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Abstract—Cloud providers rely on virtualization technology
for efficient data center management and service delivery. Live
Virtual Machine (VM) Migration is one of the critical features of
this technology enabling cloud providers to relocate VMs between
servers without disrupting applications currently running on
it. One of the key challenges of VM live migration is that it
creates elephant flows over the network links connecting the
source to destination servers due to the transfer of the entire
memory and possibly disks of the VM. In this paper, we leverage
software-defined networking (SDN) and propose a dynamic flow
scheduling approach called Acinonyx. Our solution is designed
to minimize the negative impact of live VM migration on data
center network traffic and reduce migration time in cloud data
centers with multiple network paths between servers. Acinonyx
adaptively installs flow entries on the switches of the shortest path
with the lowest congestion and redirects VM migration traffic to
the appropriate path. We describe the implementation of the
proposed solution over our testbed environment, where we use
OpenStack for managing commodity servers and OpenDaylight
SDN controller for managing the OpenFlow switches. Our
experimental results show that Acinonyx can significantly reduce
the migration time of VMs while improving the overall network
throughput for other VM communications.

Index Terms—Software-defined Networking, Cloud Comput-
ing, Dynamic Flow Scheduling, Live VM Migration, OpenDaylight,
OpenStack

I. INTRODUCTION

Virtualization is the critical building block of the operation
and maintenance for many modern data centers. Advances
in virtualization contribute to increased adoption of Virtual
Machines (VMs) for isolation, consolidation and migration
purposes [1]. Amongst all significances of VMs, live migration
is a promising and efficient means of relocating running VMs
between servers (physical hosts) with no or minimum impact
on the VM’s availability. In cloud data centers, live VM migra-
tion is used as a management tool facilitating various functions
such as hardware maintenance, load balancing, energy saving,
and disaster recovery.

Despite all the benefits, live VM migration may have
significant adverse impacts on data center network traffic. In
fact, conventional live migration techniques typically transfer
VM’s CPU state, all memory pages, and disks from the source
to the destination [2]. As a result, live migration of VMs
may create elephant flows over the network links connecting
the source to the destination causing network congestion for

other applications sharing the same links. Moreover, network
congestion may also impact the performance of live VM
migration itself by increasing downtime and migration time.

To address these issues, some studies have focused on the
network-aware planning of VM migration by determining the
best time and sequence of VM migrations to minimize the
overall migration time and the impact of migration over-
head [3]–[5]. However, little or no attention has been paid
to the selection of network paths for VM migration to avoid
network congestion. The reason is that existing data center
networks are optimized to statically select a single path across
available paths for forwarding flow packets between each
source/destination pair [6].

The emergence of software-defined networking (SDN) and
its capabilities to shape and optimize network traffic from a
logically centralized management controller provide opportu-
nities for dynamic flow scheduling based on the network uti-
lization and flow size in short time scales. Nowadays, the use
of SDN for the resource management within and across data-
centers has been suggested by many research proposals [7]–
[10]. The tightly coupled control and data (forwarding) planes
in traditional networking devices has been separated in SDN
which allows us to efficiently program flow scheduling policies
in a single point of management for an administrative domain
such as a cloud data center [7].

In this context, we investigate if “it is possible to reduce live
VM migration time and overhead by dynamically scheduling
flows in a cloud data center having multiple paths between a
given pair of physical hosts”. To the best of our knowledge,
this paper represents the first attempt towards this challenge.

Accordingly, in order to minimize the live VM migra-
tion time and overhead, we propose a migration orchestrator
called Acinonyx1 that dynamically pushes forwarding rules to
the network switches using SDN controller APIs. Acinonyx
collects active flows statistics from the SDN controller and
installs appropriate flow entries for VM migration traffic in all
constituent switches according to the opportunistic utilization
of the residual (spare) bandwidth of the physical links.

1Acinonyx is a genus within the cat family with the only living species of
the Cheetah (Acinonyx Jubatus) who is close to extinction. We selected this
title to 1) raise awareness for this beautiful and endangered animal and 2)
race towards the minimization of VM migration time like a cheetah.



We present a full implementation of Acinonyx on a real
testbed prepared for this purpose [11]. Our proposed flow
scheduling policy uses OpenDayLight APIs to dynamically
install flow entries on physical switches in the network. We
conduct experiments to show the effectiveness of our approach
using OpenStack interfaces for live migration of VMs in
our SDN-enabled testbed platform. The results show that
Acinonyx is able to reduce the live VM migration time up
to 12% and increase the total number of bits transmitted by
other traffic in the network by 7%.

