
Dynamic Selection of Virtual Machines for
Application Servers in Cloud Environments

Nikolay Grozev and Rajkumar Buyya

Abstract Autoscaling is a hallmark of cloud computing as it allows flexible just-in-
time allocation and release of computational resources in response to dynamic and
often unpredictable workloads. This is especially important for web applications
whose workload is time dependent and prone to flash crowds. Most of them follow
the 3-tier architectural pattern, and are divided into presentation, application/domain
and data layers. In this work we focus on the application layer. Reactive autoscaling
policies of the type “Instantiate a new Virtual Machine (VM) when the average
server CPU utilisation reaches X%” have been used successfully since the dawn of
cloud computing. But which VM type is the most suitable for the specific application
at the moment remains an open question. In this work, we propose an approach
for dynamic VM type selection. It uses a combination of online machine learning
techniques, works in real time and adapts to changes in the users’ workload patterns,
application changes as well as middleware upgrades and reconfigurations. We have
developed a prototype, which we tested with the CloudStone benchmark deployed
on AWS EC2. Results show that our method quickly adapts to workload changes
and reduces the total cost compared to the industry standard approach.

1 Introduction

Cloud computing is a disruptive IT model allowing enterprises to focus on their
core business activities. Instead of investing in their own IT infrastructures, they
can now rent ready-to-use preconfigured virtual resources from cloud providers in
a “pay-as-you-go” manner. Organisations relying on fixed size private infrastruc-
tures often realise it can not match their dynamic needs, thus frequently being either

N. Grozev and R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) laboratory, School of Computing and In-
foramtion Systems, The University of Melbourne, Australia. e-mail: rbuyya@unimelb.edu.
au

1

2 Nikolay Grozev and Rajkumar Buyya

under or overutilised. In contrast, in a cloud environment one can automatically ac-
quire or release resources as they are needed — a distinctive characteristic known
as autoscaling.

This is especially important for large scale web applications, since the number of
users fluctuates over time and is prone to flash crowds as a result of marketing cam-
paigns and product releases. Most such applications follow the 3-tier architectural
pattern and are divided in three standard layers/tiers [17, 32, 1]:

• Presentation Layer — the end user interface.
• Business/Domain Layer — implements the business logic. Hosted in one or

several Application Servers (AS).
• Data Layer — manages the persistent data. Deployed in one or several Database

(DB) servers.

A user interacts with the presentation layer, which redirects the requests to an
AS which in turn can access the data layer. The presentation layer is executed on
the client’s side (e.g. in a browser) and thus scalability is not an issue. Scaling the
DB layer is a notorious challenge, since system architects have to balance between
consistency, availability and partition tolerance following the results of the CAP the-
orem [5, 6]. This field has already been well explored (Cattel surveys more than 20
related projects [8]). Furthermore, Google has published about their new database
which scales within and across data centres without violating transaction consis-
tency [13]. Hence data layer scaling is beyond the scope of our work.

In general, autoscaling the Application Servers (AS) is comparatively straightfor-
ward. In an Infrastructure as a Service (IaaS) cloud environment, the AS VMs are
deployed “behind” a load balancer which redirects the incoming requests among
them. Whenever the servers’ capacity is insufficient, one or several new AS VMs
are provisioned and associated with the load balancer and the DB layer — see Fig-
ure 1.

But what should be the type of the new AS VM? Most major cloud providers like
Amazon EC2 and Google Compute Engine offer a predefined set of VM types with
different performance capacities and prices. Currently, system engineers “hardcode”
preselected VM types in the autoscaling rules based on their intuition or at best on
historical performance observations. However, user workload characteristics vary
over time leading to constantly evolving AS capacity requirements. For example, the
proportion of browsing, bidding and buying requests in an e-commerce system can
change significantly during a holiday season, which can change the server utilisation
patterns. Middleware and operating system updates and reconfigurations can lead to
changes in the utilisation patterns as well [9]. This can also happen as a result of
releasing new application features or updates.

Moreover, VM performance can vary significantly over time because of other
VMs collocated on the same physical host causing resource contentions [39, 14, 34].
Hence even VM instances of the same type can perform very differently. From the
viewpoint of the cloud’s client this can not be predicted.

To illustrate better, let us consider a large scale web application with hundreds of
dedicated AS VMs. Its engineers can analyse historical performance data to specify

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 3

...

Virtual Machine

Web
Server

Virtual Machine

Application
Server

Application
Server

VM - m1.small

Admission
Controller

Load
Balancer

Virtual Machine

DC
Controller

Load
Balancer

Virtual Machine

VM - m1.small

Application
Server

D
a

ta
 L

ay
e

r
D

o
m

a
in

 L
ay

e
r

DC
Controller

Virtual Machine

Admission
Controller

Virtual Machine

Load
Balancer

Virtual Machine

Master DB
Server

Virtual Machine

Slave DB
Server

Virtual Machine

DB
Server

Virtual Machine

Cache

...

P
re

se
n

ta
tio

n
La

ye
r

DB
Server

VM - ?

Application
Server

VM - hs1.8xlarge

new

Fig. 1 A 3-tier application in Cloud. Whenever the autoscaling conditions are activated, a new
application server should be provisioned. In this work we select the optimal VM type for the
purpose.

the most appropriate VM type in the autoscaling rules. However, they will have to
reconsider their choice every time a new feature or a system upgrade is deployed.
They will also have to constantly monitor for workload pattern changes and to re-
act by adjusting the austoscaling rules. Given that VM performance capacities also
vary over time, the job of selecting the most suitable VM type becomes practically
unmanageable. This can result in significant financial losses, because of using sub-
optimal VMs.

To address this, the key contributions of our work are (i) a machine learning
approach which continuously learns the application’s resource requirements and (ii)
a dynamic VM type selection (DVTS) algorithm, which selects a VM type for new
AS VMs. Since both workload specifics and VM performance vary over time, we
propose an online approach, which learns the application’s behaviour and the typical
VM performance capacities in real time. It relieves system maintainers from having
to manually reconfigure the autoscaling rules.

The rest of the chapter is organised as follows: In Section 2 we describe the
related works. Section 3 provides a succinct overview of our approach. Section 4
discusses the machine learning approaches we employ to “learn” the application’s
requirements in real time. Section 5 describes how to select an optimal VM type.
Section 6 details the architecture of our prototype and the benchmark we use for
evaluation. Section 7 describes our experiments and results. Section 8 defines some
open research problems and pathways for future work. Finally, Section 9 concludes
and summarizes this chapter.

4 Nikolay Grozev and Rajkumar Buyya

2 Related Work

The area of static computing resource management has been well studied in the
context of grids, clouds, and even multi-clouds [41]. However, the field of dynamic
resource management in response to continuously varying workloads, which is es-
pecially important for web facing applications [41], is still in its infancy. Horizontal
autoscaling policies are the predominant approach for dynamic resource manage-
ment and thus they have gained significant attention in recent years.

