that is the most probable
to result in less estimation error.

Algorithm 3: Estimation of the optimum number of tasks
for each VM Type.
Input: ClusterofTasks
Output: NumberofTasksPerCluster

1 foreach ClusterofTasks do
2 AvgCPU ←Average CPU Usage of the ClusterofTasks
3 for k from 1 to 500 do
4 for i from 1 to 150 do
5 ClusterSample← i random samples of

TaskCluster without replacement
6 AvgCPUs ← Average CPU usage for the

ClusterSample
7 CPUError ← AvgCPU−AvgCPUs

AvgCPU

8 temperror[i]← CPUError

9 MinError[k]← Index of min(tempError)

10 NumberofTasksPerCluster← mode(MinError)

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 215

TABLE 1. Virtual machine configurations.

VM type Number of tasks vCPU Memory (GB) VM type Number of tasks vCPU Memory (GB)

TYPE 1 136 3 4.5 TYPE 10 250 1 0.4
TYPE 2 125 1 0.5 TYPE 11 188 3 1.6
TYPE 3 500 1 1.8 TYPE 12 1250 1 1.1
TYPE 4 38 6 11 TYPE 13 118 4 10.3
TYPE 5 139 5 3.4 TYPE 14 126 25 14.2
TYPE 6 250 1 0.9 TYPE 15 100 2 1.9
TYPE 7 143 14 20.6 TYPE 16 136 3 6.8
TYPE 8 150 3 2.4 TYPE 17 143 2 1.1
TYPE 9 154 8 4.3 TYPE 18 500 1 3.8

5.2. Estimation of resource usage of tasks in each cluster

After estimating the maximum number of tasks in each vir-
tual machine with the objective of decreasing the estimation
error, the virtual machine types need to be defined. For this pur-
pose, there is a need to estimate the resource usage of a typical
task running in a virtual machine. For estimating the resource
usage of each task in a cluster, the algorithm uses the average
resource usage and variance of each cluster of tasks in our
selected dataset. The first step for this is the computation of the
average resource usage of each task during the second day of
the trace and then for each cluster, the 98% confidence interval
of the average utilization of resources of the tasks in the group
is used. The upper-bound of the calculated confidence interval
is then used as the estimate of the resource demands (RDs) for
a typical task from a specific cluster.

5.3. Determination of virtual machines configuration

After obtaining the estimates for resource demands (RD) and the
number of tasks in a virtual machine type (nT), the specifications
of the virtual machine is derived using Equation (2).

Capacity = �nT ∗ RD�. (2)

Since tasks running in one virtual machine are already shar-
ing the resources, at least one core of the CPU of the physical
machine is assigned for each virtual machine. Because of the
rounding process in Equation (2), the number of tasks in each
virtual machine is estimated again applying the same equation.

The process above was applied to determine VM types for
each cluster. VM types resulting from the above process are
stored in the VM Types Repository to be used by the Task Map-
per for assignment purposes. The application of this process
resulted in the VM types described in Table 1. The number
of tasks nT obtained via Equation (2) is used as the virtual
machines’ task capacity for the proposed Utilization-based
Resource Allocation (URA) policy, which is briefly discussed
in the next section along with the other proposed policies.

6. RESOURCE ALLOCATION POLICIES

The number of tasks residing in one VM varies from one cluster
to another. As discussed in the previous section, virtual machine
configurations are tailored to the usage pattern of the tasks resid-
ing in the VMs. The same virtual machine configurations are
used for all the proposed policies. However, these algorithms are
different in terms of the task capacity of the virtual machines
for each cluster of tasks. These resource allocation policies are
detailed:

(i) URA: in this policy, the number of tasks assigned to
each VM is computed according to the 98% confidence
interval of the observed average utilization of resources
by the tasks being mapped to the VM. For example,
if historical data shows that tasks of a cluster used on
average 1 GB, and tasks of such cluster are going to be
assigned to a VM with 4 GB of RAM, URA will assign
4 of such tasks, regardless the estimated amount of
memory declared by the user when submitting the cor-
responding job (which is the value obtained from the
traces). The task capacity of each virtual machine type
is equal to the nT obtained from Equation (2), which is
discussed in Section 5.

(ii) Requested Resource Allocation (RRA): in this policy,
the same virtual machine types from URA are con-
sidered; however, the number of tasks assigned to a
VM is based on the average requested amount by the
submitted tasks. As mentioned before, the requested
amount of resources is submitted along with the tasks.
RRA is used as a baseline for our further comparisons
in terms of data center power consumption and server
utilization.

The other four policies are derived from the results of the eval-
uation of URA. In this respect, the usage of virtual machines is
studied to get more insight about the cause of rejections (CPU,
memory or disk) and the number of running tasks in each virtual
machine when the rejections occurred.