The rest of the paper is organized as follows: Section II
provides the motivation for dynamic flow scheduling and
the background for data center networks and VM migration.
In Section III, we propose our dynamic flow scheduling
algorithm. Section IV presents the system architecture and the
implementation of the proposed flow scheduling algorithm.
The testbed and experimental setup along with performance
evaluation and experimental results are discussed in Section V.
Section VI outlines related work. Finally, Section VII con-
cludes the paper with directions for future work.

II. BACKGROUND

In this section, we will describe (a) data center network
architectures and common practices for routing traffic, (b) VM
migration and its timing, and (c) a motivating example for
dynamic flow scheduling of VM migration traffic.

A. Data Center Networks

As the scale of modern cloud data centers has been rapidly
growing beyond tens of thousands of servers, establishment of
networks providing sufficient bisection bandwidth in the data
centers has become of paramount importance. In addition, the
rise of VMs has also driven massive increases in “east-west”
traffic between servers in the cloud data centers compared
to large “north-south” traffic in enterprise data centers. The
push for building such data center networks has promoted
researchers and practitioner to explore horizontal expansion
of networks leveraging many relatively inexpensive switches
instead of using traditional tree topologies with high speed
and high port density core switches [6]. These efforts have
given birth to several alternative network topology designs
such as VL2 [8], PortLand [12], and BCube [13]. These
topologies create what is known as multi-rooted trees having a
larger number of parallel paths between any given source and
destination servers. Figure 1 illustrates a simple fat-tree topol-
ogy [14] representing four equal-cost shortest paths between a
given pair of servers. The figure shows two highlighted hosts
and different paths that traffic between these two can traverse.

To take advantage of multiple paths, the current state of
the art is to use Equal-Cost Multi-Path (ECMP2) routing [15].
ECMP is a forwarding mechanism that distributes traffic over
multiple paths based on the hash of certain parameters of
layer 3 headers. In this way, the load will be split across
multiple paths, while packets of a given flow are guaranteed

2Analysis of an Equal-Cost Multi-Path Algorithm, https://tools.ietf.org/
html/rfc2992
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Fig. 1: Simple fat-tree network topology with four equal-cost
shortest paths between a given pair of servers.

to take the same path and the arrival order at the destination
is maintained. This is very important for the performance
of applications, as out of order packet delivery significantly
degrades the performance of TCP connections. Even though
ECMP load-balancing is efficient in many cases, its static per-
flow hashing can cause substantial bandwidth loss due to the
collision of elephant flows such as live VM migration traffic.
Thus, in this paper, we aim to exploit the high degree of
parallelism and residual bandwidth available on the links to
perform live VM migration in a shorter time scale through
dynamic flow scheduling.

B. Virtual Machine Migration

Migrating VMs enables an administrator to move a VM in-
stance from one host to another. A typical scenario is the case
of planned maintenance on the source host or even performing
disaster recovery. Moreover, VM migration can also be useful
to balance system load when many VM instances are running
on a specific overloaded host. On the contrary, VMs can be
consolidated into a few servers in order to minimize resource
wastage or energy consumption.

VM migration can be performed in two ways: Non-live
(cold or simply migration) and live (hot) migration. In cold
migration, the VM is shut down, then moved to another
hypervisor and restarted on the destination. The application
running on the VM is disrupted in this case. Live migration
allows moving a running VM with no or minimal interruption
to the application running on the VM as opposed to pure stop-
and-copy of the cold migration. Even though our proposed
method can be equally applied to cold migration, we focus on
live VM migration here, because in public clouds often it is
not possible or desirable to stop tenants’ applications.

The “pre-copy” approach is the most common technique
to live migrate a VM [5]. The hypervisor pre-copies the
entire memory pages of the VM to the destination while the
application is still running on the source. Then iterative pre-
copy process is done in multiple rounds to transfer dirty pages
(memory pages modified during the last pre-copy). Typically,
there is a set of pages modified so often that pre-copy rounds
will never finish without stopping the VM. Subsequently, at the
final stage stop-and-copy is performed and the VM is resumed
at the destination. If there is no shared-storage, live migration
requires copying all disks from the source to the destination
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Fig. 3: Example of live VM migration when there are multiple
paths and different bandwidth residual available.

host. Figure 2 schematically shows the pre-copy live migration
process and its timing.

