
Neurocomputing 397 (2020) 20–30

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Ensemble learning based predictive framework for virtual machine

resource request prediction

Jitendra Kumar a , b , ∗, Ashutosh Kumar Singh

b , Rajkumar Buyya

c

a Department of Computer Engineering and Applications, GLA University Mathura, India
b Department of Computer Applications, National Institute of Technology Kurukshetra, India
c Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, VIC 3010,

Australia

a r t i c l e i n f o

Article history:

Received 27 May 2019

Revised 19 January 2020

Accepted 2 February 2020

Available online 12 February 2020

Communicated by Dr. Leandro Minku

Keywords:

Cloud computing

Resource demand prediction

Extreme learning machine

Ensemble learning

Neural networks

Blackhole

a b s t r a c t

The cloud service providers require a large number of computing resources to provide services on-

demand that consume the electricity at large and leave high carbon footprints which must be minimized.

A cloud system must optimally use its resources to achieve a low operational cost without degrading the

quality of services. In this context, an ensemble learning based workload forecasting method is presented

that uses extreme learning machines and their corresponding forecasts are weighted by a voting en-

gine. A metaheuristic algorithm inspired by blackhole theory is used to select the optimal weights. The

accuracy of the approach is tested on CPU and memory demand requests of Google cluster trace. The

method is also compared with recent existing work in the literature on CPU utilization of Google cluster

and PlanetLab traces. The results validate the superiority of the approach over existing methods with an

improvement up to 99.20% in root mean squared error.

© 2020 Elsevier B.V. All rights reserved.

t

a

A

a

t

o

m

I

i

e

c

m

p

c

T

t

o

a

i
1. Introduction

There has been massive growth in digital content creation

driven by huge upsurge in online shopping, social networking,

learning, communications etc. The organizations prefer to store

and process the collected data over the cloud due to its cost-

effective solutions. Unlike traditional or local infrastructure, a

cloud user can access the computing resources as services hosted

on the Internet. The cloud offers a number of features including

on-demand resources, elasticity, flexibility, mobility, and disaster

recovery. Among these, elasticity is one of the most important

characteristics of the cloud paradigm that allows an application

to scale its resource demands anytime in its lifespan [1,2] . The

resource requests for a cloud application include the number of

virtual machines that are required to execute the application’s task

and amount of resources such as CPU cores, memory, bandwidth

assigned to each virtual machine. However, the frequent changes

in an application’s resource demands may increase the number

of movements across the servers which may cause issues such as

resource under/over provisioning as well as high power consump-
∗ Corresponding author at: Department of Computer Engineering & Applications,

GLA University Mathura, India.

E-mail addresses: jitendrakumar@ieee.org (J. Kumar), ashutosh@nitkkr.ac.in

(A.K. Singh), rbuyya@unimelb.edu.au (R. Buyya).

d

a

m

a

p

https://doi.org/10.1016/j.neucom.2020.02.014

0925-2312/© 2020 Elsevier B.V. All rights reserved.
ion [3] . IBM observed in its study that mean utilization of CPU

nd memory corresponds to 17.76% and 77.93%, respectively [4] .

nother analysis shows that the usage of CPU and memory in

 Google cluster trace could not exceed 60% and 50%, respec-

ively [5] . The under utilization of resources results in excess use

f electricity which should be minimized because an active idle

achine consumes over half of the peak power consumption [6] .

n 2015, data centers consumed 35TWh (Tera Watt hour) electric-

ty as per the EIA’s (Energy Information Administration) report and

xpected to consume 95TWh by 2040 [7] . The resource utilization

an be improved by minimizing the number of active physical

achines. Though, finding an optimal mapping of virtual and

hysical machines in an ever changing resource requirements is a

omplex task which belongs to NP-Complete class of problems [8] .

herefore, an intelligent resource management scheme is required

o improve the quality of services (QoS) as well as financial gains

f service providers [9,10] .

Advanced information of future demands helps in mapping the

pplications to the machines such that the resource utilization is

mproved. However, the prior estimation of workloads (resource

emands and workloads are used interchangeably) is a complex

nd challenging task in the presence of high variability. Prediction

ethods are broadly classified into two categories viz. homeostatic

nd history based methods [11] . The homeostatic approaches

redict the workload based on current information and mean of

https://doi.org/10.1016/j.neucom.2020.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.014&domain=pdf
mailto:jitendrakumar@ieee.org
mailto:ashutosh@nitkkr.ac.in
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.neucom.2020.02.014

J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30 21

Fig. 1. Prototype of cloud system with predictive framework.

h

t

i

w

t

v

a

t

c

a

o

m

f

F

2

s

r

r

d

f

f

E

s

T

a

g

m

R

r

l

M

R

A

R

Table 1

List of variables.

Notation Description

m i i th physical machine

| M | Total physical machines in datacenter

| R | Types of resources

a j j th application

| A | Total applications hosted in data center

R req (a j) Resource requested by a j
R a v l(m i) Resource available on m i

Y Set of workload patterns

y j j th workload pattern input

τ j j th workload pattern output

h
ε k
i

i th hidden neuron of εk

ˆ τ ε k
j

Forecast for j th workload pattern by εk

E Set of k ELMs (εk)

n Number of input neurons

p Number of hidden neurons

q Number of ouput neurons

S Population

s ∗ Blackhole solution

ρ Radius of event horizon area of blackhole

δ distance of a solution from blackhole

L Max lag terms

sl Significant lag terms

T ρ Significant autocorrelation threshold

�tr Training error

T �tr
Training error threshold

�ts Test error

T �ts
Test error threshold

R

R

[

w

a

p

e

t

b

f

p

R

3

l

m

d

a

3

t

e

l

n

i

t

a

a

u

C

c
istorical workload [12] , while the history based methods analyze

he history and predict the future workload based on the changes

n recent data. The proposed work also analyzes the historical

orkloads to anticipate the future workload. The model considers

he opinion of multiple experts to compute future workload

alues. The opinion of each expert is weighted by a voting engine

ccording to their performance.

The rest of the paper is organized as follows. Section 2 defines

he prediction problem. Section 3 briefly reviews the recent key

ontributions in machine learning based workload prediction

pproaches. Section 4 discusses the predictive framework method-

logy in detail. Section 5 explains the evaluation criteria used to

easure and compare the performance of the proposed work,

ollowed by simulation results and analytical remarks in Section 6 .

inally the paper is concluded in Section 7 .

. Problem definition

A typical cloud system with workload predictor module is

hown in Fig. 1 . The system receives inputs from the data center’s

eal-time state monitor and a forecaster. Based on these inputs, the

esource scaling module is responsible to make efficient scaling

ecisions to improve the financial gains of service providers. The

orecasting module is a critical component of the system, which

orecasts the future trends of resource demands.

Let us consider a data center having |M|physical machines (see

q. (1)) and each machine is equipped with|R|different resources

uch as CPU, memory, bandwidth, and others as shown in Eq. (2) .

he data center is hosting|A|applications, as in Eq. (3) and each

pplication requests for certain amount of different resources as

iven in Eq. (4) . Assuming, an application (a j) is assigned to a

achine (m i) only if it can satisfy the resource demands of a j i.e.

req (a j) ≤ R a v l(m i) . Where, R a v l(m i) denotes the available amount of

esources at i th physical machine as represented in Eq. (5) . Table 1

ists out the variable notations and their corresponding description.

 = { m 1 , m 2 , . . . , m | M| } (1)

m i = { r m i

1
, r m i

2
, . . . , r m i

| R | } (2)

 = { a 1 , a 2 , . . . , a | A | } (3)

req (a j) = { r req (a j)

1
, r

req (a j)

2
, . . . , r

req (a j)

| R | } (4)

a v l(m i) = { r a v l(m i)
1

, r a v l(m i)
2

, . . . , r a v l(m i)
| R | } (5)

ˆ

req (a j)

n +1
= f (R

req (a j)
n , R

req (a j)

n −1
, . . . , R

req (a j)

1
) (6)

The resource request sequence of a j represented as

 R
req (a j)

1
, R

req (a j)

2
, . . . , R

req (a j)

t] is monitored and stored over time,

here R
req (a j)

t represents the amount of resources requested by

 j at time instance t . The forecaster examines n instances of its

ast behavior which form a sequence called learning window to

stimate the next request instance as shown in Eq. (6) . The task of

he framework is to forecast the expected amount of resources to

e requested by a j at a regular interval and duration between each

orecast is referred as prediction window. The objective of the

roposed predictive method is to minimize the difference between

ˆ

req (a j)

n +1
and R

req (a j)

n +1
for each time instance.

