
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2006; 36:1381–1419
Published online 8 June 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.725

A taxonomy of market-based
resource management systems
for utility-driven cluster
computing

Chee Shin Yeo and Rajkumar Buyya∗,†

Grid Computing and Distributed Systems Laboratory,
Department of Computer Science and Software Engineering, The University of Melbourne, Australia

SUMMARY

In utility-driven cluster computing, cluster Resource Management Systems (RMSs) need to know the
specific needs of different users in order to allocate resources according to their needs. This in turn is
vital to achieve service-oriented Grid computing that harnesses resources distributed worldwide based on
users’ objectives. Recently, numerous market-based RMSs have been proposed to make use of real-world
market concepts and behavior to assign resources to users for various computing platforms. The aim of
this paper is to develop a taxonomy that characterizes and classifies how market-based RMSs can support
utility-driven cluster computing in practice. The taxonomy is then mapped to existing market-based RMSs
designed for both cluster and other computing platforms to survey current research developments and
identify outstanding issues. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 9 December 2004; Revised 4 August 2005; Accepted 27 September 2005

KEY WORDS: cluster computing; utility computing; market-based resource management systems; taxonomy

1. INTRODUCTION

Next-generation scientific research involves solving Grand Challenge Applications (GCAs) that
demand ever increasing amounts of computing power. Recently, a new type of High-Performance
Computing (HPC) paradigm called cluster computing [1–3] has become a more viable choice for
executing these GCAs since cluster systems are able to offer equally high-performance with a lower
price compared with traditional supercomputing systems. A cluster system comprises of independent
machines that are connected by high-speed networks and uses middlewares to create an illusion of

∗Correspondence to: Rajkumar Buyya, Department of Computer Science and Software Engineering, The University of
Melbourne, VIC 3010, Australia.
†E-mail: raj@cs.mu.oz.au

Copyright c© 2006 John Wiley & Sons, Ltd.

1382 C. S. YEO AND R. BUYYA

a single system [4] and hide the complexities of the underlying cluster architecture from the users.
For example, the cluster Resource Management System (RMS) provides a uniform interface for user-
level sequential and parallel applications to be executed on the cluster system and thus hides the
existence of multiple cluster nodes from users.

The cluster RMS supports four main functionalities: resource management; job queuing; job
scheduling; and job execution. It manages and maintains status information of the resources such as
processors and disk storage in the cluster system. Jobs submitted into the cluster system are initially
placed into queues until there are available resources to execute the jobs. The cluster RMS then invokes
a scheduler to determine how resources are assigned to jobs. After that, the cluster RMS dispatches the
jobs to the assigned nodes and manages the job execution processes before returning the results to the
users upon job completion.

In cluster computing, the producer is the owner of the cluster system that provides resources to
accomplish users’ service requests. Examples of resources that can be utilized in a cluster system are
processor power, memory storage and data storage. The consumer is the user of the resources provided
by the cluster system and can be either a physical human user or a software agent that represents a
human user and acts on his behalf. A cluster system has multiple consumers submitting job requests
that need to be executed.

In utility-driven cluster computing, consumers have different requirements and needs for various
jobs and thus can assign value or utility to their job requests. During job submission to the cluster
RMS, consumers can specify their requirements and preferences for each respective job using Quality
of Service (QoS) parameters. The cluster RMS then considers these QoS parameters when making
resource allocation decisions. This provides a user-centric approach with better user personalization
since consumers can potentially affect the resource allocation outcomes, based on their assigned
utility. Thus, the objective of the cluster RMS is to maximize overall consumers’ utility satisfaction.
For example, the cluster RMS can achieve this objective from either the job perspective, where it
maximizes the number of jobs whose QoS is satisfied or the consumer perspective, where it maximizes
the aggregate utility perceived by individual consumers.

Existing cluster RMSs such as Condor [5], LoadLeveler [6], Load Sharing Facility (LSF) [7],
Portable Batch System (PBS) [8] and Sun Grid Engine (SGE) [9] are not viable to support utility-driven
cluster computing since they still adopt system-centric resource allocation approaches that focus on
optimizing overall cluster performance. For example, these cluster RMSs aim to maximize processor
throughput and utilization for the cluster and minimize the average waiting time and response time for
the jobs. These system-centric approaches assume that all job requests are of equal user importance and
thus neglect actual levels of service required by different users. They do not employ utility models for
allocation and management of resources that would otherwise consider and thus achieve the desired
utility for cluster users and owners. Therefore, these existing cluster RMSs need to be extended to
support utility-driven cluster computing.

The advent of Grid computing [10] further reinforces the necessity for utility-driven cluster
computing. In service-oriented Grid computing [11], users can specify various levels of service
required for processing their jobs on a Grid. Grid schedulers such as Grid brokers [12,13] and
Grid workflow engines [14] then make use of this user-specific information to discover available
Grid resources and determine the most suitable Grid resource to submit the jobs to. Currently,
cluster systems dominate the majority of Grid Resources whereby Grid schedulers submit and
monitor their jobs being executed on the cluster systems through interaction with their cluster RMS.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1383

Market
Resource Management

Systems

Clusters

Distributed Databases

Grids

Peer to Peer

World Wide Web

Computing

Platforms

Distributed Systems
Parallel and Evaluation Model Taxonomy

Resource Allocation Model Taxonomy

Job Model Taxonomy

Resource Model Taxonomy

Market Model Taxonomy

Taxonomies

based

Figure 1. Categorization of market-based RMSs.

Examples of large-scale Grid systems that are composed of cluster systems includes the TeraGrid [15]
in the United States, LHC Computing Grid [16] in Europe, NAREGI [17] in Japan, and APAC Grid [18]
in Australia.

In addition, commercial vendors are progressing aggressively towards providing a service
market through Grid computing. For instance, IBM’s E-Business On Demand [19], HP’s Adaptive
Enterprise [20] and Sun Microsystem’s pay-as-you-go [21] are using Grid technologies to provide
dynamic service delivery where users only pay for what they use and thus save from investing heavily
on computing facilities. Vendors and respective users have to agree on Service Level Agreements
(SLAs) that serve as contracts outlining the expected level of service performance such that vendors
are liable to compensate users for any service under-performance. Cluster RMSs thus need to
support SLA-based resource allocations that not only balance competing user needs but also enhance
the profitability of the cluster owner while delivering the expected level of service performance.
This reinforces the significance of using market-based mechanisms to enable utility-driven cluster
computing. Market concepts and mechanisms incorporated at the cluster computing level can enforce
SLAs to deliver utility and facilitate easy extensions to support Grid economy [22] for service-oriented
Grids.