For each virtual machine, the minimum number of running
tasks that utilizes more than 90% of the VM’s capacity in terms

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


216 S.F. Piraghaj et al.

Algorithm 4: Determination of the minimum number of running tasks for each virtual machine that causes VM resource utilization
to be higher than 90% of its capacity without causing rejections.
Input: vmListsofClusters = {vmList1, . . . , vmList18}

vmListclusterIndex = {vmID1, . . . , vmIDnumberofVMs}clusterIndex

resourceList = {CPU , memory, disk}
Output: nT(clustrIndex,Res) = {ntvmID1 , . . . , ntvmIDnumberofVMs}

1 for clusterIndex← 1 to 18 do
2 vmIDList← vmListsofClusters.get(clusterIndex)
3 for vmID in vmIDList do
4 foreach Res in resourceList do
5 Find minimum number of running tasks (nt) that caused the utilization of the resource (Res) to be between 90% to

100% of its capacity. nT(clustrIndex,Res).add(ntvmID)

of CPU, memory and disk without causing any rejections are
extracted. This 90% limit avoids the occurrence of underuti-
lized virtual machines. The extracted number is defined as
nt(vmID,resource). The procedure is applied on each cluster and is
explained with more details in Algorithm 4.

For each cluster determined by its clusterIndex in Algo-
rithm 4, nt is obtained for each VM type. Then, nt of the VMs
in each cluster are gathered in a set named nTclusterIndex,Res for
each of the considered resources (Res) including CPU, memory
and disk. We propose four policies to determine the number
of tasks residing in each virtual machine. These policies as
described below are based on the estimates (average, median,
the first and the third quantile) derived from nTclusterIndex,Res for
each cluster.

(i) Average Resource Allocation policy (AvgRA): For each
cluster of tasks, considering m as the length of the set
nTclusterIndex,(CPU ,memory,disk), for the average number of
tasks, we have

nTAvg,resource =
(

m∑
i=1

nti,resource/m

)
. (3)

The nTAvg is estimated for each resource separately. In
this policy, the number of tasks residing in each virtual
machine type is equal to the minimum nT obtained for
each resource (Equation (4)).

nTminimum = min(nTAvg,CPU , nTAvg,memory, nTAvg,Disk).
(4)

(ii) First Quantile Resource Allocation policy (FqRA): For
this policy, the first quantiles2 of the nTclusterIndex,Res sets
are used for determining the number of tasks allocated
to each virtual machine type. Like AvgRA, the minimum
amount obtained for each of the resources is used. By
resource, we mean the virtual machine’s CPU, memory
or disk capacity.

2 The k quantile of a sorted set is the value that cuts off the first (25 ∗ k)% of
the data. For first, second and third quantile k is equal to 1, 2 and 3, respectively.

(iii) Median Resource Allocation policy (MeRA): for
this policy, the second quantiles (median)2 of the
nTclusterIndex,Res sets are used for determining the num-
ber of tasks allocated to each virtual machine type.
Like the previous policy, the minimum amount of
nTMed ,resource obtained for each of the resources is used
for determining the VM’s task capacity.

(iv) Third Quantile Resource Allocation policy (ThqRA): In
this policy, the third quantiles2 of the nTclusterIndex,Res

sets are used for determining the number of tasks allo-
cated to each virtual machine type. As in the previous
cases, the minimum amount of nTMed ,resource obtained
for each of the resources is used for determining the
virtual machines task capacity.

7. EXPERIMENT SET UP

We discuss the setup of the experiments that we conducted to
evaluate our proposed approach in terms of its efficiency in task
execution and power consumption.

The dataset used in this paper is derived from the second
version of the Google cloud trace log [13] collected during a
period of 29 days. The log consists of data tables describing the
machines, jobs and tasks. In the trace log, each job consists of
a number of tasks with specific constraints. Considering these
constraints, the scheduler determines the placement of the tasks
on the appropriate machines. The event type value in the job
and tasks are reported in the event table. The job/task event has
two types: events that change the scheduling state such as sub-
mitted, scheduled or running and events that indicate the state
of a job such as dead [13]. For the purpose of this evaluation,
we utilize all the events from the trace log and we assume that
all the events are occurring as reported in the trace log. The
second day of the traces is selected for evaluation purpose, as
it had the highest number of task submissions.

In the available traces, resource utilization measurements and
requests are normalized, and the normalization is performed
separately for each column. As stated by Reiss et al. [13],

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 217

TABLE 2. Largest amount of each resource applied for
de-normalization.

CPU Memory (GB) Disk (GB)

100% of a core of the largest
machine CPU (3.2 GHz)

4 1

normalization is carried out in relation to the highest amount of
the particular resource found on any of the machines. In this con-
text, to get a real sense of the data, we assume the largest amount
of resources for each column as described in Table 2 and multi-
ply each recorded data by the related amount (e.g for recorded
memory utilization we have Realutil = RecordedUtil ∗ 4). Then,
the total resource utilization and requested amount are calcu-
lated for each cluster as discussed in the last section. In order
to eliminate placement constraints, only the tasks scheduled
on one of the three available platforms are considered and the
configurations of the simulated data center servers are further
discussed in Section 7.1.