. Recent key contribution

In this section, the forecasting models developed using machine

earning algorithms are discussed only because the underlying

ethodology of the proposed approach belongs to the same

omain. However, an extensive review of resource management

pproaches can be found in [13–17] .

.1. Neural network based approaches:

An evolutionary neural network was used for workload predic-

ion [18] that implements particle swarm optimization, differential

volution, and covariance matrix adaptation evolutionary strategy

earning algorithms and compares their performance. The neural

etwork based prediction approach for estimation of workloads

s proposed in [19] that uses an adaptive approach of differen-

ial evolution for network training. The adaptive nature of the

lgorithm reduces the overhead of parameter tuning. A Bayesian

pproach was developed to predict the VM workloads in [20] that

ses demand forecasts to determine whether an application is

PU and/or memory intensive and resources are configured ac-

ordingly. The dynamic resource provisioning had been achieved

22 J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30

3

p

c

p

F

l

w

l

r

p

p

c

h

c

m

d

e

3

m

f

r

u

c

e

o

r

e

s

d

t

‘

b

s

T

s

t

b

s

a

t

l

t

f

o

c

f

w

o

t

c

a

t

c

a

a

u

t

e

e
using predictive approaches based on constraint programming and

neural network [21] . A predictive resource allocation scheme was

designed to improve the performance of cloud system [22] which

works well with its error tolerance capability if predicted in-

formation is inaccurate. The proactive workload management is

achieved by an intelligent workload factoring [23] that separates

the workloads in two different categories viz. base crowd and flash

crowd based on different com ponents of applications and detects

the items to factor the incoming requests in the context of data

and volume. A predictive framework for resource provisioning to

optimize the energy consumption was developed in [24] which

predicts the VMs along with their resource demands expected to

arrive in future. It also provide the information of required phys-

ical resources to fulfill the future demands with optimized use of

energy. The similar work is reported in [25] that optimizes the

resource utilization, energy consumption, and secure allocation.

The predictive approach involves the use of clustering and Wiener

filter. The fuzzy theory had been applied in workload prediction

of cloud servers [26] . The approach keeps track of historical and

current CPU utilization to forecast future demands. It can also esti-

mate the available resources by predicting the resource utilization

of physical machines. A study on different servers’ resource uti-

lization was carried out in [27] that observed the misalignment of

patterns in time. Moreover, a set of algorithms were developed to

refine the utilization patterns to reduce the over provisioning for

resources. Genetic algorithm based workload predictive resource

management was proposed in [28] which improves the average

utilization and energy consumption. The method is a combination

of prediction and placement approaches. The evolutionary neural

networks have been a great choice for solving complex optimiza-

tion problems including predictive analytics [29] . However, they

need high training time.

3.2. Deep learning based approaches

A framework responsible for resource allocation and power

management based on deep learning is presented in [30] which

incorporates a forecaster that provides the estimated workload

information to the power manager. The forecaster module is

developed using long short term memory (LSTM) recurrent neural

network. The power manager takes the forecasts and the current

state information into account to decide further actions. Qiu

et al. used a set of restricted Boltzmann machines arranged in

a layered approach along with a regression layer to develop a

predictive method to estimate VM workloads [31] . The workload

prediction mechanism based on LSTM networks had been ex-

plored in [32] which used four LSTM units to improve the quality

of forecasts. An efficient workload prediction model based on

deep learning was presented in [33] that converts the weight

vectors into canonical polyadic decomposition to compress the

model attributes. In addition, the work also proposed a learning

methodology based on back propagation for the training of the

auto encoder’s parameters. A deep reinforcement learning based

resource management scheme was proposed in [34] . The resource

manager was composed of monitor, allocator, and controller de-

vices which were responsible for resource utilization information

gathering, mapping of applications to the resource pool, and re-

source configuration negotiation, respectively. A prediction model

that uses deep learning was proposed in [35] which analyzes the

past workload information to compute the correlation among VMs

and predicts the future workload information accordingly [35] .

The deep learning based frameworks are encountered with the

requirements of a large number of labeled examples which results

in the increase in training time. Also, the selection of suitable

deep learning architecture is another concern.
.3. Mining based approaches

A prediction method based on sequential pattern mining was

resented in [36] . The correlation between resource variables was

onsidered in pattern extraction of applications’ behavior and these

atterns were used for workload forecasting on the cloud server.

urther, a prediction approach based on episode mining with on-

ine learning capability was proposed in [37] . The learning method

as inspired by the different categories of human memory called

ong term and short term memory. The long term memory was

esponsible to store the episodes of application behavior in a long

eriod while the second category stores the new behavior of ap-

lications which correspond to online learning. The run-length en-

oding based prediction scheme for processor power management

ad been presented in [38] which was energy efficient and effica-

iously addressed the repetitious behavior of workloads. A resource

anagement scheme utilizing forecasting and skewness was intro-

uced in [39] that minimizes the skewness to combine the differ-

nt categories of workloads, which improves resource utilization.

.4. Hybrid approaches

The predictive frameworks that employ only one forecasting

odel are usually able to fit a specific pattern of workloads and

ail in handling the real-world traces where the pattern changes

apidly over time [40] . In such cases the resources remain over and

nder provisioned. Therefore, a scheme that can adapt to sudden

hanges becomes more useful. In this context, two online learning

nsemble learning approaches for workload prediction are devel-

ped [41] . A workload prediction scheme based on using weighted

andom forest was developed in [42] which also introduced an

rror correction mechanism. The predictive approach employs a

et of the random forest where each of them was trained on the

ifferent training set. The forecasts of each model were weighted

o compute the final forecast. A workload prediction framework

CloudInsight’ was developed using a set of predictors [43] . It com-

ines 8 different prediction methods from machine learning, time

eries, and regression classes to improve the accuracy of forecasts.

he support vector machines were used to predict the workload

equences in [44] . The authors used particle swarm optimization

o optimize the model parameters. A number of approaches have

een proposed and utilized to forecast the workloads on the

ervers.

It was observed that the above mentioned works were un-

ble to model and forecast the different type of data traces as

hey were developed and trained for a specific type of work-

oads. Therefore, the combination of various methods was used

o model and forecast the workloads. But the existing hybrid

orecasting methods such as [45–47] are generally a combination

f several machine learning models which suffered from a high

omputational complexity.

The above discussion concludes that most of the predictive

rameworks use a single approach or model to anticipate future

orkload and their accuracy tends to drop down as the pattern

f workloads changes. The hybrid approaches have been proposed

o address this issue but unfortunately, they suffer from high

omputational complexity in training. In this paper, an ensemble

pproach is presented for cloud datacenter workload estimation

o addresses the aforementioned workload issues. The framework

reates an ensemble using ELMs that are fast and computation-

lly efficient learners. The predictions of individual networks

re weighted using a voting engine that optimizes the weights

sing blackhole algorithm. The blackhole algorithm is used due

o the fact that it overcomes the issue of parameter tuning in

volutionary algorithms as it does not use any additional param-

ter except the common variables such as population size and

J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30 23

Voting Engine
Weights Learning

Desired Accuracy
Evaluation

Desired Accuracy
Evaluation

Forecast
Computation

Data Preparation

Network Size
Optimization

ELM Weights
Learning

ELM Weights
Learning

...

YesNo

No

Ye
s

Data Analysis Expert Learning Voting Engine Forecasting

Fig. 2. Block diagram of proposed predictive framework.