Market-based RMSs have been utilized in many different computing platforms: clusters [23–25];
distributed databases [26,27]; Grids [28–30]; parallel and distributed systems [31–33]; peer-to-
peer [34]; and World Wide Web [35–37] (see Figure 1). They have a greater emphasis on user QoS
requirements as opposed to traditional RMSs that focus on maximizing system usage. Market concepts
can be used to prioritize competing jobs and assign resources to jobs according to users’ valuations for
QoS requirements and cluster resources.

Market-based cluster RMSs need to support three requirements in order to enable utility-driven
cluster computing [23]: (i) provide a means for users to specify their QoS needs and valuations;
(ii) utilize policies to translate the valuations into resource allocations; and (iii) support mechanisms
to enforce the resource allocations in order to achieve each individual user’s perceived value or
utility. The first requirement allows the market-based cluster RMS to be aware of user-centric service

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1384 C. S. YEO AND R. BUYYA

requirements so that competing service requests can be prioritized more accurately. The second
requirement then determines how the cluster RMS can allocate resources appropriately and effectively
to different requests by considering the solicited service requirements. The third requirement finally
needs the underlying cluster operating system mechanisms to recognize and enforce the assigned
resource allocations.

In this paper, we first present an abstract model to conceptualize the essential functions of a market-
based cluster RMS to support utility-driven cluster computing in practice. We then develop a taxonomy
consisting of five sub-taxonomies, namely the Market Model, the Resource Model, the Job Model, the
Resource Allocation Model and the Evaluation Model (see Figure 1). The taxonomy is applied in a
survey to gain a better understanding of current research progress in developing effective market-based
cluster RMSs.

The taxonomy not only helps to reveal key design factors and issues that are still outstanding and
crucial but also provide insights for extending and reusing components of existing market-based RMSs.
Therefore, the taxonomy can lead towards more practical and enhanced market-based cluster RMSs
being designed and implemented in future.

The market-based RMSs selected for the survey are primarily research work as they reflect the
latest technological advances. The design concepts and architectures of these research-based RMSs are
also well-documented in publications to facilitate comprehensive comparisons, unlike commercially
released products by vendors.

2. RELATED WORK

There are several proposed taxonomies for scheduling in distributed and heterogeneous computing.
However, none of these taxonomies focus on market-based cluster computing environments.
The taxonomy in [38] classifies scheduling strategies for general-purpose distributed systems. In [39],
two taxonomies for state estimation and decision making are proposed to characterize dynamic
scheduling for distributed systems. The EM3 taxonomy in [40] utilizes the number of different
execution modes and machine models to identify and classify heterogeneous systems. In [41], a
modified version of the scheduling taxonomy in [40] is proposed to describe the resource allocation
of heterogeneous systems. The taxonomy in [42] considers three characteristics of heterogeneous
systems: application model; platform model; and mapping strategy to define resource matching and
scheduling. A taxonomy on Grid RMS [43] includes a scheduling sub-taxonomy that examines
four scheduling characteristics: scheduler organization; state estimation; rescheduling; and scheduling
policy. However, our taxonomy focuses on market-based cluster RMSs for utility-driven cluster
computing where cluster systems have a number of significant differences compared with Grid systems.
One key difference is that a cluster system is distributed within a single administrative domain, whereas
a Grid system is distributed across multiple administrative domains.

3. ABSTRACT MODEL FOR MARKET-BASED CLUSTER RESOURCE MANAGEMENT
SYSTEM

Figure 2 outlines an abstract model for the market-based cluster RMS. The purpose of the abstract
model is to identify generic components that are fundamental and essential in a practical market-based

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1385

Job
Control

Worker Manager
Interface

Job
Control

Worker Manager
Interface

Nodes
Cluster

...........

Manager
Cluster

Consumers

Node
Status/Load

Monitor

AccountingPricing Admission Control

Job Monitor

Manager Consumer Interface

Request Examiner

Scheduler

Dispatcher

Manager Worker Interface

Job
Control

Worker Manager
Interface

...........

Figure 2. The abstract model for market-based cluster RMSs.

cluster RMS and portray the interactions between these components. Thus, the abstract model can be
used to study how existing cluster RMS architectures can be leveraged and extended to incorporate
market-based mechanisms to support utility-driven cluster computing in practice.

The market-based cluster RMS consists of two primary entities: a cluster manager; and a cluster
node. For implementations within cluster systems, the machine that operates as the cluster manager

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1386 C. S. YEO AND R. BUYYA

can be known as the manager, server or master node and the machine that operates as the cluster
node can be known as the worker or execution node. The actual number of cluster manager and
cluster nodes depends on the implemented management control. For instance, a simple and common
configuration for cluster systems is to support centralized management control where a single cluster
manager collates multiple cluster nodes into a pool of resources as shown in Figure 2.

The cluster manager serves as the front-end for users and provides the scheduling engine responsible
for allocating cluster resources to user applications. Thus, it supports two interfaces: the manager–
consumer interface to accept requests from consumers; and the manager–worker interface to execute
requests on selected cluster nodes. The consumers can be actual user applications, service brokers that
act on the behalf of user applications or other cluster RMSs such as those operating in multi-clustering
or Grid federation environments where requests that cannot be fulfilled locally are forwarded to other
cooperative clusters.

When a service request is first submitted, the request examiner interprets the submitted request
for QoS requirements such as deadline and budget. The admission control then determines whether
to accept or reject the request in order to ensure that the cluster system is not overloaded whereby
many requests cannot be fulfilled successfully. The scheduler selects suitable worker nodes to satisfy
the request and the dispatcher starts the execution on the selected worker nodes. The node status/load
monitor keeps track of the availability of the nodes and their workload, while the job monitor maintains
the execution progress of requests.