Mann et al. [9] presented a mathematical model of live
VM migration in KVM and VMware. Based on their model,
duration of pre-copy and stop-and-copy phases is computed
as:

T =
M × 1−(R/L)n

1−(R/L)

L
, (1)

where M is the memory size of the VM, R is the VM dirty
page rate and L is the amount of bandwidth available. n stands
for the number of pre-copy phases calculated as the minimum
values of two other equations omitted for the sake of brevity
here. Note that Equation (1) shows that the pre-copy and stop-
and-copy phases time non-linearly depends on the dirty page
rate and available bandwidth.

C. Motivation

In this section, we provide a motivating example to show the
impact of dynamic flow scheduling on the VM migration time.
Figure 3 depicts a network topology of the small-scale data
center that consists of 10 switches and 8 hosts. We assume
that links in the topology have a capacity of 100Mbps and
the thickness of each link shows traffic (bandwidth usage)
on the link. Moreover, we assume that there exists an active
flow between VM2 and VM3 using 50% of the bandwidth
(50Mbps) on the connecting links.

In our example, the system administrator wants to migrate
VM1 from the source host to the destination. As shown in
Figure 3, there are two shortest paths available between the
source and the destination, namely path 1 (Switches 1,2,3,4,
and 5) and path 2 (Switches 1,6,7,8, and 5). We assume that
the static flow routing or the ECMP hashing function, by
default, has chosen path 1 for the VM1 live migration. Now,
suppose that the total size of data that must be transferred dur-
ing the migration is fixed and equal to 5GB. Since path 1 and
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Fig. 4: Pre-copy phase time versus bandwidth based on Equa-
tion (1), when M = 4GB, R = 1MBps, and n = 4.

the active flow between VM2 and VM3 share two links, the
effective bandwidth which can be used for the VM migration
on path 1 is reduced to 50Mbps. If the flow between VM2
and VM3 remains active on the same bit rate and the status
of the network is not updated during the entire migration,
the total migration time of VM1 will be 5GB/50Mbps=819.2
seconds. However, if path 2 was initially selected for the
migration, the migration time would be reduced by 50% to
409.6 seconds. This motivates us to employ dynamic flow
scheduling to opportunistically exploit bandwidth residuals on
multiple paths between servers in multi-rooted trees network
topologies.

Contrary to what is shown above, the performance gain
in this example is not linearly proportional to the available
bandwidth. In our example, we assumed that the total size of
data to be transferred is fixed no matter which path is chosen.
However, as discussed in Section II-B, the duration of pre-copy
phase is non-linearly proportional to the available bandwidth
if dirty page rate of a VM is not zero. For instance, Figure 4
plots pre-copy phase time versus available bandwidth if the
memory size of the VM is 4GB, dirty page rate is 1MBps
and the number of pre-copy rounds equals to 4 according
to Equation (1). As shown in the figure, when the available
bandwidth increases, the time of pre-copy phase exponentially
decreases. Thus, increasing bandwidth reduces the migration
time not only explicitly through a higher transmission rate
but also implicitly by fewer amounts of data that must be
transferred.

III. ACINONYX DYNAMIC FLOW SCHEDULING

Our proposed dynamic flow scheduling is shown in Al-
gorithm 1. The key insight of our approach is to iteratively
redirect the live VM migration traffic on a path with the lowest
load when multiple shortest paths are available between the
source and destination. This reduces the VM migration time
and better utilizes available residual bandwidth on the links.
In an SDN-enabled data center, this can be performed by a
flow setup on the switches along the path. The SDN controller
configures flow entries and propagates them to switches.

The input to the algorithm is a pair of IP addresses
representing the source (s) and the destination (d) hosts for
the migration. The algorithm is executed per VM migra-



tion and as long as the VM migration is in progress. The
GETTOPOLOGY() method at Line 2 exploits the SDN con-
troller APIs to obtain the network topology. Then, it finds all
available shortest paths between the source and the destination.
Since our topology is an unweighted graph, a simple breadth-
first search (BFS) can be used for finding the shortest paths
in this case. To avoid the time complexity of BFS, one can
store all possible paths between all given pairs once and use
it when required. This is especially suitable for data centers
in which the network topology updates are infrequent.