The proposed system is simulated for each cluster and the
tasks are assigned to the corresponding virtual machine types
during each processing window (1 min for the purposes of
these experiments). The simulation runtime is set to 24 h. Clus-
ter resource usage and number of rejected tasks are reported
for each cluster of tasks separately. Since the virtual machine
placement also affects the simulation result, the same pol-
icy introduced in Section 7.2 is used in the Virtual Machine
Provisioner component for all the proposed algorithms. In
order to show the efficiency of our proposed architecture in
terms of power consumption, linear power consumption model
is considered for each of the running machines. The power
consumption model is further discussed in Section 7.3.

7.1. Data center servers’ configuration

We define a data center with three server configurations listed in
Table 3. These types are inspired from Google data center and
its host configurations during the studied trace period. Hosts in
the Google cluster are heterogeneous in terms of the CPU, mem-
ory and disk capacity. However, hosts with the same platform ID
have the same architecture.

As mentioned in Section 2, there are three types of platforms
in Google data center. In order to eliminate placement con-
straint for tasks, we have chosen the platform with the largest
number of task submissions. The server architecture for our
implementation is the same for all three types. As suggested by
Garraghan et al. [43], servers in this platform are assumed to
be 1022G-NTF (Supermicro Computer Inc.) inspired from the
SPECpower_ssj2008 results [44].

7.2. Virtual machine placement policy

The First Fit algorithm is applied as the placement policy
for finding the first available machines for hosting newly

instantiated VMs. The algorithm first searches through the
running machines to find if there are enough resources avail-
able for the virtual machine. It reports the first running host that
can provide the resources for the VM. If there is no running host
found for placing the virtual machine, a new host is activated.
The new host is selected from the available host list, which is
obtained from the trace log and contains the hosts IDs along
with their configurations. All the proposed algorithms have
access to the same host list to make sure that the placement
decision does not affect the simulation results.

7.3. Server’s power consumption model

The power profile of the selected server3 from SPECpower
is used for determining the linear power model constants in
Equation (5) [45]. The power consumption for processing tasks
at time t is defined as the accumulative power consumed in
all the active servers at that specific time. For each server, the
power consumption at time t is calculated based on the CPU
utilization and server’s idle and maximum power consumption
(Eq. (5)). We focus on energy consumption of CPU because this
is the component that presents the largest variance in energy
consumption regarding its utilization rate [45].

Pn(ti) = (Pmax − Pidle) ∗ n/100+ Pidle (5)

8. EXPERIMENT RESULTS

X-means algorithm reports the existence of 18 clusters in the
tasks. In this section, we go through the specifications of the task
clusters and then we compare how efficiently the six algorithms
can successfully execute the tasks. Later, in Section 8.3, we dis-
cuss the comparison of the proposed algorithms in terms of their
energy consumption.

8.1. Characteristics of task clusters

We briefly discuss the characteristics of task clusters in terms
of the scheduling class, priority, and the average length of the
tasks in each group (Table 4). The population comparison of the
clusters is presented in Fig. 2. To enable a better understanding
of the characteristics of task clusters, Fig. 3 summarizes Table 4
considering the similarities between task groups.

In Fig. 3, task priority higher than 4 is considered ‘high’. In
addition, the average task length <1 and <5 h are noted ‘short’
and ‘medium’ length, respectively. The average task length
higher than 5 h is considered ‘long’. Figure 3 shows that almost
78% of the tasks fall in to the short length category. In addition,
all long and medium length tasks have higher priorities and are
less likely to be preempted. This logic is implemented in the
Google cluster scheduler to avoid long tasks getting restarted in

3 1022G-NTF (Supermicro Computer, Inc.)

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


218 S.F. Piraghaj et al.

TABLE 3. Available server configurations present in one of the platforms of the Google cluster [43].

Server type Number of cores Core speed (GHz) Memory (GB) Disk (GB) Pidel (W) Pmax (W)

Type1 32 1.6 8 1000 70.3 213
Type2 32 1.6 16 1000
Type3 32 1.6 24 1000

TABLE 4. Statistics of the clusters in terms of the scheduling class, priority and the average task length. The star sign (*) shows the dominant
priority and scheduling class of the tasks in each group.

Scheduling class Priority Task length (average)

Cluster-1 0 1* 2 8 9* 10 11
0.09% 99.76% 0.15% 0.88% 99.10% 0.01% 0.01% 18.19 (h)

Cluster-2 0* 6*
100% 100% 6.38 (min)

Cluster-3 0* 8* 9 10
100% 63.20% 36.76% 0.04% 5.7 (min)

Cluster-4 0* 4*
100% 100% 1.04 (h)

Cluster-5 0* 4*
100% 100% 20.32 (min)

Cluster-6 0* 4*
100% 100% 5.32 (min)

Cluster-7 0* 0* 1 2
100% 97.02% 2.98% 0.01% 56.82 (min)

Cluster-8 0* 1 0* 1 2 4 9
94.32% 5.7% 83.44% 8.42% 0.33% 7.80% 0.01% 4.72 (h)

