
Virtual Machine Consolidation in Cloud Data
Centers using ACO Metaheuristic

Md Hasanul Ferdaus1, Manzur Murshed2, Rodrigo N. Calheiros3, Rajkumar
Buyya3

1 Faculty of Information Technology, Monash University, Churchill Vic 3842,
Australia.

2 School of Information Technology, Faculty of Science, Federation University
Australia, Churchill Vic 3842, Australia.

3 Department of Computing and Information Systems, The University of Melbourne,
Australia.

Abstract. In this paper, we propose the AVVMC VM consolidation
scheme that focuses on balanced resource utilization of servers across
different computing resources (CPU, memory, and network I/O) with
the goal of minimizing power consumption and resource wastage. Since
the VM consolidation problem is strictly NP-hard and computationally
infeasible for large data centers, we propose adaptation and integration of
the Ant Colony Optimization (ACO) metaheuristic with balanced usage
of computing resources based on vector algebra. Our simulation results
show that AVVMC outperforms existing methods and achieves improve-
ment in both energy consumption and resource wastage reduction.

1 Introduction

Cloud computing, a very recent paradigm shift in IT industry, is growing rapidly
with the goal of providing virtually infinite amount of computing, storage, and
communication resources where customers are provisioned these resources ac-
cording to their demands as a pay-per-use business model [1]. To meet the rapid
growth of customer demands for computing power, cloud providers such as Ama-
zon and Google are deploying large number of planet-scale power-hungry data
centers across the world, even comprising more than 1 million servers [2]. Reports
show that energy is one of the critical TCO (Total Cost of Ownership) variables
in managing a data center, and servers and data equipment account for 55% of
energy used by data centers [3]. Large data centers also have enormous effects on
the environment: higher energy consumption consequently drive in more carbon
emission. Furthermore, inefficient use is one of the key factors for the extremely
high energy consumption: in traditional data centers, on average servers oper-
ate only at 10-15% of their full capacity most of the time, leading to expenses
on over-provisioning of resources [4]. Since cloud promises virtually unlimited
resources through elastic provisioning and absolute reliability and availability,
over-provisioning of resources in cloud data centers is a common phenomenon.

Virtualization technologies allow data centers to address such resource and
energy inefficiency by placing multiple Virtual Machines (VM) in a single physi-
cal server through live VM migration techniques. Reduction of energy consump-
tion is achieved by switching idle physical servers to lower power states (e.g.,
suspended) while still preserving application performance requirements.

In this paper, we propose AVVMC, a VM consolidation algorithm that fo-
cuses on balanced resource utilization of servers for different resource types. We
present adaptation techniques of the popular Ant Colony Optimization (ACO)
[5] metaheuristic with vector algebra-based multi-dimensional server resource
utilization capturing method [6]. Through simulation-based evaluation, we show
that AVVMC outperforms four other existing VM consolidation methods in dif-
ferent performance metrics.

2 Related Works

VM consolidation techniques have been very attractive to reduce energy costs
and increase resource utilization in virtualized data centers. Consequently, a
good amount of research works have been done in this area and depending on
the modeling techniques used, different problem solving techniques are proposed.
Most of the works that apply greedy heuristics primarily model VM consolida-
tion as variants of the bin packing problem and propose extensions of simple
greedy algorithms such as First Fit Decreasing (FFD) [7], Best Fit [6], Best Fit
Decreasing [8], and so on [9, 10]. However, as VM consolidation is a NP-hard
problem, greedy approaches are not guaranteed to generate near optimal solu-
tions. Moreover, most of the approaches use mean estimators that fail to capture
the multi-dimensional aspect of server resource utilization [6].

Using constraint programming (CP) model, Van et al. [11] proposed VM
provisioning and placement techniques to achieve high VM packing efficiency in
cloud data centers. Entropy [12] is a server consolidation manager proposed for
clusters with the goal of minimizing the number of active servers and VM migra-
tion overhead. However, by the use of CP the proposed frameworks effectively
restrict the domain of the total number of servers and VMs in data center, and
thus limit the search space.

