
Virtual Machine Provisioning Based on Analytical
Performance and QoS in Cloud Computing

Environments
Rodrigo N. Calheiros∗, Rajiv Ranjan†, and Rajkumar Buyya∗

∗Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
Email: {rnc, rbuyya}@unimelb.edu.au

†CSIRO Information and Communication Technologies (ICT) Centre
Acton, ACT, Australia

Email: rranjans@gmail.com

Abstract—Cloud computing is the latest computing paradigm
that delivers IT resources as services in which users are free
from the burden of worrying about the low-level implementation
or system administration details. However, there are significant
problems that exist with regard to efficient provisioning and
delivery of applications using Cloud-based IT resources. These
barriers concern various levels such as workload modeling, vir-
tualization, performance modeling, deployment, and monitoring
of applications on virtualized IT resources. If these problems
can be solved, then applications can operate more efficiently,
with reduced financial and environmental costs, reduced under-
utilization of resources, and better performance at times of peak
load. In this paper, we present a provisioning technique that auto-
matically adapts to workload changes related to applications for
facilitating the adaptive management of system and offering end-
users guaranteed Quality of Services (QoS) in large, autonomous,
and highly dynamic environments. We model the behavior and
performance of applications and Cloud-based IT resources to
adaptively serve end-user requests. To improve the efficiency of
the system, we use analytical performance (queueing network
system model) and workload information to supply intelligent
input about system requirements to an application provisioner
with limited information about the physical infrastructure. Our
simulation-based experimental results using production workload
models indicate that the proposed provisioning technique detects
changes in workload intensity (arrival pattern, resource demands)
that occur over time and allocates multiple virtualized IT
resources accordingly to achieve application QoS targets.

I. INTRODUCTION

Cloud computing [1] is the latest evolution of computing,
where IT resources are offered as services. The hardware and
software systems that manage these services are referred to as
Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS), while the actual applications managed and delivered
by IaaS and PaaS are referred to as Software as a Service
(SaaS).

The process of deployment and management of application
services (SaaS) on ubiquitous Cloud infrastructures (such as

Amazon EC2 [2], GoGrid1, and Rackspace2) that expose their
capabilities as a network of virtualized IT resources is known
as Cloud Provisioning.

The process of provisioning in Clouds is a complex under-
taking, as it requires the application provisioner to compute the
best software and hardware configuration to ensure that QoS
targets of application services are achieved, while maximizing
the overall system efficiency and utilization.

Achieving QoS targets is important for meeting SLAs
agreed with end-users and justifying the investment in Cloud-
based deployments. However, this process is further compli-
cated by the uncertain behavior of virtualized IT resources
and network elements. At runtime, there may be unpredictable
situations obstructing the smooth provisioning and delivery of
application services such as:

• Estimation error: IT managers or SaaS owners can easily
under or overestimate their needs because of lack of
understanding of requirements due to complexities of
Cloud-based IT resources and applications. As a result,
it becomes extremely hard for IT managers to find the
right combination of Cloud-based IT resources that can
suitably fit current and anticipated application workload;

• Highly dynamic workload: An application service is used
by large numbers of end-users, thus highly variable load
spikes in demand can occur, depending on the day and the
time of year, and the popularity of an application. Further
the characteristic of workload [3] could vary significantly
across application types (high performance, web hosting,
and social networking). This causes serious problems
while estimating the workload behavior (arrival pattern,
I/O behavior, service time distribution, and network us-
age) and related resource requirements;

• Uncertain behavior: In a large-scale computing envi-

1http://www.gogrid.com
2http://www.rackspacecloud.com

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPP.2011.17

295

ronment such as Cloud data centers, the availability,
load, and throughput of Cloud-based IT resources and
network links can vary in an unpredictable way. Transient
conditions further complicate the process of determin-
ing aggregate resource requirements for provisioning an
application. The provisioning problem is shown to be
computationally intractable (i.e., NP-hard) [4]. If one is to
add complexity and diversity of Cloud-based IT resources
with the uncertain behavior of application workload, then
the problem becomes much more challenging.

To counter the above complexities related to application pro-
visioning on Clouds, this paper presents an adaptive approach
with focus on automating routine management tasks, flexible
delivery of virtualized IT resources and application when and
where needed, and growing and shrinking of system capacity
without: (i) over-provisioning; and (ii) having unacceptable
impact on QoS targets. Applications and virtualized IT re-
sources are automatically provisioned, pooled, and delivered
on-demand according to business-driven policies.

Our provisioning technique tries to meet QoS targets, which
are request processing time (response time) and service re-
quests rejection, while preventing over-provisioning of IT re-
sources. It optimizes the usage of IT resources, hence lowering
consumption of physical, energy, and human resources while
increasing efficiency and minimizing IT budgets.

We model the behavior and performance of different types
of applications and IT resources to adaptively transform end
user’s service requests. We use analytical performance (queue-
ing network system model) [5] and workload information
to supply intelligent input about system requirements to an
application provisioner, which improves the efficiency of the
system. Such improvements ensure better achievement of QoS
targets, while reducing costs due to improved utilization of
IT resources. Workload information allows application pro-
visioner to better understand workload demands in terms of
resource needs, hence improving resilience to uncertainties
and reducing estimation errors that may lead to unacceptable
application performance and resource usage (over/under pro-
visioning).