Cluster-9 0* 0 1* 2
100% 36.55% 63.23% 0.23% 1.47 (h)

Cluster-10 0* 0*
100% 100% 28.04 (min)

Cluster-11 0* 1* 2
100% 99.2% 0.8% 19.19 (min)

Cluster-12 0* 0*
100% 100% 21.17 (min)

Cluster-13 2* 3 2 4* 6 8 9 10
74.9% 25.1% 0.03% 30.97% 16.28% 21.75% 28.17% 2.80% 38.66 (min)

Cluster-14 0 1* 2 1 2 4* 9
2.28% 97.62% 0.09% 0.04% 0.02% 99.49% 0.45% 42.9 (min)

Cluster-15 1* 4* 5 6
100% 97.67% 0.04% 2.29% 39.83 (min)

Cluster-16 2* 3 0* 1 2 4 9
93.67% 6.33% 67.61% 28.14% 4.23% 0.015% 0.001% 1.45 (h)

Cluster-17 1* 0* 1
100% 99.2% 0.8% 27.59 (min)

Cluster-18 1* 1 2*
100% 2.7% 97.3% 20.49 (min)

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 219

the middle of execution, which leads to more resource wastage.
Next, we describe the four meta-cluster task groups.

(i) Short and high priority tasks (Cluster 2, 3, 13): Tasks
in clusters 2 and 3 are all from scheduling class 0. How-
ever, tasks in cluster 13 are from higher scheduling
classes, which indicates that they are more latency sen-
sitive than the tasks in clusters 2 and 3. Amongst these
three clusters, cluster 13, with the average length of
38.66 min, has the longest average length.

(ii) Short and low priority tasks (Clusters 5, 6, 7, 10, 11,
12, 14, 15, 17, 18): Comparing to others, this category
includes the largest number of clusters. Cluster 7, with
the average length of 56.82 min, has the longest tasks
in this group. Considering the scheduling class, tasks
in clusters 5, 6, 7, 10, 11 and 12 are all from scheduling

FIGURE 2. Population of tasks in each cluster. Clusters 15–18 are the
most populated clusters. Since Cluster 1 population is <1%, it is not
shown in the chart.

class 0 while most of the tasks in clusters 14, 15, 17 and
18 are from scheduling Class 1.

(iii) Medium and low priority tasks (Clusters 4, 8, 9, 16): In
terms of the average task length, Cluster 8, with 4.72 h,
has the longest length. Considering the scheduling
class, the tasks in Cluster 16 are more latency sensi-
tive and probably belong to the production line, while
the tasks from the other three clusters are less latency
sensitive.

(iv) Long and high priority tasks (Cluster 1): Although
Cluster 1 contains <1% of the tasks (Fig. 2), this group
has the highest priority tasks with the longest durations
as shown in Table 4. Most of the tasks of the group have
scheduling Class 1, which shows they are less latency
sensitive in comparison with the tasks from higher
scheduling classes.

The results of clustering allowed us to draw conclusions per
cluster that help in the design of specific resource allocation
policies for each cluster. For example, as depicted in Fig. 3,
tasks in Cluster 1 are the longest and have the highest priority.
Therefore, one can conclude that the system assigns the higher
priority to these long tasks so that if they failed, the system
still has time to reschedule them. In contrast, as illustrated
by Fig. 3, the majority of tasks with short length have been
given low priorities. This is because, in case of both failure or
resource contention, the system can delay their execution and
still guarantee that they are executed in time.

In addition, as shown in Table 5, for task clusters with larger
length, less usage variation is observed. For resource alloca-
tion policies, this makes the usage estimation of resources and
predictions more accurate and more efficient, as less sampling
data are required, while the prediction window can be widened.
The opposite holds for clusters with smaller length: in these

FIGURE 3. Clusters of tasks are categorized on three levels according to the average length, the priority and the scheduling class (C) considering
the statistics in Table 4.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


220 S.F. Piraghaj et al.

TABLE 5. Virtual machine task capacity of each cluster for RRA, FqRA, AvgRA, MeRA, ThqRA and URA resource allocation policies.

ClusterIndex RRA FqRA AvgRA MeRA ThqRA URA

Cluster-1 15 29 34 32 38 136
Cluster-2 20 33 39 40 43 125
Cluster-3 20 16 500 16 500 16 500 16 500 500
Cluster-4 41 33 43 38 56 38
Cluster-5 28 32 48 46 56 139
Cluster-6 8 51 88 77 117 250
Cluster-7 80 46 64 53 62 143
Cluster-8 73 45 48 47 48 150
Cluster-9 41 95 104 104 107 154
Cluster-10 6 7 9 7 8 250
Cluster-11 12 91 92 99 105 188
Cluster-12 11 28 53 46 71 1250
Cluster-13 28 13 19 13 13 118
Cluster-14 83 67 69 67 67 126
Cluster-15 18 17 45 33 52 100
Cluster-16 48 74 79 94 101 136
Cluster-17 7 21 28 22 23 143
Cluster-18 73 409 439 478 478 500

FIGURE 4. Task execution efficiency in the RRA, FqRA, AvgRA, MeRA, ThqRA and URA policies. Efficiency is measured as the task rejection
rate per minute.

clusters, more variation is observed, and as a result prediction
require more frequent sampling and narrower time window.