Recently, ACO metaheuristics have successfully been used to address 1-
dimensional bin packing problem and VM consolidation. Levine et al. [13] first
proposed an ACO-based solution for bin packing problem combined with a lo-
cal search algorithm. Later, Brugger et al. [14] used a later version of the ACO
metaheuristic that demonstrated superior performance over genetic algorithm
for large problem instances. Feller et al. [15] used another version of ACO to
address VM consolidation and has shown better results than FFD. However,
the evaluation is shown by varying only the number of cores demanded by VMs
while keeping other resource demands unchanged and as a result the evaluation
is simplified to one-dimensional resource. Another recent work [16] proposed
a multi-objective ACO algorithm to reduce resource wastage and power con-
sumption in cloud data centers. This work considers two types of resources (i.e.

CPU and memory) and demonstrates performance improvement over genetic
and other ACO-based algorithms.

3 Virtual Machine Consolidation

Most of the popular cloud providers offer different categories of VMs with spec-
ification for each type of resource. These VM instances differ in their individual
resource capacity: some instances are larger than others, whereas some instances
have relatively higher capacity of one type of resource compared to other re-
sources. Moreover, cloud VM instances host various types of applications and
active VMs exhibit dynamic resource demands in run-time that can be captured
and used to perform workload prediction and estimation [17]. Because of the
above properties of VM instances and dynamic workloads, complementary re-
source demands across difference resource dimensions are common in cloud data
centers [6]. Furthermore, as clouds offer an on-demand pay-as-you-go business
model, customers can demand for creation and termination of any number of
VMs according to their requirements. As a result, VMs are created and termi-
nated in the cloud data centers dynamically, which causes resource fragmentation
in the servers, and thus leads to degradation in server resource utilization. VM
consolidation is a tool to address the above issues in virtualized data centers
that tries to pack the active VMs in the minimum number of physical servers
considering multi-dimensional resource demands with the goal of energy saving
and maximization of server resource utilization.

3.1 Modeling VM Consolidation as Multi-dimensional Vector
Packing Problem

Multi-dimensional Vector Packing Problem (mDVPP) is a NP-hard combinato-
rial optimization problem where a number of items have to be packed into the
minimum number of bins provided that bins capacities are not violated [18]. We
model the physical machines (PMs) as bins and the VMs as items to pack into
the bins. Let P denotes the set of n PMs and V denotes the set of m VMs in the
data center. The set of d types of resources available in the PMs is represented by
R. Each PM Pi (Pi ∈ P) has a d-dimensional Resource Capacity Vector (RCV)
Ci = 〈C1

i , . . . , C
k
i , . . . , C

d
i 〉, where Cki denotes the total capacity of resource Rk

of PM Pi. Similarly, each VM Vj (Vj ∈ V) is represented by its d-dimensional
Resource Demand Vector (RDV) Dj = 〈D1

j , . . . , D
k
j , . . . , D

d
j 〉, where Dk

j denotes
the demand of resource Rk of VM Vj . The Resource Utilization Vector (RUV)
Ui = 〈U1

i , . . . , U
k
i , . . . , U

d
i 〉 of PM Pi is computed as the sum of the RDVs of the

hosted VMs:
Uki =

∑
Dk
j for ∀xi,j = 1 (1)

where x is the Placement Matrix that models the VM-to-PM placements and is
defined as follows:

xi,j =

{
1 if Vj is placed in Pi

0 otherwise
(2)

We also introduce the PM Allocation Vector y, where each element yi equals 1
if PM Pi is hosting at least 1 VM, or 0 otherwise:

yi =

{
1 if

∑m
j=1 xi,j ≥ 1

0 otherwise
(3)

The goal of the AVVMC VM consolidation algorithm is to place the VMs
in the available PMs in such a way that: 1) resource utilization of active PMs
is maximized across all dimensions and 2) power consumption of active PMs is
minimized. Since available models for server power consumption primarily focus
on CPU utilization [19], any placement decision that results in lesser number of
active PMs compared to others have higher resource utilization across all dimen-
sions and lesser energy consumption. So, we formulate the objective function f
as a single minimization function on y:

minf(y) =

n∑
i=0

yi (4)

