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3.1 Introduction

Data Center (DC) construction has increased 47% in 2017, resulting in consumption
of 3% of the world’s energy [1] – equivalent to the energy consumption by the
airline industry [2]. Research on DCs of the United States has revealed that in 2014,
the sum of energy usage by all DCs in the United States was 70 billion kWh –
accounting for 1.8% of the country’s total energy usage [3]. More importantly, the
trend of energy consumption of DCs highlights that energy consumption is rising
every year and is expected to increase by 4% from 2014 to 2020. The energy
consumption by the DCs of the US data centers is estimated to reach up to 73
billion kWh in 2020. Subsequently, countries across the world have come forward to
address the challenge of increasing energy consumption by DC [4]. Joint Research
Centre (JRC) of European Commission has formed the Code of Conduct for energy
efficiency in CDC with an aim to inform and encourage DC owners and operators
to effectively level off the energy consumption [5]. Such recent literature highlights
great significance of energy consumption minimization of CDC and its relevance to
present day.

In 2018, JRC has proposed a detailed guideline in relation to the best practices to
limit the energy consumption of DCs [6]. One of the practices strongly advised by
JRC is called VM Consolidation (VMC). The essence of VMC is to consolidate
VMs in minimum possible number of PMs, so that the number of unused PMs
having no VMs can be maximized and turn them into lower energy consumption
state, such as sleep state or turned off state. Therefore, energy consumption can
be reduced regardless of the types of PMs and regardless of the types of energy
sources used to power those PMs. The data representing VMRT (i.e., the lifespan
of a VM) of real VMs resided in Nectar Cloud [7] highlighted through Figs. 3.1,
3.2, and 3.3 exhibit that VMRT varies from one VM to another, whereas existing
DVMC algorithms, such as [8–23], either mentioned that homogeneous VMRT has
been used for experiments or have not articulated any assumption made on VMRT.
Through experimenting with homogenous VMRT (i.e., all VMs are assigned with
tasks of equal length in terms of task finishing time) using CloudSim [24, 25] as used
by respective researchers, we have obtained similar results as presented in respective
literature. However, in real scenario, CDC consists of VMs with heterogeneous
VMRT. In other words, VMs are assigned with tasks of unequal lengths in terms
of task finishing time.

It is critical to note that VMRT has strong impact on CDC energy consump-
tion. Larger VMRT increases CDC energy consumption, since the total resource
utilization by a VM grows as the lifespan of that VM grows. Hence, without
considering heterogeneous VMRT, the overall estimation about the impact of any
DVMC algorithm on CDC energy consumption and subsequent QoS would be
less accurate. In contrast with traditional DVMC algorithms which only consider
homogeneous VMRT, RTDVMC takes the heterogeneous VMRT into consideration
[26]. Nevertheless, several limitations exist with RTDVMC as elucidated in the
following:
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Fig. 3.1 Histogram of logarithm of release time (second) of VMs created in Nectar Cloud in
November 2013
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Fig. 3.2 Histogram of logarithm of release time (second) of VMs created in Nectar Cloud in
December 2013
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Fig. 3.3 Histogram of logarithm of release time (second) of VMs created in Nectar Cloud in
January 2014

• To the best of our level of understanding of such existing DVMC algorithms as
[8–23, 27], including RTDVMC [26] are developed based on the fundamental
underlying assumption that optimal energy efficiency is achievable at maximum
PM resource utilization. The basis of such claim against these existing DVMC
algorithms is that these algorithms use legacy PMs, such as HP ProLiant ML110
G4 [28] and HP ProLiant ML110 G5 [29] for performance validation. From Fig.
3.4, we can see that for those legacy PMs the energy efficiency (i.e., Ratio of
Power to Throughput) is as high as its incurred utilization. In stark contrast,
for modern highly energy proportional PMs, such as Dell PowerEdgeR940
(Intel Xeon Platinum 8180, 112 cores → 25,000 MHz, 384 GB) [30], HP
ProLiant DL560 Gen10 (Intel Xeon Platinum 8180, 112 cores → 25,000 MHz,
384 GB) [31], and HP ProLiant ML350 Gen10 (Intel Xeon Platinum 8180, 28
cores → 25,000 MHz, 192 GB) [32], energy efficiency rather drops beyond
70% utilization intervals, as delineated in Fig. 3.4. The underlying reason is that,
while the throughput increases uniformly with the increase of load or utilization
(Fig. 3.5), the power consumption of modern PMs beyond 70% utilization level
rises such drastically (Fig. 3.6) that it exceeds the respective linear increase
of throughput. Consequently, the ratio of throughput to power consumption,
translated as energy efficiency, drops [33]. As such, several researchers [34, 35]
argue that consolidation towards maximum increase of PM resource utilization
does not feature the optimal minimization of CDC energy consumption with new
generation of highly energy proportional PMs. Based on our literature study [8–
23, 27], no DVMC algorithm including RTDVMC is found to address this issue.
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Fig. 3.4 Change of energy efficiency with varying load level for various PMs

Fig. 3.5 Change of throughput with varying load level for various PMs
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Fig. 3.6 Change of power consumption with varying load level for various PMs

• Preventing Quality of Service (QoS) degradation in CDC due to excessive VM
migration is as much important as it is to minimize CDC energy consumption.
However, higher energy consumption minimization by RTDVMC comes at a cost
of excessive increase of VM migration.

• While, performance of RTDVMC has strong correlation with the value of VMRT,
instead of VMRT values of real Cloud workload, only simulated VMRT values
have been used. The complex behavior and interaction of VMs have impact on
VMRT values, which cannot be reflected in simulated VMRT values.

• RTDVMC consolidates VMs primarily on the value of VMRT with an assumption
that VMRT would be precisely known in advance, whereas, in reality VMRT
would not be strictly accurate in many scenarios.

With respect to above-mentioned challenges, our contributions in this paper are
briefly outlined in the following.

• A novel heuristic DVMC algorithm, namely, Stochastic Release Time Based
DVMC (SRTDVMC) algorithm, has been proposed, which is robust to uphold
optimal performance in terms of minimizing energy consumption regardless of
the potential change in underlying PMs’ energy efficiency characteristics.

• One crucial goal of experiment is to predict behavior of an algorithm in the
real world [36]. For performance evaluation, VMRT values extracted from real
Cloud, namely, Nectar Cloud, has been used, which assists to obtain a stronger
performance prediction under real Cloud scenarios.



3 Multi-objective Dynamic Virtual Machine Consolidation Algorithm for. . . 75

• While minimization of VM migration reduces network overhead and subse-
quent energy consumption by networking equipment, it is intrinsic in VM
consolidation. SRTDVMC is multi-objective, which concomitantly addresses
two confronting goals: minimizing energy consumption and minimizing VM
migration.

• SRTDVMC eliminates the restriction of strictly accurate VMRT through the
conversion of VMRT into respective Stochastic VMRT (SVMRT).

The organization of the rest of the paper is as follows. In Sect. 3.2, related
literature is highlighted. Stochastic Release Time and various notations used in the
algorithm are elucidated in Sect. 3.3. Next, in Sect. 3.4, we have brought forth the
proposed algorithm, followed by elucidation of core components and characteristics
of SRTDVMC. In Sects. 3.5 and 3.6, the experimental setup and performance
evaluation of the proposed algorithm would be articulated. In Sect. 3.7, we have
elucidated our critical observations extracted from empirical evaluations. Finally,
in Sect. 3.8, we have summarized our research with future research directions and
motivation.

3.2 Related Work

In depth review and classification of VMC algorithms have been broadly discussed
in [37]. VMC is a NP-hard problem and can be broadly classified into two
groups: Static VM Consolidation (SVMC) [38–40] and DVMC. SVMC algorithm
provides the solution of energy-efficient initial VM placement [38]. However,
as time progresses, the initial VM placement solution loses the efficiency with
the change in resource demand and the resource availability. In case of increase
in resource demand, VM(s) might be required to be migrated out into other
suitable PM(s), while the decrease in resource demand widens up the room to
host additional VM(s) and, hence, presents the opportunity to minimize the CDC
energy consumption further by consolidating more VMs in in lesser number of PMs
than before. Contrast to SVMC, dynamic nature of DVMC algorithm contributes in
further energy consumption minimization, as it captures the opportunity arisen from
varying resource demand and resource availability and iteratively consolidate VMs
whenever consolidation opportunity arises.