Lorido-Botran et al. classify autoscaling policies as reactive and predictive or
proactive [26]. The most widely adopted reactive approaches are based on thresh-
old rules for performance metrics (e.g. CPU and RAM utilisation). For each such
characteristic the system administrator provides a lower and upper threshold values.
Resources are provisioned whenever an upper threshold is exceeded. Similarly, if a
lower threshold is reached resources are released. How much resources are acquired
or released when a threshold is reached is specified in user defined autoscaling rules.
There are different “flavours” of threshold based approaches. For example in Ama-
zon Auto Scaling [3] one would typically use the average metrics from the virtual
server farm, while RightScale [33] provides a voting scheme, where thresholds are
considered per VM and an autoscaling action is taken if the majority of the VMs
“agree” on it. Combinations and extensions of both of these techniques have also
been proposed [11, 10, 35]. Predictive or proactive approaches try to predict de-
mand changes in order to allocate or deallocate resources. Multiple methods using
approaches like reinforcement learning [4, 15], queuing theory [2] and Kalman fil-
ters [18] to name a few have been proposed.

Our work is complementary to all these approaches. They indicate at what time
resources should be provisioned, but do not select the resource type. Our approach
selects the best resource (i.e. VM type) once it has been decided that the system
should scale up horizontally.

Fernandez et al. propose a system for autoscaling web applications in clouds [21].
They monitor the performance of different VM types to infer their capacities. Our
approach to this is different, as we inspect the available to each VM CPU capacity
and measure the amount of “stolen” CPU instructions by the hypervisor from within
the VM itself. This allows us to normalise the VMs’ resource capacities to a com-
mon scale, which we use to compare them and for further analysis. Furthermore,
their approach relies on a workload predictor, while ours is usable even in the case
of purely reactive autoscaling.

Singh et al. use k-means clustering to analyse the workload mix (i.e. the different
type of sessions) and then use a queueing model to determine each server’s suit-
ability [36]. However, they do not consider the performance variability of virtual
machines, which we take into account. Also, they do not select the type of resource
(e.g. VM) to provision and assume there is only one type, while this is precisely the
focus of our work.

A part of our work is concerned with automated detection of application be-
haviour changes through a Hierarchical Temporal Memory (HTM) model. Similar
work has been carried out by Cherkasova et al. [9], who propose a regression based

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 5

Virtual Machine

Web
Server

Virtual Machine

Application
Server

Admission
Controller

Load
Balancer

Virtual Machine

DC
Controller

Load
Balancer

Virtual Machine

DC
Controller

Virtual Machine

Admission
Controller

Virtual Machine

Virtual Machine

Master DB
Server

Virtual Machine

Slave DB
Server

Virtual Machine

DB
Server

Virtual Machine

Cache

Utilisation
Monitor

Virtual
Machine

Application
Server

Utilisation
Monitor

Virtual
Machine

Application
Server

Utilisation
Monitor

HTM
region

... ANN

VM capacity
repository

CPU, RAM

CPU, RAM

HTM
region

Autoscaler Machine

...

Fig. 2 System components and their interaction.

anomaly detection approach. However, they analyse only the CPU utilisation. More-
over they consider that a set of user transactions’ types is known beforehand. In con-
trast, our approach considers RAM as well and does not require application specific
information like transaction types. Tan et al. propose the PREPARE performance
anomaly detection system [38]. However, their approach can not be used by a cloud
client, as it is built on top of the Xen virtual machine manager to which external
clients have no access.

Another part of our method is concerned with automatic selection of the learn-
ing rate and momentum of an artificial neural network (ANN). There is a significant
amount of literature in this area as surveyed by Moreira and Fiesler [27]. However,
the works they overview are applicable for static data sets and have not been applied
to learning from streaming online data whose patterns can vary over time. More-
over, they only consider how the intermediate parameters of the backpropagation
algorithm vary and do not use additional domain specific logic. Although our ap-
proach is inspired by the work of Vogl et al. [42] as it modifies the learning rate
and momentum based on the prediction error, we go further and we modify them
also based on the anomaly score as reported by the Hierarchical Temporal Memory
(HTM) models.

3 Method Overview

Figure 2 depicts an overview of our machine learning approach and how the system
components interact. Within each AS VM we install a monitoring program which
periodically records utilisation metrics. These measurements are transferred to an
autoscaling component, which can be hosted either in a cloud VM or on-premises.
It is responsible for (i) monitoring AS VMs’ performance (ii) updating machine
learning models of the application behaviour and (iii) autoscaling.

Within each AS VM the utilisation monitors report statistics about the CPU,
RAM, disk and network card utilisations and the number of currently served users.

6 Nikolay Grozev and Rajkumar Buyya

These records are transferred every 5 seconds to the autoscaling component, where
they are normalised, as different VMs have different de facto resource capacities. In
the machine learning approaches we only consider the CPU and RAM utilisations,
as disk and network utilisations of AS VMs are typically small [25, 20].

For each AS VM the autoscaler maintains a separate single-region Hierarchical
Temporal Memory (HTM) model [22], which is overviewed in a later section. In
essence we use HTMs to detect changes in the application behaviour of each AS
VM. We prefer HTM to other regression based anomaly detection approaches, as
it can detect anomalies on a stream of multiple parameters (e.g. CPU and RAM).
Whenever monitoring data is retrieved from an AS VM, the autoscaler trains its
HTM with the received number of users, CPU and RAM utilisations and outputs an
anomaly score defining how “unexpected” the data is.

As a next step we use these utilisation measurements to train a 3-tier artificial
neural network (ANN) about the relationship between the number of served users
and resource consumptions. We choose to use an ANN because of its suitability for
online data streams. Other “sliding window” approaches operate only on a portion
of the data stream. As a system’s utilisation patterns can remain the same for long
time intervals, the window sizes may need to become impractically large or even
be dynamically adjusted. On the contrary, an ANN does not operate on a fixed time
window and is more adept with changes in the incoming data stream, as we will
detail in a later section.

There is only one ANN and training samples from all AS VMs are used to train
it. In essence the ANN represents a continuously updated regression model, which
given a number of users predicts the needed resources to serve them within a sin-
gle VM without causing resource contentions. Thus, we need to filter all training
samples, which were taken during anomalous conditions (e.g. insufficient CPU or
RAM capacity causing intensive context switching or disk swapping respectively).
Such samples are not indicative of the relationship between number of users and
the resource requirements in the absence of resource contentions. Furthermore, we
use the anomaly score of each training sample (extracted from HTM) to determine
the respective learning speed and momentum parameters of the back propagation
algorithm so that the ANN adapts quickly to changes in the utilisation patterns.

Training the ANN and the HTMs happens online from the stream of VM mea-
surements in parallel with the running application. Simultaneously we also maintain
a VM capacity repository of the latest VM capacity measurements. When a new VM
is needed by the autoscaling component, we use this repository to infer the poten-
tial performance capacity of all VM types. At that time the ANN is already trained
adequately and given the predicted performance capacities can be used to infer how
many users each VM type could serve simultaneously. Based on that we select the
VM type, with minimal cost to number of users ratio.