Fig. 3. Detailed workflow of proposed predictive framework.

d

o

d

a

c

4

p

T

k

e

w

e

f

a

t

d

p

m

o

p

u

t

m

b

m

n

S

(

s

4

m

e

t

t

a

i

w

n

c

T

t

o

l

b

t

f

w

s
imension [4 8,4 9] . The efficacy of the proposed approach is tested

n the benchmark datasets however, it can be applied on any

ata trace due to the fact that the framework is enabled with the

bility of selecting the suitable network structure by analysing the

haracterstics of data trace under consideration.

. Prediction framework

This section presents the proposed predictive model that em-

loys an ensemble approach to improve the quality of forecasts.

he framework’s block diagram is given in Fig. 2 . There are three

ey modules namely data analysis, expert learning, and voting

ngine which are responsible for preprocessing, base predictors

eights learning, and optimizing the weights corresponding to

ach base prediction, where arrows depict the flow of information

rom one step/module to another step/module. The legends on the

rrows (yes/no) controls the conditional execution of next step on

he basis of accuracy obtained.

The complete workflow of the model is shown in Fig. 3 . The

ata preparation involves the aggregation of resource demands

er time unit, rescaling the aggregated values in [0, 1] range using

in–max normalization followed by an estimation of a number

f previous workload instances that affect the future values. The

repared data is fed into each expert to get an estimation of the

pcoming workload information. Further, each expert’s predic-

ion is weighted to compute the final outcome of the predictive

odule and these weights were optimized using a metaheuristic

ased weight allocation process. If the forecast error (�tr) during

odel training is beyond the threshold (T �), the experts learn

tr
etwork weights and the rest of the procedure is executed again.

imilarly, if system predicts the workload on live data with error

 �ts) greater than the tolerance level (T �ts
), only weight allocation

cheme refines the weights for base experts.

.1. Ensemble expert learning using ELM

An ensemble approach involves the use of multiple prediction

odels to forecast the estimated future outcome of an event and

ach of them is commonly referred to as an expert or base predic-

or. The final outcome of an ensemble is computed by combining

he forecasts of each expert using a voting engine. The conceptual

rchitecture of an ensemble based predictive approach is depicted

n Fig. 4 .

The proposed framework employed k multilayer neural net-

orks (E = { ε 1 , ε 2 , . . . , ε k }) as base experts each composed with

, p , and q number of neurons in input, hidden, and output layers

orrespondingly along with ζ (•) activation function at hidden layer.

he experts are trained using extreme learning machine algorithm

hat select the hidden layer weights randomly and compute the

utput layer weights analytically [50] . An ELM solves a general

inear system to find out the weights of synaptic connections

etween hidden and output neurons. ELMs are well known for

heir speed and they can universally approximate any continuous

unction [51] .

Given a set of workload patterns Y = { (y j , τ j) | y j ∈ R

n , τ j ∈ R } ,
here y j = [R

req (a j)

j
, R

req (a j)

j+1
, . . . , R

req (a j)

j+ n −1
] T and τ j = R

req (a j)

j+ n con-

tituted the j th workload pattern that contained the previous

24 J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30

ε1

ε2

...

εk−1

εk

Experts

H
is

to
ri

ca
l
D

at
a

Live Data

ŷε1

ŷε2

...

ŷεk−1

ŷεk

Predictions

V
ot

in
g

E
n
gi

n
e

ŷ

Final Prediction

Fig. 4. A conceptual view of ensemble stacking approach.

M

�

e

e

w

t

A

4

t

o

t

a

i

n

k

l

h

t

A

I

O

d

s

s

t

t

a

t

o

a

l

e

T

c

t

o

o

d

(
resource request instances of the length of learning window and

actual amount of resource requested at next time instant (see

Eq. (7)). Let the weights of synaptic connections between i th hid-

den neuron (h
ε k
i

) and input neurons of εk are represented as ω

ε k
i

=
[ω

ε k
1 i

, ω

ε k
2 i

, . . . , ω

ε k
ni

] and the bias connection to h
ε k
i

is weighted

with β
ε k
i

. The output of h
ε k
i

on y j can be modeled as h̄
ε k
i

(y j) =
ζ (ω

ε k
i

· y j + β
ε k
i

) , which is further provided to output neurons. If

the weights of connections between h
ε k
i

and output neurons were

represented as ˜ ω

ε k
i

= [̃ ω

ε k
i 1

, ˜ ω

ε k
i 2

, . . . , ˜ ω

ε k
iq

] T , the j th pattern forecast

using εk can be mathematically modeled as given in Eq. (8) .

Y =

⎡

⎢ ⎢ ⎢ ⎢ ⎣

R

req (a j)

1
R

req (a j)

2
· · · R

req (a j)
n

R

req (a j)

2
R

req (a j)

3
· · · R

req (a j)

n +1

. . .
. . .

. . .
. . .

R

req (a j)
m

R

req (a j)

m +1
· · · R

req (a j)

n + m −1

⎤

⎥ ⎥ ⎥ ⎥ ⎦

⎡

⎢ ⎢ ⎢ ⎢ ⎣

R

req (a j)

n +1

R

req (a j)

n +2

. . .

R

req (a j)
n + m

⎤

⎥ ⎥ ⎥ ⎥ ⎦

(7)

ˆ τ ε k
j

=

p ∑

i =1

˜ ω

ε k
i

× ζ (ω

ε k
i

· y j + βε k
i

) ; ∀ j ∈ { 1 , 2 , . . . , m } (8)

The forecasts of an expert on j = (1 , 2 , . . . , m) patterns (ob-

tained from Eq. (8)) can be written as ˆ τ ε k =

∑ p
i =1

˜ ω

ε k
i

× h̄
ε k
i

(y j) =
˜ ω

ε k × h̄

ε k , where h̄

ε k is the output of hidden layer as shown in

Eq. (9) . The forecasts can be approximated with no error, if the

system can find

˜ ω

ε k , ω

ε k , and βε k which produce forecasts such

that ˆ τ
ε k
j

= τ j holds true for all m patterns. The minimum forecast

error can be mathematically formulated as min

˜ ω ε k
|| ̃ ω

ε k h̄

ε k − τ|| 2 .

h̄

ε k =

⎡

⎢ ⎢ ⎢ ⎣

h̄

ε k (y 1)

h̄

ε k (y 2)

. . .

h̄

ε k (y m

)

⎤

⎥ ⎥ ⎥ ⎦

=

⎡

⎢ ⎢ ⎢ ⎣

h̄

ε k
1

(y 1) h̄

ε k
2

(y 1) · · · h̄

ε k
p (y 1)

h̄

ε k
1

(y 2) h̄

ε k
2

(y 2) · · · h̄

ε k
p (y 2)

. . .
. . .

. . .
. . .

h̄

ε k
1

(y m

) h̄

ε k
2

(y m

) · · · h̄

ε k
p (y m

)

⎤

⎥ ⎥ ⎥ ⎦

(9)

Unlike gradient or population based learning approaches, an

ELM learns the ˜ ω

ε k i.e. synaptic connection weights between

hidden and output neurons by solving a general linear system. In

order to obtain the approximated values of ˜ ω

ε k , an ELM assigns

the input and bias weights randomly (in [0, 1] range for our exper-

iments) and finds least-square solution for general linear system

h̄

ε k · ˜ ω

ε k = τ as shown in Eq. (10) , where ˜ �
ε k and h̄

ε †
k are the

least square solutions with minimum norm and uniqueness, and
oore–Penrose generalized inverse of a matrix h̄

ε k , respectively.

˜ ε k = h̄

ε †
k τ (10)

After approximating the synaptic connection weights of each

xpert, the forecasts on training data are weighted using a voting

ngine. The weights (αε k) are assigned using a heuristic based

eight allocation scheme. The expert learning module aims to

rain k base predictors on training data as shown in lines 3–5 of

lgorithm 2 .