DVMC algorithms can be broadly classified into two groups: Centralized DVMC
[41–43] and Distributed DVMC [27, 44]. Major DVMC algorithms found in the
literature are centralized DVMC and only a few Distributed DVMC [27, 44] has
been proposed. In [27], authors have presented their distributed DVMC algorithm
for a P2P network oriented CDC. According to [27, 44], the growing number of
PMs becomes a bottleneck for CDVMC at the time of selecting a destination for
any migrating VM, since the asymptotic time complexity of the centralized DVMC
algorithm is proportional to the number of PMs in the CDC, whereas the number of
potential PMs to choose from for a migrating VM is relatively small in distributed
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DVMC. Thus, distributed DVMC is more scalable for CDC with huge number of
PMs. However, distributed DVMC has message passing overhead, as every PM
must update its present resource availability to all of its neighbors. Message passing
increases network overhead, decreases network throughput, and increases network-
related energy consumption. Both centralized and distributed DVMC algorithms
can be classified into two groups: Static Threshold-Based DVMC algorithm [8, 11,
26] and Adaptive Threshold-Based DVMC algorithm [12, 23]. The later increases
VM migration. Our objective is to minimize both energy consumption and VM
migration. Hence, in this paper, we have opted to Static Threshold-based DVMC
approach.

Elucidated earlier in Sect. 3.1, performance of existing VMC algorithms lacks
in terms of minimizing CDC energy consumption with the rise of highly energy
proportional PMs. PEAS [39] and EPACT [45] as SVMC algorithms address
this issue. However, on account of being an SVMC algorithm, those algorithms
do not continue to dynamically consolidate VMs whenever opportunity arises,
and hence, the solution would lose optimality over time. Based on our literature
study [8–23, 27], no existing DVMC algorithm is designed considering energy-
efficiency characteristics of highly energy proportional state-of-the-art PMs in their
bedrocks. As such, we have brought forth SRTDVMC which takes the dynamics of
modern PMs’ energy-efficiency characteristics with respect to varying load level
into account and limits both VM migration and CDC energy consumption.

In our proposed SRTDVMC algorithm, stochastic release time is one of the key
distinctive features used in VMC decision process. To ensure easy understanding of
our proposed SRTDVMC algorithm, we have first explained the key terms used in
the proposed algorithm in following section.

3.3 Modelling Stochastic VM Release Time, Notations Used
and Important Concepts

3.3.1 Modelling Stochastic VM Release Time, PM Release
Time and Notations Used

Workload finishing time or lifetime of a VM is referred to as VMRT. Prior receiving
any service, negotiation of service related conditions including service expiry date
followed by an acceptance of the contract takes place between Cloud Service
Providers (CSPs) and CSUs, interpreted as Service Level Agreement (SLA). For
many VMs, VMRT is equal to the contract of service period between the respective
CSU (i.e., VM owner) and the CSP as agreed during SLA. Before the contract
is expired, both CSUs and CSPs might agree/disagree to renew, extend or early
termination of the contract and respective VMRT would be updated accordingly.
Some web applications hosted in CDC remains unremoved for a very long period.
Estimated VMRT of such VMs would be large values referring to the time when the
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respective contract of service between CSU and CSP would expire as agreed prior
the service during SLA. If renewal or early termination of contract of service takes
place, VMRT would be readjusted accordingly.

For some applications, VMRT corresponds to QoS and potential resource
demand. Resource demand may change with the variation in number of users,
causing creation of additional VMs and later deletion of such VMs. At the time
of SLA, a SAAS provider/PAAS user must consider the potential number of
application users and mention it to PAAS provider so that by taking the potential
number of end users and corresponding resource demand into account a certain
standard of QoS can be uphold. Pattern of changing resource demand over time
derived from past data can also be utilized to recognize the change of resource
demand in future [46]. Considering the change in resource demand over time and
demanded QoS, PAAS provider/IAAS user can estimate resource/VM release time,
which would be proffered to IAAS provider.

In many cases, the prior estimated VMRT might not turn out as strictly accurate
in future. Hence, to reflect the reality further closely, we propose to embody a
stochastic version of VMRT, referred to as Stochastic VM Release Time (SVMRT)
in SRTDVMC. SVMRT can be calculated from (3.1). In Table 3.1, we have
articulated the meaning of the notations used in this paper.

SVj
= (1 + α · Y ) · TVj

(3.1)

Apart from VMRT, two more crucial terms noteworthy explaining is PM Release
Time (PMRT) and Stochastic PMRT (SPMRT). PMRT refers to the time when a PM
can be either shut down or put into a sleep state that would consume no energy, or
lower amount of energy compared to its active state. A PM can be shut down or put
into sleep state, if it has either no VM hosted on it, or none of its hosted VMs is
in the active state. Since SVMRT refers to the maximum time until which the VM
would be in the active state, hence SPMRT of a PM Pi denoted by SPi

refers to the
maximum SVMRT value among all the VMRT values of VMs that are hosted in that
PM, as articulated in (3.2).

SPi
= max

(
SV i

)
(3.2)

3.3.2 Modelling Resource Utilization and Constraints

DVMC algorithm migrates VMs from one PM to another PM, so that VMs would
be placed in minimum number of PMs and thus increase resource utilization and
energy efficiency. VMs hosted in a PM utilize the resources of that PM. Therefore,
resource utilization of a PM corresponds to the total resource demand by all the
VMs hosted in that PM. Let Uk

i denote utilization of Resource type, Rk of PM, Pi.
Hence, the equation for calculating Uk

i [47] is as follows:
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Uk
i =

∑|V |
j=1

Dk
j · xi,j (3.3)

where Dk
j denotes Demand of Resource type, Rk by VM, Vj, xi, j denotes the element

of placement matrix, x and value of xi, j is determined as follows:

xi,j =
{

1, if Vj is placed in Pi

0, otherwise
(3.4)

Since, Resource Capacity of a PM, Pi is fixed and it cannot provide additional
resources to its hosted VMs than its capacity, Therefore, a VM, Vj can only be
placed in a PM, Pi if the amount of available resources in Pi is adequate to meet the
resource demand of Vj. Hence, Vj can only be placed in Pi if the following equation
is satisfied [47]:

Ck
i − Uk

i ≥ Dk
j (3.5)

In other words, a PM, Pi cannot host a VM, Vj if the available resource of Pi is
lesser than the resource demand of Vj. We denote such constraint presented in (3.5)
as Resource Constraint (RC).

At times, workload of VMs could rise very high resulting in steep resource
utilization of the hosting PM. We denote such PM with heavy resource utilization as
Over-utilized PM (O-UPM) and use a threshold, referred to as Maximum Threshold,
θmax to distinguish whether a PM is Over-utilized or not. Let us denote OP (3.6) as
a set of O-UPMs.

OP =
{
Pi | Uk

i ≥ θmax for any Rk ∈ R and 1 ≤ i ≤ |P |
}

(3.6)

If VM(s) were not migrated out of an O-UPM, then SLA violation would unfold.
In order to avoid causing SLA violation, during destination PM selection for a
migrating VM, it is essential to ensure that hosting the migrating VM would not
turn the destination into an O-UPM, which we have modelled through the following
equation:

Dk
j + Uk

i < θmax (3.7)

We refer such constraint presented in (3.7) as Maximum Utilization Threshold
Constraint (MUTC).
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3.3.3 Modelling Energy Consumption

Most of the existing VM consolidation algorithms have mentioned that energy
consumption of a PM is primarily dominated by its CPU utilization [8, 47]. Hence,
our energy consumption model is a function of CPU utilization (3.8), where, Ei

denotes the energy consumption by PM, Pi.