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 7

4 Learning Application Behaviour

4.1 Utilisation Monitoring

To measure VM performance utilisation, we use the SAR, mpstat, vmstat and netstat
Linux monitoring tools. We use the mpstat %idle metric to measure the percentage
of time during which the CPU was idle. The %steal metric describes the percentage
of “stolen” CPU cycles by a hypervisor (i.e. the proportion of time the CPU was
not available to the VM) and can be used to evaluate the actual VM CPU capacity.
Similarly, SAR provides the %util and %ifutil metrics as indicative of the disk’s and
network card’s utilisations.

Measuring the RAM utilisation is more complex as operating systems keep in
memory cached copies of recently accessed disk sectors in order to reduce disk ac-
cess [20]. Although in general this optimisation is essential for VM performance,
web application servers (AS) are not usually I/O bound, as most of the applica-
tion persistence is delegated to the data base layer. Hence, using the vmstat RAM
utilisation metrics can be an overestimation of the actual memory consumption as
it includes rarely accessed disk caches. Thus, we use the “active memory” vmstat
metric to measure memory consumption instead. It denotes the amount of recently
used memory, which is unlikely to be claimed for other purposes.

Lastly, we need to evaluate the number of concurrently served users in an AS
VM. This could be extracted from the AS middleware, but that would mean writing
specific code for each type of middleware. Moreover, some proprietary solutions
may not expose this information. Therefore, we use the number of distinct IP ad-
dresses with which the server has an active TCP socket, which can be obtained
through the netstat command. Typically, the AS VM is dedicated to running the AS
and does not have other outgoing connections except for the connection to the per-
sistence layer. Therefore, the number of addresses with active TCP sockets is a good
measure of the number of currently served users.

4.2 Normalisation and Capacity Estimation

Before proceeding to train the machine learning approaches, we need to normalise
the measurements which have different “scales”, as the VMs have different RAM
sizes and CPUs with different frequencies. Moreover, the actual CPU capacities
within a single VM vary over time as a result of the dynamic collocation of other
VMs on the same host.

As a first step in normalising the CPU load, we need to evaluate the actual CPU
capacity available to each VM. This can be extracted from the /proc/cpuinfo Linux
kernel file. If the VM has n cores, /proc/cpuinfo will list meta information about the
physical CPU cores serving the VM including their frequencies f r1, ... f rn. The sum
of these frequencies is the maximal processing capacity the VM can get, provided

8 Nikolay Grozev and Rajkumar Buyya

the hypervisor does not “steal” any processing time. Using the %steal mpstat param-
eter we can actually see what percentage of CPU operations have been taken away
by the hypervisor. Subtracting this percentage from the sum of frequencies gives us
the actual VM CPU capacity at the time of measurement. To normalise we further
divide by the maximal CPU core frequency f rmax multiplied by the maximal num-
ber of cores nmax cores of all considered VMs in the cloud provider. This is a measure
of the maximal VM CPU capacity one can obtain from the considered VM types. As
clouds are made of commodity hardware, we will consider f rmax = 3.5GHZ. This
ensures that all values are in the range (0,1], although for some cloud providers all
values may be much lower than 1, depending on the underlying hardware they use.
This is formalised in Eq. 1.

cpuCapacityNorm =

(100−%steal)
n
∑

i=0
f ri

100 nmax cores f rmax
(1)

Having computed the VM CPU capacity, we store it into the VM capacity repos-
itory, so we can use it later on to infer the capacities of future VMs. Each repository
record has the following fields:

• time - a time stamp of the capacity estimation;
• vm-type - an identifier of the VM type - e.g. “m1.small”;
• vm-id - a unique identifier of the VM instance - e.g. its IP or elastic DNS address;
• cpuCapacityNorm - the computed CPU capacity.

If we further subtract the %idle percentage from the capacity we will get the
actual CPU load given in Eq. 2.

cpuLoadNorm =

(100−%idle−%steal)
n
∑

i=0
f ri

100 nmax cores f rmax
(2)

Normalising the RAM load and capacity is easier, as they do not fluctuate like
the CPU capacity. We divide the active memory by the maximal amount of memory
RAMmax in all considered virtual machine types in the cloud - see Eq. 3.

ramLoadNorm =
active memory

RAMmax
(3)

Whenever a new AS VM is needed, we have to estimate the CPU and RAM
capacities of all available VM types based on the capacity repository and their per-
formance definitions provided by the provider. The normalised RAM capacity of a
VM type is straightforward to estimate as we just need to divide the capacity in the
provider’s specification by RAMmax. To estimate the CPU capacity of a VM type we
use the mean of the last 10 entries’ capacities for this type in the capacity reposi-
tory. If there are no entries for this VM type in the repository (i.e. no VM of this
type has been instantiated) we can heuristically extrapolate the CPU capacity from
the capacities of the other VM types. Typically IaaS providers specify an estimation
of each VM type’s CPU capacity - e.g. Google Compute Engine Units (GCEU) in

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 9

Google Compute Engine or Elastic Compute Units (ECU) in AWS. Hence given an
unknown VM type vmt we can extrapolate its normalised CPU capacity as:

cpuCapacity(vmt) =

1
|V | ∑

vmti∈V

cpuCapacity(vmti)× cpuSpec(vmti)
cpuSpec(vmt)

(4)

Where V is the set of VM types present in the capacity repository and whose
CPU capacity can be determined from previous measurements, |V | is its cardinality,
and cpuSpec(vmti) defines the cloud provider’s estimation of a VM type’s capacity
- e.g. number of GCEUs or ECUs.

4.3 Anomaly Detection Through HTM

The Hierarchical Temporal Memory (HTM) model is inspired by the structure and
organisation of the neocortex. It has been developed and commercialised by the
Grok company [19] (formerly Numenta [29]), and follows the concepts from Jeff
Hawkins’ book “On Intelligence” [23]. The model creators build upon the seminal
work of Mountcastle [28] that the neocortex is predominantly uniform in structure
and function even in regions handling different sensory inputs - e.g. visual, audi-
tory, and touch. The HTM model tries to mimic this structure in a computational
model. There are several differences compared to the biological structure of the
neocortex in order to be computationally viable as described in the implementa-
tion white paper [22]. Grok’s implementation is available as an open source project
called NuPIC [30]. In this section, we provide only a brief overview of HTM to
introduce the reader to this concept. The interested reader is referred to the official
documentation [22].

HTMs consist of one or several stacked regions. During inference, input arrives
into the lowest region, whose output serves as input to the successive one and so
forth until the topmost region outputs the final result. The purpose of a region is to
convert noisy input sequences to more stable abstract representations. Conceptually,
the different regions represent different levels of abstraction in the learning process
- i.e. the lowest level recognises low-level patterns, while each higher level layer
recognises more complex ones based on the result of the previous one. In this work,
we use single-region HTMs and we will focus on them in the rest of the section.