.2. Expert architecture selection

The proposed framework creates an ensemble of base predic-

ors that are designed exploiting the neural network. The aim

f this step is to find the best suitable structure of the network

o attain better performance. The architecture (number of layers

nd number of nodes in each layer) of a network is critical to

ts performance. The predictive approach used k networks with

, p , and q neurons in each layer as shown in Fig. 5 . Since we

ept a fixed number of network layers and neurons in the output

ayer, we optimized the number of neurons in both the input and

idden network layer only.

The model selects the number of input neurons (n) based on

he data characteristics as shown in Algorithm 1 . Since resource

lgorithm 1 Input node selection.

nput: R req (a j) , L , T
 , d o
utput: n

1: Initialize: d = 1

2: Compute autocorrelation (
) of data trace up to L lags using

Eq. (11)

3: Determine the lags with significant autocorrelation using

Eq. (12)

4: if (sl � = 0 && sl � = L) then

5: n = sl

6: else

7: if (d ≤ d o) then

8: Differentiate data trace

9: d = d + 1

10: Repeat STEP 2 on differenced trace

11: else

12: n = L

13: end if

14: end if

15: return n

emand traces are indexed in time, it can be considered as time

eries objects and the model determines the number of lags with

ignificant autocorrelation to optimally select the input neurons.

The algorithm requires R req (a j) , L, T ϱ, d o as input, where each

erm represents the resource request trace, maximum time lags

o compute autocorrelation, threshold to decide the significant

utocorrelation, and maximum number of terms used for differen-

iation of data trace, respectively. Let

R
req (a j)

is the autocorrelation

f resource requests trace of a j computed by line 2, where

utocorr is a MATLAB function that computes the autocorre-

ation of a univariate series. The autocorrelation measures and

xplains the internal association among time series observations.

he value of L was chosen based on experimental analysis and

an be extended to any possible number. The approach analyzes

he autocorrelation in a data trace to select the optimal number

f input neurons of base experts. The approach finds the presence

f autocorrelation in the original data trace and differentiated

ata trace up to 40 time Lags. It was observed that the significant

higher than threshold) autocorrelation was present up to 40 time

J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30 25

Fig. 5. An ensemble of extreme learning machines.

L

n

F

p

e

a

d

w

s

a

I

d

o

s

s

t

fi

k

t

h

p

a

4

c

t

fi

t

t

d

s

e

s

o

n

r

a

T
ags in original traces but in differentiated data traces the sig-

ificant autocorrelation was present up to a very small time lags.

or instance, as shown in Fig. 6 , significant autocorrelation was

resent up to 3 time lags in differentiated traces. Therefore, for

xperimental purpose we put a limit on L up to 40 to ensure the

nalysis of data in depth. However, it may be adjusted as per the

ata trace characteristics. As shown in the algorithm that

R
req (a j)

as analyzed by applying ϒ operation to find the last lag with

ignificant autocorrelation (line 3). The last lag with significant

utocorrelation (sl) is defined to be the number of input neurons.

f every lag has correlation higher than the threshold, the data is

ifferentiated and the procedure is repeated upto d o (difference

rder) times to obtain the number of input neurons (lines 4–14).

R
req (a j)

= autocorr (R

req (a j) , L) (11)

l = ϒ((|

R
req (a j)

| ≤ T
) , 1) (12)

The hidden neurons are selected based on three different

chemes as given in Eq. (13) , where p min and p max represent

he minimum and maximum hidden neurons, respectively. In

x scheme, the number of hidden neurons for each network are

ept same as the average of p min and p max . In linear approach,

he number of hidden neurons for k th network are selected as

p ε k = p min + k while the third approach (random) computes the

idden neurons by selecting a random number between p and
min
p max . The experimental analysis reports that the linear scheme

erformed better (the detailed discussion is given in Section 6)

nd results are reported based on the selected scheme.

p ε k =

{

p min + k, Linear
randi [p min , p max] , Random

� (p min + p max) / 2 � , Fix
(13)

.3. Weight allocation scheme

The base experts of the predictive framework produce their

orresponding forecasts and each of them is weighted to compute

he final predicted workload. The weight allocation module aims to

nd the best possible weights associated with each base predictor

o minimize the forecast error. A population based metaheuris-

ic algorithm is used to optimize the weights associated with

ifferent base experts. Unlike gradient based methods where a

ingle solution explores the search space by learning from its past

xperience, population based approaches allow multiple candidate

olutions to explore a search space simultaneously. We selected an

ptimization algorithm inspired by blackhole phenomenon of the

ature [52] . Unlike other learning approaches such as genetic algo-

ithm, differential evolution and others, the blackhole optimization

lgorithm does not involve any parameters in learning process.

he blackhole optimization algorithm (BhOA) also is a population

26 J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25 30 35 40
Lag

(a) Autocorrelation of CPU trace upto
40 time lags

40 time lags

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n

0 5 10 15 20
Lag

(b) Autocorrelation of first order differentiated
CPU trace upto 40 time lags

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25 30 35 40
Lag

(c) Autocorrelation of Memory trace upto
40 time lags

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
A

ut
oc

or
re

la
tio

n

0 5 10 15 20
Lag

(d) Autocorrelation of first order differentiated
Memory trace upto 40 time lags

Fig. 6. Autocorrelation of data traces (5 min).

o

c

a

i

s

p

A

y

based method which iterates a number of times to approximate

an optimal solution from search space. Let S = [s 1 , s 2 , . . . , s ps]
T be

a set of ps candidate solutions each encoded with k real numbers

as shown in Eq. (14) , where α
ε k
i

represents the weight factor of

εk . The encoding scheme is bounded by two constraints i.e. the

value must be in [0, 1] range and the sum of all values must be 1.

The initialization of population is carried out using pop _ init(ps, k)

function that generates a population of ps stars each of size k

(line 6 of Algorithm 2). It also ensures that each s i satisfies the

constraints mentioned in encoding of solutions (Eq. (14)).

s i = [αε 1
i

, αε 2
i

, . . . , αε k
i

] (14)

subject to

α
ε j
i

∈ [0 , 1] ∀ j = { 1 , 2 , . . . , k }

αε 1
i

+ αε 2
i

+ · · · + αε k
i

= 1
d
A candidate solution contains k weights each associated with

ne of the base expert’s forecasts. The final forecast is obtained by

omputing the weighted sum of base expert’s individual forecasts

s given in Eq. (15) . Therefore, the fitness of candidate solutions

s measured using root mean squared error on m labelled data

amples as mentioned in Eq. (16) , where ˆ y
s i
t , y t are the forecast

roduced by s i and actual workload at time t , respectively (line 7,

lgorithm 2).

ˆ

s i
t =

k ∑

j=1

α
ε j
i

× ˆ y t
ε j (15)

f (s i) =

1

m

m ∑

t=1

(̂ y s i t − y t)
2 (16)

Since the system aims to minimize the forecast error, the can-

idate solution with least error is considered as blackhole (s ∗) and

J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30 27

Algorithm 2 Operational summary of predictive framework.

1: Select input nodes using Algorithm 1

2: [Y] = Prepare input data according to n

3: for each expert (ε k) do

4: ω

ε k = rand(n, p + 1) ; ˜ �
ε k = h̄

ε †
k τ

5: end for

6: S = pop _ init(ps, k)

7: f (s i) =

1
m

∑ m

t=1 (̂ y
s i
t − y t)

2

8: s ∗ = min

i =1 , 2 , ... ,ps
f (s i)

9: for each iteration do

10: for each star (s i) do

11: s ′
i
= s i + rand × (s ∗ − s i) ; f (s ′

i
) =

1
m

∑ m

t=1 (̂ y
s i
t − y t)

2

12: end for

13: Update Blackhole s ∗

14: Compute radius of blackhole horizon ρ =

f (s ∗) ∑ ps
i =1

f (s i)

15: for each star (s i) do

16: δs i = f (s ∗) − f (s i)

17: s i =

{
Ψ if δs i < = ρ and s i � = s ∗,
s i otherwise

18: end for

19: end for

20: Compute �tr

21: if �tr > T �tr
then

22: Goto Step 3

23: end if

24: Forecast the future workload

ˆ R
req (a j)

t+1
and Compute �ts

25: if �ts > T �ts
then

26: Goto Step 6

27: end if

c

t

b

w

d

t

s

d

t

i

r

r

o

I

i

o

t

A

m

f

t

F

c

c

s

5

m

Table 2

Experiment settings.