Ei = f
(
UCPU

i

)
(3.8)

Based on (3.8), we can determine the total energy consumption of the CDC
through (3.9), where ECDC denotes the total energy consumption of the CDC.

ECDC =
|P |∑

i=1

Ei (3.9)

In order to relate closely to the real energy consumption by PMs, we have opted
to draw energy consumption benchmark results of three different types of PMs
presented in Table 3.2.

3.3.4 Objective Functions

DVMC algorithms aim to minimize CDC energy consumption through migrating
VM(s) out of lower utilized PMs and placing those VM(s) in relatively higher
utilized PM(s). As such, the first objective function, f1 of SRTDVMC has been
characterized through (3.10).

f1 = min
(
ECDC

)
(3.10)

One downfall of DVMC is that energy consumption minimization through VM
consolidation cannot be achieved without VM migration, which itself deteriorates

Table 3.2 Energy consumption values of contemporary servers at different load level

Energy consumption (kW) at different percentage of load level
Sleep 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Dell Power

Edge R940 106 245 292 336 383 437 502 583 694 820 915
HP ProLiant

DL560 Gen10 82.9 228 277 324 373 431 510 598 716 851 944
HP ProLiant

ML350 Gen10 58.1 125 149 172 196 224 258 298 347 415 459
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QoS as well as raises network overhead leading towards increased SLA violation
and increased energy consumption by networking equipment of CDC. Therefore,
restricting VM migration in CDC is no less important than lowering CDC energy
consumption. As such, (3.11) characterizes the second objective function, f2 of
SRTDVMC.

f2 = min
(
ψ

)
(3.11)

It is worthwhile to note that f1 and f2 are two confronting objective functions.
Value of f1 can only be minimized through migrating VM(s) from lower utilized
PM(s) to relatively higher utilized PMs, which increases ψ , whereas, increased ψ

negatively affects f2. Hence, it is more challenging to design a DVMC algorithm,
which can show better performance in terms of both f1 and f2. In the following sec-
tion, our proposed multi-objective heuristic DVMC algorithm, namely, SRTDVMC
has been presented, which aims to optimize f1 and f2.

3.4 Proposed Solution

At the outset of the paper, in Sect. 3.1, we have elucidated the limitations of
RTDVMC. To address those limitations, we have proposed our SRTDVMC algorithm
presented in Algorithm 3.1. The meaning of notations used in SRTDVMC algorithm
has been presented earlier in Table 3.1.

Algorithm 3.1: The SRTDVMC algorithm

Input:P, V , R, SP
Output: VM Placement
The first phase: O-UPMs
1: for each Pi in P do
2: if (3.6) is satisfied then
3: OP ← {Pi ∪ OP}
4: end if
5: end for // end of for loop from Line 1 to 5
6: for each Po in OP do
7: migratingVMs ← Invoke the VSO algorithm with Po
8: vmsToMigrate ← {migratingVMs ∪ vmsToMigrate}
9: end for // end of for loop from Line 6 to 9
10: Sort vmsToMigrate in the order of decreasing SVMRT
11: NOP ← {P - OP - SP}
12: for each Vl in sorted vmsToMigrate do
13: Pd ← Invoke the DPSVO algorithm with Vl and NOP
14: destinationPMs ← {Pd ∪ destinationPMs}
15: if Pd is in SP then
16: SP ← {SP - Pd}
17: for each Rk in R do
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18: Ud
k ← Ud

k + Dq
k

19: Cd
k ← Cd

k - Dq
k

20: end for // end of for loop from Line 17 to 20
21: NOP ← {Pd ∪ NOP}
22: end if // end of if at Line 15
23: end for // end of for loop from Line 12 to 23

The second phase: U-UPMs
24: candidateSources ← {P - OP - SP - destinationPMs}
25: candidateDestinations ← {P - OP - SP}
26: Sort candidateSources in the order of increasing SPMRT
27: for each Pc in sorted candidateSources do
28: candidateDestinations ← {candidateDestinations - Pc}
29: destinations ← Invoke the DPSVU algorithm with Pc

and candidateDestinations
30: candidateSources ← {candidateSources - destinations}
31: end for // end of for loop from Line 27 to 31

3.4.1 Two Phases of SRTDVMC Algorithm

In this section, we have explained our proposed SRTDVMC algorithm. Resource
demand of VMs may change over time, resulting variation of resource utilization
in host PMs. When resource demand of hosted VM(s) grow higher over time, the
hosting PM might fall short of adequate resources to prevent potential performance
degradation, translated as SLA violation. Again, hosted VMs resource demand may
decline over time, bringing forth a gap in the hosting PM to accommodate additional
VMs from other low utilized PMs, leading towards potential opportunity to reduce
the number of active PMs and subsequent reduction of CDC energy consumption.
Based on this principal, SRTDVMC algorithm works in two phases – the first phase
and the second phase.

In the first phase, VMs from O-UPMs are migrated out to control SLA violations
(Line 1–23 of Algorithm 3.1) and in the second phase, VMs from U-UPMs
are migrated out to consolidate in lesser number of active PMs (Line 24–31 of
Algorithm 3.1). In the following sections, we have comprehensibly discussed each
of these phases and its components.

3.4.1.1 The First Phase O-UPMs

As expressed in (3.6), for any resource type (i.e., CPU, RAM and Bandwidth), if
a PM’s resource utilization is found as equal or greater than θmax, then the PM is
denoted as O-UPM (Line 1–5 of Algorithm 3.1). Next, VM(s) are selected from
all O-UPMs to migrate out into new destination PMs (Line 7 of Algorithm 3.1).
The VSO algorithm (Algorithm 3.2) proffers to the VM(s), which are attempted to
migrate out from an O-UPM. In the following section, we have explained the VSO
algorithm.
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• VM Selection from O-UPMs

VMs of an O-UPM are first sorted in decreasing order of VMRT (Line 1 of
Algorithm 3.2). The first VM from the sorted list of VMs is first selected and
checked whether the respective PM’s utilization drops lower than θmax. If yes, then
the respective PM is no more O-UPM and VM selection process stops (Line 2–3 of
Algorithm 3.2). Otherwise, the second VM from the sorted list of VMs is selected
and then the third VM and so forth, until the PM’s utilization is decreased below
θmax (Line 3–10 of Algorithm 3.2). The rationale of selecting VM(s) with largest
VMRT is to minimize the active duration of source O-UPM, which might aid in
minimization of energy consumption.

Algorithm 3.2: The VM Selection from O-UPM (VSO) Algorithm

Input: The O-UPM, Po.
Output: List of VMs to be migrated out from the given O-UPM
1: Sort Vo, the set of VMs of Po in order of decreasing VMRT
2: q ← 1
3: while q ≤ |Vo| and θMAX < Uo

k for any Rk in R do
4: migratingVMs ← {Vq

o ∪ migratingVMs}
5: for each Rk in R do
6: Uo

k ← Uo
k - Dq

k

7: Co
k ← Co

k + Dq
k

8: end for
9: q ← q + 1
10: end while
11: return migratingVMs

• Destination PM Selection for Migrating VMs from O-UPMs

SRTDVMC algorithm develops a set, denoted as vmsToMigrate, comprised of
all migrating VMs from O-UPMs (Line 6–9 of Algorithm 3.1), as these VMs of
vmsToMigrate are sorted in decreasing order of VMRT (Line 10 of Algorithm 3.1).
The migrating VMs are attempted to host in PMs, which are neither O-UPMs, nor
in sleep state or turned off state. Such set of PMs, which are not O-UPMs and
not in either turned off or sleep state is referred to as NOP (Line 11 of Algorithm
3.1). SRTDVMC algorithm then keeps invoking DPSVO algorithm, presented as
Algorithm 3.3 to determine the destination PM for each of the migrating VMs of
vmsToMigrate starting from the largest VM to the smallest VM in terms of VMRT
(Line 12–23 of Algorithm 3.1).