Analytical performance model allows the system to predict
the effects of a provisioning schedule on target QoS. This
model helps application provisioner to predict what mixes
of infrastructures are most suited for a given application
and when and how system capacity should be scaled up or
down. Such models are simple and still efficient in delivering
expected QoS because they are based on information available
to the application provisioner. Therefore, aspects related to
network connections between physical machines hosting the
VMs, as well as other infrastructure-level aspects controlled by
infrastructure providers are abstracted because this information
is not disclosed to the application provisioner.

Our main contributions are:
1) an adaptive provisioning technique based on analytical

performance and workload information for dynamically
determining and capturing the relationship between ap-
plication QoS targets and the allocation of individual IT

resources. Our technique captures the complex behav-
ior of applications including requests arrival rates and
resource demands over time;

2) an analysis of two well-known application-specific
workloads aimed at demonstrating the usefulness of
workload modeling in providing feedback for Cloud
provisioning;

3) a comprehensive simulation-driven analysis of the pro-
posed approach based on realistic and well-known pro-
duction environment workload models.

The rest of the paper is organized as follows. Section II
discusses the Cloud provisioning process. This is followed
by a detailed description on the Cloud resource and SaaS
application models in Section III. Section IV presents the
proposed adaptive Cloud provisioning technique. Section V
presents experimental methodology, setup, and the discussion
of results. Section VI presents related works. Section VII
draws on some important conclusion along with suggestions
for future research.

II. COMPREHENSIVE CLOUD PROVISIONING APPROACH

Cloud Provisioning [3] is the process of deployment and
management of applications on Cloud infrastructures. It con-
sists of three key steps: (i) Virtual Machine Provisioning,
which involves instantiation of one or more Virtual Machines
(VMs) that match the specific hardware characteristics and
software requirements of an application. Most Cloud providers
offer a set of general-purpose VM classes with generic soft-
ware and resource configurations. For example Amazon EC2
supports 11 types of VMs, each one with different options
of processors, memory, and I/O performance; (ii) Resource
Provisioning, which is the mapping and scheduling of VMs
onto physical Cloud servers within a cloud. Currently, most
IaaS providers do not provide any control over resource
provisioning to application providers. In other words, mapping
of VMs to physical servers is completely hidden from ap-
plication providers; and (iii) Application Provisioning, which
is the deployment of specialized applications (such as ERP
system, BLAST experiments, and web servers) within VMs
and mapping of end-user’s requests to application instances.

In this paper, we focus on VM Provisioning and Application
Provisioning, because these are the steps that application
service providers can control. The goal of Application Pro-
visioning is ensuring an efficient utilization of virtualized IT
resources, which can be achieved through the use of techniques
such as load balancing and efficient mapping of requests,
while the goal of VM Provisioning is to provide applications
with sufficient computational power, memory, storage, and I/O
performance to meet the level of QoS expected by end-users.
The latter is achieved either by increasing/decreasing capacity
of deployed virtual machines or by increasing/decreasing the
number of application and VM instances.

III. MODELS

In this section, we present an overview of our system
architecture, the assumptions, and the notations (Table I) that

296

TABLE I
NOTATIONS: SYSTEM AND APPLICATION MODELS.

Symbol Meaning
System

P a set of cloud computing infrastructures
ci i-th cloud (IaaS/PaaS) data center from P
n number of cloud data centers
sj j-th application instance (such as software

library, executable, data, or functional com-
ponent)

vj j-th virtual machine
m number of virtual machine instances allo-

cated to an application
Application

Gs an application workload
rl l-th end-user request for Gs

h number of requests, tasks, or work units
within a workload

tl arrival time of request rl at the application
provisioner

Tr response time of an end-user request
Ts negotiated maximum response time of an

end-user request
λ expected arrival rate of requests at applica-

tion provisioner
λsi expected arrival rate of requests at an appli-

cation instance
Rej(Gs) rejection rate of requests by Gs

drive our design. We assume that applications are hosted
within virtual machines to enable resource sharing on a Cloud
infrastructure. It is possible that a multi-tier application will
run on multiple VMs that span cross computing servers.
However, in this work we assume that there is one-to-one
mapping relationship between an application instance si and a
VM instance vj . Since there is one-to-one mapping, we refer
to them interchangeably in the rest of this paper.

A. System model

Clouds organize data centers as networks of virtualized IaaS
(computing servers, databases, and networks) and PaaS (load-
balancers and auto scalers) so that providers are able to access
and deploy applications (SaaS) from anywhere in the world
on demand at competitive costs driven by QoS requirements.
The Cloud computing system [6], P , is a set of Cloud
infrastructures owned and maintained by 3rd party IaaS/PaaS
providers such as Amazon EC2, Flexiscale3, and GoGrid.
More formally, P = (c1, c2, . . . , cn), where c1, c2, . . . , cn are
data centers that are part of P .

An application deployment is composed of m VM instances
{v1, v2, . . . , vm}, where m is either fixed or varies with time
based on the current workload and performance requirements.
Application instances are examples of SaaS software that can
be owned by small and medium business enterprises (SMEs)
and governments who choose to offer their applications via
Clouds. Without loss in generality, we consider in this paper
the case where applications (SaaS) and platforms (PaaS) are
offered by one organization and Cloud-based IT resources are
owned by a different organization.