Term Value

ELMs (k) [10, 100]

Input nodes (n) [sl, L]

Hidden nodes (p) [5, 50]

Pop size (ps) 20

Max iteration (G max) 100

Accuracy thresholds (T �tr
and T �ts

) 0.007

Significant correlation threshold (T ϱ) 0.1

Training data ratio 70%

d

m

u

(

5

o

i

m

p

M

5

t

b

f

R

a

s

f

R

6

w

s

R

f

o

t

t

a

1

u

h

c

m

a

c

o

s

t

d

d
an be obtained as s ∗ = min

i =1 , 2 , ... ,ps
f (s i) (line 8, Algorithm 2). Further,

he s ∗ guides the other solutions (s i) to explore the search space in

etter direction by updating their position s ′
i
= s i + rand × (s ∗ − s i)

here i ∈ { 1 , 2 , . . . , ps } and s i � = s ∗. The candidate solutions are up-

ated iteratively and their updated positions are evaluated during

he course of optimization as shown in lines 10–12 of operational

ummary. Next, the blackhole is updated if a better solution is

iscovered (line 13, Algorithm 2). The blackhole solution mimics

he behavior of blackholes in the nature i.e. anything that comes

nto a surrounded region of the blackhole gets collapsed. This

egion is termed as event horizon area and it is defined by its

adius (ρ) that is computing by line 14 of Algorithm 2 .

In order to detect whether s i is reached into the bounded area

r not, we compute its distance from the s ∗ as δs i = f (s ∗) − f (s i) .

f any solution (s i) enters into the horizon region, the Ψ operation

s applied over it (see Eq. (17)) where the candidate solution is

bserved and new candidate is popped up to keep the popula-

ion size uniform throughout the simulation (lines 16 and 17 of

lgorithm 2). We repeat this iterative process until the approxi-

ated weights are not found that are used to compute the final

orecast of the predictive framework. These workload anticipa-

ions are provided to the resource scaling module as shown in

ig. 1 that acts on these values along with current state of data

enter to scale in or out resources for improved utilization, power

onsumption, quality of experience and other parameters.

 i =

{
Ψ if δs i < = ρ and s i � = s ∗,
s i otherwise

(17)

. Evaluation metrics

A predictive framework utilizes the forecasts in designing the

ovement pattern. Therefore, the quality of scaling decisions
epends on the accuracy of forecasting module. A number of error

etrics have been used to measure the quality of forecasts and we

se mean squared error (MSE) and relative mean absolute error

RelMAE).

.1. Mean squared error

This metric measures the forecast error by putting high penalty

n large error terms. The model is considered to be more accurate

f its score is closer to 0. The mathematical representation of the

etric is mentioned in Eq. (18) where m is the number of data

oints in workload trace.

SE =

1

m

m ∑

t=1

(y t − ˆ y t)
2 (18)

.2. RelMAE

Root mean squared error metric can not be used to compare

he performance of a predictive model on different data sets

ecause it depends on the scale of data values. Therefore, a scale

ree measure is required to compare the performance and we used

elMAE that can be computed by Eq. (19) , which is the mean

bsolute error normalized by the mean absolute error of some

tate-of-art method. Here, we considered the Naïve method which

orecasts the future values equal to the last observed value.

elM AE =

M AE A
M AE BM

(19)

. Simulation results

The experiments are executed on a server machine equipped

ith two Intel R © Xeon

R © E5-2630 v4 processors with 2.20GHz clock

peed. The machine is operated on 64-bit Windows Server 2012

2 Standard and it has main memory of 128GB. The predictive

ramework was implemented in MATLAB 2017a and evaluated

n CPU and memory resource requests data from Google cluster

races [53] which was released by Google in 2011. It incorporates

he data of 29 days collected from Google’s cluster cell. The traces

re organized into six different tables that contain the data of

0,388 machines of Google cluster. In the experiments, we have

sed the traces of CPU and memory demands of VM instances

osted on the cluster. We also used PlanetLab data trace that

ontains the mean CPU utilization of more than 10 0 0 virtual

achines sampled over 5 minutes interval. The virtual machines

re located at more than 500 places across the globe. The data was

ollected on 10 random days in the months of March and April

f year 2011. The experiment environment involves the settings

hown in Table 2 .

The first set of experiments were carried out on CPU demand

race 5 and 60 minutes prediction window size (PWS), where PWS

efines the time interval between two consecutive forecasts. As

iscussed earlier, the approach computes the autocorrelation to

28 J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30

Table 3

Mean squared error obtained from networks of different size (CPU trace).

#ELMs 5 min 60 min

Linear Random Fix Linear Random Fix

10 0.00502 0.00477 0.00480 0.01080 0.00941 0.00975

20 0.00491 0.00472 0.00479 0.01030 0.00945 0.00967

30 0.00484 0.00473 0.00480 0.00997 0.00958 0.00971

40 0.00476 0.00472 0.00480 0.00963 0.00941 0.00972

50 0.00472 0.00474 0.00479 0.00936 0.00949 0.00980

60 0.00467 0.00474 0.00479 0.00904 0.00958 0.00968

70 0.00464 0.00474 0.00479 0.00884 0.00956 0.00972

80 0.00460 0.00476 0.00479 0.00860 0.00961 0.00978

90 0.00456 0.00475 0.00479 0.00832 0.00948 0.00976

100 0.00453 0.00479 0.00480 0.00817 0.00957 0.00976

Table 4

Mean squared error obtained from networks of different size (Memory trace).

#ELMs 5 min 60 min

Linear Random Fix Linear Random Fix

10 0.000713 0.000672 0.000692 0.008980 0.007670 0.007490

20 0.000705 0.000674 0.000690 0.008190 0.007530 0.007470

30 0.000696 0.000683 0.000693 0.007750 0.007270 0.007380

40 0.000686 0.000684 0.000692 0.007300 0.007330 0.007390

50 0.000678 0.000681 0.000693 0.007120 0.007340 0.007460

60 0.000671 0.000686 0.000692 0.006840 0.007360 0.007460

70 0.000662 0.000685 0.000693 0.006640 0.007050 0.007460

80 0.000659 0.000686 0.000692 0.006460 0.007230 0.007430

90 0.000651 0.000684 0.000692 0.006210 0.007300 0.007430

100 0.000646 0.000686 0.000693 0.006000 0.007340 0.007420

Table 5

Friedman test results.

Data Statistic p -value Result

CPU 11.15873 0.00015 H 0 is rejected

Memory 7.11684 0.00237 H 0 is rejected

Table 6

Friedman test ranks.

Approach Ranks CPU memory

Random 1.60 1.75

Linear 1.70 1.65

Fix 2.70 2.60

Table 7

Finner post-hoc analysis result.

CPU Memory

Statistic Adjusted Result Statistic Adjusted Result

p -value (H 0) p -value (H 0)

Fix vs linear 3.162 0.002 Rejected 3.004 0.007 Rejected

Fix vs random 3.478 0.001 Rejected 2.687 0.010 Rejected

Linear vs random 0.316 0.751 Accepted 0.316 0.751 Accepted

Table 8

Forecast accuracy of the proposed model measured using MSE and RelMAE.

PWS (min) Data MSE RelMAE

5 CPU 0.00453 0.86000

Memory 0.00064 0.85900

30 CPU 0.00893 0.86000

Memory 0.00707 0.86900

60 CPU 0.00817 0.86500

Memory 0.00600 0.84500

F

c

s

p

t

a

t

t

o

b

l

a

t

H

l

C

a

r

T

p

a

s

w

a

i

L

u

o

d
find out the number of input neurons. Any value of autocorrelation

larger than T ϱ is considered to be significant and number of input

nodes are selected accordingly. Since the autocorrelation of non

differentiated CPU trace aggregated on 5 min interval is higher

than T ϱ for all time lags as shown in Fig. 6 (a), the data trace is

differentiated and autocorrelation is recomputed. The first-order

differentiation of CPU request trace reduced the autocorrelation

significantly as depicted in Fig. 6 (b). Therefore, the model selects

3 input neurons in this case as the autocorrelation after time

lag 3 tends to zero. Similarly, the number of input neurons can

be optimized for other data traces as well. Therefore, for the

experimental purpose we put a limit on L up to 40 that may be

adjusted as per the data trace characteristics.