The outer loop at Lines 5-18 iterates over all shortest paths
between the source and the destination to find a path that has
the highest residual bandwidth on its most used link (highest
byte rate or most congested). That is, the inner loop at Lines 7-
13 finds the link with highest byte rate along the path (most
used), while the outer loop iterates over paths and selects the
path with minimum byte rate on its most used link. Since live
VM migration traffic certainly happens through one of the
shortest paths, we have to make sure that the migration traffic
is excluded from the calculation. Thus, GET-BYTE-RATE at
Line 8 determines the byte rate for the matching VM migration
flow, f , which is subsequently deducted from the link byte
rate, b, at Line 9. As soon as the the best path between the
source and the destination is found, appropriate flow rules are
pushed into the switches to redirect migration traffic to this
path (Line 21). In order to make sure that the migration traffic
does not bounce between paths with small differences, we
check that the difference between the byte rate of the most
used link on the current path and the newly suggested one is
more than a certain switching ratio (α) of the current one as
shown in Line 20. MAXBYTERATE(currentPath) finds the
byte rate at the most used link of the current path similar to
the calculation in the inner loop at Lines 7-13. At Line 23,
the algorithm waits for a sleeping interval (β) before the next
flow scheduling round.

The time complexity of the shortest path algorithm is
O(|V | + |E|) where |V | is the number of nodes (vertices)
and |E| is the number of links (edges) in the topology. The
outer loop in the algorithm iterates over all possible shortest
paths and the inner loop goes over all the links on the path.
Therefore, the time complexity of this part can be expressed
as O(|P | × |p|), where |P | is the number of equal-cost
shortest paths and |p| is the path length. In practice, three-
tier data center network architecture with multi-rooted trees,
the maximum of |p| is 6 links and |P | depends on the number
of core switches. The overall time complexity of Acinonyx
is O(|V | + |E|) as the |P | × |p| equals to |E| in the worst
case. It is worth mentioning that Acinonyx is highly scalable
in large scale data centers as a separate run of the algorithm
can executed for each live VM migration flow.

One may wonder why the proposed dynamic scheduling
algorithm cannot be generalized to all other flows in the data
center. The reasons are twofold: 1) network traffic workloads
characterized by many small, short-lived flows would gain lim-
ited benefit from dynamic scheduling [6]. VM migration traffic
is one of the limited elephant flows that cloud provider has the

Algorithm 1 Acinonyx Dynamic Flow Scheduling

Input: s, d
1: while MIGRATION-IS-IN-PROGRESS() do
2: G← GET-TOPOLOGY()
3: P ← FIND-SHORTEST-PATHS(G, s, d)
4: min← +∞
5: for p in P do
6: max← 0
7: for link in p do
8: (b, f)← GET-BYTE-RATE(link)
9: r ← b− f

10: if r > max then
11: max← r
12: end if
13: end for
14: if max ≤ min then
15: path← p
16: min← max
17: end if
18: end for
19: mbr ← MAXBYTERATE(currentPath)
20: if mbr −min > mbr × α then
21: PUSH-FLOWS(path)
22: end if
23: SLEEP(β)
24: end while

full knowledge of its long duration. 2) The proposed algorithm
is designed to opportunistically exploit residual bandwidth
on multiple available paths. A dynamic flow scheduling that
manages all flows together requires more complex algorithms
with a global management that hinders the scalability of such
scheduler.

IV. SYSTEM ARCHITECTURE AND DESIGN

To enhance the use of Acinonyx in real cloud environments,
we propose and design a system prototype based on today’s
cloud architecture and technologies. Figure 5 illustrates the
high-level architecture of the proposed framework integrating
our dynamic flow scheduling technique.

Our implementation relies on the VM management of cloud
operating systems (platforms) such as OpenStack. Although
here we limit our discussion to OpenStack, Acinonyx can be
incorporated to any other similar platforms, since no modified
features of OpenStack have been used in this implementation.
OpenStack uses libvirt, a popular toolkit for managing virtual
machines and virtualization functionalities, as a default driver.
With a VM to be migrated, OpenStack calls libvirt APIs to
perform the migration. Following that, libvirt takes care of
live VM migration and provides updates to OpenStack. Once
transferring memory and disk content of the VM is done, the
virtual network infrastructure gets updated and all traffic is
redirected to the newly started VM. All networking elements
updated in this process are limited to software switches of
the virtual network infrastructure managed by OpenStack. It



is worth mentioning that OpenStack is in charge of the entire
VM migration process (see Section II-B) and Acinonyx only
perfoms the network flow scheduling for the VM migration
traffic including the entire migration data transferred between
the source and the destination hosts.