8.2. Task execution efficiency of the proposed algorithms

We compare task execution efficiency of our proposed algo-
rithms in terms of task rejection rate. Ideally, the percentage of

tasks that need to be rescheduled should be as low as possible,
since it results in delays in the completion of jobs. In addition
to delays, the increase in task rejection rate increases resource
wastage since computing resources (and energy) are spent with
tasks that do not complete successfully and thus need to be later
executed again. The rejection rate for each policy is presented
in Fig. 4.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 221

FIGURE 5. Average delay caused by applying the RRA, FqRA, AvgRA, MeRA, ThqRA and URA policies. The delay is estimated by the time
it takes for a specific task to be rescheduled on another virtual machine after being rejected.

The virtual machine capacity for each of the algorithms is
shown in Table 5. In the URA policy, tasks are allocated based
on the actual usage. Because of the gap between requested
resources and the actual usage of tasks, in URA the VM task
capacity is higher than the other five algorithms. Therefore, in
most of the clusters, RRA accommodates the least number of
tasks in one virtual machine. Excluding RRA, FqRA has the
smallest VM task capacity in comparison to the other four algo-
rithms and excluding the URA policy, ThqRA has the largest
amounts in terms of the task capacity.

Considering task rejection rate, the algorithms with larger
amounts in terms of VM task capacity have higher rejection
rates. Therefore, in most clusters, URA has the highest rejec-
tion rate. However, the gap between rejection rates for FqRA,
AvgRA, MeRA and ThqRA are almost negligible. As expected,
RRA, with the lowest number of tasks in each virtual machine,
incurs the least rejections during the simulation.

In addition to rejection rates, the delay caused in the exe-
cution of the tasks are reported for the proposed policies.
This delay is extracted for rejected tasks that finish during the
simulation time (24 h). The delay td is equal to the tf − tg in
which tf is the time that the execution of the task is finished
in our simulation and tg is the desired finished time reported
in the Google traces. In other words, td of a typical task is the
time it takes for the task to start running after it is rejected.
Figure 5 shows that the average delay for all the proposed algo-
rithms is less than 50 s. This delay can be reduced via smaller
processing window sizes. The processing window size in our
case is assigned to 1 min, therefore tasks should wait in the
killed task repository until the next processing window, so that
they can get the chance to be rescheduled in another virtual
machine.

8.3. Energy efficiency of the proposed algorithms

The experiments presented in the previous section focused on
the analysis of the performance of the assignment policies in
terms of rejection rate and average delay. Since one of the goals
of the proposed architecture is efficient resource allocation,
which results in less energy consumption, in this section we
analyze the policies in terms of their energy efficiency.

The power consumption incurred by servers are estimated
using the power model presented in Equation (5). Figure 6
shows the amount of energy consumption (kWh) for the six
applied resource allocation policies. In terms of energy con-
sumption, URA on average outperform RRA, FqRA, AvgRA,
MeRA and ThqRA by 73.02, 59.24, 51.56, 53.22 and 45.36%,
respectively, considering all the clusters. However, URA in
most of the clusters increases the average task rejection rate
and results in delays in task execution. Considering this, URA
is the selected policy when tasks have low priorities and the
delay in the execution is not a concern.

ThrdRA policy is the second most energy efficient algorithm,
outperforming RRA, FqRA, AvgRA and MeRA in average
34.41, 25.11, 7.42 and 15.01%, respectively. Apart from energy
efficiency, this policy caused less task rejections in compari-
son with URA. Therefore, when task execution efficiency and
energy are both important, this policy is the best choice. RRA
in most clusters is the least energy efficient algorithm, although
it caused less task rejections. Therefore, RRA can be applied
for tasks with higher priorities.

AVgRA and MeRA have almost the same energy consump-
tion for all the clusters. The task capacity of the VM in AvgRA
and MeRA is based on the average and the median number of
tasks that can run without causing any rejections. In most cases,

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


222 S.F. Piraghaj et al.

FIGURE 6. Energy consumption comparison of the RRA, FqRA, AvgRA, MeRA, ThqRA and URA policies. URA outperforms the other five
algorithms in terms of the energy consumption and the average saving considering all the clusters.

the median and the average of our considered estimate (number
of running tasks) are close to each other, therefore the difference
in the energy consumption of AvgRA and MeRA is negligible.

To get more insights about the effect of each algorithm, we
applied the six policies for each group of tasks separately. How-
ever, a combination of these policies could be applied on each
cluster when tasks from different clusters run simultaneously.
This will be subject of future work.

9. CONCLUSIONS AND FUTURE WORK

We investigated the problem of energy consumption resulted
from inefficient resource allocation in cloud computing
environments using Google cluster traces. We proposed an
end-to-end architecture and presented a methodology to tai-
lor virtual machine configuration to the workload. Tasks are
clustered and mapped to virtual machines considering the
actual resource usage of each cluster instead of the amount of
resources requested by users.