Algorithm 3.3: The Destination PM Selection for VM of O-UPM (DPSVO)
Algorithm

Input: The VM Vj to be migrated out from an O-UPM
Input:NOP
Output: The new destination PM for the given migrating VM
1: Sort NOP in the order of increasing SPMRT
2: for each Px in sorted NOP do
3: suitable ← Invoke the PST algorithm with Px and Vj
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4: if suitable is true then
5: returnPx
6: end if
7: end for
8: return most energy-efficient Ps, which satisfies (3.5) and (3.7)

Algorithm 3.4: The PM Suitability Test (PST) Algorithm

Input:PM, VM
Output: A decision whether the given PM can host the given VM

1: if RC (3.5) and MUTC (3.7) are satisfied for all Rk in R then
2: return true
3: end if
4: return false

In order to determine a PM from NOP as destination host for a migrating VM
of vmsToMigrate, the DPSVO algorithm first sorts the PMs of NOP in increasing
order of SPMRT (Line 1 of Algorithm 3.3). The smallest PM in terms of SPMRT
from the sorted NOP is first checked whether it is suitable to accommodate the
migrating VM or not (Line 2 of Algorithm 3.3). The PST algorithm presented in
Algorithm 3.4 is invoked to check the suitability of a PM as a potential destination
PM (Line 3 of Algorithm 3.3). A PM is considered suitable, if RC (3.5) and MUTC
(3.7) constraints are not violated (Line 1–4 of Algorithm 3.4). If that PM is found
as suitable as per PST algorithm, then it is selected as the new destination PM
for the migrating VM and the destination PM selection process ends (Line 4–6 of
Algorithm 3.3). In case the PM is found as unsuitable, suitability of the second
smallest PM in terms of SPMRT from the sorted NOP is checked and then the third
smallest PM and so forth until a suitable PM is found (Line 2–7 of Algorithm 3.3).
If no PM from NOP can accommodate that particular migrating VM, then the most
energy-efficient and suitable PM from the set of PMs, which are in either sleep or
turned-off state, referred to as SP is awoke and selected as destination PM (Line 8 of
Algorithm 3.3). If the destination PM is selected from SP, then that PM is removed
from the set SP, since it is no more in sleep or turned-off state and its utilization
and capacity values across all resource types are adjusted (Line 15–20 of Algorithm
3.1). Furthermore, the PM is added in the set NOP, so that it can be considered
as a potential destination PM for following migrating VMs of vmsToMigrate (Line
21–22 of Algorithm 3.1).

3.4.1.2 The Second Phase U-UPMs

Under-Utilized PMs (U-UPMs) refers to the set of those PMs, which had not been
determined as O-UPMs in the first phase of SRTDVMC and which do not belong to
SP. After determining the destination PMs for VMs of O-UPMs, the second phase
of SRTDVMC is commenced when VMs from U-UPMs are migrated out, followed
by strategic destination PM selection for those migrating VMs with an aim to lower
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the number of active PMs so that CDC energy consumption can be minimized (Line
24–31 of Algorithm 3.1).

• Source PM Selection from O-UPMs

In the second phase, SRTDVMC first rounds up a set of U-UPMs, namely,
candidateSources – the set representing potential source U-UPM(s) from which
VM(s) would be attempted to migrate out. The set of PMs, which were identified
as O-UPMs in the first phase, referred to as OP along with the set of PMs, which
hosted migrating VMs of O-UPMs are excluded from candidateSources to avoid
repeated handling of PMs from OP and to inhibit re-migration of those VMs, which
had been migrated out once in the first phase (Line 24 of Algorithm 3.1). The PMs
of candidateSources are then sorted in the increasing order of SPMRT (Line 26 of
Algorithm 3.1). All PMs of sorted candidateSources starting from the smallest PM
to the largest PM in terms of SPMRT is sequentially selected as source U-UPM.
However, the set of U-UPMs denoted by destinations, which are determined as the
new destination PM(s) for migrating VM(s) from a source U-UPM is excluded from
candidateSources and hence, those new destination U-UPMs cannot become source
U-UPM, which prevents repeated migration of same VMs (Line 30 of Algorithm
3.1).

• Migrating VM and Destination PM Selection

SRTDVMC algorithm invokes the DPSVU algorithm (Algorithm 3.5) to select
migrating VMs from U-UPMs and corresponding new destination PMs. Once a
U-UPM from sorted candidateSources is selected as source U-UPM, the hosted
VMs in that source U-UPM is sorted in decreasing order of VMRT (Line 1 of
Algorithm 3.5). The VMs starting from the largest to the smallest in terms of VMRT
are attempted to migrate out (Line 2 of Algorithm 3.5). The reason of selecting VMs
in descending order of VMRT is that migrating out the largest VM can reduce the
SPMRT of the source PM leading towards energy consumption minimization. If for
any VM, a suitable new destination U-UPM cannot be found, the migrating VM(s)
selection from a source U-UPM terminates (Line 18–20 inside of Line 2–21 from
Algorithm 3.5). In the following, we have discussed the process of determining the
new destination PM for such migrating VM.

Algorithm 3.5: The Destination PMs Selection for VMs of U-UPMs (DPSVU)
Algorithm

Input: An U-UPM, Pc from the set of candidateSources
Input:candidateDestinations
Output: List of new destination PMs to host migrating VMs
1: Sort Vc, the set of VMs of Pc in order of decreasing VMRT
2: for each Vn

c in sorted Vc do
3: Pd ← null
4: Sort candidateDestinations in order of increasing SPMRT
5: for each Pm in sorted candidateDestinations do
6: suitable ← Invoke the PST algorithm with Pm and Vn

c

7: if suitable is true
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8: energyDrop ← Energy drop in Pc without Vn
c

9: energyRise ← Energy rise of Pm for hosting Vn
c

10: netEnergyGain ← EnergyDrop - EnergyRise
11: if NetEnergyGain > 0
12: Pd ← Pm
13: hostList ← {Pd ∪ hostList}
14: break loop
15: end if
16: end if
17: end for
18: if Pd is null then
19: break loop
20: end if
21: end for
22: return hostList

In order to select the destination PM for a migrating VM of U-UPM, SRT-
DVMC algorithm first creates a set of potential destination PMs, referred to as
candidateDestinations. The PMs of SP, OP and the source U-UPMs hosting the
migrating VMs are excluded from candidateDestinations, since a source PM
cannot be the new destination PM of its own VMs and to avoid increasing the
likelihood of turning the PMs from OP into O-UPMs again (Line 25, 27 and
28 of Algorithm 3.1). The DPSVU algorithm (Algorithm 3.5) is then invoked
to select the destination PM from candidateDestinations (Line 29 of Algorithm
3.1). The PMs of candidateDestinations are first sorted in increasing order of
SPMRT (Line 4 of Algorithm 3.5) and then the suitability of these PMs from sorted
candidateDestinations are sequentially checked starting from the smallest to the
largest PM in terms of SPMRT (Line 5–6 of Algorithm 3.5). If a PM is found as
suitable satisfying both RC (3.5) and MUTC (3.7) constraints as per PST Algorithm
(Algorithm 3.4), then net energy gain for the potential VM migration is estimated
from the difference between reduced energy consumption of source U-UPM and
increased energy consumption of new destination U-UPM. If net energy gain is
found as positive, then that PM is selected as the new destination PM (Line 7–17
of Algorithm 3.5). In the following section, we have discussed the characteristics of
SRTDVMC algorithm.

3.4.2 Characteristics of Proposed Algorithm

SRTDVMC attempts to fit the largest VM in terms of VMRT from the smallest PM
in terms of SPMRT into the next smallest possible PM. Such consolidation approach
shortens the SPMRT of source PM without raising the SPMRT of destination
PM, resulting into decreased energy consumption. Additionally, selecting the next
smallest possible PM as destination PM ensures that the PM is accomplishing largest
possible jobs before moving into sleep state or turned off state. Consequently,
remaining workload for the existing active PMs becomes lower, which aids in
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energy consumption minimization. Furthermore, lesser remaining workload for
existing active PMs increases the likelihood that upcoming workload can be served
by these active PMs without turning on PMs, which are in lower energy con-
sumption state, for instance, sleep or turned off state. Hence, energy consumption
minimization is complemented.