3http://www.flexiant.com/products/flexiscale

B. Application or SaaS Model

The cloud application scenario considered in this paper
relates to execution of certain kind of action or functionality,
by an application element sj to end-users. The action or func-
tionality varies based on the application model. For example,
a public computing [7] service such as Folding@home and
SETI@home provides functionality for executing mathemat-
ical models in a given set of data, whereas a Web server is
a service that delivers content, such as web pages, using the
Hypertext Transfer Protocol (HTTP) over the Internet.

Eventual dependencies among requests are assumed to be
handled at the user side. Therefore, from the point of view
of sj , requests for actions or functionalities are independent
from each other. This is the case, for example, of processing
of HTTP requests. Even though some information about state
of sessions may be stored in the Cloud, dependencies (e.g.,
security exceptions and protocols for communication) are
handled at the end-user side by its web browser.

Several fundamental workloads in science, physics, com-
merce, media, and engineering can be modeled as embar-
rassingly parallel or Bag of Tasks (BoT) workloads, whose
tasks are also independent. Some popular examples in this
domain are scientific applications such as BLAST, MCell,
and INS2D, and also public computing applications such as
Einstein@home, Folding@home, and SETI@home. Typically,
these are compute intensive applications composed of indepen-
dent tasks that can be modeled as requests for services sent
by end-users to an application instance.

The web server and the executor of BoT workloads are
examples of other types of application models. In both cases, a
workload Gs is composed of h independent requests (i.e., there
is no communication between requests and computation re-
quired by each request is not distributed) {r1, r2, . . . , rh} that
are received by application instances at times {t1, t2, . . . , th}.

Moreover, all the software and data requirements for exe-
cution of a request is met by the VM running it, what means
that execution of service requests does not require utilization
of Cloud storage. Relaxation of this requirement is part of our
future work.

QoS targets related to an application includes response time
Ts and rejection rate Rej(Gs) of requests. These parameters
are important because they have direct effect on the user
experience about the SaaS application. If the response time
is too high or if requests are rejected, some users might desert
the application permanently, this attrition and possible negative
publicity can result in loss of a portion of the revenue stream
(usage and advertisement cost). Therefore, meeting QoS for an
application is critical. To achieve this, we propose an adaptive
mechanism for provisioning applications, which is described
in the next section.

IV. ADAPTIVE CLOUD PROVISIONING APPROACH

To tackle the problem of uncertain behavior, estimation
error, and dynamic workload related to Cloud provisioning, we
propose an adaptive provisioning mechanism. The high level
architecture of our approach is shown in Figure 1. Different

297

Fig. 1. Proposed mechanism for adaptive virtual machine provisioning.

software components of the architecture are administered by
the service provider. Its SaaS layer contains an admission
control mechanism based on the number of requests on each
application instance: if all virtualized application instances
have k requests in their queues, new requests are rejected,
because they are likely to violate Ts. Accepted requests are
forwarded to the provider’s PaaS layer, which implements the
proposed system.

Mainly, the following components are critical to the overall
functionality of the system: (i) Application provisioner, main
point of contact in the system that receives accepted requests
and provisions virtual machines and application instances
based on the input from workload analyzer and from load
predictor and performance modeler; (ii) Workload analyzer,
which generates estimation of future demands for the appli-
cation. This information is passed to the load predictor and
performance modeler component; and (iii) Load predictor and
performance modeler, which solves an analytical model based
on the observed system performance and predicted load to
decide the number of VM instances that should be allocated
to an application. These three components are detailed in the
rest of this section.

Our provisioning mechanism runs continuously to ensure
that provisioning goals are met at all times. We set the
following design goals for our provisioning approach:

• Automation: All decisions related to provisioning should
be made automatically without human intervention;

• Adaptation: The application provisioner should adapt to
uncertainties such as changes in workload intensity;

• Performance assurance: The resource allocation in the
system can be dynamically varied for ensuring achieve-
ment of QoS targets.

A. Workload Analyzer

Workload analyzer is the component that is responsible
for generating estimation (prediction) of request arrival rate.
This information is used to compute the exact number of

Fig. 2. Queueing model for the data center.

application instances required for meeting QoS targets and
resource utilization goals. Prediction can be based on different
information; for example, it can be based on historical data
about resources usage, or based on statistical models derived
from known application workloads.

Besides the particular method to estimate future load, the
workload analyzer alerts the load predictor and performance
modeler when service request rate is likely to change. This
alert contains the expected arrival rate and must be issued
before the expected time for the rate to change, so the
load predictor and performance modeler has time to calculate
changes in the system and the application provisioner has time
to deploy or release the required VMs.

B. Load Predictor and Performance Modeler

Load predictor and performance modeler is responsible
for deciding the number of virtualized application instances
required to meet the QoS targets. This component models the
system as a network of queues whose model parameters are
obtained via system monitoring and load prediction models.
Monitoring data can be obtained via regular monitoring tools
or by Cloud monitoring services such as Amazon Cloud-
Watch4. The queueing network model considered by the load
predictor and performance modeler is depicted in Figure 2.
End-users in the model are represented by the generated
requests, whereas application provisioner and application in-
stances are the processing stations for these requests.