Six policies are proposed for estimating task populations
residing in each VM type. In the RRA policy, tasks are assigned
to VMs based on their average requested resource. This pol-
icy is the baseline for our future comparison since it is solely
based on the requested resources submitted to the data center.
Resource allocation in the URA policy is based on the average
resource utilization of task clusters obtained from historical
data. In the other four policies, the assignment is based on the
four estimates extracted from the virtual machines’ usage logs
from the URA policy. The extracted estimates are average,
median, first and third quantile of the number of tasks that
can be accommodated in a virtual machine without causing
any rejections. Compared with RRA, URA, FqRA, AvgRA,

MeRA and ThqRA policies show 73.01, 14.68, 34.72, 25.20
and 34.41% improvement in the total energy consumption of
the data center, respectively.

The performances of the proposed algorithms are compared
for each cluster of tasks separately without considering task
placement constraints. As future work, we will investigate
energy-aware virtual machine placement algorithms that con-
sider the aforementioned constraints and the characteristics
of each group of tasks. Furthermore, the right policy will be
selected according to the specifications of each group.

We will also investigate online learning algorithms for defin-
ing the task capacity of virtual machines in replacement of the
static methods explored in this paper. For more energy savings,
VM consolidation techniques and virtual machine resizing
options will also be explored.

ACKNOWLEDGEMENTS

We thank Mehran Garmehi, Yaser Mansoori, Adel Nadjaran
Toosi and Atefeh Khosravi for their valuable insights for the
improvements of the paper.

FUNDING

This work was partially supported by a Discovery Grant from
the Australian Research Council.

REFERENCES

[1] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic,
I. (2009) Cloud computing and emerging it platforms: Vision,
hype, and reality for delivering computing as the 5th utility.
Future Generation Comput. Syst., 25, 599–616.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Virtual Machine Customization and Task Mapping 223

[2] Armbrust, M. et al. (2010) A view of cloud computing. Commun.
ACM, 53, 50–58.

[3] Kaplan, J.M., Forrest, W. and Kindler, N. (2008) Revolu-
tionizing data center energy efficiency. Technical Report.
http://www.mckinsey.com/clientservice/bto/pointofview/pdf/re-
volutionizing_data_center_efficiency.pdf (accessed June 5,
2015).

[4] Buyya, R., Beloglazov, A. and Abawajy, J. (2010) Energy-
efficient Management of Data Center Resources for Cloud
Computing: A Vision, Architectural Elements, and Open Chal-
lenges. Proc. 16th Int. Conf. Parallel and Distributed Processing
Techniques and Applications (PDPTA 2010), Las Vegas, USA,
July 12–15, pp. 6–17. World Academy of Science, Engineering
and Technology, San Diego, USA.

[5] Greenberg, S., Mills, E., Tschudi, B., Rumsey, P. and Myatt, B.
(2006) Best Practices for Data Centers: Lessons Learned from
Benchmarking 22 Data Centers. Proc. ACEEE Summer Study on
Energy Efficiency in Buildings, Asilomar, USA, August 13–18,
pp. 76–87. ACEEE, Washington, USA.

[6] Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y.,
Sharma, P., Banerjee, S. and McKeown, N. (2010) Elastic-
Tree: Saving Energy in Data Center Networks. Proc. 7th
USENIX Conf. Networked Systems Design and Implementation
(NSDI’10), San Jose, USA, April 28–30. USENIX, Berkeley,
USA,

[7] Greenberg, A., Hamilton, J., Maltz, D.A. and Patel, P. (2008) The
cost of a cloud: research problems in data center networks. ACM
SIGCOMM Comput. Commun. Rev., 39, 68–73.

[8] Zheng, K., Wang, X., Li, L. and Wang, X. (2014) Joint Power
Optimization of Data Center Network and Servers with Corre-
lation Analysis. Proc. IEEE INFOCOM 2014, Toronto, Canada,
April 27–May 2, pp. 2598–2606. IEEE, Piscataway, USA.

[9] Mishra, A.K., Hellerstein, J.L., Cirne, W. and Das, C.R. (2010)
Towards characterizing cloud backend workloads: insights from
Google compute clusters. ACM SIGMETRICS Perform. Eval.
Rev., 37, 34–41.

[10] UCB/EECS-2009-28 (2010) Analysis and Lessons from a Pub-
licly Available Google Cluster Trace. University of California at
Berkeley, Berkeley, USA.

[11] Solis Moreno, I., Garraghan, P., Townend, P. and Xu, J. (2014)
Analysis, modeling and simulation of workload patterns in
a large-scale utility cloud. IEEE Trans. Cloud Comput., 2,
208–221.

[12] Di, S., Kondo, D. and Cappello, F. (2013) Characterizing Cloud
Applications on a Google Data Center. Proc. 42nd Int. Conf. Par-
allel Processing (ICPP 2013), Lyon, France, October 1–4, pp.
468–473. IEEE, Piscataway, USA.