It is vital for a market-based cluster RMS to support pricing and accounting mechanisms.
The pricing mechanism decides how requests are charged. For instance, requests can be charged
based on submission time (peak/off-peak), pricing rates (fixed/changing) or availability of resources
(supply/demand). Pricing serves as a basis for managing the supply and demand of cluster resources
and facilitates in prioritizing resource allocations effectively. The accounting mechanism maintains
the actual usage of resources by requests so that the final cost can be computed and charged to the
consumers. In addition, the maintained historical usage information can be utilized by the scheduler to
improve resource allocation decisions.

The cluster nodes provide the resources for the cluster system to execute service requests via the
worker–manager interface. The job control ensures that requests are fulfilled by monitoring execution
progress and enforcing resource assignment for executing requests.

4. TAXONOMY

The taxonomy emphasizes on the practical aspects of market-based cluster RMSs that are vital to
achieve utility-driven cluster computing in practice. It identifies key design factors and issues based on
five major perspectives, namely the Market Model, the Resource Model, the Job Model, the Resource
Allocation Model and the Evaluation Model.

4.1. Market Model taxonomy

The Market Model taxonomy examines how market concepts present in real-world human economies
are incorporated into market-based cluster RMSs. This allows developers to understand what market-
related attributes need to be considered, and in particular, to deliver utility. The Market Model
taxonomy comprises four sub-taxonomies: the economic model, the participant focus, the trading
environment and QoS attributes (see Figure 3).

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1387

Market Model
Taxonomy

Economic Model

Participant Focus

Posted Price

Bargaining

Tendering / Contract net

Commodity Market

Auction

Bid based Proportional Resource Sharing

Community / Coalition / Bartering

Monopoly and Oligopoly

Consumer

Producer

Facilitator

Cooperative

Competitive
Trading Environment

Time

Cost

Reliability

Trust / Security

QoS Attributes

Figure 3. The Market Model taxonomy.

4.1.1. Economic model

The economic model derived from [44] establishes how resources are allocated in a market-driven
computing environment. Selection of a suitable economic model primarily depends on the market
interaction required between the consumers and producers.

In a commodity market, producers specify prices and consumers pay for the amount of resources
they consume. The pricing of resources can be determined using various parameters, such as usage
time and usage quantity. There can be flat or variant pricing rates. A flat rate means that pricing is fixed
for a certain time period, whereas, a variant rate means that pricing changes over time, often based on
the current supply and demand at that point of time. A higher demand results in a higher variant rate.

Posted price operates similarly to the commodity market. However, special offers are advertised
openly so that consumers are aware of discounted prices and can thus utilize the offers. Bargaining
enables both producers and consumers to negotiate for a mutually agreeable price. Producers typically
start with higher prices to maximize profits but consumers start with lower prices to minimize costs.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1388 C. S. YEO AND R. BUYYA

Negotiation stops when the producer or consumer does not wish to negotiate further or a mutually
agreeable price has been reached. Bargaining is often used when supply and demand prices cannot be
easily defined.

In tendering/contract-net, the consumer first announces their requirements to invite bids from
potential producers. Producers then evaluate the requirements and can respond with bids if they are
interested and capable of the service or ignore the announcement if they are not interested or too busy.
The consumer consolidates bids from potential producers, select the most suitable producer and sends
a tender to the selected producer. The tender serves as a contract and specifies conditions that the
producer has to accept and conform to. Penalties may be imposed on producers if the conditions are
not met. The selected producer accepts the tender and delivers the required service. The consumer
then notifies other producers of the unsuccessful outcome. Tendering/contract-net allows a consumer
to locate the most suitable producer to meet its service request. However, it does not always guarantee
locating the best producer each time since potential producers can choose not to respond or may be too
busy.

Auction allows multiple consumers to negotiate with a single producer by submitting bids through
an auctioneer. The auctioneer acts as the coordinator and sets the rules of the auction. Negotiation
continues until a single clearing price is reached and accepted or rejected by the producer. Thus, auction
regulates supply and demand based on the number of bidders, bidding price and offer price. There are
basically five primary types of auctions, namely English, First-price, Vickrey, Dutch and Double [44].

Bid-based proportional resource sharing assigns resources proportionally, based on the bids given
by the consumers. So, each consumer is allocated a proportion of the resources as compared with
a typical auction model where only one consumer with the winning bid is entitled to the resource.
This is ideal for managing a large shared resource where multiple consumers are equally entitled to the
resource. Community/coalition/bartering supports a group of community producers/consumers who
shares each others’ resources to create a cooperative sharing environment. This model is typically
adopted in computing environments where consumers are also producers and thus both contribute and
use resources. Mechanisms are required to regulate that participants act fairly in both the roles of
producers and consumers. Monopoly/oligopoly depicts a non-competitive market where only a single
producer (monopoly) or a number of producers (oligopoly) determines the market price. Consumers are
not able to negotiate or affect the stated price from the producers.

Most market-based cluster RMSs adopt an individual economic model directly. It is also possible to
use hybrids or modified variants of the economic models in order to harness the strengths of different
models and provide improved customizations based on user-specific application criteria. For example,
the Stanford Peers Initiative [34] adopts a hybrid of auction and bartering economic models. Through
an auction, the producer site selects the most beneficial consumer site with the lowest bid request for
storage space, in exchange for its earlier request for storage space on the consumer site. This storage
exchange between server and consumer sites creates a bartering system.

4.1.2. Participant focus

The participant focus identifies the party for whom the market-based cluster RMS aims to achieve
benefit or utility. Having a consumer participant focus implies that a market-based cluster RMS
aims to meet the requirements specified by cluster users and possibly optimize their perceived
utility. For instance, the consumer may want to spend a minimal budget for a particular job.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1389

Similarly, a producer participant focus results in resource owners fulfilling their desired utility. It is
also possible to have a facilitator participant focus whereby the facilitator acts like an exchange and
gains profit by coordinating and negotiating resource allocations between consumers and producers.