Application provisioner is modeled to have a M/M/∞
request queueing station. On the other hand each virtual-
ized application instance has a M/M/1/k queue. Therefore,
interarrival and service time distributions are exponentially
distributed during each specific analysis interval.

The k parameter, queue size, is defined according to the
negotiated service time (Ts) and execution time of a single
request (Tr), according to Equation 1. If number of requests
in a VM exceeds k, the request is rejected by the admission
control system and thus not forwarded to the application

4http://aws.amazon.com/cloudwatch

298

provisioner. This guarantees that requests are either rejected
or served in a time acceptable by clients.

k = bTs
Tr
c (1)

The proposed model is built only with information that
is made available about the infrastructure: because IaaS
providers typically do not disclose information about specific
hardware in use, as well as information about network connec-
tions and network topology in the data center, load predictor
and performance modeler cannot make assumptions about
the low-level physical infrastructure. Thus, these aspects are
abstracted in the model.

Moreover, the proposed model assumes that application
instances have the same hardware and software configuration,
hence they deliver the same performance. It can be achieved in
practice with proper configuration and management of VMs,
either via a hypervisor such as Xen [8] or via higher level
virtual environment managers such as OpenNebula [9] and
VMware vSphere5. Virtual machines with different capacities
might also be deployed in the system. In this case, the
provisioner has to decide when to deploy VMs with different
capacity, and this topic is subject of future research.

When workload analyzer updates the estimation of arrival
rate, the load predictor and performance modeler checks
whether current pool of virtualized application instances are
sufficient to meet QoS. To make this verification, it first obtains
current service times for each application instance, which is
used along with the estimated arrival rate to predict the overall
request response time, rejection rate, resource utilization, and
maximum number of VMs. If response time or rejection is
estimated to be below QoS, or if the utilization is predicted
to be below a minimal utilization threshold, the number of
VM instances serving applications is updated according to
Algorithm 1.

To summarize, the system updates number of required
virtualized application instances m depending on current QoS,
current average request execution time, and resources utiliza-
tion. Afterward, it models the system as a network of queues
(see Figure 2) and calculates average Tr and Rej(Gs) for a
given value of m. If QoS or utilization rate is not met, m
is recalculated and the process is repeated. Moreover, load
predictor and performance modeler keeps track of minimum
and maximum values of m that were tested, in order to avoid
the system to try a number of virtualized application instances
that either has been tested before or whose value is known to
be not sufficient based on previous tested values. It prevents
loops in the process.

Computing time of Algorithm 1 is dominated by the ex-
ecution of the repeat loop between lines 4 and 22: all the
operations inside and outside the loop are computed in con-
stant time. Number of iterations in the loop depends on finding
the number of required virtualized application instances: maxi-
mum number of application instances possible is dependent on

5http://www.vmware.com/products/vsphere

Algorithm 1: Adaptive VM provisioning.
Data: QoS metrics: Ts and Rej(Gs)
Data: Tm: monitored average request execution time
Data: k: application instance queue size
Data: λ: expected arrival rate of requests
Data: MaxVMs: maximum number of VMs allowed
Result: m: number of application instances able to meet

QoS
m← current number of application instances;1

min← 1;2

max← MaxVMs;3

repeat4

oldm← m;5

λsi ← λ/m;6

Pr(Sk)← expected rejection in a M/M/1/k queue7

given λsi and Tm;
Tq ← expected response time in a M/M/1/k queue8

given Pr(Sk), λsi , and Tm;
if Pr(Sk) and Tq do not meet QoS then9

m← m+m/2;10

min← m+ 1;11

if m > max then12

m← max;13

end14

else if utilization is below threshold then15

max← m;16

m← min+ (max−min)/2;17

if m ≤ min then18

m← oldm;19

end20

end21

until oldm = m ;22

return m;23

both policy applied by the application provider and its previous
negotiation with IaaS provider, and minimum number of
virtualized application instances is updated during execution:
if a given number of virtualized application instances m is
not enough to meet QoS, minimum number of virtualized
application instances is set as m + 1 and further search start
from such a value. Space complexity of the algorithm is
constant, because decision loop in the algorithm depends only
on the maximum, minimum, and current number of virtualized
application instances.

C. Application Provisioner

Requests that are accepted by the admission control mecha-
nism of the SaaS provider are subject to application provision-
ing. They are forwarded to a virtualized application instance,
which is able to process the request, following a round-robin
strategy. In cases where expected service or response time has
lower variability, this strategy may be enough to ensure an
even load balance among virtualized application instances at
a low monitoring cost. If this is not the case, IaaS provider-

299

supplied tools, such as Amazon Load-Balancer and GoGrid
Controller may be used to help application provisioner keeping
load among virtualized application instances balanced.

VM and application provisioning is performed by the appli-
cation provisioner component based on the estimated number
of application instances calculated by the load predictor and
performance modeler: if utilization of data center resources is
low, application provisioner is directed to destroy some appli-
cation instances. In this case, the first virtualized application
instances to be destroyed are the idle ones. If the number
of idle virtualized application instances is smaller than the
number of instances to be destroyed, the instances with smaller
number of requests in progress are chosen to be destroyed.
However, they are not immediately destroyed. Instead, they
stop receiving further incoming requests and are destroyed
only when running requests finish.