Further, we compared the effect of hidden neuron selection

strategies on the forecast accuracy of CPU trace as shown in

Table 3 , where best values are highlighted using bold face. We

observed that the random scheme gives better accuracy up to 40

ELMs while linear method outperforms the other two methods

afterward. The fix scheme contains the same architecture for all

networks and random scheme selects the random number of

hidden neurons in the allowed range between p min and p max . But

linear selection method increases the number of hidden neurons as

k increases and each network has unique architecture. Therefore,

the linear method outperforms the other two approaches after a

certain number of networks. Since linear method achieves better,

the results obtained using linear hidden neurons selection scheme

are reported and considered for comparison with prior work. Simi-

lar to CPU data trace, we also experimented with memory demand

traces of the Google cluster trace. Figs. 6 (c) and (d) shows the au-

tocorrelation of the series aggregated on 5 min interval. Similar to

CPU trace, we observed the effect of a different number of hidden

neurons on the forecast accuracy of the memory trace. Table 4

confirms that the networks based on linear selection method pro-

duced better forecasts. The forecast results reveal similar accuracy

trend as of CPU trace over different prediction window intervals.
A statistical test is conducted using the Friedman test with

inner post hoc analysis to validate the results. The Friedman test

onsiders a null hypothesis (H 0) that assumes that there is no

ignificant difference in the results of different approaches. Finner

ost hoc analysis helps in analyzing the pairwise performance of

he models. The test is conducted with a significance level of 0.05

nd on STAC [54] web platform. Table 5 shows that the Friedman

est rejects the H 0 for both CPU and Memory traces that indicates

he presence of a significant difference in the results. The ranks

btained through the Friedman test are shown in Table 6 . It can

e observed that the best rank was obtained by random and

inear on CPU and Memory data traces, respectively. The Finner

nalysis shows that a significant difference is present in the first

wo pairs (Fix vs Linear and Fix vs Random) as shown in Table 7 .

owever, the analysis observed no significant difference between

inear and random approaches for both traces.

Table 8 shows the performance of the proposed approach on

PU trace on both metrics. The accuracy of forecasts drops downs

s the prediction interval increases due to the fact that the most

ecent history contributes the most in forecasting the next event.

he length between most recent available history and forecast

oint increases as prediction interval increases. Therefore, the

ccuracy of long term forecasts drops down with respect to the

hort term horizon.

The forecast accuracy of the proposed approach is compared

ith state-of-art approaches to show its efficacy [33,55] . Tables 9

nd 10 compare the performance with auto regressive and mov-

ng average (ARIMA), support vector machines (SVR) and Deep

earning based models. Since Baldan et al. [55] used mean CPU

tilization of the Google cluster trace to evaluate the performance

f various forecasting approaches, the experiments on the same

ata trace are also conducted to compare the performance with

J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30 29

Table 9

Forecast accuracy comparison on CPU utilization of Google cluster trace using Rel-

MAE.

PWS (min) ARIMA [55] SVR [55] Proposed

5 0.9720 0.9690 0.3281

60 0.9210 – 0.0156

Table 10

Forecast accuracy comparison on CPU utilization of PlanetLab trace using RMSE.

PWS (min) Deep learning [33] Proposed

5 9.1700 0.0731

30 10.3000 0.0956

60 9.9700 0.1030

t

m

i

f

t

t

c

o

f

T

b

o

p

c

t

t

c

b

t

7

a

b

m

b

c

H

t

p

f

w

m

m

o

f

r

p

q

b

I

m

n

n

b

t

m

D

A

a

s

t

t

R

[

[

[

[

[

wo promising forecasting approaches called auto regressive and

oving average (ARIMA) and support vector machines (SVR). An

mprovement is observed in the forecast accuracy of the proposed

ramework. Since the objective of the framework is to minimize

he prediction error, the performance is compared by computing

he percentage decrease in the forecast error. This is achieved by

omputing the difference between the forecast error of the state-

f-art and proposed methods. This difference is divided by the

orecast error of the state-of-art method and multiplied by 100.

he proposed approach observed the percentage error decrease

y 66.24% and 98.31% for 5 and 60 minute forecasts respectively

n comparing the performance with ARIMA. On comparing the

erformance with SVR based predictive model, we noticed the per-

entage error decrease up to 66.14%. Similarly, the performance of

he proposed approach on mean CPU utilization of PlanetLab data

race is compared with [33] using the root mean squared error. It

an be seen that the forecast root mean squared error is improved

y percentage error decrease up to 99.20%. The results convey that

he proposed approach produces forecasts with higher accuracy.

. Conclusion

The cloud computing allows us to access the resources such

s CPU, memory, disk and others over the Internet. Today, it has

ecome the state-of-art hosting platform for government, social

edia and industrial applications. The number of applications

eing hosted over the cloud is increasing rapidly due to its

haracteristics including accessibility, elasticity and on-demand.

owever, the cloud paradigm suffers from low resource utiliza-

ion and high power consumption which must be addressed on

riority. In this, paper we have proposed a forecasting approach

or intelligent cloud resource management to reduce the resource

astage, energy consumption and carbon footprints. The proposed

ethod exploits the fast learning capacity of extreme learning

achines to improve the training time. The scheme is tested

n benchmark data sets and compared with existing state-of-art

orecasting techniques. On comparing its performance with the

ecent methods, the analysis shows the superiority of the ap-

roach in terms of forecast accuracy. The forecasts with improved

uality will ensure the low operational cost of the cloud system

y achieving advancement in resource management decisions.

nspite of above mentioned benefits of the proposed model, the

odel has two major limitations. First, it manually selects the

umber of networks. Second, the number of hidden nodes in each

etwork are selected based on heuristics. These limitations can

e minimized by extending the framework to automatically select

he number of networks and hidden nodes in each networks. Also,

ultiple time series forecasting can be incorporated.

eclaration of Competing Interest

No conflict of interest exists.
cknowledgment

The authors would also like to thank the Ministry of Electronics

nd Information Technology (MeitY), Govt. of India for financial

upport to carry out this research work. Authors are also thankful

o Dr. Ankit Saxena, Department of Management, GLA University

o proofread the manuscript.

eferences

[1] S. Pandey , L. Sammut , R.N. Calheiros , A. Melatos , R. Buyya , Scalable deploy-

ment of a ligo physics application on public clouds: workflow engine and re-
source provisioning techniques, in: X. Li, J. Qiu (Eds.), Proceedings of the Cloud

Computing for Data-Intensive Applications, first ed., Springer New York, New
York, NY, 2014, pp. 3–25 .

[2] M.D. de Assunção , A.D.S. Veith , R. Buyya , Distributed data stream processing
and edge computing: A survey on resource elasticity and future directions, J.

Netw. Comput. Appl. 103 (2018) 1–17 .

[3] W. Voorsluys , J. Broberg , S. Venugopal , R. Buyya , Cost of virtual machine
live migration in clouds: A performance evaluation, in: M.G. Jaatun, G. Zhao,

C. Rong (Eds.), Cloud Computing, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009, pp. 254–265 .

[4] R. Birke , L.Y. Chen , E. Smirni , R. Birke , L.Y. Chen , E. Smirni , Data Centers in
the Wild: A Large Performance Study, Technical Report, IBM Research - Zurich,

Switzerland, 2012 .