A HTM region consists of columns of cells, which are most often arranged in a
three dimensional grid - see Figure 3. Each cell can be in one of three possible states:
(i) active form feed forward input, (ii) active from lateral input (i.e. predicted), or
(iii) inactive. Conceptually, active cells represent the state of the last input and pre-
dicted cells represent the likely state after future inputs. A HTM region receives as
input a bit sequence. Special encoders are used to convert input objects into bitwise
representations, so that objects which are “close” in the sense of the target domain

10 Nikolay Grozev and Rajkumar Buyya

Training
Record

0 0 1 0 0 1 0...

...

Encoders

Temporal
Pooling

Spatial
Pooling

Active cell Predicted cell Inactive cell

Active connection Inactive connection

Legend

- Number of users
- CPU utilisation
- RAM utilisation

Fig. 3 HTM region structure.

have similar bit representations. Upon receiving new binary input the HTM changes
the states of the columns based on several rules summarised below.

As a first step the HTM has to decide which columns’ cells will be activated
for a given input - an algorithm known as Spatial Pooling. It nullifies most of the
1 bits, so that only a small percentage (by default 2%) are active. Each column is
connected with a fixed sized (by default 50% of the input length) random subset

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 11

of input bits called the potential pool. Each column’s connection to an input bit
has a ratio number in the range [0,1] associated with it known as the permanence.
HTM automatically adjusts the permanence value of a connection after a new input
record arrives, so that input positions whose value have been 0 or 1 and are members
of the potential pool of a selected column are decreased or increased respectively.
Connections with permanences above a predefined thresholds are considered active.
Given an input, for each column the HTM defines its overlap score as the number of
active bits with active connections. Having computed this for every column, HTM
selects a fixed sized (by default 2%) set of columns with the highest overlap score,
so that no two columns within a predefined radius are active.

As a second step, HTM decides which cells within these columns to activate. This
is called Temporal Pooling. Within each of the selected columns the HTM activates
only the cells which are in predicted state. If there are no cells in predicted state
within a column, then all of its cells are activated, which is also known as bursting.

Next, the HTM makes a prediction of what its future state will be - i.e. which
cells should be in predicted state. The main idea is that when a cell activates it
establishes connections to the cells which were previously active. Each such con-
nection is assigned a weight number. Over time if the two nodes of a connection
become active in sequence again, this connection is strengthened, i.e. the weight
is increased. Otherwise, the connection slowly decays, i.e. the weight is gradually
decreased. Once a cell becomes active, all non-active cells having connections to it
with weights above a certain threshold are assigned the predicted state. This is anal-
ogous to how synapses form and decay between neurons’ dendrites in the neocortex
in response to learning patterns.

The presence of predicted cell columns allows a HTM to predict what will be its
likely state in terms of active cells after the next input. However, it also allows for
the detection of anomalies. For example, if just a few predicted states become active
this is a sign that the current input has not been expected. Thus the anomaly score
is defined as the proportion of active spatial pooler columns that were incorrectly
predicted and is in the range [0,1].

In our environment every 5 seconds we feed each HTM with a time stamp, the
number of users and the CPU and RAM utilisations of the respective VM. We use
the standard NuPIC scalar and date encoders to convert the input to binary input. As
a result we get an anomaly score denoting how expected the input is, in the light of
the previously described algorithms.

4.4 ANN Training

Figure 4 depicts the topology of the artificial neural network (ANN). It has one
input — the number of users. The hidden layer has 250 neurons with the sigmoid
activation function. The output layer has two output nodes with linear activation
functions, which predict the normalised CPU and RAM utilisations within an AS
VM.

12 Nikolay Grozev and Rajkumar Buyya

Σ

Σ

...

CPU
utilisation

Input Layer Hidden Layer Output Layer

Number
of users RAM

utilisation

Fig. 4 ANN topology.

Once a VM’s measurements are received and normalised and the anomaly score
is computed by the respective HTM region, the ANN can be trained. As discussed,
we need to filter out the VM measurements which are not representative of normal,
contention free application execution, in order to “learn” the “right” relationship
between number of users and resource utilisations. We filter all VM measurements
in which the CPU, RAM, hard disk or network card utilisations are above a certain
threshold (e.g. 70%). Similarly, we filter measurements with negligible load — i.e.
less than 25 users or less than 10% CPU utilisation. We also ignore measurements
from periods during which the number of users has changed significantly — e.g.
in the beginning of the period there were 100 users and at the end there were 200.
Such performance observations are not indicative of an actual relationship between
number of users and resource utilisations. Thus, we ignore measurements for which
the number of users is less than 50% or more than 150% of the average of the
previous 3 measured numbers of users from the same VM.

Since we are training the ANN with streaming data, we need to make sure it is
not overfitted to the latest training samples. For example if we have constant work-
load for a few hours we will be receiving very similar training samples in the ANN
during this period. Hence the ANN can become overfitted for such samples and
lose its fitness for the previous ones. To avoid this problem, we filter out measure-
ments/training samples, which are already well predicted. More specifically, if a VM
measurement is already predicted with a root mean square error (RMSE) less than
0.01 it is filtered out and the ANN is not trained with it. We call this value rmsepre

because it is obtained for each training sample before the ANN is trained with it. It
is computed as per Eq. 5, where out puti and expectedi are the values of the output
neurons and the expected values respectively.

rmsepre =
√

∑(out puti− expectedi)2 (5)

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 13

With each measurement, which is not filtered out, we perform one or several
iterations/epochs of the back-propagation algorithm with the number of users as
input and the normalised CPU and RAM utilisations as expected output. The back-
propagation algorithm has two important parameters — the learning rate and the
momentum. In essence, the learning rate is a ratio number in the interval (0,1)
which defines the amount of weight update in the direction of the gradient descent
for each training sample [27]. For each weight update, the momentum term defines
what proportion of the previous weight update should be added to it. It is also a
ratio number in the interval (0,1). Using a momentum the neural network becomes
more resilient to oscillations in the training data by “damping” the optimisation
procedure [27].

For our training environment we need a low learning rate and a high momentum,
as there are a lot of oscillations in the incoming VM measurements. We select the
learning rate to be lr = 0.001 and the momentum m = 0.9. We call these values the
ideal parameters, as these are the values we would like to use once the ANN is close
to convergence. However, the low learning rate and high momentum result in slow
convergence in the initial stages, meaning that the ANN may not be well trained
before it is used. Furthermore, if the workload pattern changes, the ANN may need
a large number of training samples and thus time until it is tuned appropriately.
Hence the actual learning rate and momentum must be defined dynamically.

One approach to resolve this is to start with a high learning rate and low mo-
mentum and then respectively decrease/increase them to the desired values [27, 42].
This allows the back-propagation algorithm to converge more rapidly during the ini-
tial steps of the training. We define these parameters in the initial stages using the
asymptotic properties of the sigmoid function, given in Eq. 6.

s(x) =
1

1− e−x (6)

As we need to start with a high learning rate and then decrease it gradually to lr,
we could define the learning rate lrk for the k-th training sample as s(−k). However,
the sigmoid function decreases too steeply for negative integer parameters and as a
result the learning rate is higher than lr for just a few training samples. To solve this
we use the square root of k instead and thus our first approximation of the learning
rate is:

lr(1)k = max(lr,s(−
√

k)) (7)

As a result lr(1)k gradually decreases as more training samples arrive. Figure 5
depicts how it changes over time.