In utility-driven cluster computing, market-based cluster RMSs need to focus primarily on
achieving utility for the consumers since their key purpose is to satisfy end-users’ demand for
service. For example, REXEC [23] maximizes utility for consumers by allocating processing time
proportionally to jobs based on their bid values. However, producers and facilitators may have specific
requirements that also need to be taken into consideration and not neglected totally. For instance,
Cluster-On-Demand [25] has producer participant focus as each cluster manager maximizes its
earnings by accessing the risk and reward of a new job before accepting it. It is also possible for
market-based RMSs to have multiple participant focus. For example, the Stanford Peers Initiative [34]
has both producer and consumer participant focuses as a site contributes storage space to other sites
(producer) but also requests storage space in return from these sites (consumer).

4.1.3. Trading environment

The trading environment generalizes the motive of trading between the participants that are supported
via the market-based cluster RMS. The needs and aims of various participants establish the trading
relationships between them. In a cooperative trading environment, participants work together with
one another to achieve a collective benefit for them, such as producers creating a resource sharing
environment that speeds up the execution of jobs. On the other hand, in a competitive trading
environment, each participant works towards its own individual benefit and does not take into account
how they affect other participants, such as consumers contending with one another to secure available
resources for their jobs.

A market-based cluster RMS can only support either a cooperative or competitive trading
environment, but not both. For example, in Libra [24], consumers are awarded incentives to encourage
submitting jobs with more relaxed deadlines so that jobs from other consumers can still be accepted.
REXEC [23] creates a competitive trading environment whereby consumers are allocated proportions
of processing time based on their bid values; a higher bid value entitles the consumer to a larger
proportion.

4.1.4. QoS attributes

QoS attributes describe service requirements that consumers require the producer to provide in a
service market. The time QoS attribute identifies the time required for various operations. Examples of
time QoS attributes are job execution time, data transfer time and the deadline required by the consumer
for the job to be completed. The cost QoS attribute depicts the cost involved for satisfying the job
request of the consumer. A cost QoS attribute can be monetary, such as the budget that a consumer is
willing to pay for the job to be completed or non-monetary, measured in units such as the data storage
(in bytes) required for the job to be executed.

The reliability QoS attribute represents the level of service guarantee that is expected by the
consumer. Jobs that require high reliability need the market-based cluster RMS to be highly fault-
tolerant whereby check-pointing and backup facilities, with fast recovery after service failure are
incorporated. The trust/security QoS attribute determines the level of security needed for executing

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1390 C. S. YEO AND R. BUYYA

Resource Model
Taxonomy

Management Control

Resource Composition

Scheduling Support

Accounting Mechanism

Centralized

Decentralized

Homogeneous

Heterogeneous

Space shared

Time shared

Centralized

Decentralized

Figure 4. The Resource Model taxonomy.

applications on resources. Jobs with highly sensitive and confidential information require a resource
with high trust/security to process.

Market-based cluster RMSs need to support time, cost and reliability QoS attributes as they are
critical in enabling a service market for utility-driven cluster computing. The trust/security QoS
attribute is also critical if the user applications require secure access to resources. For example,
Libra [24] guarantees that jobs accepted into the cluster finish within the users’ specified deadline
(time QoS attribute) and budget (cost QoS attribute). There is no market-based cluster RMS that
currently supports either reliability or trust/security QoS attributes.

Satisfying QoS attributes is highly critical in a service market as consumers pay based on the
different levels of service required. The market-based cluster RMS should be able to manage service
demands without sacrificing existing service requests and resulting in service failures. Failure to
meet QoS attributes not only requires the producer to compensate consumers but also has a bad
reputation on the producer that affects future credibility. For example, in Cluster-On-Demand [25]
and LibraSLA [45], penalties are incurred for failing to satisfy the jobs’ needs.

4.2. Resource Model taxonomy

The Resource Model taxonomy describes architectural characteristics of cluster systems. It is important
to design market-based cluster RMSs that conform to the clusters’ underlying system architectures
and operating environments since there may be certain cluster system attributes that can be exploited.
The Resource Model taxonomy comprises five sub-taxonomies: management control; resource
composition; scheduling support; and accounting mechanism (see Figure 4).

4.2.1. Management control

The management control depicts how the resources are managed and controled in the cluster systems.
A cluster with centralized management control has a single centralized resource manager that

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1391

administers all the resources and jobs in the cluster. On the other hand, a cluster with decentralized
management control has more than one decentralized resource manager managing subsets of resources
within a cluster. Decentralized resource managers need to communicate with one another in order to
be informed of local information of other managers.

A centralized resource manager collects and stores all local resource and job information within the
cluster at a single location. Since a centralized resource manager has the global knowledge of the entire
state of the cluster system, it is easier and faster for a market-based cluster RMS to communicate and
coordinate with a centralized resource manager, as opposed to several decentralized resource managers.
A centralized resource manager also allows a large change to be incorporated in the cluster environment
as the change needs to be updated at a single location.

However, a centralized management control is more susceptible to bottlenecks and failures due
to the overloading and malfunction of the single resource manager. A simple solution is to have
backup resource managers that can be activated when the current centralized resource manager fails.
In addition, centralized control architectures are less scalable compared to decentralized control
architectures. Since centralized and decentralized management have various strengths and weaknesses,
they perform better for different environments.

Centralized management control is mostly implemented in cluster systems since they are often
owned by a single organization and modeled as a single unified resource. Therefore, it is sufficient
for market-based cluster RMSs to assume centralized management control. For instance, Libra [24]
extends upon the underlying cluster RMSs such as PBS [8] that implement centralized management
control.

It may be appropriate for market-based cluster RMSs to have decentralized management control for
better scalability and reliability. For example, in Enhanced MOSIX [46], each cluster node makes its
independent resource allocation decisions, while in REXEC [23], multiple daemons separately discover
and determine the best node for a job. Decentralized management control also facilitates federation of
resources across multiple cluster systems. For example, in a cooperative and incentive-based coupling
of distributed clusters [47], every cluster system has an inter-cluster coordinator in addition to the
local cluster RMS to determine whether jobs should be processed locally or forwarded to other cluster
systems.

4.2.2. Resource composition

The resource composition defines the combination of resources that make up the cluster system.
A cluster system with a homogeneous resource composition consists of all worker nodes having the
same resource components and configurations, whereas a heterogeneous resource composition consists
of worker nodes having different resource components and configurations.

Most cluster systems have a homogeneous resource composition as it facilitates parallel processing
of applications that require the same type of resources to process. In addition, processing is also simpler
and much faster since there is no need to recompile the application for different resource configurations.
Therefore by default, market-based cluster RMSs assumes a homogeneous resource composition.