One critical aspect of SRTDVMC is that both rise of energy in potential
destination PM (i.e., cost) and drop of energy in potential source PM (i.e., benefit)
is checked prior any potential VM migration. VMs from U-UPMs are migrated
only if the net energy gain (i.e., energy drop − energy rise) is positive, which
limits the number of VM migrations and improves QoS without compromising
energy efficiency. Hence, SRTDVMC can concurrently satisfy both objective func-
tions (3.10) and (3.11). Furthermore, SRTDVMC smartly selects destination PMs
ensuring that the increased energy consumption of potential destination U-UPM
does not outweigh the reduced energy consumption of potential source U-UPM. It
aids to uphold the energy efficiency of the solution regardless of the drastic rise
of state-of-the-art PMs’ energy consumption causing declined energy efficiency
at utilization level beyond 70%. Thus, SRTDVMC encounters the lack of energy-
efficiency issue in the presence of state-of-the-art PMs as experienced with existing
DVMC algorithms. As a result, SRTDVMC is robust against underlying PMs’
change of energy-efficient characteristics with varying load.

3.5 Performance Evaluation

Figures 3.1, 3.2, and 3.3 representing the diverse range of VMRT of Nectar Cloud
reveal the heterogeneous nature of real Cloud workloads in terms of finishing
time. To the best of our knowledge, none of the existing DVMC algorithms except
RTDVMC is designed considering heterogeneous VMRT in their bedrock assuming
all jobs finish at the same time, which is unrealistic. Consequently, these traditional
DVMC algorithms cannot provide optimal solution for heterogeneous VMRT. As
such, we have compared the performance of SRTDVMC with RTDVMC, since both
are developed considering heterogeneous VMRT in their bedrocks.

3.5.1 Experimental Setup

Performance of RTDVMC [26] has been evaluated through CloudSim [24]. Since,
performance of SRTDVMC has been compared with RTDVMC, therefore, we have
modelled and simulated a cloud environment in CloudSim [24], which we have
used to simulate SRTDVMC algorithm under different workload scenarios. For fair
comparison, both algorithms have been simulated using same environment with
respect to the characteristics of CDC, VM, PM and energy module. The simulated
CDC consists of 800 heterogeneous PMs. Three different modern generation of
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PMs, such as Dell PowerEdgeR940 (Intel Xeon Platinum 8180, 112 cores →
25,000 MHz, 384 GB) [30], HP ProLiant DL560 Gen10 (Intel Xeon Platinum 8180,
112 cores → 25,000 MHz, 384 GB) [31], and HP ProLiant ML350 Gen10 (Intel
Xeon Platinum 8180, 28 cores → 25,000 MHz, 192 GB) [32] have been used.
Each server is provided with 1 GB/s network bandwidth. The energy consumption
characteristics of these servers with varying workload is articulated in Table 3.2.

The characteristics of different VM types match with the VMs used by RTDVMC
and correspond to Amazon EC2 instance types [48]. However, the difference
between the simulated VMs and Amazon EC2 instance types is that the simulated
VMs are single-core, which is explained by the fact that the workload data used
for the simulations come from single-core VMs. Since, the single-core is used,
the amount of RAM is divided by the number of cores for each VM type: High-
CPU Medium Instance (2500 MIPS, 0.85 GB); Extra Large Instance (2000 MIPS,
3.75 GB); Small Instance (1000 MIPS, 1.7 GB); and Micro Instance (500 MIPS,
613 MB).

Lifetime of a VM Vj, aka VMRT of a VM Vj, denoted by TVj
can be different

from one VM to another (i.e., heterogeneous). For further accurate estimation of
the performance of both SRTDVMC and RTDVMC algorithms under real Cloud
scenario, TVj

values are drawn from VMRT traces of a real Cloud, namely, Nectar
Cloud. Nectar Cloud consists of over thousands of VMs across multiple data centers
located in eight different cities of Australia [7]. For SRTDVMC algorithm, TVj

is converted into SVMRT, SVj
as per (3.1), using 0.05 as the value of α and a

uniformly distributed random variable ranging [−1, +1] as X. For further clarity,
maximum deviation of TVj

from SVj
is ±5%. At the outset, VMs are provided with

the resources defined by the VM types. However, during the lifetime, VMs utilize
less resources according to the workload data, widening opportunities for dynamic
consolidation. The workload data also reflects traces of real Cloud workload traffic,
originated as part of the CoMon project, a monitoring infrastructure for PlanetLab
[49]. For both RTDVMC and SRTDVMC, upper utilization threshold, θmax is
considered as 80%. With every workload scenario, a DVMC algorithm has been
run twice to generate mean CDC energy consumption and mean total number of
VM migration by that DVMC algorithm under such workload scenario. Each time,
the simulation has been run until 24 h CloudSim simulation clock time.

3.5.2 Performance Metrics and Workload Data

3.5.2.1 Performance Metrics

SRTDVMC is a multi-objective DVMC algorithm, which aims to minimize the CDC
energy consumption and VM migrations. Hence, performance of SRTDVMC and
RTDVMC algorithms have been measured and compared in terms ECDC and ψ .
Expressed in (3.9), ECDC is the sum of energy consumption of all the PMs, while
each PM’s energy consumption is derived from Table 3.2 according to its current
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Table 3.3 Characteristics of PlanetLab Data (CPU Utilization)

Day Number of VMs Mean St. dev. Quartile 1 (%) Quartile 2 (%) Quartile 3 (%)

6 March 898 11.44 16.83 2 5 13
9 March 1061 10.70 15.57 2 4 13
9 April 1358 11.12 15.09 2 6 15
20 April 1033 10.43 15.21 2 4 12

CPU utilization. The second metric, ψ is the number of VM migrations initiated
during the VM placement adaptation.

3.5.2.2 Workload Data

In order to make a simulation-based evaluation applicable in real world, it is crucial
to use workload traces from a real system in experiments [12]. Therefore, the
performance of RTDVMC and other DVMC algorithms have been measured with
real Cloud workload traffic traces representing time varying resource utilization.
Real workload data is provided as part of the CoMon project, a monitoring
infrastructure for PlanetLab [49]. Data of CPU usage of thousands of VMs has been
collected every 5 min, while these VMs had been hosted in PMs spread globally
across 500 locations. Both algorithms have been tested with the PlanetLab workload
data of four different days: 6 March, 9 March, 9 April, and 20 April featuring
different sets of varying resource demand over time. The characteristics of different
PlanetLab workload data is articulated in Table 3.3.

For each workload, the associated VMs’ release time or workload finishing time
have been drawn from monthly VMRT traces of real Cloud, namely, Nectar Cloud.
Traces of VMs created in Nectar Cloud over a month along with respective release
time of those VMs constitutes the monthly VMRT data. The latest available VMRT
data of three different months: November 2013, December 2013, and January 2014
have been used for experiments. To explain more, a single day’s PlanetLab workload
data is tested with Nectar VMRT data of three different months offering diverse
VMRT distributions, so that the impact of heterogeneous workload finishing time
or release time can be analyzed. Histogram of different months of Nectar VMRT
data has been articulated through Figs. 3.1, 3.2, and 3.3. The number of VMs in
Nectar VMRT data of a month is greater than the number of VMs in the PlanetLab
workload data of a day. Therefore, a uniformly distributed random variable has been
used to select a smaller set of VMs from monthly Nectar data to match the number of
VMs of the daily PlanetLab data. Uniformly distributed random variable proffers the
smaller set of VMs with similar VMRT distribution present in the monthly Nectar
data.
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3.6 Simulation Results Analysis

SRTDVMC and RTDVMC have been simulated under different workload scenarios.
Four different days of PlanetLab workload data has been randomly selected (i.e., 6
March, 9 March, 9 April, and 20 April). PlanetLab workload data of every single
day featuring varying resource demand over time has then been blended with three
diverse sets of VMRT data originated from three different months of Nectar Cloud
Data (i.e., Nectar Nov, Nectar Dec, and Nectar Jan) featuring heterogeneous VMRT.
Thus, from a single set of daily PlanetLab workload data, three diverse sets of
workload data are produced featuring time variant resource demand and diverse
workload finishing time, which matches with real Cloud. Both algorithms are
reiterated over multiple times for each set of time variant workload representing a
unique combination of PlanetLab and Nectar Cloud data, to produce corresponding
ECDC and ψ .