We also need to ensure that it increases in case unusual training data signalling
a workload change arrives and thus we need to elaborate lr(1)k . For this we keep a
record of the last 10 samples’ anomaly scores and errors (i.e. rmsepre). The higher
the latest anomaly scores, the more “unexpected” the samples are and therefore the
learning rate must be increased. Similarly, the higher the sample’s rmsepre com-
pared to the previous errors, the less fit for it the ANN is and thus the learning

14 Nikolay Grozev and Rajkumar Buyya

0 10 20 30 40 50

0.
0

0.
4

0.
8

0 10 20 30 40 50

0.
0

0.
4

0.
8

Training Sample Index

V
al

ue

learning rate
momentum

Fig. 5 The lr(1)k approximation of the learning rate and the respective momentum during the initial
ANN training stages.

rate must be increased as well. Thus our second elaborated approximation of the
learning rate is:

lr(2)k = lr(1)k max(1,
rmsepre

k
rmse

)
9

∏
i=0

2s(ank−i) (8)

where ank and rmsepre
k are the anomaly score and the error of the k-th sample

and rmse is the average error of the last 10 samples. Note that we use the sigmoid
function for the anomaly scores in order to diminish the effect of low values.

In some cases the learning rate can become too big in the initial training iter-
ations, which will in fact hamper the convergence. To overcome this problem, for
each sample k we run a training iteration with lr(2)k , compute its RMSE rmsepost

k and
then revert the results of this iteration. By comparing rmsepre

k and rmsepost
k we can

see if training with this lr(2)k will contribute to the convergence [42]. If not, we use
the ideal parameter lr instead. Thus we finally define the learning rate parameter
lrk in Eq. 9:

lrk =

{
lr(2)k if rmsepre

k > rmsepost
k

lr otherwise
(9)

Similarly we have to gradually increase the momentum as we decrease the learn-
ing rate until the ideal momentum is reached. If a workload change is present we
need to decrease the momentum in order to increase the learning speed. Hence, we
can just use the ratio of the ideal learning rate lr to the current one as shown in
Eq. 10.

mk = min(m,
lr

lr(2)k

) (10)

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 15

Figure 5 depicts how the learning rate and momentum change during the initial
training stages, given there are no anomalies, accuracy losses and ∀k : rmsepre

k >

rmsepost
k — i.e. when ∀k : lr(1)k = lr(2)k = lrk. Figure 7 shows the actual lrk given

realistic workload.
Furthermore, to speed up convergence it is beneficial to run multiple epochs (i.e.

repeated training iterations) with the first incoming samples and with samples taken
after a workload change. The ideal learning rate lr and its approximation lr(2)k al-

ready embody this information and we could simply use their ratio. However, lr(2)k
lr

can easily exceed 300 given lr = 0.001, resulting in over-training with particular
samples. Hence we take the logarithm of it as in Eq. 11:

ek =

⌊
1+ ln(

lr(2)k
lr

)

⌋
(11)

5 Virtual Machine Type Selection

When a new VM has to be provisioned the ANN should be already trained so that we
can estimate the relationship between number of users and CPU and RAM require-
ments. The procedure is formalised in Algorithm 1. We loop over all VM types V T
(line 3) and for each one we estimate its normalised CPU and RAM capacity based
on the capacity repository as explained earlier (lines 5-6). The VM cost per time
unit (e.g. hour in AWS or minute in Google Compute Engine) is obtained from the
provider’s specification (line 7).

Next we approximate the number of users that a VM of this type is expected to be
able to serve (lines 10-18). We iteratively increase n by ∆ starting from minU , which
is the minimal number of users we have encountered while training the neural net-
work. We use the procedure predict (defined separately in Algorithm 2) to estimate
the normalised CPU and RAM demands that each of these values of n would cause.
We do so until the CPU or RAM demands exceed the capacity of the inspected VM
type. Hence, we use the previous value of n as an estimation of the number of users
a VM of that type can accommodate. Finally, we select the VM type with the lowest
cost to number of users ratio (lines 20-23).

Algorithm 2 describes how to predict the normalised utilisations caused by n
concurrent users. If n is less than the maximum number of users maxU we trained
the ANN with, then we can just use the ANN’s prediction (line 5). However, if n
is greater than maxU the ANN may not predict accurately. For example if we have
used a single small VM to train the ANN, and then we try to predict the capacity
of a large VM, n can become much larger than the entries of the training data and
the regression model may be inaccurate. Thus, we extrapolate the CPU and RAM
requirements (lines 7-11) based on the range of values we trained the ANN with and
the performance model we have proposed in a previous work [20].

16 Nikolay Grozev and Rajkumar Buyya

Algorithm 1: Dynamic VM Type Selection (DVTS)
input : V T , ann, ∆ , minU , maxU

1 bestV mt←− null;
2 bestCost←− 0;

3 for vmt ∈V T ; // Inspect all VM types
4 do
5 cpuCapacity←− vmt’s norm. CPU capacity ;
6 ramCapacity←− vmt’s norm. RAM capacity;
7 vmtCost←− vmt’s cost per time unit;

8 userCapacity←− 0;
9 n←− minU ;

10 while True ; // Find how many users it can take
11 do
12 cpu,ram←− predict(ann,n,minU,maxU);
13 if cpu < cpuCapacity and ram < ramCapacity then
14 userCapacity←− n;
15 else
16 break;
17 end
18 n←− n+∆ ;
19 end

// Approximate the cost for a user per time unit
20 userCost←− vmtCost

userCapacity ;

// Find the cheapest VM type
21 if userCost < bestCost then
22 bestCost←− userCost;
23 bestV mt←− vmt;
24 end
25 end
26 return bestV mt;

6 Benchmark and Prototype

There are two main approaches for experimental validation of a distributed system’s
performance — through a simulation or a prototype. Discrete event simulators like
CloudSim [7] have been used throughout industry and academia to quickly evaluate
scheduling and provisioning approaches for large scale cloud infrastructure without
having to pay for expensive test beds. Unfortunately, such simulators work on a
simplified cloud performance model and do not represent realistic VM performance
variability, which is essential for testing our system. Moreover, simulations can be
quite inaccurate when the simulated system serves resource demanding workloads,
as they do not consider aspects like CPU caching, disk data caching in RAM and
garbage collection [20]. Therefore, we test our method through a prototype and a
standard benchmark deployed in a public cloud environment.