Finally, the PM resource capacity constraint (i.e. for each resource type,
demands Dk of hosted VMs not to exceed host PM’s resource capacity Ck) is
expressed as follows:

m∑
j=1

Dk
j xi,j ≤ Cki ,∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , d} (5)

And the following ensures that each VM is assigned to at most one PM:

n∑
i=1

xi,j ≤ 1,∀j ∈ {1, . . . ,m} (6)

3.2 Modeling Multi-dimensional Resource Utilization based on
Vector Algebra

When placing VMs in a PM, capturing the measure of overall resource utiliza-
tion for multiple resource types is one of the most important factors for any
server consolidation algorithm: saturation of only one resource type can lead to
no further improvement in utilization while leaving other types of resource un-
derutilized. In order to capture both balanced and overall resource utilization,
we augment and integrate the vector algebra-based complementary resource uti-
lization capturing technique [6] in our ACO-based solution. Our model considers
CPU, memory, and network I/O as relevant server resources in the context of
VM consolidation. We consider storage resource is provided on-demand through
SAN/NAS-based storage backbone (e.g., Amazon EBS). PM’s normalized re-
source capacity is expressed as a unit cube (Resource Cube), with the three
dimensions representing three types of resources. RCV and RUV represent the

total capacity and current resource utilization of PM, respectively. To capture the
degree of imbalance in current resource utilization of a PM, the Resource Imbal-
ance Vector (RIV) is used which is computed as vector difference between RUV’s

projection on RCV and RUV itself. Given RUV = Cî+Mĵ + Ik̂ of a PM after
placing a VM (C, M , and I are current utilization of CPU, memory, and network

I/O), RIV = (C −H) î + (M −H) ĵ + (I −H) k̂, where H = (C + M + I)/3.
When selecting VMs for placement in a PM, the VM that shortens the magni-
tude of RIV most is the VM that mostly balances the resource utilization of the
PM across different dimensions. The magnitude of RIV is given by the following:

magRIV =
√

(C −H)2 + (M −H)2 + (I −H)2 (7)

We use magRIV to define the heuristic information for the proposed AVVMC
algorithm along with the overall resource utilization of PM (Eq. 13).

3.3 Modeling Resource Utilization and Wastage

The overall resource utilization of PM p is modeled as the summation of the
normalized resource utilization Urp of each individual resource r ∈ R (Eq. 1):
Utilizationp =

∑
r∈R U

r
p , where R = {CPU,MEM, IO}. Similarly, resource

wastage is modeled as the summation of the remaining resources (normalized)
of each individual resource:

Wastagep =
∑
r∈R

(1− Urp) (8)

3.4 Modeling Power Consumption

Power consumption of servers is dominated by their CPU and can be expressed
as a linear expression of CPU utilization [19]. So, we model the energy drawn
by a PM p as a linear function of its CPU utilization UCPUp ∈ [0, 1]:

E(p) =

{
Eidle + (Efull − Eidle)× UCPUp if UCPUp > 0

0 otherwise
(9)

where Efull and Eidle are the average energy drawn when a PM is fully uti-
lized (i.e. 100% CPU busy) and idle, respectively. Due to the non-proportional
power usage (i.e. high idle power) of physical servers, we consider turning off or
suspending idle servers after the VM placement. Therefore, the estimate of the
total energy consumed by a VM placement decision x is computed as follows:

E(x) =

n∑
p=1

E(p) (10)

4 Proposed Solution

4.1 Adaptation of ACO Metaheuristic for VM Consolidation

ACO metaheuristics are computational methods that take inspiration from the
foraging behavior of some ant species [5]. In ACO, a number of artificial ants
build solutions to the considered optimization problem by choosing feasible so-
lution components and exchanging information on the quality of these solutions
via pheromone. In the proposed AVVMC algorithm, we adapt Ant Colony Sys-
tem (ACS) [20], a later version of ACO and consider each VM-to-PM assignment
as a solution component. Pheromone levels are associated to all VM-to-PM as-
signments representing the desirability of assigning a VM to a PM (Eq. 11 and
Eq. 18) and heuristic values are computed dynamically for each VM-to-PM as-
signment representing the favorability of assigning a VM to a PM in terms of
both overall and balanced resource utilization of the PM (Eq. 13).