To use our proposed dynamic scheduling, it suffices that
Acinonyx is notified regarding the initiation of the VM mi-
gration and the source and destination hosts. This can be
done manually by the system Admin or OpenStack notifies
Acinonyx. From this point onwards, Acinonyx autonomously
monitors the network status and updates flow entries using the
northbound APIs of the SDN controller (e.g., OpenDayLight)
and iteratively reroutes VM migration traffic between libvirt
agents to the lowest cost path. Every time a route change
is essential, Acinonyx sends requests to the SDN controller
to push required flow entries matching the VM migration
traffic to network switches. To perform this, SDN controller
uses OpenFlow [16] protocol for pushing match-action flow
entries to manage the forwarding planes on the switches. Note
that Acinonyx does not interact with Neutron (the OpenStack
networking as a service component), since the flow scheduling
is only performed on the physical switches (Core, Aggregation,
Edge switches in Figure 5). There is no need to configure
sofware switches managed by OpenStack as each software
switch is essentially connected to a single physical edge
switch. Acinonyx monitor the status of the VM migration
process (running, completed) by checking it via OpenStack
APIs. Once the VM migration is completed, the Acinonyx
dynamic flow scheduling process is stopped. Each live VM
migration in the system is managed independently and requires
execution of a separate process of Acinonyx.

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed method,
we conduct experiments in our real-world testbed for SDN-
enabled cloud computing [11] and report measurements. We
have created our own experimental testbed since production
systems such as Amazon Web Services (AWS) or even private
clouds such Australian Nectar Cloud3 will not allow users to
access and modify their low-level infrastructure elements such
SDN controllers and physical switches needed for our exper-
iments. In the following, we briefly discuss our experimental
testbed, while more details can be found in [11]. Then, we
discuss our experimental setup including traffic generation and
default routing mechanism used for the experiments. Finally,
we present results of experiments. The goal of experiments
is to determine how our proposed method affects the VM
migration time. We also invistigate the impact of parameters
such as switching ratio (α) and sleeping interval (β) on the
performance of the algorithm with various background traffic.

3https://nectar.org.au/research-cloud/
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A. Experimental Testbed

To build our testbed, we use our existing machines to set
up a cluster of 8 heterogeneous servers with the specifications
shown in Table I. Our experimental network is built based on
the fat-tree reference topology which creates a multi-rooted
network with multiple paths between servers. However, for
a minimal 3-layer fat-tree topology [14], we require at least
sixteen server machines. Thus, we resort to a resembling
physical network topology shown in Figure 6. In order to
minimize the cost of network equipment, we use Raspberry
Pis (Pi 3 Model B), low-cost embedded computers, to host
Linux-based Open vSwitch (OVS) [17]. Each Raspberry Pi
with integrated OVS plays the role of a 4-port switch (4 USB
ports with USB-to-Ethernet adapters) with an external port for
control (the built-in Ethernet interface). The highest nominal
bandwidth can be achieved on each USB 2.0 port is 480Mbps.
However, here, the bandwidth is limited to 100Mbs since we
used TP-Link UE200 USB 2.0 to 100Mbps Ethernet adapters.

Openstack (Ocata release) is used to manage our cloud
platform. It allows for running and live migration of VMs
in the testbed. The live VM migration in OpenStack can
be performed through shared storage-based live migration
or block migration. Block migration requires copying disks
from the source to the destination host and takes more time
and puts more load on the network. We use block migration
in our experiments since VM disks are not shared between
source and destination hosts. The OpenStack setup in our



TABLE I: Specifications of machines in the testbed.

Machine CPU Cores Memory Storage
2 x IBM X3500 M4 Intel(R) Xeon(R) E5-2620 @ 2.00GHz 12 64GB (4 x 16GB DDR3 1333MHz) 2.9TB
4 x IBM X3200 M3 Intel(R) Xeon(R) X3460 @ 2.80GHz 4 16GB (4 x 4GB DDR3 1333MHz) 199GB
2 x Dell OptiPlex 990 Intel(R) Core(TM) i7-2600 @ 3.40GHz 4 8GB (2 x 4GB DDR3 1333MHz) 399GB

Compute-3 Compute-4Compute-1 Compute-2 Compute-7 Compute-8Compute-5 Compute-6

Internet-1 Internet-2

2 3

76

4

98

0 1

5

Fig. 6: The experimental network topology.

testbed uses KVM/QEMU4 hypervisors and libvirt APIs to
run and manage VMs on the host machines. Since libvirt
uses TCP port range of 49152-49215 as destination ports for
live migrations, we install layer 3 flow entries based on this
range and source/destination IP addresses to perform flow
scheduling. In practice, tagging/labeling, VLAN, or VXLAN
tunneling methods can also be used to differentiate live VM
migration traffic from other traffic in the network.