[5] C. Reiss , A. Tumanov , G.R. Ganger , R.H. Katz , M.A. Kozuch , Heterogeneity and
dynamicity of clouds at scale: Google trace analysis, in: Proceedings of the

ACM Symposium on Cloud Computing 2012, 2012, pp. 1–18 .
[6] L. Barroso , U. Hölzle , The Datacenter as a Computer an Introduction to the

Design of Warehouse-Scale Machines, 24, Morgan & Claypool Publishers, 2013 .
[7] Navigant Consulting Inc. SAIC, Analysis and representation of miscellaneous

electric loads in NEMS, The U.S. Energy Information Administration (Navigant
Reference: 160750) (2017) 1–138.

[8] X. Li , Z. Qian , S. Lu , J. Wu , Energy efficient virtual machine placement algo-

rithm with balanced and improved resource utilization in a data center, Math.
Comput. Model. 58 (5) (2013) 1222–1235 .

[9] M. Yousif , The state of the cloud, IEEE Cloud Comput. 5 (1) (2018) 4–5 .
[10] J. Kumar, A.K. Singh, Cloud datacenter workload estimation using error pre-

ventive time series forecasting models, Cluster Comput. (2019). https://link.
springer.com/article/10.1007/s10586- 019- 03003- 2#citeas .

[11] Lingyun Yang, I. Foster, J. Schopf, Homeostatic and tendency-based CPU load

predictions, in: Proceedings International Parallel and Distributed Processing
Symposium, IEEE Comput. Soc, pp. 1–9.

[12] S.-R. Kuang , K.-Y. Wu , B.-C. Ke , J.-H. Yeh , H.-Y. Jheng , Efficient architecture and
hardware implementation of hybrid fuzzy-Kalman filter for workload predic-

tion, Integration VLSI J. 47 (4) (2014) 408–416 .
[13] X. Sun , N. Ansari , R. Wang , Optimizing resource utilization of a data center,

IEEE Commun. Surv. Tutor. 18 (4) (2016) 2822–2846 .

[14] S.S. Manvi , G. Krishna Shyam , Resource management for infrastructure as a
service (IAAS) in cloud computing: a survey, J.Netw. Comput. Appl. 41 (2014)

424–440 .
[15] R. Weingärtner , G.B. Bräscher , C.B. Westphall , Cloud resource management: a

survey on forecasting and profiling models, J. Netw. Comput. Appl. 47 (2015)
99–106 .

[16] J. Zhang , H. Huang , X. Wang , Resource provision algorithms in cloud comput-

ing: a survey, J. Netw. Comput. Appl. 64 (2016) 23–42 .
[17] M. Amiri , L. Mohammad-Khanli , Survey on prediction models of applications

for resources provisioning in cloud, J. Netw. Comput. Appl. 82 (2017) 93–113 .
[18] K. Mason , M. Duggan , E. Barrett , J. Duggan , E. Howley , Predicting host CPU uti-

lization in the cloud using evolutionary neural networks, Future Gen. Comput.
Syst. 86 (2018) 162–173 .

[19] J. Kumar , A.K. Singh , Workload prediction in cloud using artificial neural net-

work and adaptive differential evolution, Future Gen. Comput. Syst. 81 (2018)
41–52 .

20] S. Kumaraswamy , M.K. Nair , Intelligent VMs prediction in cloud computing
environment, in: Proceedings of the 2017 International Conference On Smart

Technologies For Smart Nation (SmartTechCon), 2017, pp. 288–294 .
[21] G.M. Wamba , Y. Li , A.C. Orgerie , N. Beldiceanu , J.M. Menaud , Cloud workload

prediction and generation models, in: Proceedings of the Twenty-ninth Inter-

national Symposium on Computer Architecture and High Performance Com-
puting, SBAC-PAD 2017, 2017, pp. 89–96 .

22] S. Di , C.-L. Wang , Error-Tolerant resource allocation and payment minimization
for cloud system, IEEE Trans. Parallel Distrib. Syst. 24 (6) (2013) 1097–1106 .

23] H. Zhang , G. Jiang , K. Yoshihira , H. Chen , Proactive workload management in
hybrid cloud computing, IEEE Trans. Netw. Serv. Manage. 11 (1) (2014) 90–100 .

[24] M. Dabbagh , B. Hamdaoui , M. Guizani , A. Rayes , Energy-Efficient resource al-
location and provisioning framework for cloud data centers, IEEE Trans. Netw.

Serv. Manage. 12 (3) (2015) 377–391 .

25] A.K. Singh , J. Kumar , Secure and energy aware load balancing framework for
cloud data centre networks, Electron Lett. 55 (2019) 540–541 .

26] F. Ramezani , A fuzzy virtual machineworkload prediction method for cloud
environments, in: Proceedings of the 2017 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE), 2017, pp. 1–6 . Naples

http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0008
https://www.link.springer.com/article/10.1007/s10586-019-03003-2#citeas
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0024

30 J. Kumar, A.K. Singh and R. Buyya / Neurocomputing 397 (2020) 20–30

f

S

a

B

t

s

n

s

P

c

7

t

t

C

C

p

R

b

c

[27] H. Shen , L. Chen , Resource demand misalignment: an important factor to con-
sider for reducing resource over-provisioning in cloud datacenters, IEEE/ACM

Trans. Netw. 26 (3) (2018) 1207–1221 .
[28] F.-H. Tseng , X. Wang , L.-D. Chou , H.-C. Chao , V.C.M. Leung , Dynamic resource

prediction and allocation for cloud data center using the multiobjective genetic
algorithm, IEEE Syst. J. 12 (2) (2018) 1688–1699 .

[29] J. Kumar , A.K. Singh , Cloud resource demand prediction using differential evo-
lution based learning, in: Proceedings of the 2019 Seventh International Con-

ference on Smart Computing Communications (ICSCC), 2019, pp. 1–5 .

[30] N. Liu , Z. Li , J. Xu , Z. Xu , S. Lin , Q. Qiu , J. Tang , Y. Wang , A hierarchical frame-
work of cloud resource allocation and power management using deep re-

inforcement learning, in: Proceedings of the 2017 IEEE Thirty-seventh Inter-
national Conference on Distributed Computing Systems (ICDCS), IEEE, 2017,

pp. 372–382 .
[31] F. Qiu , B. Zhang , J. Guo , A deep learning approach for VM workload predic-

tion in the cloud, in: Proceedings of the 2016 Seventeenth IEEE/ACIS Interna-

tional Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), IEEE, 2016, pp. 319–324 .

[32] J. Kumar , R. Goomer , A.K. Singh , Long short term memory recurrent neural
network (LSTM-RNN) based workload forecasting model for cloud datacenters,

Procedia Comput. Sci. 125 (2018) 676–682 .
[33] Q. Zhang , L.T. Yang , Z. Yan , Z. Chen , P. Li , An efficient deep learning model

to predict cloud workload for industry informatics, IEEE Trans. Ind. Inf. 14 (7)

(2018) 3170–3178 .
[34] Y. Zhang , J. Yao , H. Guan , Intelligent cloud resource management with deep

reinforcement learning, IEEE Cloud Comput. 4 (6) (2017) 60–69 .
[35] Y.S. Patel , R. Misra , Performance comparison of deep VM workload predic-

tion approaches for cloud, in: P. Pattnaik, S. Rautaray, H. Das, J. Nayak (Eds.),
Progress in Computing, Analytics and Networking. Advances in Intelligent Sys-

tems and Computing, Springer, Singapore, 2018, pp. 149–160 .

[36] M. Amiri , L. Mohammad-Khanli , R. Mirandola , A sequential pattern mining
model for application workload prediction in cloud environment, J. Netw.

Comput. Appl. 105 (2018) 21–62 .
[37] M. Amiri , L. Mohammad-Khanli , R. Mirandola , An online learning model based

on episode mining for workload prediction in cloud, Future Gen. Comput. Syst.
87 (2018) 83–101 .

[38] S. Kim , T. Kim , C. Yoo , Workload prediction using run-length encoding for run-

time processor power management, Electron Lett. 51 (22) (2015) 1759–1761 .
[39] Z. Xiao , S. Member , W. Song , Q. Chen , Dynamic resource allocation using vir-

tual machines for cloud computing environment, IEEE Trans. Parallel Distrib.
Syst. 24 (6) (2013) 1107–1117 .