On the other hand, if the arrival rate is expected to increase
or the QoS is not being met, application provisioner is di-
rected to create more virtualized application instances. In this
case, the application provisioner firstly looks for virtualized
application instances selected to be destroyed but that still
are processing applications and removes them from the list
of instances to be destroyed until the number of required
instances is reached. If the number of virtualized application
instances created was found to be insufficient, new virtualized
instance with the same characteristics (VM configuration)
as the existing instances are requested to the data center’s
resource provisioner. Decision on which physical host receives
the VM is made by the Cloud specific resource provisioner and
is out of the scope of this paper.

Together, the three components of our adaptive Cloud
provisioning mechanism—application provisioner, workload
analyzer, and load predictor and performance modeler—are
able to dynamically and proactively adapt number of virtual
instances available to applications in such a way that service
times and rejection rates are kept below a negotiated level at
the same time resources are efficiently allocated to the service.

V. PERFORMANCE EVALUATION

In this section, we present the experiments aimed at eval-
uating the proposed adaptive Cloud provisioning mechanism.
CloudSim [10] discrete-event Cloud simulation was used to
model the Cloud environment. Next, we describe both the
simulation set up and the workloads used for the evaluation.

A. Simulation Set Up

The simulated model is composed of one Cloud data center
containing 1000 hosts. Each host has two quad-core processors
and 16GB of RAM. This data center hosts the application
instances and the mechanism. Simulation model also contains
one broker generating requests representing several users and
modeled after two common usage scenario for Cloud services,
which are detailed in the next section.

Virtual machines for the applications require one core and
2GB of RAM. Because resource provisioning is not the focus
of this work, we assume a simple load-balance policy for

resource provisioning, where new VMs are created, if possible,
in the host with fewer running virtualized application in-
stances. Instances are assigned to an idle core from a physical
host when they are created, so there is no time-sharing of
CPUs between virtual machines.

Output metrics collected for each scenario are: average
response time (Tr) of accepted requests; standard deviation
of service times among all accepted requests; minimum and
maximum number of virtualized application instances running
in a single time; VM hours, which we define as the sum
of the wall clock time of each instantiated application, from
its creation to its destruction; number of requests whose
response time violated QoS; percentage of requests rejected;
and resources utilization rate, which we define as the rate
between the sum of time actually spent by each virtualized
application instance to process requests and the VM hours.
Simulation of each scenario was repeated 10 times, and we
report the average for each output metric.

Utilization of VM hours as a metric for VM utilization
and cost allows us to provide a measurement for cost that
is independent from pricing policies applied by specific IaaS
Cloud vendors and thus makes the results more generally
applicable.

B. Simulation Scenarios

As stated before, two usage scenarios for Cloud services
were modeled in our experiments. The first scenario consists
of a web service workload, which is composed of a large
number of requests requiring small processing capacity (such
as retrieval of web pages or on-line business transactions)
from the application instances. This scenario is referred to as
web throughout this section. The second scenario considers an
application type that deals with processing of computationally
intensive requests. In this scenario, the workload is composed
of fewer requests, but Tr is larger when compared to the web
workload. This case represents utilization of Cloud-based IT
resources for scientific applications such as image rendering
and protein folding. This scenario is referred to as scientific
throughout this section.

Because in these experiments both workloads are based on
models, we apply a time-based prediction model for them.
More powerful techniques such as Quadratic Response Surface
Model (QRSM) [11] and Autoregressive Moving Average with
Exogenous Inputs Model (ARMAX) [12] can deliver good
prediction of real workloads and execution traces. Exploring
such workloads and prediction techniques is part of our future
work. However, we are able to show that even the simple
estimation presented in this section is able to improve QoS and
resources utilization compared to static provisioning policies.

The proposed provisioning strategy is compared to static
mechanisms of Cloud provisioning, where a fixed number of
instances is made available to execute the same workloads.
It allowed us not only to have a base strategy to compare
our provisioning mechanism with, but also to evaluate how
effective is our strategy in decreasing utilization of Cloud
resources. Number of virtualized application instances used

300

TABLE II
MINIMUM AND MAXIMUM NUMBER OF REQUESTS PER SECONDS ON EACH

WEEK DAY IN THE WEB WORKLOAD.

Requests per second
week day maximum minimum
Sunday 900 400
Monday 1000 500
Tuesday 1200 500
Wednesday 1200 500
Thursday 1200 500
Friday 1200 500
Saturday 1000 500

in the static policy was determined after execution of our
provisioning strategy, so we were able to determine the biggest
and the smallest static data center for each scenario. For the
web workload, simulations were run for data centers with
50, 75, 100, 125, and 150 virtualized application instances.
For the scientific workload, data centers have 15, 30, 45, 60,
and 75 instances. In all the cases, the same admission control
from the adaptive provisioning is used, therefore requests are
either served on time or rejected. Output collected is the same
for both static provisioning policies and adaptive provisioning
policy simulations.