4.2 AVVMC Algorithm

The AVVMC algorithm pseudocode is shown in Algorithm 1. Pheromone levels
are implemented using a n×m matrix τ . Each ant starts with an empty solution,
a set of PMs, and a randomly shuffled set of VMs [line 6-12]. Inside the while
loop, an ant is chosen at random and is allowed to choose a VM to assign next
to its current PM among all the feasible VMs (Eq. 16) using a probabilistic
decision rule (Eq. 15) [line 11-22]. If the current PM is fully utilized or there are
no feasible VMs left to assign to the PM, a new empty PM is taken to fill in
[line 14-16].

When all the ants have finished building their solutions, all the solutions in
the current cycle are compared to the so far found global-best-solution (GBS)
against their achieved objective function values f (Eq. 4). The solution with
minimum value of f is chosen as the current GBS [line 23-28]. The pheromone
reinforcement amount is computed based on (Eq. 19) and the pheromone levels of
each VM-PM pair is updated to simulate the pheromone evaporation and depo-
sition according to (Eq. 18) [line 29-34]. The algorithm reinforces the pheromone
values only on the VM-PM pairs that belong to the GBS. Afterwards, the whole
process of searching new solutions repeats. The algorithm terminates when no
further improvement in the solution quality is observed for the last nCycleTerm
cycles [line 35]. Different parts of the algorithm are formally defined below.

Definition of Pheromone and Initial Pheromone Amount At the begin-
ning of any ACO algorithm, ants start with a fixed amount of initial pheromone
for each VM-PM solution component. Following the approach used in the original
ACS algorithm [20], we use the measure of quality of the solution produced by a
reference baseline algorithm (FFD heuristic based on L1 norm mean estimator)
to compute the initial amount of pheromone:

τ0 := PEFFDL1Norm (11)

Algorithm 1 The AVVMC Algorithm.
1: Input: Set of PMs P and their RCV Ci, set of VMs V and their RDV Dj , set of ants antSet.

Set of parameters {nAnts, nCycleTerm, β, ω, δ, q0}
2: Output: Global-best-solution GBS
3: Initialize parameters, set pheromone value for each VM-PM pair (τv,p) to τ0, GBS :=
∅, nCycle := 0

4: repeat
5: for all ant ∈ antSet do
6: ant.solution := ∅; ant.pmList := P
7: ant.p := 1; ant.vmList := V
8: Shuffle ant.vmList
9: end for
10: antList := antSet;nCycle := nCycle+ 1
11: while antList 6= ∅ do
12: pick an ant at random from antList
13: if ant.vmList 6= ∅ then
14: if FVant(ant.p) = ∅ then
15: ant.p := ant.p+ 1
16: end if
17: Choose a VM v from FVant(ant.p) accord. to Eq. 15
18: ant.solution.xp,v := 1; ant.vmList.remove(v)
19: else
20: ant.solution.f := p; antList.remove(ant)
21: end if
22: end while
23: for all ant ∈ antSet do
24: if ant.solution.f < GBS.f then
25: GBS := ant.solution
26: nCycle := 0
27: end if
28: end for
29: Compute ∆τ
30: for all p ∈ P do
31: for all v ∈ V do
32: τv,p := (1− δ)× τv,p + δ ×∆τv,p
33: end for
34: end for
35: until nCycle = nCycleTerm

where PEFFDL1Norm is the Packing Efficiency of the solution produced by the
FFD heuristic. The PE of any solution sol produced by an algorithm is given
by:

PEsol =
nVM

nActivePM
(12)

Definition of Heuristic Information During the solution building process,
the heuristic value ηv,p represents a measure of benefit of selecting a solution
component v − p. As the goal of AVVMC is to reduce the number of active
PMs by packing VMs in a balanced way, we define the heuristic value favoring
both balanced resource utilization in all dimensions and higher overall resource
utilization:

ηv,p = ω × |log10magRIVp(v)|+ (1− ω)× Utilizationp(v) (13)

where magRIVp(v) is the magnitude of RIV of PM p after assigning VM v to
it (Eq. 7). Logarithm of magRIVp(v) is taken to give higher heuristic values to
the v-p pairs that result in smaller magnitudes of RIV. Utilizationp(v) is the

overall resource utilization of PM p if VM v is assigned to it:

Utilizationp(v) =
∑
r∈R

(Urp +Dr
v) (14)

And ω is a parameter that trades off the relative importance of balanced versus
overall resource utilization as per our definition.