[13] Reiss, C., Wilkes, J. and Hellerstein, J.L. (2011) Google Cluster-
usage Traces: Format+ Schema. Google, Inc. Mountain View,
USA.

[14] Zhang, Q., Hellerstein, J.L. and Boutaba, R. (2011) Characteriz-
ing Task Usage Shapes in Google’s Compute Clusters. Proc. 5th
Int. Workshop on Large Scale Distributed Systems and Middle-
ware, Seattle, USA, September 2–3, pp. 1–6. ACM, New York,
USA.

[15] Sharma, B., Chudnovsky, V., Hellerstein, J.L., Rifaat, R. and
Das, C.R. (2011) Modeling and Synthesizing Task Placement
Constraints in Google Compute Clusters. Proc. 2nd ACM Symp.

Cloud Computing (SOCC’11), Cascais, Portugal, October 26–28,
pp. 3:1–3:14. ACM, New York, USA.

[16] Moreno, I.S., Garraghan, P., Townend, P. and Xu, J. (2013) An
Approach for Characterizing Workloads in Google Cloud to
Derive Realistic Resource Utilization Models. Proc. IEEE 7th
Int. Symp. Service Oriented System Engineering (SOSE 2013),
San Francisco Bay, USA, March 25–28, pp. 49–60. IEEE,
Piscataway, USA.

[17] Di, S. and Cappello, F. (2014) GloudSim: Google trace based
cloud simulator with virtual machines. Softw.: Practice and
Exper.

[18] Kansal, A., Zhao, F., Liu, J., Kothari, N. and Bhattacharya, A.A.
(2010) Virtual Machine Power Metering and Provisioning. Proc.
1st ACM Symp. Cloud Computing (SoCC’10), Indianapolis,
USA, June 10–11, pp. 39–50. ACM, New York, USA.

[19] Nathuji, R. and Schwan, K. (2007) VirtualPower: Coordi-
nated Power Management in Virtualized Enterprise Systems.
Proc. 21st ACM SIGOPS Symp. Operating Systems Principles
(SOSP’07), Stevenson, WA, USA, October 14–17, pp. 265–278.
ACM, New York, USA.

[20] Kim, K.H., Beloglazov, A. and Buyya, R. (2009) Power-aware
Provisioning of Cloud Resources for Real-time Services. Proc.
7th Int. Workshop on Middleware for Grids, Clouds and
e-Science (MGC’09), Champaign, USA, November 30–
December 4, pp. 1:1–1:6. ACM, New York, USA.

[21] Garraghan, P., Townend, P. and Xu, J. (2013) An Analysis of
the Server Characteristics and Resource Utilization in Google
Cloud. Proc. 2013 IEEE Int. Conf. Cloud Engineering (IC2E
2013), San Francisco, USA, March 25–27, pp. 124–131. IEEE
Computer Society, Washington, USA.

[22] Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H. and Kozuch,
M.A. (2012) Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. Proc. 3rd ACM Symp. Cloud Comput-
ing (SoCC 2012), San Jose, USA, October 14–17, pp. 7:1–7:13.
ACM, New York, USA.

[23] Di, S., Kondo, D. and Cirne, W. (2012) Characterization and
Comparison of Cloud Versus Grid Workloads. Proc. 2012 IEEE
Int. Conf. Cluster Computing (CLUSTER’12), Beijing Interna-
tional Convention Center Beijing, China, September 24–28, pp.
230–238. IEEE Computer Society, Washington, USA.

[24] Pham, D.T., Dimov, S.S. and Nguyen, C. (2005) Selection of k in
K-means clustering. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.,
219, 103–119.

[25] Pelleg, D. and Moore, A.W. (2000) X-means: Extending
K-means with Efficient Estimation of the Number of Clusters.
Proc. 17th Int. Conf. Machine Learning (ICML’00), Stanford,
USA, pp. 727–734. Morgan Kaufmann Publishers, Inc., San
Francisco, CA, USA.

[26] Singh, G. et al. (2008) Workflow Task Clustering for Best
Effort Systems with Pegasus. Proc. 15th ACM Mardi Gras
Conf. (MG’08), Baton Rouge, USA, January 31-February 2, pp.
9:1–9:8. ACM, New York, USA.

[27] Muthuvelu, N., Vecchiola, C., Chai, I., Chikkannan, E. and
Buyya, R. (2013) Task granularity policies for deploying bag-
of-task applications on global grids. Future Generation Comput.
Syst., 29, 170–181.

[28] Wang, L., Tao, J., von Laszewski, G. and Chen, D. (2010) Power
Aware scheduling for Parallel Tasks Via Task Clustering. Proc.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.mckinsey.com/clientservice/bto/pointofview/pdf/revolutionizing_data_center_efficiency.pdf
http://www.mckinsey.com/clientservice/bto/pointofview/pdf/revolutionizing_data_center_efficiency.pdf
http://comjnl.oxfordjournals.org/


224 S.F. Piraghaj et al.

IEEE 16th Int. Conf. Parallel and Distributed Systems (ICPADS
2010), Shanghai, China, December 7–10, pp. 629–634. IEEE
Computer Society, Washington, USA.