We used OpenDaylight (ODL)5, a popular open-source SDN
controller, as the SDN controller to handle our OpenFlow
capable switches connected through an Out-of-Band (OoB)
network. The SDN-controlled data network carries the live
VM migration flows and the traffic between communicating
VMs. ODL uses OpenFlow protocol to communicate with the
Pi switches to set forwarding rules through its southbound
API. Likewise, Acinonyx uses ODL northbound APIs to install
flow entries on the switches or query global state information
such as network topology, the number of packets and bytes
processed by switch ports or flows.

B. Traffic Generation and Routing

In order to evaluate our method, we need to generate random
and synthetic background traffic in our testbed. To achieve this,
we used Iperf36 tool. A script is written to continuously start
and stop Iperf clients and servers on randomly selected pair
of hosts and send synthetic TCP or UDP flows between them.
In our experiments, we refer to each traffic flow generated in
this way as a connection and label it as Conn-x (eg. Conn-1).

In the data network, there exists a default static route for
any given communicating pair of hosts. In the default static
routing flow entry setup, it is assured that for any given pair
of hosts that are connected to the same switch, different links

4Kernel-based Virtual Machine (KVM), https://www.linux-kvm.org/.
5ODL, https://www.opendaylight.org/.
6Iperf, https://iperf.fr.

TABLE II: Background traffic with Iperf tool in TCP mode
for the 1st experiment. BW stands for bandwidth in Mbps.

Conn-x Time Source Destination Length BW Path
Conn-1 0 Compute-5 Compute-4 60s 10 8-5-1-3-7
Conn-2 25 Internet-1 Compute-2 120s 30 0-2-6
Conn-3 40 Compute-4 Compute-5 120s 60 7-3-1-5-8
Conn-4 125 Compute-8 Compute-2 120s 40 9-4-0-2-6
Conn-5 180 Internet-1 Compute-6 30s 50 0-4-8
Conn-6 185 Compute-5 Compute-8 60s 20 8-5-9
Conn-7 200 Compute-2 Compute-8 90s 40 6-2-0-4-9

TABLE III: The migration time in seconds and the average
number of bits transmitted in megabits between Iperf agents
when Acinonyx or Static Routing is used.

Metric Static Routing Acinonyx
Migration Time (s) 287 256

Average Throughput (Mbs) 32.0 34.4

are used on the edge switch for sending traffic to upper layer
switches in the topology. Acinonyx pushes higher priority flow
entries to the switches for live VM migration traffic to override
the default path.

C. Experimental Results

We carried out four experiments evaluating (a) the improve-
ment in the total VM migration time and throughput, (b) the
impact of flow scheduling frequency (sleeping interval), (c) the
impact of switching ratio on the performance of the proposed
method, and (d) the performance of multiple migrations.

1) Migration Time and Throughput Improvement: In the
first experiment, we demonstrate that our proposed method
improves the total VM migration time compared to the static
routing mechanism. We generate a background traffic using
Iperf in TCP mode as shown in Table II. The “time”, “length”,
“bandwidth”, and “path” columns in the table represent the
time that connection starts, the duration that traffic remains
active, target bandwidth in Mbps, and the list of switches that
traffic flows through, respectively (see Figure 6 for the labels
of switches). We conduct a live VM migration in OpenStack to
move an idle m1.small7 VM with Ubuntu-16.04 image
from Compute-1 to Compute-7 (see Figure 6) which starts
at time time zero. The migration traffic can traverse through
either of the two available shortest paths with switches 6-2-
0-4-9 or 6-3-1-5-9. The byte rate for the links are measured
in a 2-second interval and α and β are set to 0.4 and 5s,
respectively. Each experiment is carried out three times and
the mean value is reported.

Table III shows the migration time in seconds and the av-
erage throughput among Ipref agents when we use Acinonyx

7OpenStack m1.small flavor: 1 VCPUs, 2GB RAM, 20GB Disks
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bar represents one standard error from the mean.

and static routing. As results indicate, Acinonyx can reduce the
migration time by 12% for the sample traffic shown in Table II.
This shows that the Acinonyx dynamic flow scheduling can
improve VM migration time by opportunistically rerouting the
VM migration flow on the path with the lowest congested link.