3.6.1 Energy Consumption

Values of E
R

and E
S

representing mean CDC energy consumption by RTDVMC
and SRTDVMC, respectively are highlighted in Fig. 3.7. Let XE (3.12) denote the
set representing difference between mean energy consumption by RTDVMC and
mean energy consumption by SRTDVMC for different workload scenarios. In other
words, XE

NT,PL represents the minimization of mean energy consumption proffered
by SRTDVMC compared to RTDMC for diverse workloads, as articulated in Table
3.4.

XE =
{
XE

NT,PL

}

|Nectar|·|PLab| =
{
E

R

NT,PL − E
S

NT,PL

}

|Nectar|·|PLab| (3.12)

From experimental results, as portrayed in Fig. 3.7 and Table 3.4, we can observe
that SRTDVMC significantly reduces CDC energy consumption compared to exist-
ing DVMC algorithm. However, one might reject the superiority of SRTDVMC
over existing DVMC algorithm based on the argument that no proof of statistical
significance has been provided. To address such arguments, in the following section,
we have presented diverse statistical testing.

3.6.1.1 Normality Testing

Parametric tests are reported as more powerful than non-parametric tests. Assump-
tion of parametric tests is that data samples are normally distributed. Therefore,
prior parametric tests, normality testing is executed. The capability to accurately
figure out if a data sample has come from a non-normal distribution, referred to as
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Fig. 3.7 Mean energy consumption of SRTDVMC vs RTDVMC

Table 3.4 Minimization of mean CDC energy consumption (kW) by SRTDVMC compared to
RTDVMC

PlanetLab (CPU utilization distribution)
6 March 9 March 9 April 20 April

Nectar VMRT Nov 3.01 2.71 2.75 2.85
Dec 2.09 2.77 2.3 2.59
Jan 1.16 0.52 1.3 0.32

power, is the most widespread measure of the strength of a normality test [50]. Chi-
square test for normality is not as powerful and unsuitable for small data samples.
Kolmogorov-Smirnov (K-S) test is reported to have low power to test normality [51]
and has high sensitivity issue with extreme values, which is handled by Lilliefors
correction [52]. The S-W normality test is regarded as more powerful than the K-S
test even after the Lilliefors correction [53] and recommend as the best option for
testing the normality of data [50].

Test statistics for the S-W normality test with E
R

and E
S

, referred to as SWR

E
and

SWS

E
, respectively can be calculated through (3.13)–(3.16) [54, 55]. anp weights are



94 M. A. Khan et al.

Table 3.5 Mean CDC energy consumption for RTDVMC

np 1 2 3 4 5 6 7 8 9 10 11 12

E
R

(np) 3.58 3.72 4.37 5 6.68 7.3 7.53 8.14 8.62 8.75 9.31 10.76

Table 3.6 Mean CDC energy consumption for SRTDVMC

np 1 2 3 4 5 6 7 8 9 10 11 12

E
S

(np) 3.06 3.21 3.4 3.7 4.59 4.71 4.76 5.74 5.84 5.92 6.46 8.01

available in Shapiro-Wilk Table [56]. Different E
R

(np) and E
S

(np) values are presented
in Tables 3.5 and 3.6.

(3.13)

(3.14)

(3.15)

(3.16)

For the S-W normality tests with data samples of E
R

and E
S

, the Null

Hypothesis is that elements of E
R

and E
S

are normally distributed. We have utilized
the software collected from [57] to perform the S-W normality test. For distribution

of E
R

and E
S

, corresponding p values are found as 0.54 and 0.65 respectively,
which are greater than critical value, α as 0.05. Hence, no strong evidence could be

found to reject the Null Hypothesis that elements of E
R

and E
S

have come from
normal distribution.

3.6.1.2 Parametric Hypothesis Testing and Test Error

Results for normality testing through the S-W normality test have suggested

that elements of E
R

and E
S

follow normal distribution, which meets the prior
condition of parametric tests. Positive numeric value of every element of XE (3.12)
articulated in Table 3.4 refers to the fact that energy consumption by SRTDVMC
is numerically lower compared to RTDVMC for different workload scenarios as
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presented in experiments. We hence aim to perform parametric hypothesis test
to find whether simulation output samples, XE

NT,PL (3.12) featuring difference
between two corresponding means of RTDVMC and SRTDVMC associated to a
unique combination of Nectar and PlanetLab workload is statistically significant.
Our sample size is less than 30 and means of no more than two DVMC algorithms
(i.e., SRTDVMC and RTDVMC) would be compared. Therefore, among different
parametric tests we opt to use the t-test, instead of Z-test, F-test, and ANOVA. Based
on the data samples, the t-tests can be classified into three groups: One sample,
Two Independent Samples and Paired Samples t-test. For a specific combination

of NL and PL, corresponding E
R

NT,PL and E
S

NT,PL has a relationship, as E
R

NT,PL

and E
S

NT,PL represent ECDC for RTDVMC and SRTDVMC respectively, under a
particular workload distribution scenario. Therefore, the paired two tail t-test is
performed.

The null hypothesis with the t-test is that mean CDC energy consumption with

RTDVMC, E
R

and mean CDC energy consumption with SRTDVMC, E
S

are same,

while the alternative hypothesis is that E
S

< E
R

. Utilizing (3.17)–(3.19), the test
statistic for the t-test, denoted by t

X
E is found as 2.13 and the corresponding p value

is found as 7.10693 × 10−6, which is lower than critical value, α as 0.05. For clear
understanding of the interpretation of the t-test result, we have first explained the
performed the t-test in more details in the following.

t
X

E =
((

X
E − 0

)
/
(
σ̂

X
E

))
(3.17)

X
E =

((∑|Nectar|·|PLab|
np=1

(
XE

np

))
/ (|Nectar| · |PLab|)

)
(3.18)

σ̂
X

E =

√√√√√
√

(
∑

(
XE

(np) − X
E
)2

/ ((|Nectar| · |PLab|) − 1)

)

(|Nectar| · |PLab|) (3.19)

Previously through S-W normality test results, we have shown that distributions

of E
R

and E
S

are normal distributions. It is critical to note that, if we subtract
two corresponding elements of two different normal distributions, then the resulting
distribution is a normal distribution. Hence, elements of XE (3.12) featuring
difference between two corresponding means of RTDVMC and SRTDVMC are
normally distributed. Since elements of XE are normally distributed, therefore, the

distribution of their means, denoted by X
E

(3.18), is also normally distributed.

Now, assuming the null hypothesis true that E
R

and E
S

are same, the mean of the
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distribution of X
E

is 0. Nonetheless, utilizing (3.18) with our experimental results

articulated in Table 3.4, value of X
E

has been found as 2.03 which mismatches with
the value of the mean as 0 assuming the null hypothesis is true. As a result, we have

then estimated the probability of X
E

to be 2.03, given the null hypothesis is true.
In order to determine such probability, utilizing (3.17), we have calculated that how
many standard deviations far away is our experimental mean (i.e., 2.03) from the
distribution mean (i.e., 0), aka the test statistic for the t-test.