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 17

Algorithm 2: Resource Utilisation Estimation
input : ann, n, minU , maxU

1 cpu←− 0;
2 ram←− 0;

3 if n < maxUsers ; // If within range - use ANN
4 then
5 cpu,ram←− ann.run(n);
6 else

// If outside range - extrapolate

7 minRam,minCPU ←− ann.run(minU);
8 maxRam,maxCPU ←− ann.run(maxU);

9 cpuPerUser←− (maxCPU−minCPU)
(maxU−minU) ;

10 ramPerUser←− (maxRam−minRam)
(maxU−minU) ;

11 cpu←− maxCPU + cpuPerUser(n−maxU)
ram←− maxCPU + ramPerUser(n−maxU)

12 end
13 return cpu,ram;

Client VM

App. Server VM
DB Server VM

 Faban
 Driver

 Nginx Server MySql: Olio
 Database

 Tomcat:
 GeoCoder

 NFS Storage:
 media files

NFS Server VM

 Disk Storage:
 media files

Load Balancer VM

 HAProxy

 Faban
 Agent

HTTP

SQL

N
FS

SSH, Java RMI

SSH, Java RMI

SSH, Java RMI

HTT
P

App. Server VM

 Nginx Server

 NFS Storage:
 media files

...

NFS

HTTP

SQL

 Faban
 Agent

 Faban
 Agent

Fig. 6 CloudStone benchmark’s extended topology.

We validate our approach with the CloudStone [12, 37] web benchmark deployed
in Amazon AWS. It follows the standard 3-tier architecture. By default CloudStone
is not scalable, meaning that it can only use a single AS. Thus we had to extend
it to accommodate multiple servers. Our installation scripts and configurations are
available as open source code. For space considerations we will not discuss these
technical details and will only provide an overview. The interested readers can refer
to our online documentation and installation instructions.1

The benchmark deployment topology is depicted in Figure 6. CloudStone uses
the Faban harness to manage the runs and to emulate users. The faban driver, which
is deployed in the client VM communicates with the faban agents deployed in other
VMs to start or stop tests. It also emulates the incoming user requests to the appli-

1 http://nikolaygrozev.wordpress.com/2014/06/02/advanced-automated-cloudstone-setup-in-
ubuntu-vms-part-2/

18 Nikolay Grozev and Rajkumar Buyya

cation. These requests arrive at a HAProxy load balancer which distributes them
across one or many application servers (AS). CloudStone is based on the Olio ap-
plication, which is a PHP social network website deployed in a Nginx server. In the
beginning we start with a single AS “behind” the load balancer. When a new AS
VM is provisioned we associate it with the load balancer. We update its weighted
round robin policy, so that incoming request are distributed among the AS VMs
proportionally to their declared CPU capacity (i.e. ECU).

The persistent layer is hosted in a MySql server deployed within a separate DB
VM. CloudStone has two additional components - (i) a geocoding service called
GeoCoder, hosted in an Apache Tomcat server and (ii) a shared file storage hosting
media files. They are both required by all application servers. We have deployed the
geocoding service in the DB VM. The file storage is deployed in a Network File
System (NFS) server on a separate VM with 1TB EBS storage, which is mounted
from each AS VM.

We use “m3.medium” VMs for the client, load balancer and DB server and
“m1.small” for the NFS server. The types of the AS VMs are defined differently
for each experiment. All VMs run 64bit Ubuntu Linux 14.04.

Our prototype of an autoscaling component is hosted on an on-premises physical
machine and implements the previously discussed algorithms and approaches. It
uses the JClouds [24] multi-cloud library to provision resources, and thus can be
used in other clouds as well. We use the NuPIC [30] and FANN [16] libraries to
implement HTM and ANN respectively. We ignore the first 110 anomaly scores
reported from the HTM, as we observed that these results are inaccurate (i.e. always
1 or 0) until it receives initial training. Whenever a new AS VM is provisioned we
initialise it with a deep copy of the HTM of the first AS VM, which is the most
trained one. The monitoring programs deployed within each VM are implemented
as bash scripts, and are accessed by the autoscaling component through SSH. Our
implementation of Algorithm 2 uses ∆ = 5.

Previously we discussed that the number of current users could be approximated
by counting the number of distinct IP addresses to which there is an active TCP
session. However, in CloudStone all users are emulated from the same client VM
and thus have the same source IP address. Thus, we use the number of recently
modified web server session files instead.

Our autoscaling component implementation follows the Amazon Auto Scal-
ing [3] approach and provisions a new AS VM once the average utilisation of the
server farm reaches 70% for more than 10 seconds. Hence, we ensure that in all ex-
periments the AS VMs are not overloaded. Thus, even if there are SLA violations,
they are caused either by the network or the DB layer, and the AS layer does not
contribute to them. We also implement a cool down period of 10 minutes.

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 19

Table 1 AWS VM type definitions.

VM type ECU RAM Cost per hour
m1.small 1 1.7GB $0.058
m1.medium 2 3.75GB $0.117
m3.medium 3 3.75GB $0.098

7 Validation

In our experiments, we consider three VM types: m1.small, m1.medium and m3.medium.
Table 1 summarises their cost and declared capacities in the Sydney AWS region
which we use.

In all experiments we use the same workload. We start by emulating 30 users
and each 6 minutes we increase the total number of users with 10 until 400 users are
reached. To achieve this we run a sequence of CloudStone benchmarks, each having
1 minute ramp-up and 5 minutes steady state execution time. Given CloudStone’s
start-up and shut-down times, this amounts to more than 5 hours per experiment.
The goal is to gradually increase the number of users, thus causing the system to
scale up multiple times.

To test our approach in the case of a workload characteristic change we “inject”
such a change 3.5 hours after each experiment’s start. To do so we manipulate the
utilisation monitors to report higher values. More specifically they increase the re-
ported CPU utilisations with 10% and the reported RAM utilisation with 1GB plus
2MB for every currently served user.

We implement one experiment, which is initialised with a m1.small AS VM and
each new VM’s type is chosen based on our method (DVTS). We also execute 3
baseline experiments, each of which statically selects the same VM type whenever
a new VM is needed, analogously to the standard AWS Auto Scaling rules.

First we investigate the behaviour of DVTS before the workload change. It con-
tinuously trains one HTM for the first AS VM and the ANN. In the initial stages
the ANN learning rate and momentum decrease and increase respectively to facili-
tate faster training. For example, the learning rate lrk (defined in Eq. 9) during the
initial stages is depicted in Fig 7. It shows how lrk drastically reduces as the ANN
improves its accuracy after only a few tens of training samples. Once the AS VM
gets overloaded we select a new VM type. At this point we only have information
about m1.small in the capacity repository and therefore we infer the other CPU ca-
pacities based on Eq. 4. Finally using Algorithm 1 we select m3.medium as the type
for the second VM.

After the new VM is instantiated, the autoscaling component starts its moni-
toring. It trains the ANN and a new dedicated HTM with its measurements. It also
updates the capacity repository with the CPU capacity of the new VM. Surprisingly,
we observe that on average its CPU capacity is about 35% better than the one of the
m1.small VM, even though according to the specification m3.medium has 3 ECUs
and m1.small has 1. Therefore, the previous extrapolation of m3.medium’s capacity

20 Nikolay Grozev and Rajkumar Buyya

0 100 200 300 400 500 600

0.
00

0
0.

01
5

0.
03

0

Training Sample Index

Le
ar

ni
ng

 R
at

e

Fig. 7 Learning rate lrk during initial stages of training the ANN.

has been an overestimation. Hence, when a new VM is needed again, the algorithm
selects m1.small again.