It can be shown that magRIV is in the interval [0.0, 0.82]. Since loga-
rithm of zero is undefined, we used the range [0.001, 0.82] in the evaluation
and thus |log10magRIV | results in the range [0.086, 3.0] which is compatible to
Utilizationp in terms of metric that results in the interval [0.0, 3.0].

Pseudo-random Proportional Rule When constructing a solution, an ant
k selects a VM s to be assigned to PM p with the following pseudo-random
proportional rule [20]:

s =

{
argmaxv∈FVk(p){τv,p × [ηv,p]

β} if q ≤ q0

S otherwise
(15)

where q is a random number uniformly distributed in [0, 1], q0 is a parameter
in interval [0, 1], τv,p is the current pheromone value associated with the v-p
VM-PM pair (Eq. 18), and β is a non-negative parameter that determines the
relative importance of pheromone amount versus heuristic value in the decision
rule. FVk(p) defines the list of feasible VMs for ant k to assign to PM p:

FVk(p) =

{
v|

n∑
p=1

xp,v = 0
∧
Urp +Dr

v ≤ Crp for ∀r ∈ R

}
(16)

When q ≤ q0, then the v-p pair resulting highest τv,p × [ηv,p]
β value is cho-

sen as the solution component (exploitation), otherwise a VM v is chosen with
probability Pk(v, p) using the following random-proportional rule (exploration):

Pk(v, p) =

τv,p×[ηv,p]β∑

u∈FVk(p) τv,p×[ηv,p]β
if v ∈ FVk(p)

0 otherwise
(17)

Global Pheromone Update In order to favor the solution components of
the GBS for subsequent iterations and to simulate pheromone evaporation, the
global update rule is applied on the pheromone values of each v−p pair according
to the following equation:

τv,p := (1− δ)× τv,p + δ ×∆τv,p (18)

where δ is the global pheromone decay parameter (0 < δ < 1) and ∆τv,p is the
pheromone reinforcement applied to each v−p pairs and is computed as follows:

∆τv,p =

{
PEGBS if v − p ∈ GBS
0 otherwise

(19)

5 Performance Evaluation

Because of the lack of access to large scale testbeds or real cloud infrastructures
and ease of reproducibility, we resorted to simulation-based evaluation to com-
pare the performance of the proposed AVVMC to the following existing works
in literature: 1) an adapted version of Max-Min Ant System (MMAS) meta-
heuristic for VM consolidation (MMVMC) [15], 2) a greedy algorithm (Vector-
Greedy) [6] for solving consolidation that uses vector algebra for mean estima-
tion of multi-dimensional resources, 3) a modified version of the FFD algorithm
(FFD-Volume) [7] that uses volume-based mean estimator, and 4) another mod-
ified FFD algorithm (FFD-L1Norm) based on L1 norm mean estimator.

The simulated data center consists of a cluster of homogeneous PMs and
VM resource demand for each resource type is expressed in percentage of to-
tal resource capacity of PM. We used reference-based VM resource demands:
Ref = z% means each randomly generated VM resource demand Dr falls in
the interval [0, 2z] for r ∈ {CPU,MEM, IO}. Considering the fact that clouds
deploy high-end servers and try to host as many VMs as possible in each active
server to increase resource utilization, we conducted our simulation for the sce-
narios where expected average PE would be more than 4, otherwise there would
not be much scope for consolidation and benefit of using specialized algorithms.
Therefore, we used reference values of Ref = 10%, 15%, 20%, and 25% with
their corresponding expected average PE of 10, 6.7, 5, and 4. The simulation is
conducted through 10 independent simulation runs and each run was repeated
for 100 times and finally, the results are generated after taking their average.