The test statistic for the t-test, denoted by t
X

E is found as 2.13 and the

corresponding probability is found as 7.10693 × 10−6. Now, 7.10693 × 10−6 is
less than 0.05. In other words, the outcome of the t-test shows that if the null

hypothesis is true that mean of distribution of X
E

is 0, there remains less than 5%

chance for X
E

to be 2.03. According to the rule of the t-test, we can then argue

that despite such low probability, since we still have received X
E

as 2.03, therefore,
the null hypothesis itself cannot be true. So, we retain the alternative hypothesis

as true. If X
E

(i.e., the mean of minimization of mean CDC energy consumption
by SRTDVMC compared to RTDVMC) was not significant from the perspective of
such inferential statistics as the t-test, then respective p value would not have been
found as lower than 0.05, which gives strong evidence to reject the null hypothesis
itself. Hence, we have provided evidence through utilizing inferential statistics that
the performance improvement through SRTDVMC compared to RTDVMC in terms
of mean CDC energy consumption is statistically significant.

Errors related to the t-test can be classified into two groups: Type I error and
Type II error. Type I error refers to the total probability of falsely rejecting the null
hypothesis while it was true, and Type II error refers to the total probability of
falsely rejecting alternative hypothesis while it was true. The null hypothesis has
been rejected based on the corresponding probability value of 7.10693 × 10−6.
Hence, the probability is 7.10693 × 10−6 that we have rejected the null hypothesis
while it was true, aka Type I error. In the following section, the simulation results in
relation to VM migration has been presented.

3.6.2 VM Migration

VM consolidation is applied to regulate CDC energy consumption. However, one
major downside of VM consolidation is that VM consolidation is impossible
without VM migration, while, increased VM migration increases network overhead.
SRTDVMC being a multi-objective DVMC algorithm is designed to minimize
CDC energy consumption without incurring increased VM migration. In Fig. 3.8,
we have illustrated mean total number of VM migrations with RTDVMC and

SRTDVMC, denoted by ψ
R

and ψ
S

, respectively. Let Xψ (3.20) denotes the set
representing difference of mean total number of VM migrations between RTDVMC
and SRTDVMC under different workload scenario, as articulated in Table 3.7.
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Fig. 3.8 Mean total number of VM migration of SRTDVMC vs RTDVMC

Table 3.7 Minimization of mean number of VM migration by SRTDVMC compared to RTDVMC

PlanetLab (CPU utilization distribution)
6 March 9 March 9 April 20 April

Nectar VMRT Nov 3416 4279 4951 4162
Dec 2838 3385 3667 3206
Jan 1531 1381 1908 1390

Xψ =
{
X

ψ
NT,PL

}

|Nectar|·|PLab| =
{
ψ

R

NT,PL − ψ
S

NT,PL

}

|Nectar|·|PLab| (3.20)

From Table 3.7, we can observe that SRTDVMC outperforms RTDVMC in terms
of mean of total number of VM migration. One might argue that such improvement
is merely a random event and the results are not statistically significant. To rebut
such argument, we have performed the t-test on experimental results to check
if results are statistically significant or not. One critical point to note that the t-
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Table 3.8 Mean of total number of VM migration for RTDVMC

np 1 2 3 4 5 6 7 8 9 10 11 12

ψ
R

(np) 1511 1524 1654 2066 3046 3444 3619 3738 3999 4535 4639 5472

Table 3.9 Mean of total number of VM migration for SRTDVMC

np 1 2 3 4 5 6 7 8 9 10 11 12

ψ
S

(np) 120 123 143 157 208 234 238 322 332 360 373 521

test cannot prove statistical significance of target data, if data is not normally
distributed. To address that issue, normality testing is required to prove that the
data representing mean minimization of CDC energy consumption obtained through
SRTDVMC compared to existing literature as portrayed in Fig. 3.8 is normally
distributed. In the following section, we have discussed normality testing performed
on our experimental results.

3.6.2.1 Normality Testing

We have applied the S-W normality test with set of mean of total number of VM

migration by RTDVMC and SRTDVMC, denoted by ψ
R

and ψ
S

, respectively. Test

statistics for the S-W normality test with ψ
R

and ψ
S

, referred to as SWR

ψ
and

SWS

ψ
, respectively can be calculated through (3.21)–(3.24) [54, 55]. anp weights are

available in Shapiro-Wilk Table [56]. Different ψ
R

(np) and ψ
S

(np) values are presented
in Tables 3.8 and 3.9.

(3.21)

(3.22)

(3.23)

(3.24)
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The null hypothesis for the S-W normality tests with data samples of ψ
R

and ψ
S

is that data is normally distributed. For distribution of ψ
R

and ψ
S

, corresponding
p values are found as 0.42 and 0.37 respectively, which are greater than critical
value, α as 0.05. Hence, no strong evidence could be found to reject Null Hypothesis

that elements of ψ
R

and ψ
S

have come from normal distribution. As such, in the
following section we have proceeded with the t-test to verify if the reduction of VM
migration by SRTDVMC compared to RTDVMC as obtained through experiments is
statistically significant.

3.6.2.2 Parametric Hypothesis Testing and Test Error

Previously, we have explained the reason of choosing the two sample paired t-test.
We aim to prove that minimization of mean of total number of VM migration by
SRTDVMC compared to RTDVMC is statistically significant. As null hypothesis,
we assume that the opposite is true. Hence, the null hypothesis is that mean of

total number of VM migration, ψ
R

and mean of total number of VM migration

with SRTDVMC, ψ
S

are same, while the alternative hypothesis is that ψ
S

< ψ
R

.
Utilizing (3.25)–(3.27), the test statistic for the t-test, denoted by t

X
ψ is found

as 2.48 and the corresponding p value is found as 1.64 × 10−6, which is lower
than critical value, α as 0.05. In the following, we have elaborately discussed the
interpretation of the t-test result.

t
X

ψ =
((

X
ψ − 0

)
/
(
σ̂

X
ψ

))
(3.25)

X
ψ =

((∑|Nectar|·|PLab|
np=1

(
Xψ

np

))
/ (|Nectar| · |PLab|)

)
(3.26)

σ̂
X

ψ =

√√√√
√√

(
∑

(
X

ψ

(np) − X
ψ
)2

/ ((|Nectar| · |PLab|) − 1)

)

(|Nectar| · |PLab|) (3.27)

In the earlier section, we have shown that such distributions as ψ
R

and ψ
S

are
normal distributions. As a result, elements of Xψ (3.20) are normally distributed.
Furthermore, since elements of Xψ are normally distributed, therefore, distribution

of their means, denoted by X
ψ

(3.26) is also normally distributed. Now, under the

given null hypothesis that ψ
R

and ψ
S

are same, the mean of the distribution X
ψ

is

0. Applying the results articulated in Table 3.7, into (3.26), X
ψ

is found as 3010. We

have then determined the probability of X
ψ

to be 3010, under the scenario that null
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hypothesis is true (i.e., X
ψ

is 0). To determine that probability, we have estimated
the distance between our experimental mean (i.e., 3010) and the distribution mean
(i.e., 0) in terms of standard deviation, aka the test statistic for the t-test, t

X
ψ (3.25).

t
X

ψ is found as 2.48 and the corresponding probability is found as 1.64 × 10−6.

Now, 1.64 × 10−6 is less than 0.05. In other words, the outcome of the t-test shows

that given the null hypothesis is true, there is less than 5% chance of X
ψ

to be

3010. Nevertheless, despite such low probability, since we still have received X
ψ

as 3010, therefore, we can rebut that the null hypothesis itself is not true. Hence,
we retain the alternative hypothesis as true. If the mean of minimization of mean
CDC energy consumption by SRTDVMC compared to RTDVMC was insignificant,
then respective p value would not have been found as lower than 0.05. Thus,
through the t-test results we have provided evidence that the reduction of VM
migration by SRTDVMC compared to RTDVMC is statically significant. Since, the
null hypothesis has been rejected based on the estimated probability of 1.64 × 10−6,
therefore, the probability of false rejection of null hypothesis while it was true, aka
Type I error is 1.64 × 10−6, which is very low. Experimental results also reveal
several critical aspects as discussed in the following section.

3.7 Observations

Observation 1: From experiments results portrayed in Figs. 3.7 and 3.8, we can
observe that such traditional DVMC algorithm as RTDVMC lacks in performance
compared to SRTDVMC with the presence of state-of-the-art highly energy propor-
tional PMs. Performance lacking by traditional DVMC algorithm is attributed to
its flawed working principal that maximum energy efficiency is attainable through
maximum load on PMs.