Next, we detail the generation process of each workload.
1) Web Workload: In the web workload, Gs is modeled

after a simplified version of the traces of access to English
Wikipedia pages published by Urdaneta et al. [13]. Incoming
request rate in this workload varies depending on the day of the
week and the hour of the day. In our simplified version of the
traces, there is a 12-hour difference between the peak (at noon)
and the trough (at midnight) in number of arriving requests,
and requests are received by the data center in intervals of 60
seconds. Minimum and maximum arrival rates for each week
day are presented in Table II. The average number of requests
r for a specific time of the day is computed according to
Equation 2, and the standard deviation is 5% of such a value.

r = Rmin + (Rmax −Rmin)sin(
πt

86400
) (2)

In Equation 2, Rmin and Rmax are respectively the mini-
mum and maximum number of requests of the considered day
of the week, given by Table II, and t is the time in seconds
since the start of the current day. A day has 86400 seconds,
and this is the denominator in the fraction in Equation 2.

Figure 3 presents the average number of requests received
by the service provider during one week simulations generated
according to the method described in this section.

Workload analyzer predicts requests arrival rate for the
web workload by dividing each day into six periods. The
six periods considered are 11:30 a.m. to 12:30 p.m. (peak
activity in terms of requests arrival), 12:30 p.m. to 4 p.m. and
4 p.m. to 8 p.m. (decreasing activity), 8 p.m. to 2 a.m. (lowest
activity period), and 2 a.m. to 7 a.m., and 7 a.m. to 11:30 a.m.
(increasing activity).

Each request requires 100 ms to be processed in an idle
server. To insert heterogeneity in the request processing time,
we added a uniformly-generated value between 0% and 10%

 0

 200

 400

 600

 800

 1000

 1200

Sun Mon Tue Wed Thu Fri Sat Sun

R
e

q
u

e
st

s/
se

co
n

d

Fig. 3. Average number of requests received by the data center in the web
workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

12a.m. 2a.m. 4a.m. 6a.m. 8a.m. 10a.m. 12p.m. 2p.m. 4p.m. 6p.m. 8p.m. 10p.m. 12a.m.

R
e

q
u

e
st

s/
se

co
n

d

Fig. 4. Average number of requests received by the data center in the
scientific workload.

to the processing time for each request. Maximum response
time was set to 250 ms and maximum rejection was set to 0%,
i.e., the system is required to serve all requests. Minimum
utilization of resources was set to 80%. Simulation of this
scenario consists in one week of requests being submitted to
the data center, starting at Monday 12 a.m.

2) Scientific workload: The scientific workload consists
of submission of requests for execution of computationally
intensive tasks in a service provider. Arrival of requests is
modeled based on the workload for Bag-of-Tasks (BoT) grid
applications defined by Iosup et al. [14]. According to this
workload model, interarrival time of a BoT job in peak time
(between 8 a.m. and 5 p.m.), and number of requests received
in a 30 minutes period in off-peak time follow Weibull
distributions with parameters (4.25, 7.86) and (1.79, 24.16),
respectively. In the latter case, we assume that jobs arrive in
equal intervals inside the 30 minutes period. Because in the
BoT model a request may represent more than one task to be
executed, we multiplied the number of arriving requests in a
given time by the BoT size class, which is defined in the model
as a Weibull distribution with parameters (1.76, 2.11). Figure
4 presents the average number of requests received by the
service provider on each second during one day simulations.

Workload analyzer predicts arrival rate for this scenario as
follows. For the peak time, the mode of the interarrival time
(7.379 seconds) is used to estimate arrival rate, whereas the
mode for the size class (which results in 1.309 tasks per
BoT job) is used to estimate number of requests on each
interarrival. Because these parameters are based on Weibull
distributions, the system is subject to high variability in both
interarrival interval and number of tasks. High task arrival rates
may lead to service rejections. To compensate it, estimated
number of tasks is increased by 20%, and this value is used
to estimate arrival rate. During off-peak time, arrival rate is
estimated based on the mode of the daily cycle, as defined by

301

the workload (15.298 requests per 30 minutes interval). This
value is multiplied by a factor of 2.6 so eventual arrival rates
that are bigger than the estimated do not compromise QoS.

In this workload, each request requires 300 seconds to be
processed in an instance. Similarly to the method applied
for the web workload, we added variability in the request
processing time by increasing the processing time for each
request by a uniformly-generated value between 0% and 10%.
Maximum acceptable response time is 700 s and maximum
rejection is 0%. Minimum utilization of resources is 80%.
Because the scientific workload presents a daily behavior, in
opposite to the web workload that presents a weekly behavior,
simulation of the scientific scenario consists in one day of
requests, starting at 12 a.m. and generated according to the
workload described in this section.

C. Results

Next, experimental results are presented. In figures 5 and
6, our proposed mechanism is labeled as Adaptive, whereas
static provisioning policies are labeled as Static-*, where *
represents the number of VMs in the specific scenario.

1) Web Workload: Figure 5 shows the results of the ex-
periment for the web workload. In average, each simulation
of the scenario generated 500.12 million requests in the one-
week simulation time. Our adaptive provisioning mechanism
avoided rejection of requests by dynamically increasing num-
ber of virtualized application instances in peak times and re-
ducing it in off-peak times. Number of virtualized application
instances active in the data center varied between 55 and 153
(278.2%) with our policy, and rejection rate was insignificant.
Number of instances created by our policy in peak time (153)
is bigger than the actually required, as a static data center
with 150 VMs also avoids rejections in peak time. Number of
virtualized application instances created can be decreased by
allowing some requests to be rejected.