[29] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and
Buyya, R. (2011) CloudSim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of resource
provisioning algorithms. Softw.: Practice Exper., 41, 23–50.

[30] Barham, P. et al. (2003) Xen and the Art of Virtualization. Proc.
19th ACM Symp. Operating Systems Principles (SOSP’03),
Bolton Landing, USA, October 19–22, pp. 164–177. ACM,
New York, USA.

[31] Zhang, Q., Cheng, L. and Boutaba, R. (2010) Cloud computing:
state-of-the-art and research challenges. Internet Serv. Appl., 1,
7–18.

[32] Beloglazov, A., Buyya, R., Choon Lee, Y. and Zomaya, A. (2011)
A taxonomy and survey of energy-efficient data centers and cloud
computing systems. In Zelkowitz, M. (ed.), Advances in Comput-
ers, pp. 47–111. Elsevier.

[33] Chieu, T., Mohindra, A., Karve, A. and Segal, A. (2009)
Dynamic Scaling of Web Applications in a Virtualized Cloud
Computing Environment. Proc. IEEE Int. Conf. e-Business
Engineering (ICEBE’09), Macau, China, October 21–23, pp.
281–286. IEEE, Piscataway, USA.

[34] Van den Bossche, R., Vanmechelen, K. and Broeckhove, J.
(2010) Cost-optimal Scheduling in Hybrid IaaS Clouds for
Deadline Constrained Workloads. Proc. 3rd Int. Conf. Cloud
Computing, Miami, USA, July 5–10, pp. 228–235. IEEE,
Piscataway, USA.

[35] Fang, Y., Wang, F. and Ge, J. (2010) A task scheduling algorithm
based on load balancing in cloud computing. In Wang, F., Gong,

Z., Luo, X. and Lei, J. (eds.), Web Information Systems and
Mining, Lecture Notes in Computer Science 6318, pp. 271–277.
Springer, Heidelberg, Germany.

[36] Merkel, D. (2014) Docker: Lightweight Linux containers for con-
sistent development and deployment. Linux J., 2014.

[37] Hartigan, J. and Wong, M. (1979) Algorithm as 136: a K-means
clustering algorithm. Appl. Stat., 28, 100–108.

[38] Schwarz, G. (1978) Estimating the dimension of a model. Ann.
Stat., 6, 461–464.

[39] Sherwood, T., Perelman, E., Hamerly, G. and Calder, B. (2002)
Automatically characterizing large scale program behavior. ACM
SIGARCH Comput. Archit. News, 30, 45–57.

[40] Kass, R.E. and Wasserman, L. (1995) A reference Bayesian test
for nested hypotheses and its relationship to the schwarz criterion.
J. Am. Stat. Assoc., 90, 928–934.

[41] Gu, G., Perdisci, R., Zhang, J. and Lee, W. (2008) Botminer:
Clustering Analysis of Network Traffic for Protocol- and
Structure-independent Botnet Detection. Proc. 17th Conf.
Security Symp. (SS’08), San Jose, USA, July 24–August 1, pp.
139–154. USENIX, Berkeley, USA.

[42] Dy, J.G. and Brodley, C.E. (2004) Feature selection for unsuper-
vised learning. J. Mach. Learn. Res., 5, 845–889.

[43] Garraghan, P., Moreno, I.S., Townend, P. and Xu, J. (2014)
An analysis of failure-related energy waste in a large-scale
cloud environment. IEEE Trans. Emerg. Topics Comput., 2,
166–180.

[44] Corporation, S. P. E. Specpower_ssj2008 results. http://www.
spec.org/power_ssj2008/results/ (accessed June 4, 2015).

[45] Blackburn, M. and Grid, G. (eds) (2008) Five Ways to Reduce
Data Center Server Power Consumption. The Green Grid.

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 59 No. 2, 2016

 at U
niversity of M

elbourne L
ibrary on February 28, 2016

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.spec.org/power_ssj2008/results/
http://www.spec.org/power_ssj2008/results/
http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related Work
	2.1 Google trace research works

	3 System Model and Architecture
	3.1 User request model
	3.2 Cloud model
	3.3 System architecture
	3.4 System components

	4 Task Clustering
	4.1 Clustering feature set
	4.2 Clustering algorithm

	5 Identification of VM Types for the VM Type Repository
	5.1 Determination of number of tasks for each VM type
	5.2 Estimation of resource usage of tasks in each cluster
	5.3 Determination of virtual machines configuration

	6 Resource Allocation Policies
	7 Experiment Set up
	7.1 Data center servers' configuration
	7.2 Virtual machine placement policy
	7.3 Server's power consumption model

	8 Experiment Results
	8.1 Characteristics of task clusters
	8.2 Task execution efficiency of the proposed algorithms
	8.3 Energy efficiency of the proposed algorithms

	9 Conclusions and Future Work