Acinonyx not only reduces the VM migration time but
also provides better load balancing and consequently allows
for a higher network throughput for other VM communica-
tions. Figure 7 shows the throughput between every Iperf
client/server connection in Mbps when Acinonyx and static
routing are used. Even though in cases of Conn-5 and Conn-7,
a marginally lower throughput could be achieved using Aci-
nonyx, the overall average throughput significantly increases
from 32.0 Mbps to 34.4 Mbps representing 7% improvement
as shown in Table III. In particular, the average throughput
for connection 3 is substantially increased when Acinonyx is
used (roughly 47% increase). The reason is that it shares the
same path with the VM migration traffic from Compute-1 to
Compute-7 in the static routing configuration.

2) Impact of the Sleeping Interval (β): In the second
experiment, we evaluate the impact of flow scheduling fre-
quency on the performance of the live VM migration. We
repeat experiment 1 and migrate the VM from Compute-1 to
Compute-7 while we vary the sleeping interval between 0 and
25 with 5-second steps. The background traffic and all other
settings are the same as in the previous experiment.

Figure 8 depicts the migration time and the number of
flow rescheduling when the sleeping interval varies. As the
figure shows the best average migration time of 4 minutes
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Fig. 9: The impact of Acinonyx switching ratio (α) on (a) the
migration time and (b) the number of route changes. Error bar
represents one standard error from the mean.

and 10 seconds can be attained when the sleeping interval is
set to 20 seconds. The total number of route changes, in this
case, is equal to 3.6 on average. Results show that the best
value for sleeping interval strongly depends on the background
traffic. More frequent route and quick route switching has an
adverse impact on the performance of TCP flows due to the
arrival order of packets going through different paths [18].
The main point is that the optimal sleeping interval for
Acinonyx depends on the type and the nature of background
traffic. In fact, a longer sleeping interval delays the required
flow scheduling, and a smaller sleeping interval makes our
method sensitive to short-lived flows. In practice, the impact of
sleeping interval is marginal as you can see in the experiment.
As long as the sleeping interval is short enough which allows
path switching during the migration process, the application
of Acinonyx is beneficial.

3) Impact of Switching Ratio (α): In the third experiment,
we evaluate the impact of switching ratio (α) on the perfor-
mance of the live VM migration. We migrate an m1.small
VM from Compute-8 to Compute-1 and generate background
traffic but this time in UDP mode. The reason we used a
different background traffic is to show that our method can
perform well under various background traffic. A total of 14
connections between random pairs of source and destination
are generated with uniform random numbers in the range of
(0, 250) for the start time of the connection, bitrates in range
(10, 50)Mb, and duration in the range of (0, 250) seconds. α
is varied from 0 to 1.2 to evaluate its impact on the migration
time and the number of route changes. The byte rate for the
links are measured in a 5-second interval, and the sleeping
interval β is set to 10s.

The results of the experiment are shown in Figure 9. In this
experiment, the VM migration took 11 minutes and 8 seconds
on average using the default static routing. Figure 9a shows
that the minimum migration time is achieved when the ratio is
set to 0.8. Correspondingly, the mean number of route changes
for different values of the ratio is shown in the Figure 9b. As
expected, the number of route changes decreases when a larger
ratio value is set. However, as can be seen in the figure, after
a certain point, increasing ratio leads to a higher migration
time. Our experimental results show that better results can
be achieved if the ratio is set appropriately. In practice, the
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Fig. 10: Box plots of migration time for two simultaneous migrations when Static and Acinonyx flow scheduling are used. ⊕
shows mean value.

optimal setting of switching ratio depends on the traffic and
characteristics of the network. The network administrator can
set the value based on the nature of traffic in the data center
and some preliminary experimentation.

4) Multiple Migrations: Acinonyx is designed to work in a
totally distributed fashion. A separate process of the algorithm
is executed to perform dynamic scheduling for each VM
migration. To evaluate the performance of the algorithm in
case of multiple VM migrations that happen regularly in large
cloud data centers, we conduct two experiments here in which
a pair of VM migrations coincides. We perform live migration
of a given pair of m1.small VMs, one from Compute-2 to
Compute-7 and the other from Compute-3 to Compute-8.

In the first experiment, we do not generate background
traffic. As shown in Figure 10a, Acinonyx on average reduces
the migration time by 13% and 24% for the migrations
from Compute-2 to Compute-7 and Compute-3 to Compute-8,
respectively. Since in this experiment, migration flows share
multiple links along the path based on the default static rout-
ing, Acinonyx immediately detects the condition and schedules
flows on different routes to maximize throughput. There is
a small chance that Acinonyx processes monitoring shortest
paths to find a route with the highest spare capacity fall into
the trap of redirecting their flow within a short time to the same
path back and forth. This issue can recurrently happen if the
scheduling interval of processes perfectly matches. A simple
solution to avoid this condition is to set different sleeping
intervals for dynamic flow scheduling processes.