The number of hours of VMs required by our policy for
one-week execution is equivalent to keeping 111 virtualized
application instances active 24/7, even though this number of
instances would not be able to cope with peak demand: with
125 statically allocated application instances to a data center,
there are still 2% of rejections.

If the system were statically provisioned and able to cope
with the peak demand, as provisioned by our mechanism,
it would require approximately 150 instances 24/7, but in
this case total utilization of resources would be below 60%.
Therefore, our proposed system meets QoS and reduces host
VM utilization in 26% (in terms of number of hours) at the
same time that it completely avoids rejection of requests.
Moreover, the system was also able to keep utilization rate
of resources above the negotiated 80%.

Another interesting trend that Figure 5(b) shows is that even
data centers with high rejection rates may have low utilization
of resources. This is because the number of deployed applica-
tion instances is more than enough to handle off-peak traffic,
therefore there are idle resources in some periods of the day,
but these resources are not enough to serve peak time demand.

2) Scientific Workload: Figure 6 shows the results of the
experiment for the scientific workload. In average, each sim-
ulation of the scenario generated 8286 requests in one-day
simulation time. In line with the web experiment, our mech-
anism could meet negotiated QoS of requests by dynamically
increasing number of application instances in peak times and
reducing it in off-peak times. Number of application instances
active in the data center varied from 13 VMs in the off-peak
time to 80 in peak time.

The number of hours of VMs required for one-day execution
with our policy is equivalent of keeping 40 virtualized applica-
tion instances active 24 hours. However, in this case number of
instances is not enough in peak time, as observed for the case
of 45 machines statically allocated, which has a rejection rate
of 31.7%. If the system were statically provisioned and able
to cope with the peak demand, it would require 75 instances
available 24 hours with total data center utilization of only
42%. Therefore, in the scientific scenario our proposed system
reduces VM utilization (in terms of number of hours) in 46%
at the same time that it completely avoids rejection of requests
and keeps service time in negotiated levels.

As Figure 6 shows, utilization of the data center with the
use of our adaptive policy was slightly below the required
level (78% rather than 80%). Moreover, number of requests
in peak time was also over estimated, as in the previous
experiment. Both effects in this workload were caused by the
prediction policy adopted by load predictor and performance
modeler, which deliberately over estimates arrival rate (by the
use of factors, as explained in Section V-B2) to compensate
for sudden increase in number of requests caused by the
probability distribution that represents the workload. As in the
previous case, this can be avoided if some rejection of requests
is allowed in the system.

VI. RELATED WORK

Quiroz et al. [3] propose a mechanism for dynamic VM
provisioning in IaaS data centers based on clustering. In such
a work, it is necessary not only to determine the number of
virtualized application instances but also their types. In our
approach, type of instance is not part of the problem, thus
deployed instances can always be used to serve requests.

Zhu and Agrawal [15] propose a dynamic mechanism for
VM provisioning based on control theory considering user
budget. However, such an approach considers reconfiguration
of available virtual instances (increase or decrease their ca-
pacity) and not increasing/decreasing number of instances for
a customer, conversely to our approach that applies the latter
approach for VM provisioning.

Bi et al. [16] propose a model for provisioning multi-
tier applications in Cloud data centers based on queueing
networks. However, such a model does not perform recalcula-
tion of number of required VMs based on expected load and
monitored performance as does our approach.

Chieu et al. [17] propose a reactive algorithm for dynamic
VM provisioning of PaaS and SaaS applications, whereas our

302

Adaptive Static−50 Static−75 Static−100 Static−125 Static−150

0

20

40

60

80

100

120

140

160

180

Min instances

Max instances

Policy

A
p
p

lic
a

tio
n

 in
s

ta
n
c

e
s

(a)

Adaptive Static−50 Static−75 Static−100 Static−125 Static−150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rejection

Utilization

Policy

R
a
te

(b)

Adaptive Static−50 Static−75 Static−100 Static−125 Static−150

0

5000

10000

15000

20000

25000

30000

Policy

V
M

 h
o
u
rs

(c) (d)

Fig. 5. Results for the Wikipedia workload (web) scenario (a) number of virtualized application instances (b) data center utilization and requests rejection
rates (c) VM hours (d) average response time and standard deviation. Admission control mechanism in place in all scenarios successfully prevented QoS
violations.

Adaptive Static−15 Static−30 Static−45 Static−60 Static−75

0

10

20

30

40

50

60

70

80

90

Min instances

Max instances

Policy

A
p
p

lic
a
tio

n
 in

s
ta

n
c
e
s

(a)

Adaptive Static−15 Static−30 Static−45 Static−60 Static−75

0

0.2

0.4

0.6

0.8

1

1.2

Rejection

Utilization

Policy

R
a

te

(b)

Adaptive Static−15 Static−30 Static−45 Static−60 Static−75

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Policy

V
M

 h
o

u
rs

(c) (d)

Fig. 6. Results for the Grid Workload Archive’s BoT workload model (scientific) scenario (a) number of virtualized application instances (b) data center
utilization and requests rejection rates (c) VM hours (d) average response time and standard deviation. Admission control mechanism in place in all scenarios
successfully prevented QoS violations.