However, it is possible that some cluster systems have a heterogeneous resource composition since
heterogeneity can allow the concurrent execution of distinct applications that need different specific
resources. These cluster systems may have different groups of worker nodes with homogeneous
resource composition within each set for improved processing performance. Thus, it is ideal if

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1392 C. S. YEO AND R. BUYYA

market-based cluster RMSs can also support heterogeneous resource composition. These market-
based cluster RMSs must also have an effective means of translating requirements and measurements
such as required QoS attributes and load information across heterogeneous nodes to ensure accuracy.
For example, in Enhanced MOSIX [46], usages of various resources in a node are translated into a
single standard cost measure to support heterogeneity.

4.2.3. Scheduling support

The scheduling support determines the type of processing that is supported by the cluster’s underlying
operating system. The space-shared scheduling support enables only a single job to be executed at
any one time on a processor, whereas the time-shared scheduling support allows multiple jobs to be
executed at any one time on a processor. For example, most traditional cluster RMSs such as PBS [8]
and SGE [9] support both space-shared and time-shared scheduling supports.

Depending on its resource allocation approach, a market-based cluster RMSs may require either a
space-shared or a time-shared scheduling support. For a space-shared scheduling support, a started
job can finish earlier since it has full individual access to the processor and is thus executed faster.
However, submitted jobs also need to wait longer to be started for space-shared scheduling support if
no processor is free, assuming that preemption is not supported.

On the other hand, time-shared scheduling support only allows shared access to processors but may
reallocate unused processing time to other jobs if a job is not using the allocated processing power,
such as when reading or writing data. Therefore, time-shared scheduling support can lead to a higher
throughput of jobs over a period of time. Moreover, time-shared scheduling support is likely to incur
less latency for executing multiple jobs when compared with a space-shared scheduling support that
needs to preempt the current active job and start the new one. For instance, Libra [24], REXEC [23] and
Tycoon [30] utilize time-shared scheduling support to share proportions of processing power among
multiple active jobs.

4.2.4. Accounting mechanism

The accounting mechanism maintains and stores information about job executions in the cluster system.
The stored accounting information may then be used for charging purposes or planning future resource
allocation decisions. A centralized accounting mechanism denotes that information for the entire
cluster system is maintained by a single centralized accounting manager and stored on a single node.
For example, REXEC [23] has a centralized accounting service to maintain credit usage for each user.

A decentralized accounting mechanism indicates that multiple decentralized accounting managers
monitor and store separate sets of information on multiple nodes. For instance, in Tycoon [30], each
local host stores accounting information to compute service cost that users need to pay and determine
prices of advance resource reservation for risk-averse jobs.

Similar to the management control taxonomy, it is easier for market-based cluster RMSs to access
information based on the centralized accounting mechanism. However, the centralized accounting
mechanism is less reliable and scalable compared with the decentralized accounting mechanism.
For more flexibility and extensibility, market-based cluster RMSs can be designed to support both
centralized and decentralized accounting mechanisms. Most current implementations of market-based

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1393

Job Model
Taxonomy

Job Composition

Job Processing Type

QoS Update

QoS Specification

Constraint based

Rate based

Sequential

Parallel

Optimization based

Static

Dynamic

Single task

Multiple task
Independent

Dependent

Figure 5. The Job Model taxonomy.

RMS already have built-in accounting mechanisms that maintain job execution information but may
not support charging functionality which is critical to actually provide a service market.

A probable solution is to connect such market-based RMSs to specialized accounting mechanisms
that support charging functionality, such as GridBank [48] and QBank [49]. In GridBank, each Grid
resource uses a Grid resource meter to monitor the usage information and a GridBank charging module
to compute the cost. The centralized GridBank server then transfers the payment from the users’ bank
accounts to the Grid resource’s account. On the other hand, QBank supports both centralized and
decentralized configurations. For instance, the simplest and most tightly-coupled centralized QBank
configuration is having a central scheduler, bank server and database for all resources that are suitable
for a cluster environment. QBank also allows multiple schedulers, bank servers and databases for each
separate resource in different administrative domains to support a highly decentralized P2P or Grid
environment.

4.3. Job Model taxonomy

The Job Model taxonomy categorizes attributes of jobs that are to be executed on the cluster systems.
Market-based cluster RMSs need to take into account job attributes to ensure that different job types
with distinct requirements can be fulfilled successfully. The Job Model taxonomy comprises five sub-
taxonomies: job processing type; job composition; QoS specification; and QoS update (see Figure 5).

4.3.1. Job processing type

The job processing type describes the type of processing that is required by the job. For sequential
job processing type, the job executes on one processor independently. For parallel job processing
type, the parallel job has to be distributed to multiple processors before executing these multiple
processes simultaneously. Thus, parallel job processing type speeds up processing and is often used

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1394 C. S. YEO AND R. BUYYA

for solving complex problems. One common type of parallel job processing type is called message-
passing, where multiple processes of a parallel program on different processors interact with one
another via sending and receiving messages.

All market-based cluster RMSs already support sequential job processing type, which is a basic
requirement for job execution. However, they also need to support parallel job processing types since
most computation-intensive jobs submitted to cluster systems require parallel job processor type to
speed up processing of complex applications. For example, Enhanced MOSIX [46] and REXEC [23]
supports parallel job processing type.

4.3.2. Job composition

The job composition portrays the collection of tasks within a job that is defined by the user. The single-
task job composition refers to a job having a single task, while the multiple-task job composition refers
to a job being composed of multiple tasks.

For multiple-task job composition, the tasks can be either independent or dependent. Independent
tasks can be processed in parallel to minimize the overall processing time. For example, a parameter
sweep job has independent multiple-task job composition since it is composed of multiple independent
tasks, each with a different parameter.

On the other hand, tasks may depend on specific input data that are only available at remote locations
and need to be transferred to the execution node or are not yet available as some other jobs waiting to
be processed generate the data. This means that a dependent multiple-task job composition needs to
be processed in a pre-defined manner in order to ensure that all its required dependencies are satisfied.
For example, a workflow job has dependent multiple-task job composition. Directed Acyclic Graphs
(DAG) are commonly used to visualize the required pre-defined order of processing for workflows with
no cycles, whereas workflow specification languages such as Business Process Execution Language
(BPEL) [50] and XML-based workflow language (xWFL) [14] can be used to define and process
workflows.