The optimal values of the parameters used in AVVMC are measured through
rigorous parameter sensitivity analysis in the preliminary phases of the experi-
ment and are set as follows: nAnts = 5, nCycleTerm = 5, β = 2, δ = 0.5, q0 =
0.8, and ω = 0.5. Parameters for the other algorithms are taken as reported in
the respective papers.

Table 1 summarizes performance of various algorithms for 1000 VMs in terms
of 1) the number of active PMs, 2) achieved VM packing efficiency, and 3) power
consumption according to the overall power consumption model (Eq. 10). For
the purpose of simulation, we set Eidle and Efull to 162 watts and 215 watts, re-
spectively as used by Gao et al. [16]. Table 1 shows that for all the four reference
values, AVVMC outperforms other algorithms in all the above performance met-
rics. It also shows that AVVMC achieves PE near the expected average values.
One interesting observation from column 6 of Table 1 is that AVVMC achieves
comparatively better performance over MMVMC and VectorGreedy for larger
reference values (i.e. larger VM sizes), whereas it achieves comparatively better
performance over FFD-based algorithms for smaller reference values (i.e. smaller
VM sizes). The reason is that metaheuristic-based solutions have higher flexibil-
ity to refine the solutions for smaller reference values (i.e. when higher number
of VMs can be packed in a single PM) compared to larger reference values. On
the other hand, FFD-based greedy solutions achieve higher overall resource uti-
lization and need lesser number of active PMs for larger reference values (i.e.
when VMs are larger).

Table 1. Simulation results across various performance metrics.

Ref Algorithm # Active Achieved Power Con. % Imp.
PM PE (Watt) (Power)

10%
AVVMC 100 10.00 21280.03
MMVMC 103 9.71 21759.55 2.20

VectorGreedy 108 9.26 22582.51 5.77
FFDL1Norm 117 8.55 23927.11 11.06
FFDVolume 118 8.47 24165.25 11.94

15%
AVVMC 156 6.41 33114.59
MMVMC 163 6.13 34331.21 3.54

VectorGreedy 167 5.99 34990.55 5.36
FFDL1Norm 178 5.62 36824.39 10.07
FFDVolume 177 5.65 36594.35 9.51

20%
AVVMC 215 4.65 45244.68
MMVMC 226 4.42 46945.68 3.62

VectorGreedy 240 4.17 49225.02 8.09
FFDL1Norm 242 4.13 49628.40 8.83
FFDVolume 242 4.13 49677.00 8.92

25%
AVVMC 267 3.75 56325.08
MMVMC 286 3.50 59438.72 5.24

VectorGreedy 310 3.23 63289.46 11.00
FFDL1Norm 296 3.38 61008.50 7.68
FFDVolume 296 3.38 61099.22 7.81

0

10

20

30

40

50

60

70

10% 15% 20% 25%

AVVMC

MMVMC

VectorGreedy

FFDL1Norm

FFDVolume

R
es

o
u

rc
e

W
as

ta
ge

 (
N

o
rm

al
iz

ed
)

VM Resource Demand Reference (Ref)

Fig. 1. Bar chart representation of total resource (normalized) wastage of AVVMC
and other algorithms.

Fig. 1 shows a bar chart representation of the total resource (normalized in
percentage) wastage of active PMs that host 1000 VMs according to (Eq. 8) for
the VM placement solutions produced by the different consolidation algorithms.
The figure shows that AVVMC significantly reduces the resource wastage com-
pared to other algorithms. This is because AVVMC tries to improve the overall
resource utilization with preference to consolidate VMs with complementary re-
source demands in each server and thus reduces resource wastage across different
resource dimensions.

In order to assess AVVMC for time complexity, simulation is conducted for
larger number of VMs and the solution computation time is plotted (Fig. 2). The
algorithm is written in Java language and ran on a Dell Workstation having Intel
Core i5-2400 3.10 GHz CPU (4 cores), and 4 GB of RAM. It is observed that
computation time increases non-linearly with the number of VMs with small
gradient and for 2000 VMs, AVVMC takes around 25 seconds on average.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Ref=10%

Ref=15%

Ref=20%

Ref=25%

R
u

n
 t

im
e

(s
ec

)

Number of VM

R
u

n
 t

im
e

(s
ec

)

Number of VMs

Fig. 2. Solution computation time of AVVMC for large problem instances.