3.5 hours after the start of the experiment the workload change is injected. This
is reflected in the HTMs’ anomaly scores ank and the ANN’s errors. Consequently,
the learning rate lrk, the momentum mk and the epochs ek also change to speed up
the learning process as per equations 9, 10 and 11 and as a result the ANN adapts
quickly to the workload change. As discussed for each sample we compute its error
(RMSE-pre) before updating the ANN. Figure 8 depicts how these errors increase
when the change is injected and decrease afterwards as the ANN adapts timely.

Eventually the load increases enough so the system needs to scale up again. Due
to the injected change, the workload has become much more memory intensive,
which is reflected in the ANN’s prediction. Hence m1.small can serve just a few
users, given it has only 1.7GB RAM. At that point the CPU capacity of m1.medium
is inferred from the capacities of m1.small and m3.medium as per Eq. 4, since it has
not been used before. Consequently Algorithm 1 selects m1.medium for the 4th VM
just before the experiment completes.

For each experiment, Figure 9 depicts the timelines of the allocated VMs and
the total experiment costs. For each VM the type and cost are specified to the right.
Our selection policy is listed as DVTS. The baseline policy which statically selects
m1.small allocates 8 new VMs after the workload change as m1.small can serve
just a few users under the new workload. In fact, if there was no cool down period
in the autoscaling, this baseline would have exceeded the AWS limit of allowed
number of VM instances before the end of the experiment. The baselines which

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 21

0.
00

0.
10

0.
20

Training Sample Index After Workload Change

R
M

S
E

pr
e

0 6 12 20 28 36 44 52 60

Fig. 8 RMSE-pre in the presence of a workload change. The 0 index corresponds to the first sample
after the workload change.

select m1.medium and m3.medium fail to make use of m1.small instances before the
change injection, which offers better performance for money.

Admittedly, in the beginning DVTS did a misstep with the selection of m3.medium,
because it started with an empty capacity repository and had to populate it and infer
CPU capacities “on the go”. This could have been avoided by prepopulating the ca-
pacity repository with test or historical data. We could expect that such inaccuracies
are avoided at later stages, once more capacity and training data is present. Still,
our approach outperformed all baselines in terms of incurred costs with more than
20% even though its effectiveness was hampered by the lack of contextual data in
the initial stages.

Our experiments tested DVTS and the baselines with a workload, which is lower
than what is observed in some applications. While our tests did not allocate more
than 12 VMs (in the baseline experiment, which statically allocates m1.small) many
real world systems allocate hundreds or even thousands of servers. We argue that in
such cases, DVTS will perform better than demonstrated, as there will be much more
training data and thus the VM types’ capacity estimations will be determined more
accurately and the machine learning approaches will converge faster. As discussed,
that would allow some of the initial missteps of DVTS to be avoided. Moreover, as
the number of AS VMs grows, so does the cost inefficiency caused by the wastage
of allocated resources, which can be reduced by DVTS.

Finally, the response times in the DVTS experiment and all baseline experiments
were equivalent. All experiments scale up once the AS VMs’ utilisations exceed the
predefined thresholds, and thus never become overloaded enough to cause response

22 Nikolay Grozev and Rajkumar Buyya

Time After Experiment Start

DVTS Total Cost:1.129$
0.348$, m1.small
0.490$, m3.medium
0.174$, m1.small
0.117$, m1.medium

AWS−style static (m1.small) Total Cost:1.508$
0.348$, m1.small
0.290$, m1.small
0.232$, m1.small
0.174$, m1.small
0.116$, m1.small
0.116$, m1.small
0.116$, m1.small
0.116$, m1.small
0.116$, m1.small
0.058$, m1.small
0.058$, m1.small
0.058$, m1.small

AWS−style static (m1.medium) Total Cost:1.638$
0.702$, m1.medium
0.585$, m1.medium
0.351$, m1.medium

AWS−style static (m3.medium) Total Cost:1.372$
0.588$, m3.medium
0.490$, m3.medium
0.294$, m3.medium

0h 1h 2h 3h 4h 5h

Fig. 9 Timelines and costs of all VMs grouped by experiments. DVTS is our approach. The AWS-
style policies are the baselines, which statically select a predefined VM type.

delays. The load balancer is equally utilised in all experiments, as it serves the same
number of users, although it redirects them differently among the AS VMs. Simi-
larly, the DB layer is equally utilised, as it always serves all users from all AS VMs.

8 Open Research Problems

Our approach can achieve even greater efficiency, if it periodically replaces the al-
ready running VMs with more suitable ones in terms of cost and performance, once
there is a workload change. New load balancing policies, which take into account
the actual VM capacities can also be explored. Another promising avenue is opti-
mising the scaling down mechanisms — i.e. selecting which VMs to terminate when

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 23

the load decreases. Our approach, which currently optimises cost, can be extended
to also consider other factors like energy efficiency. This would be important when
executing application servers in private clouds. One can incorporate historical data
about VM types’ resource capacity and workload characteristics in our proposed
algorithms.

To enhance reliability, autoscaling systems in clouds need to consider failures of
services and resources within and across one or more cloud service providers [31].
To enhance sustainability of clouds, auto-scaling systems need to manage multi-
ple types of resources (i.e., compute, storage, network, and cooling systems) within
cloud data centers in a seamless manner to reduce overall energy consumption. Fur-
thermore, they can also scale across multiple clouds to harness renewable energy-
powered cloud data centers to minimise their carbon footprint on the environ-
ment [40].

9 Summary and Conclusions

In this work we have introduced an approach for VM type selection when autoscal-
ing application servers. It uses a combination of heuristics and machine learning
approaches to “learn” the application’s performance characteristics and to adapt to
workload changes in real time. To validate our work, we have developed a prototype,
extended the CloudStone benchmark and executed experiments in AWS EC2. We
have made improvements to ensure our machine learning techniques train quickly
and are usable in real time. Also we have introduced heuristics to approximate VM
resource capacities and workload resource requirements even if there is no readily
usable data, thus making our approach useful given only partial knowledge. Results
show that our approach can adapt timely to workload changes and can decrease the
cost compared to typical static selection policies. We identified a number of open
issues that form the basis for future research directions.

Acknowledgements We thank Rodrigo Calheiros, Amir Vahid Dastjerdi, Adel Nadjaran Toosi,
and Simone Romano for their comments on improving this work. We also thank Amazon.com, Inc
for their support through the AWS in Education Research Grant.

References

[1] Amund Aarsten, Davide Brugali, and Giuseppe Menga. Patterns for three-tier
client/server applications. In Proceedings of Pattern Languages of Programs
(PLoP ’96), 1996.

[2] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elasticity con-
troller for cloud infrastructures. In Network Operations and Management Sym-
posium (NOMS), 2012 IEEE, pages 204–212, April 2012.

24 Nikolay Grozev and Rajkumar Buyya

[3] Amazon. Amazon Auto Scaling, January 14 2016.
[4] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement

learning towards automating resource allocation and application scalabil-
ity in the cloud. Concurrency and Computation: Practice and Experience,
25(12):1656–1674, 2013.