It is essential for market-based cluster RMSs to support all three job compositions: single-
task; independent multiple-task; and dependent multiple-task. Single-task job composition is a basic
requirement and already supported by all market-based cluster RMSs. There are also many complex
scientific applications and business processes that require independent multiple-task job composition,
such as parameter-sweep or dependent multiple-task job composition, such as workflow for processing.
For example, Nimrod/G [28] dispatches and executes parameter-sweep jobs on a Grid. Currently,
there appears to be no market-based cluster RMS that can facilitate execution of parameter-sweep or
workflow jobs on cluster systems. Therefore, supporting all these job compositions in a market-based
cluster RMS expands the community of consumers that can utilize cluster resources.

More complex mechanisms are needed to support multiple-task job composition. The market-based
cluster RMS needs to schedule and monitor each task within the job to ensure that the overall job
requirements can still be met successfully. For dependent multiple-task job composition, it is important
to prioritize different dependencies between tasks. For example, a parent task with more dependent
child tasks needs to be processed earlier to avoid delays. It is also possible to execute independent
sets of dependable tasks in parallel since tasks are only dependent on one another within a set and not
across sets.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1395

4.3.3. QoS specification

The QoS specification describes how users can specify their QoS requirements for a job to indicate
their perceived level of utility. This provides cluster users with the capability to influence the resource
allocation outcome in the cluster.

Users can define constraint-based QoS specifications that use a bounded value or a range of values
for a particular QoS so that the minimal QoS requirements can be fulfilled. Some examples of
constraint-based QoS specifications that users can specify are execution deadline, execution budget,
memory storage size, disk storage size and processor power. For instance, a user can specify a deadline
less than one hour (value) or deadline between one and two hours (range of values) for executing a job
on cluster nodes with available memory storage size of more than 256 MB (value) and processor speed
between 200 GHz and 400 GHz (range of values).

A rate-based QoS specification allows users to define constant or variable rates that signify the
required level of service over time. For instance, a user can specify a constant cost depreciation rate of
ten credits per minute such that the user pays less for a slower job completion time. To support a higher
level of personalization, users can state optimization-based QoS specifications that identify a specific
QoS to optimize in order to maximize the users’ utility. For example, a user may optimize the deadline
of their job so that the job can be completed in the shortest possible time.

Market-based cluster RMSs may need to provide any of the constraint-based, rate-based or
optimization-based QoS specifications so that the required utility of consumers are considered and
delivered successfully. For example, REXEC [23] allows a user to specify the maximum bid value that
acts as a cost constraint for executing a job. Cluster-On-Demand [25] uses rate-based QoS specification
where each job has a value function that depreciates at a constant rate to represent its urgency.
Optimization-based QoS specification in Nimrod/G [28] minimizes time within deadline constraint
or cost within deadline constraint.

SLAs need to be negotiated and fixed between a cluster system and its users to ensure that an
expected level of service performance is guaranteed for submitted jobs. There are specially-designed
service specification languages, such as Web Services Agreement Specification (WS-Agreement) [51],
Web Service Level Agreement (WSLA) [52], and BPEL [50] that can be utilized by market-based
cluster RMSs to interpret and enforce negotiated SLAs.

4.3.4. QoS update

The QoS update determines whether QoS requirements of jobs can change after jobs are submitted
and accepted. The static QoS update means that the QoS requirements given during job submission
remain fixed and do not change after the job is submitted, while the dynamic QoS update means that
QoS requirements of the jobs can change. These dynamic changes may already be pre-defined during
job submission or modified by the user during an interactive job submission session.

Currently, all market-based cluster RMSs assumes static QoS update. For example, Libra [24] and
REXEC [23] only allow users to specify QoS constraints during initial job submission. Market-based
cluster RMSs also need to support dynamic QoS updates so that users have the flexibility to update
their latest QoS needs since it is possible that users have changing QoS needs over time. The market-
based cluster RMS should also be able to reassess newly changed QoS requirements and revise
resource assignments accordingly as previous resource assignments may be ineffective to meet the

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1396 C. S. YEO AND R. BUYYA

Resource Allocation Model
Taxonomy

Internal

External

Adaptive

Non adaptive

Soft

Hard

Resource Allocation Domain

Resource Allocation Update

QoS Support

Figure 6. The Resource Allocation Model taxonomy.

new requirements. In addition, it is highly probable that other planned or executing jobs may also be
affected so there is a need to reassess and reallocate resources to minimize any possible adverse effects.

4.4. Resource Allocation Model taxonomy

The Resource Allocation Model taxonomy analyzes factors that can influence how the market-based
cluster RMS operates and thus affect the resource assignment outcome. The Resource Allocation
Model taxonomy comprises three sub-taxonomies: resource allocation domain, resource allocation
update and QoS support (see Figure 6).

4.4.1. Resource allocation domain

The resource allocation domain defines the scope that the market-based cluster RMS is able to
operate in. Having an internal resource allocation domain restricts the assignment of jobs to within
the cluster system. An external resource allocation domain allows the market-based cluster RMS to
assign jobs externally outside the cluster system, meaning that jobs can be executed on other remote
cluster systems. Remote cluster systems may be in the same administrative domain belonging to the
same producer such as an organization that owns several cluster systems or in different administrative
domains owned by other producers such as several organizations that individually own some cluster
systems. For instance, Cluster-On-Demand [25], Nimrod/G [28] and the Stanford Peers Initiative [34]
allocate jobs externally to multiple remote systems, instead of internally.

Most market-based cluster RMSs often only support internal resource allocation domains.
Supporting external resource allocation domains can otherwise allow a market-based cluster RMS
to have access to more alternative resources to possibly satisfy more service requests. This results in
higher flexibility and scalability as service requests can still be fulfilled when there are insufficient
internal resources within the cluster systems to meet demands. Users thus benefit since their service
requests are more likely to be fulfilled. Cluster owners can also earn extra revenues by accepting
external service requests. Therefore, it is ideal if market-based cluster RMSs can support external
resource allocation, in addition to internal resource allocation. However, there is also the need to

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1397

address other issues for supporting external resource allocation domains such as data transfer times,
network delays and reliability of remote cluster systems.