6 Conclusions and Future Work

In this paper, we presented several aspects of server resource utilization and
consolidation, and proposed an ACO metaheuristic-based server consolidation
mechanism to address both power consumption and resource wastage minimiza-
tion in large virtualized data centers. We presented performance evaluation by
comparing the proposed technique with some of the recent techniques proposed
in the literature. We also showed evaluation of time complexity of solution com-
putation and argued about the feasibility and effectiveness of the algorithm for
cloud data centers.

As future work, we plan to incorporate mechanisms for efficient network
resource utilization in cloud infrastructures during VM placement and consol-
idation decisions. We also expect to consider current VM assignments and re-
configuration (including VM live migrations) overheads during VM placement
decision making phase. In this way, an overall VM placement framework will be
designed and implemented that will be aware of both energy consumption and
compute-network resource utilization.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6) (2009) 599–616

2. Miller, R.: Ballmer: Microsoft has 1 million servers.
http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-
has-1-million-servers/ (July 2013)

3. Perspectives, I.: Using a Total Cost of Ownership (TCO) model for your
data center. http://www.datacenterknowledge.com/archives/2013/10/01/using-a-
total-cost-of-ownership-tco-model-for-your-data-center/ (October 2013)

4. Barroso, L., Holzle, U.: The case for energy-proportional computing. Computer
40(12) (2007) 33–37

5. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. Computational
Intelligence Magazine, IEEE 1(4) (nov. 2006) 28–39

6. Mishra, M., Sahoo, A.: On theory of VM placement: Anomalies in existing method-
ologies and their mitigation using a novel vector based approach. In: Cloud Com-
puting (CLOUD), 2011 IEEE International Conference on, IEEE (2011) 275–282

7. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: Black-box and
gray-box resource management for virtual machines. Computer Networks 53(17)
(2009) 2923–2938

8. Beloglazov, A., Buyya, R.: Adaptive threshold-based approach for energy-efficient
consolidation of virtual machines in cloud data centers. In: Proceedings of the
8th International Workshop on Middleware for Grids, Clouds and e-Science, ACM
(2010)

9. Li, X., Qian, Z., Chi, R., Zhang, B., Lu, S.: Balancing resource utilization for
continuous virtual machine requests in clouds. In: Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2012 Sixth International Conference on,
IEEE (2012) 266–273

10. Li, X., Qian, Z., Lu, S., Wu, J.: Energy efficient virtual machine placement algo-
rithm with balanced and improved resource utilization in a data center. Mathe-
matical and Computer Modelling 58(5) (2013) 1222–1235

11. Van, H.N., Tran, F., Menaud, J.M.: Performance and power management for cloud
infrastructures. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. (july 2010) 329–336

12. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a consoli-
dation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments. VEE ’09, New York,
NY, USA, ACM (2009) 41–50

13. Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing
and cutting stock problems. Journal of the Operational Research Society 55(7)
(2004) 705–716

14. Brugger, B., Doerner, K., Hartl, R., Reimann, M.: Antpacking-an ant colony
optimization approach for the one-dimensional bin packing problem. Evolutionary
Computation in Combinatorial Optimization (2004) 41–50

15. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload place-
ment in clouds. In: Proceedings of the 2011 IEEE/ACM 12th International Con-
ference on Grid Computing, IEEE Computer Society (2011) 26–33

16. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system
algorithm for virtual machine placement in cloud computing. Journal of Computer
and System Sciences (2013)

17. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.: Predicting application resource
requirements in virtual environments. HP Laboratories, Technical Report HPL-
2008-122 (2008)

18. Caprara, A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discrete Applied Mathematics 111(3) (2001) 231–262

19. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. ACM SIGARCH Computer Architecture News 35(2) (2007) 13–23

20. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1(1) (apr 1997) 53–66