303

approach is proactive in the sense that number of instances is
changed based on the expected arrival rate of requests.

Lee et al. [18] propose a queueing network to model SaaS
mashup applications whose goal is to maximize profit or re-
duce costs of the SaaS provider by finding an optimal number
of instances for the application. Rodero-Merino et al. [19]
propose a system called Claudia, where provisioning is based
on performance indicators and elasticity rules defined by users.
In both approaches number of instances vary reactively to
incoming request rate, whereas our model proactively applies
adaptive provisioning to deliver negotiated QoS to requests
whose request arrival rate varies along with the time.

Jung et al. [20] propose the Mistral system, which per-
forms management at data center host level to manage power
consumption of resources and performance of applications.
However, this approach requires access to the physical in-
frastructure, which typical IaaS providers do not provide to
consumers. Therefore, Mistral is suitable to be applied in
scenarios where both infrastructure and application are offered
by the same provider, while our approach can be both applied
in the same case or in cases where IaaS and PaaS/SaaS
providers are different organizations.

VII. CONCLUSIONS AND FUTURE WORK

Although adoption of Cloud computing platforms as appli-
cation provisioning environments has several benefits, there
are still complexities obstructing the smooth provisioning and
delivery of application services in such environments.

To counter those complexities related to application provi-
sioning over Clouds, this paper presented an adaptive provi-
sioning mechanism for delivery of resources to SaaS applica-
tions. The mechanism uses analytical performance (queueing
system model) and workload information to drive decisions
of an application provisioner. The proposed approach is able
to model the infrastructure using only information that IaaS
providers make available to customers and monitoring data
from running VMs. The goal of the model is to meet QoS
targets related to service time and rejection rate of requests
and utilization of available resources.

Simulation-based experimental results using production
workload models indicated that the proposed provisioning
technique can detect changes in workload intensity (arrival
pattern and resource demands) that occur over time and allo-
cate resources accordingly to achieve application QoS targets.

As future work, modeling and decision-making processes
used by the mechanism will be improved to support not only
changes in number of VMs but also changes in each VM
capacity. Moreover, we intend to improve the queueing model
to allow modeling composite services and access to Cloud
storage. We also want to adapt more comprehensive prediction
techniques (such as QRSM [11] and ARMAX [12]) to handle
prediction for arbitrary service workloads.

Finally, we will extend the model to support other QoS
parameters such as deadline and incentive/budget to ensure
that high-priority requests are served first in case of intense
competition for resources and limited resource availability. For

the latter scenario, we will also address the problem of SLA
management for trade-offs of QoS between different requests,
potentially with different priorities and incentives, in order to
effectively manage QoS violations.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] J. Varia, “Best practices in architecting cloud applications in the AWS
Cloud,” in Cloud Computing: Principles and Paradigms. Wiley, 2011.

[3] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and
clouds,” in Proceedings of the 10th IEEE/ACM International Conference
on Grid Computing (GRID’09), 2009.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[5] D. A. Menascé, V. A. Almeida, and L. W. Dowdy, Performance by
Design: Computer Capacity Planning by Example. Prentice Hall, 2004.

[6] Y. C. Lee and A. Zomaya, “Rescheduling for reliable job completion
with the support of clouds,” Future Generation Computer Systems,
vol. 26, no. 8, pp. 1192–1199, 2010.

[7] D. P. Anderson, “Public computing: Reconnecting people to science,”
in Proceedings of the Conference on Shared Knowledge and the Web,
2003.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), 2003.

[9] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14–22, 2009.

[10] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

[11] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response
Surface Methodology. Wiley, 2009.

[12] J. V. Candy, Model-based Signal Processing. Wiley, 2006.
[13] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis

for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp.
1830–1845, 2009.

[14] A. Iosup, O. Sonmez, S. Anoep, and D. Epema, “The performance
of bags-of-tasks in large-scale distributed systems,” in Proceedings of
the 17th International Symposium on High Performance Distributed
Computing (HPDC’08), 2008.

[15] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints
for adaptive applications in cloud environments,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing (HPDC’10), 2010.

[16] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning mod-
eling for virtualized multi-tier applications in cloud data center,” in
Proceedings of the 3rd International Conference on Cloud Computing
(CLOUD’10), 2010.

[17] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling
of web applications in a virtualized cloud computing environment,”
in Proceedings of the 6th International Conference on e-Business
Engineering (ICEBE’09), 2009.

[18] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-driven
service request scheduling in clouds,” in Proceedings of the 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting (CCGrid’10), 2010.

[19] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Galán, J. Fontán, R. S.
Montero, and I. M. Llorente, “From infrastructure delivery to service
management in clouds,” Future Generation Computer Systems, vol. 26,
no. 8, pp. 1226–1240, 2010.

[20] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu,
“Mistral: Dynamically managing power, performance, and adaptation
cost in cloud infrastructures,” in Proceedings of the 30th International
Conference on Distributed Computing Systems (ICDCS’10), 2010.

304