Observation 2: DVMC algorithm reduces energy consumption through VM
migration, which detrimentally affects QoS. As such, concomitant minimization
of energy consumption and VM migration are confronting objectives. Hence,
developing a DVMC algorithm, which optimizes energy efficiency without
increasing the number of VM migration is a much greater challenge than designing
an algorithm that merely focuses on the former aspect and ignores the later aspect.
SRTDVMC being designed to optimize both aspects, only migrates a VM if the
respective benefit is greater than the corresponding cost. Our research outcome,
as illustrated in Figs. 3.7 and 3.8, substantiates the success of such strategic VM
consolidation technique of SRTDVMC in both aspects.
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Observation 3: Experimental results reveal that energy consumption and VM
migration correspond to VMRT. The number of PMs has not been altered. PlanetLab
workload data of every single day has been combined with three different VMRT
distributions of Nectar Cloud. Hence, from one single set of PlanetLab data of a day,
three different sets of workload data have been created representing same number
of VMs and same varying resource demand, but different VMRT distributions and
performances of both algorithms change with the change in VMRT distributions.
The underlying reason is that considering the entire lifetime, aggregated resource
consumption by a VM with a relatively large VMRT is likely to be greater than the
aggregated resource consumption by a VM with smaller VMRT. In addition, longer
VMRT provides more time resulting into more likelihood of VM migrations.

Observation 4: Our research has highlighted that a correlation exists between
energy consumption and VMRT. Existence of such correlation has also been found
as true between number of VM migrations and VMRT. To elucidate further, one
common pattern with both SRTDVMC and RTDVMC is unfolded that for any day’s
PlanetLab data, VMRT distribution of November 2013 displays the highest energy
consumption and highest number of VM migration, while VMRT distribution of
January 2014 proffers to the lowest energy consumption and lowest number of VM
migration (Figs. 3.7 and 3.8). The answer lies within VMRT distributions of these
months (Figs. 3.1, 3.2, and 3.3). Considering the sum of VMRT of all VMs, VMRT
distribution of November 2013 consists of total 8343 days, which is the highest
among all months, while VMRT distribution of January 2014 consists of total
727 days, which is the lowest among all months. Since, November 2013 represents
the highest total workload duration resulting into highest total resource utilization;
therefore, maximum energy consumption is observed for November 2013. Due to
maximum duration of total workload existence, number of VM migrations is also
found as maximum with November 2013. Similarly, since January 2014 features the
lowest total workload duration resulting into lowest total resource utilization, hence,
minimum energy consumption is observed for January 2014. Minimum duration of
workload existence results into lowest number of VM migration for January 2014.

Observation 5: Experimental results in Figs. 3.7 and 3.8 also present the fact
that energy consumption and VM migration are affected by the change in resource
demand. Nectar VMRT data of one single month is blended with four different
days of PlanetLab data resulting into four different sets of workloads, representing
same VMRT, but different sets of resource demand and the performance of both
algorithms change due to the variation in resource demand. The reason can be
explained through Eqs. (3.8) and (3.9), showing that energy consumption is a
function of CPU utilization, while the utilization refers to the sum the resource
demand (3.3). Hence, energy consumption is affected by the change in resource
demand. The reason of observing the change in total VM migrations with the change
in resource demand is that further opportunities of VM consolidation arises as the
resource demand changes. DVMC algorithm keeps capitalizing such consolidation
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opportunities through further VM migration and hence, number of VM migration
changes with the change in resource demand.

Observation 6: Furthermore, energy consumption and VM migration are associ-
ated with number of VMs. PlanetLab 9 April features the highest number of VMs,
while PlanetLab 6 March holds the lowest number of VMs, which reflects on energy
consumption (Fig. 3.7) and VM migration (Fig. 3.8). Higher the number of VMs,
higher is the energy consumption and VM migration. The reason is that more VMs
consume more resources, resulting into higher energy consumption and more VMs
would normally contribute to a greater number of VM migrations. In the following
section, we have summarized our research.

3.8 Conclusions and Future Work

3.8.1 Conclusions

While correlation exists between VMRT and energy consumption, traditional
DVMC algorithms except RTDVMC do not consider heterogenous VMRT in VM
consolidation decision process. Furthermore, existing algorithms consolidate VMs
in as few PMs as possible based on the premise that optimal energy efficiency can
be achieved with maximum load on PM. However, for state-of-the-art PMs, energy
efficiency rather drops above 70% load level. Combining lack of consideration
of heterogeneous VMRT and ignoring changed energy-efficient characteristics of
underlying PMs, existing DVMC algorithms lack in performance in the context of
real Cloud scenario with heterogeneous VMRT and state-of-the-art PMs.

RTDVMC considers heterogeneous VMRT. However, issues with RTDVMC are
twofold – first, it does not take the changed energy-efficiency characteristics of
modern PMs into account and second, it only aims to minimize energy consumption
without considering VM migration minimization. VM migration, nonetheless,
increases network overload causing degraded QoS and increased energy consump-
tion by networking equipment. VM migration being an unavoidable part of VM
consolidation, minimizing both energy consumption and VM migrations at the same
time are confronting objectives. As such, in this paper, we have brought forth a
novel multi-objective DVMC algorithm, namely, SRTDVMC, which aims to reduce
VM migrations without compromising energy efficiency. Consideration of heteroge-
neous VMRT values in VM consolidation decision process enables SRTDVMC to be
more energy efficient. On top of that, contrast to RTDVMC, SRTDVMC incorporates
consideration both benefit and cost prior any VM migration. As a result, it is
robust against the changed energy-efficiency characteristics of underlying PMs and
can reduce VM migration without compromising energy-efficiency compared to
RTDVMC.
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Performance of SRTDVMC has been tested through the most popular Cloud-
based simulation tool, namely, CloudSim, in the context of hundreds of different
cutting-edge PMs and thousands of VMs representing heterogenous VMRT of real
Nectar Cloud, as the assigned workload reflects real Cloud workload obtained
from PlanetLab. The empirical outcome exhibits the superiority of SRTDVMC over
RTDVMC in both metrics – CDC energy consumption and VM migration. Three
key elements are extracted from our research. First, based on our experiments,
VMRT impacts on both aspects – energy consumption and VM migration, and
hence, DVMC algorithms are needed to be developed considering the presence of
heterogeneous VMRT. Second, such working principal of existing algorithms that
maximum energy efficiency is achievable at maximum load on PM is found as false
for state-of-the-art PMs, resulting into performance inefficiencies. Our proposed
SRTDVMC algorithm addresses this issue. Third, simulation results show that if cor-
responding cost and benefit are considered prior VM migration, then concomitant
optimization of both aspects – reduction of energy consumption and VM migration –
can be achieved. In the following section, we have suggested several future research
pathways to further improve the energy-efficient management of CDC.

3.8.2 Future Work

Accurate estimation of VMRT information plays an important role in minimizing
energy consumption through release time-based DVMC algorithm. To explain
further, if input VMRT value (i.e., VMRT value given as input in the system) is
greater/lower than the true VMRT value (i.e., the authentic time when the VM
would truly be removed from CDC), then such decisions as source PM selection,
migrating VMs selection and destination PM selection taken on the basis of VMRT
value would also be inaccurate, resulting into inefficient performance. Diverse
research pathways can be examined in this regard. Advanced machine learning
based techniques, neural networks and so forth can be embodied in automated
release time-based DVMC algorithms to generate PVMRT. Each technique would
consist its own set of advantages and disadvantages. It would be an interesting
research problem to measure the change in system performance with the change
in accuracy of input VMRT.

Different categories of DVMC algorithms can be found from literature, each
comes with its own set of advantages and disadvantages. Scope of such diverse
heuristic and meta-heuristic DVMC algorithms is yet to be explored for hetero-
geneous workload coupled with heterogeneous VMRT and state-of-the-art highly
energy proportional PMs. As part of future work, we aim to explore that research
domain.
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