4.4.2. Resource allocation update

The resource allocation update identifies whether the market-based cluster RMS is able to detect and
adapt to changes to maintain effective scheduling. Adaptive resource allocation updates means that the
market-based cluster RMS is able to adjust dynamically and automatically to suit any new changes.
For example, Libra [24] can allocate resources adaptively based on the actual execution and required
deadline of each active job so that later arriving urgent jobs are allocated more resources.

On the other hand, non-adaptive resource allocation updates means that the RMS is not able to adapt
to changes and thus still continue with its original resource assignment decision. For instance, in the
Stanford Peers Initiative [34], the amount of storage space allocated for data exchange remains fixed
and does not change once a remote site has been selected.

In actual cluster environments, the operating condition varies over time, depending on factors such as
availability of resources, amount of submission workload and users’ service requirements. An initially
good resource assignment decision may lead to an unfavorable outcome if it is not updated when
the operating scenario changes. Likewise, there is also a possibility of improving a previously poor
resource allocation decision. Therefore, market-based cluster RMSs need to support adaptive resource
allocation updates so that they are able to adjust and operate in changing situations to deliver a positive
outcome. However, supporting adaptive resource allocation updates also requires effective mechanisms
to detect and determine when and how to adapt to various scenarios.

4.4.3. QoS support

The QoS support derived from [43] determines whether the QoS specified by the user can be achieved.
The soft QoS support allows user to specify QoS parameters but do not guarantee that these service
requests can be satisfied. For example, Nimrod/G [28] provides soft QoS support as it adopts a best
effort approach to schedule jobs and stop scheduling once their QoS constraints are violated.

On the contrary, the hard QoS support is able to ensure that the specified service can definitely be
achieved. Examples of market-based cluster RMSs that provide hard QoS support are Libra [24] and
REXEC [23]. Libra guarantees that accepted jobs are finished within their deadline QoS, while REXEC
ensures that job execution costs are limited to users’ specified cost QoS.

The QoS support that a market-based cluster RMS provides should correspond to the users’ service
requirements. An example is the deadline QoS parameter. If a user requires a hard deadline for an
urgent job, it is pointless for a market-based cluster RMSs employing soft QoS support to accept the
job as it does not guarantee that the deadline can be met. In reality, since different users often have
various service requirements, it is best to have a market-based cluster RMSs that can provide both
soft and hard QoS supports. The market-based cluster RMS can then satisfy more service requests as
soft service requests can be accommodated without compromising hard QoS requests. Jobs with a soft
deadline may be delayed so that more jobs with hard deadline can be satisfied.

Admission control is essential during job submission to determine and feedback to the user whether
the requested hard or soft QoS can be given. If accepted by the admission control, jobs requiring hard

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1398 C. S. YEO AND R. BUYYA

Evaluation Model
Taxonomy

Consumer

Producer

Facilitator

System centric

User centric

System

Interaction Protocol

Evaluation Focus

Evaluation Factors

Overhead Analysis

Figure 7. The Evaluation Model taxonomy.

QoS support need to be monitored to ensure that the required QoS is enforced and fulfilled. This is
non-trivial as a high degree of coordination and monitoring may be necessary to enforce the QoS.

With the incorporation of penalties in SLAs, it becomes increasingly important for market-based
cluster RMSs to deliver the required QoS as requested. Failure to deliver the agreed level of service can
thus result in penalties that lower the financial benefits of the cluster owners. For example, penalties are
modeled in Cluster-On-Demand [25] and LibraSLA [45]. In Cluster-On-Demand, jobs are penalized if
they finish later than their required runtimes, whereas in LibraSLA, jobs are penalized after the lapse
of their deadlines.

4.5. Evaluation Model taxonomy

The Evaluation Model taxonomy outlines how to assess the effectiveness and efficiency of market-
based RMSs for utility-driven cluster computing. The Evaluation Model taxonomy comprises three
sub-taxonomies: evaluation focus, evaluation factors and overhead analysis (see Figure 7).

4.5.1. Evaluation focus

The evaluation focus identifies the party that the market-based cluster RMS is supposed to achieve
utility for. The consumer evaluation focus measures the level of utility that has been delivered to the
consumer based on its requirements. Likewise, the producer and facilitator evaluation focus evaluates
how much value is gained by the producer and facilitator respectively. For example, Libra [53]
evaluates the utility achieved for consumers (users) via the Job QoS Satisfaction metric and the benefits
gained by the producer (cluster owner) via the Cluster Profitability metric.

The evaluation focus is similar to the participant focus sub-taxonomy discussed previously since
it is logical to measure performance based on the selected participant focus. It is important to verify
whether the market-based cluster RMS is able to achieve utility for the selected participant focus as
expected. The evaluation focus also facilitates comparisons between market-based cluster RMSs with
the same participant focus, enabling them to be identified and evaluated relative to one another to
establish similarities and differences.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1399

4.5.2. Evaluation factors

Evaluation factors are metrics defined to determine the effectiveness of different market-based cluster
RMSs. System-centric evaluation factors measure performance from the system perspective and thus
depict the overall operational performance of the cluster system. Examples of system-centric evaluation
factors are average waiting time, average response time, system throughput and resource utilization.
Average waiting time is the average time that a job has to wait before commencing execution,
while average response time is the average time taken for a job to be completed. System throughput
determines the amount of work completed in a period of time, whereas resource utilization reflects the
usage level of the cluster system. For instance, Libra [53] provides the average waiting time and the
average response time as its system-centric evaluation factors.

User-centric evaluation factors assess performance from the participant perspective and thus portray
the utility achieved by the participants. Different user-centric evaluation factors can be defined for
assessing different participants that include consumer, producer or facilitator (as defined in the
evaluation focus sub-taxonomy). For instance, Libra [53] defines the Job QoS Satisfaction evaluation
factor for consumer evaluation focus and the Cluster Profitability evaluation factor for producer
evaluation focus respectively. It is apparent that user-centric evaluation factors should constitute QoS
attributes (as described in the QoS attributes sub-taxonomy) in order to assess whether the QoS
required by consumers is attained. For example in Libra [53], the Job QoS Satisfaction evaluation
factor computes the proportion of submitted jobs where the deadline and budget QoS parameters
(time and cost in QoS attributes sub-taxonomy) are fulfilled, whereas the Cluster Profitability
evaluation factor calculates the proportion of profit earned out of the total budget (cost in QoS attributes
sub-taxonomy) of submitted jobs.