[5] E.A. Brewer. Towards Robust Distributed Systems. In Proceedings of the
Annual ACM Symposium on Principles of Distributed Computing, volume 19,
pages 7–10, New York, NY, US, jul 2000. ACM.

[6] Eric Brewer. CAP Twelve Years Later: How the “Rules” Have Changed. Com-
puter, 45(2):23, 2012.

[7] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning algo-
rithms. Software: Practice and Experience, 41(1):23–50, January 2011.

[8] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Record,
39(4):12–27, may 2010.

[9] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Ev-
genia Smirni. Automated anomaly detection and performance modeling of
enterprise applications. ACM Transactions on Computer Systems, 27(3):1–32,
November 2009.

[10] T.C. Chieu, A. Mohindra, and A.A. Karve. Scalability and Performance of
Web Applications in a Compute Cloud. In Proceedings of the IEEE Interna-
tional Conference on e-Business Engineering, pages 317–323, 2011.

[11] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. Dynamic Scaling of Web
Applications in a Virtualized Cloud Computing Environment. In Proceed-
ings of the IEEE International Conference on e-Business Engineering (ICEBE
2009), pages 281–286. IEEE, oct. 2009.

[12] CloudSuite. CloudSuite’s CloudStone, January 14 2016.
[13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-
lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christo-
pher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally dis-
tributed database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, August 2013.

[14] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. EC2 Performance Analy-
sis for Resource Provisioning of Service-Oriented Applications. In Proceed-
ings of the International Conference on Service-Oriented Computing (ICSOC
2009), ICSOC/ServiceWave’09, pages 197–207, Berlin, Heidelberg, 2009.
Springer-Verlag.

[15] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nico-
las Rivierre, and Isis Truck. Using Reinforcement Learning for Autonomic
Resource Allocation in Clouds: Towards a Fully Automated Workflow. In Pro-
ceedings of the 7th International Conference on Autonomic and Autonomous
Systems (ICAS 2011), pages 67–74, May 2011.

Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments 25

[16] FANN. FANN, January 13 2016.
[17] Martin Fowler. Patterns of enterprise application architecture. Addison-

Wesley Professional, 2003.
[18] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang.

Adaptive, Model-driven Autoscaling for Cloud Applications. In 11th Interna-
tional Conference on Autonomic Computing, ICAC ’14, pages 57–64, 2014.

[19] Grok. Grok, January 13 2016.
[20] Nikolay Grozev and Rajkumar Buyya. Performance Modelling and Simula-

tion of Three-Tier Applications in Cloud and Multi-Cloud Environments. The
Computer Journal, 2013.

[21] H. Fernandez et al. Autoscaling Web Applications in Heterogeneous Cloud
Infrastructures. In Proc. of the IEEE International Conference on Cloud En-
gineering, pages 195–204, March 2014.

[22] Jeff Hawkins, Subutai Ahmad, and Donna Dubinsky. Hierarchical Temporal
Memory including HTM Cortical Learning Algorithm. Technical report, Nu-
menta Inc, Sep 2011.

[23] Jeff Hawkins and Sandra Blakeslee. On Intelligence. Times Books, New York,
USA, 2004.

[24] JClouds. JClouds, January 14 2016.
[25] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas. Perfor-

mance implications of multi-tier application deployments on infrastructure-as-
a-service clouds: Towards performance modeling. Future Generation Com-
puter Systems, 29(5):1254–1264, 2013.

[26] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano. Auto-
scaling Techniques for Elastic Applications in Cloud Environments. Technical
Report EHU-KAT-IK-09-12, Department of Computer Architecture and Tech-
nology, University of the Basque Country, 2012.

[27] Miguel Moreira and Emile Fiesler. Neural networks with adaptive learning rate
and momentum terms. Technical Report 95-04, IDIAP, Martigny, Switzerland,
October 1995.

[28] Vernon Mountcastle. An organizing principle for cerebral function: the unit
model and the distributed system. In G. Edelman and V. Mountcastle, editors,
The Mindful Brain. MIT Press, Cambridge, MA, US, 1978.

[29] Numenta. Numenta, February 13 2014.
[30] Numenta. Numenta Platform for Intelligent Computing (NuPIC), February 13

2014.
[31] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. A reliable and

cost-efficient auto-scaling system for web applications using heterogeneous
spot instances. Journal of Network and Computer Applications, 65:167 – 180,
2016.

[32] Ariel Ortiz Ramirez. Three-Tier Architecture. Linux Journal, 2000(75), July
2000.

[33] RightScale. RightScale, January 14 2016.
[34] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime Mea-

surements in the Cloud: Observing, Analyzing, and Reducing Variance. The

26 Nikolay Grozev and Rajkumar Buyya

Proceedings of the VLDB Endowment (PVLDB), 3(1-2):460–471, September
2010.

[35] Bradley Simmons, Hamoun Ghanbari, Marin Litoiu, and Gabriel Iszlai. Man-
aging a saas application in the cloud using paas policy sets and a strategy-tree.
In Proceedings of the 7th International Conference on Network and Services
Management, CNSM ’11, pages 343–347, Laxenburg, Austria, Austria, 2011.
International Federation for Information Processing.

[36] Rahul Singh, Upendra Sharma, Emmanuel Cecchet, and Prashant Shenoy. Au-
tonomic Mix-aware Provisioning for Non-stationary Data Center Workloads.
In Proceedings of the 7th International Conference on Autonomic Computing,
ICAC ’10, pages 21–30, New York, NY, USA, 2010. ACM.

[37] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hu-
bert Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Pat-
terson. Cloudstone: MultiPlatform, Multi-Language Benchmark and Measure-
ment Tools for Web 2.0. In Proceedings of Cloud Computing and Its Applica-
tions (CCA ’08), CCA ’08, 2008.

[38] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, C. Venkatramani,
and D. Rajan. Prepare: Predictive performance anomaly prevention for virtu-
alized cloud systems. In Proceedings of the 32nd International Conference on
Distributed Computing Systems (ICDCS), pages 285–294, June 2012.

[39] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don Newell. Modeling Vir-
tual Machine Performance: Challenges and Approaches. ACM SIGMETRICS
Performance Evaluation Review, 37(3):55–60, January 2010.

[40] Adel Nadjaran Toosi, Chenhao Qu, Marcos Dias de Assunção, and Rajkumar
Buyya. Renewable-aware geographical load balancing of web applications
for sustainable data centers. Journal of Network and Computer Applications,
83:155–168, 2017.

[41] Johan Tordsson, Rubén S. Montero, Rafael Moreno-Vozmediano, and Igna-
cio M. Llorente. Cloud brokering mechanisms for optimized placement of
virtual machines across multiple providers. Future Generation Computer Sys-
tems, 28(2):358–367, 2012.

[42] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon. Accelerat-
ing the convergence of the back-propagation method. Biological Cybernetics,
59(4-5):257–263, 1988.