[40] Z. Chen , Y. Zhu , Y. Di , S. Feng , Self-adaptive prediction of cloud resource de-
mands using ensemble model and subtractive-fuzzy clustering based fuzzy

neural network, Comput. Intell. Neurosci. 2015 (2015) 14 .

[41] N. Singh , S. Rao , Ensemble learning for large-scale workload prediction, IEEE
Trans. Emerg. Top. Comput. 2 (2) (2014) 149–165 .

[42] M. Chen , J. Yuan , D. Liu , T. Li , An adaption scheduling based on dynamic
weighted random forests for load demand forecasting, J. Supercomput. (2017)

1–19 .
[43] I.K. Kim , W. Wang , Y. Qi , M. Humphrey , CloudInsight: utilizing a council of

experts to predict future cloud application workloads, in: Proceedings of the
Tenth IEEE International Conference on Cloud Computing (Cloud 2018), San

Francisco, USA, 2018, pp. 1–8 . July 2–July 7

[44] W. Zhong , Y. Zhuang , J. Sun , J. Gu , A load prediction model for cloud comput-
ing using PSO-based weighted wavelet support vector machine, Appl. Intell.

(2018) 1–12 .
[45] Y. Jiang , C. Perng , T. Li , R.N. Chang , Cloud analytics for capacity planning

and instant VM provisioning, IEEE Trans. Netw. Serv. Manage. 10 (3) (2013)
312–325 .

[46] C. Liu , Y. Shang , L. Duan , S. Chen , C. Liu , J. Chen , Optimizing workload category

for adaptive workload prediction in service clouds, in: A. Barros, D. Grigori,
N.C. Narendra, H.K. Dam (Eds.), Service-Oriented Computing, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2015, pp. 87–104 .
[47] K. Cetinski , M.B. Juric , Ame-wpc: advanced model for efficient workload pre-

diction in the cloud, J. Netw. Comput. Appl. 55 (2015) 191–201 .
[48] J. Kumar , A.K. Singh , Dynamic resource scaling in cloud using neural net-

work and black hole algorithm, in: Proceedings of the 2016 Fifth International

Conference on Eco-friendly Computing and Communication Systems (ICECCS),
2016, pp. 63–67 .

[49] J. Kumar , A.K. Singh , An efficient machine learning approach for virtual ma-
chine resource demand prediction, Int. J. Adv. Sci. Technol. 123 (2019) 21–30 .

[50] G.-B. Huang , Q.-Y. Zhu , C.-K. Siew , Extreme learning machine: theory and ap-
plications, Neurocomputing 70 (2006) 489–501 .

[51] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learn-

ing scheme of feedforward neural networks, in: Proceedings of the 2004 IEEE
International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541),

vol. 2, IEEE, pp. 985–990.
[52] A. Hatamlou , Black hole: a new heuristic optimization approach for data clus-
tering, Inf. Sci. (Ny) 222 (2013) 175–184 . Including Special Section on New

Trends in Ambient Intelligence and Bio-inspired Systems
[53] C. Reiss , J. Wilkes , J.L. Hellerstein , Google cluster-usage traces: format +

schema, Technical Report, Google Inc., Mountain View, CA , USA , 2011 .
[54] I. Rodríguez-Fdez , A. Canosa , M. Mucientes , A. Bugarín , STAC: a web platform

for the comparison of algorithms using statistical tests, in: Proceedings of the
2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2015 .

[55] F.J. Baldan , S. Ramirez-Gallego , C. Bergmeir , F. Herrera , J.M. Benitez , A forecast-

ing methodology for workload forecasting in cloud systems, IEEE Trans. Cloud
Comput. 6 (4) (2018) 929–941 .

Dr. Jitendra Kumar obtained his doctorate degree from
National Institute of Technology Kurukshetra, India (An

Institution of National Importance) in 2019. Currently, he
is an Assistant Professor in the Department of Computer

Engineering & Applications, GLA University, Mathura, In-

dia. He has more than 2 years experience in industry and
academia. He has published several papers in national

and international journals and conferences of high repute.
His current research interests include Machine Learning,

Cloud Computing, Data Analytics, Parallel Processing.

Prof. Ashutosh Kumar Singh is working as a Profes-
sor and Head in the Department of Computer Applica-

tions, National Institute of Technology Kurukshetra, In-
dia. He has more than 18 years research and teaching

experience in various Universities of the India, UK, and

Malaysia. He received his Ph.D. in Electronics Engineering
from Indian Institute of Technology, BHU, India and Post

Doc from Department of Computer Science, University of
Bristol, UK. He is also Charted Engineer from UK. His re-

search area includes Verification, Synthesis, Design and
Testing of Digital Circuits, Data Science, Cloud Computing,

Machine Learning, Security, Big Data. He has published

more than 160 research papers in different journals, con-
erences and news magazines. He is the co-author of six books which includes ‘Web

pam Detection Application using Neural Network’, ‘Digital Systems Fundamentals’
nd ‘Computer System Organization & Architecture’. He has worked as an Editorial

oard Member of International Journal of Networks and Mobile Technologies, In-
ernational journal of Digital Content Technology and its Applications. Also he has

hared his experience as a Guest Editor for Pertanika Journal of Science and Tech-
ology. He is involved in reviewing process of different journals and conferences

uch as; IEEE transaction of computer, IET, IEEE conference on ITC, ADCOM etc.

Prof. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and Dis-

tributed Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He is also serving as the found-

ing CEO of Manjrasoft, a spin-off company of the Uni-
versity, commercializing its innovations in Cloud Comput-

ing. He served as a Future Fellow of the Australian Re-

search Council during 2012–2016. He has authored over
625 publications and seven text books including “Master-

ing Cloud Computing” published by McGraw Hill, China
Machine Press, and Morgan Kaufmann for Indian, Chinese

and international markets, respectively. He has also edited
several books including “Cloud Computing: Principles and

aradigms” (Wiley Press, USA, Feb 2011). He is one of the highly cited authors in
omputer science and software engineering worldwide (hindex = 116, g-index = 255,

0,100+ citations). Microsoft Academic Search Index ranked Dr. Buyya as #1 au-

hor in the world (2005–2016) for both field rating and citations evaluations in
he area of Distributed and Parallel Computing. “A Scientometric Analysis of Cloud

omputing Literature” by German scientists ranked Dr. Buyya as the World’s Top-
ited (#1) Author and the World’s Most-Productive (#1) Author in the Cloud Com-

uting. Recently, Dr. Buyya is recognized as a “2016 Web of Science Highly Cited
esearcher” by Thomson Reuters and a Fellow of IEEE for his outstanding contri-

utions to Cloud computing. For further information on Dr. Buyya, please visit his

yberhome: www.buyya.com .

http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0032
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0033
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0034
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0035
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0036
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0037
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0038
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0039
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0039
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0039
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0040
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0040
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0040
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0040
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0040
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0041
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0041
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0041
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0041
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0041
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0041
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0042
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0042
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0042
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0042
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0042
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0043
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0043
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0043
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0043
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0043
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0044
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0045
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0045
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0045
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0046
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0046
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0046
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0047
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0047
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0047
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0048
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0048
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0048
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0048
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0049
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0049
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0049
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0050
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0050
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0050
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0050
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0051
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0051
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0051
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0051
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0051
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0052
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0052
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0052
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0052
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0052
http://refhub.elsevier.com/S0925-2312(20)30189-2/sbref0052
http://www.buyya.com

	Ensemble learning based predictive framework for virtual machine resource request prediction
	1 Introduction
	2 Problem definition
	3 Recent key contribution
	3.1 Neural network based approaches:
	3.2 Deep learning based approaches
	3.3 Mining based approaches
	3.4 Hybrid approaches

	4 Prediction framework
	4.1 Ensemble expert learning using ELM
	4.2 Expert architecture selection
	4.3 Weight allocation scheme

	5 Evaluation metrics
	5.1 Mean squared error
	5.2 RelMAE

	6 Simulation results
	7 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