In the second experiment, we repeat the same experiment
when there is background traffic with a mixture of UDP and
TCP connections. A total of 11 randomly generated UDP
and TCP connections between different pairs of source and
destination is used in this scenario. Figure 10b depicts box
plots of migration time for every VM migrations. Results show
that, similar to the previous experiment, Acinonyx reduces the
migration time for both VM migrations. In comparison to no
background traffic, there is a slight increase in migration time
for all cases due to the existing network traffic.

VI. RELATED WORK

Virtualization technology has been the cornerstone of re-
source management and optimization in cloud data centers for

the last decade. Many research proposals have been expressed
on the basis of live VM migration to conduct maintenance,
load balancing, energy saving, and disaster recovery. Accord-
ingly, there is a large body of literature focused on improving
the efficiency of live migration mechanism [19]. However,
little attention has been given to the impact of live VM
migration on the data center network or how network resources
can efficiently be utilized for live VM migration.

Bari et al. [5] propose a method for finding an efficient
migration plan. They try to find a sequence of migrations
to move a group of VMs to their final destinations while
migration time is minimized. In their method, they monitor
residual bandwidth available on the links between source and
destination after performing each step in the sequence. How-
ever, their method does not consider scheduling new routes
for the VM migration traffic. Similarly, Ghorbani et al. [3]
propose an algorithm to generate an ordered sequence of VMs
to migrate and a set of forwarding state changes. While we
focus on the dynamic scheduling of migration flows on the
lowest cost path, they concentrate on imposing bandwidth
guarantees on the links in a way that no link capacity can be
violated at any point during the migration. The VM migration
planning problem is also tackled by Li et al. [4]. They address
the workload-aware migration problem in which they propose
methods for selection of candidate virtual machines, destina-
tion hosts, and sequence for migration. Similar to [3], [5],
they do not consider updating network switches for efficient
utilization of available network paths. All these studies focus
on the order of migration for a gorup of VMs while taking
into account network cost. However, in our work, we adapt
the network and forwarding states of switches to efficiently
use available resources and residual bandwidth of the links.

SDN decouples the network control and data forwarding
planes and enables the optimization and shaping of the net-
work traffic in a programmable and centrally manageable
way. This provides great opportunities for traffic engineering
mechanisms specialized to the requirements of resource man-
agement in data centers, for example, dynamic flow scheduling
for the VM management. Al-Fares et al. [6] propose a generic
dynamic flow scheduling system that tries to compute non-
conflicting paths for flows and instructing switches to reroute



traffic accordingly. The complexity of their method is signifi-
cantly high as they try to schedule all running flows in the
data center. This reduces the applicability of their method
in real world data centers. However, we only focus on the
dynamic flow scheduling specially designed for the live VM
migration traffic that can be quickly applied in practice. There
are many other efforts in the literature trying to exploit SDN
features for efficient and reliable VM management. Cziva et
al. [7] present an orchestration framework to exploit temporal
network information to live migrate VMs and minimize the
network-wide communications. Wang et al. [20] propose a
VM placement mechanism to reduce the number of hops
between communicating VMs, save energy, and balance the
network load. Remedy [9] relies on SDN to monitor the state
of network and estimate the cost of VM migration. Their
technique detects congested links in the network and migrates
a set of VMs to remove congestion on those links. Contrary
to their method, we prevent congestion by rerouting migration
traffic to the links with lower traffic.

VII. CONCLUSIONS AND FUTURE WORK

Live VM migration is frequently used in cloud data centers
for the efficient management of resources. However, Live mi-
gration itself creates large network traffic in cloud data centers
affecting the network performance. In this paper, we proposed
a dynamic flow scheduling technique in the pursuit of efficient
use of available bandwidth for live VM migration in SDN-
enabled cloud data centers with multiple paths between the
given pair of servers. We showed that our technique results in
more efficient live VM migration reducing the migration time
up to 10% compared to existing static routing solutions. We
also demonstrated the feasibility of our proposed technique
by building a working prototype over a practical testbed using
OpenStack as a cloud operating system and OpenDaylight as
an SDN controller.

In the future, we plan to explore the impact Acynonix on
the flows of applications running in the migrating VM. We
also plan to extend our approach for efficient flow schedul-
ing of combined multiple migrations. We will also explore
deployment of applications with different workloads (e.g.,
stream processing, data analytics, web applications, scientific
workflows) exhibiting various network traffic characteristics
and study the performance of the proposed approach.
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