Both system-centric and user-centric evaluation factors are required to accurately determine the
effectiveness of the market-based cluster RMS. System-centric evaluation factors ensure that system
performance is not compromised entirely due to the emphasis on achieving utility, whereas user-centric
evaluation factors prove that the market-based cluster RMS is able to achieve the required utility for
various participants. Evaluation factors can also serve as benchmarks to grade how various market-
based cluster RMSs perform for specific measures and rank them accordingly.

4.5.3. Overhead analysis

The overhead analysis examines potential overheads that are incurred by the market-based cluster
RMS. The system overhead analysis considers overheads sustained by the market-based cluster RMS
that are of system nature. Examples of system overhead are hard disk space, memory size and processor
runtime. There seems to be no market-based RMSs that explicitly mention about system overhead
analysis since it is often considered to be an intrinsic system implementation issue.

The interaction protocol overhead analysis determines overheads that are generated by the
operating policies of the market-based cluster RMS. Examples of interaction protocol overhead
are communications with various nodes to determine whether they are busy or available and
derive the appropriate schedule of jobs to execute on them. For instance, Tycoon [30] addresses
interaction protocol overhead analysis by holding auctions internally within each service host to reduce
communication across hosts.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1400 C. S. YEO AND R. BUYYA

Overheads result in system slowdowns and can create bottlenecks, thus leading to poor efficiency.
There is thus a need to analyze both system and interaction protocol overheads incurred by the market-
based cluster RMS in order to ensure that any overheads are kept to the minimum or within manageable
limits. Otherwise, a high system overhead adds unnecessary load that burdens the cluster system
and reduces overall available resources to handle actual job processing. Whereas, a high interaction
protocol overhead can result in longer communication times and unnecessary high network traffic
that can slow down data transfers for executions. Lowering both system and interaction protocol
overheads thus leads to a higher scalability for handling larger numbers of requests, which is critical
for constructing viable market-based cluster RMSs.

5. SURVEY

Table I shows a summary listing of existing market-based RMSs that has been proposed by
researchers for various computing platforms. Supported computing platforms include clusters,
distributed databases, Grids, parallel and distributed systems, peer-to-peer and World Wide Web. In this
section, we utilize the taxonomy to survey some of these existing market-based RMSs (denoted by *
in Table I).

The market-based RMSs for the survey are chosen based on several criteria. First, the survey should
be concise and include sufficient number of market-based RMSs to demonstrate how the taxonomy
can be applied effectively. Second, the selected market-based RMSs are fairly recent works so that
the survey creates an insight into the latest research developments. Finally, the selected market-based
RMSs are relevant for this paper.

Market-based RMSs chosen for the survey can be classified into two broad categories: those
proposed for cluster platforms; and those proposed for other computing platforms. Since the context
of this paper focuses on utility-driven cluster computing, four market-based cluster RMSs (Cluster-
On-Demand [25], Enhanced MOSIX [46], Libra [24] and REXEC [23]) are surveyed to understand
current technological advances and identify outstanding issues that are yet to be explored so that more
practical market-based cluster RMSs can be implemented in future.

On the other hand, surveying market-based RMSs for other computing platforms allows us to analyze
and examine the applicability and suitability of these market-based RMSs for supporting utility-driven
cluster computing in practice. This in turn helps us to identify possible strengths of these market-based
RMSs that may be leveraged for cluster computing environments. We have chosen three market-based
RMSs (Faucets [29], Nimrod/G [28] and Tycoon [30]) from Grids and one market-based RMS (the
Stanford Peers Initiative [34]) from peer-to-peer since both Grids and peer-to-peer computing platforms
are the latest and most active research areas that encompasses cluster systems distributed at multiple
remote sites.

The survey using the various sub-taxonomies is summarized in the following tables: the Market
Model (Table II); the Resource Model (Table III); the Job Model (Table IV); the Resource Allocation
Model (Table V); and the Evaluation Model (Table VI). The ‘NA’ keyword in the tables denotes
that either the specified sub-taxonomy is not addressed by the particular RMS or there is not enough
information from the references to determine otherwise.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1401

Table I. Summary of market-based resource management systems.

Computing platform Market-based RMS Economic model Brief description

Clusters Cluster-On-
Demand * [25]

Tendering/
contract-net

Each cluster manager uses a heuristic to
measure and balance the future risk of
profit lost for accepting a job later against
profit gained for accepting the job now

Enhanced
MOSIX * [46]

Commodity
market

Uses process migration to minimize the
overall execution cost of machines in the
cluster

Libra * [24] Commodity
market

Provides incentives to encourage users to
submit job requests with longer deadlines

REXEC * [23] Bid-based
proportional
resource sharing

Allocates resources proportionally to
competing jobs based on their users’
valuation

Utility Data
Center [54]

Auction Compares two extreme auction-based
resource allocation mechanisms: a
globally optimal assignment market
mechanism; and a sub-optimal simple
market mechanism

Distributed
Databases

Anastasiadi
et al. [26]

Posted price Examines the scenario of load balancing
economy where servers advertise prices
at a bulletin board and transaction
requests are routed based on three
different routing algorithms that focus on
expected completion time and required
network bandwidth

Mariposa [27] Tendering/
contract-net

Completes a query within its user-defined
budget by contracting portions of the
query to various processing sites for
execution

Grids Bellagio [55] Auction A centralized auctioneer computes bid
values based on number of requested
resources and their required durations,
before clearing the auctions at fixed time
periods by allocating to higher bid values
first

CATNET [56] Bargaining Each client uses a subjective market price
(computing using price quotes
consolidated from available servers) to
negotiate until a server quotes an
acceptable price

Faucets * [29] Tendering/
contract-net

Users specify QoS contracts for adaptive
parallel jobs and Grid resources compete
for jobs via bidding

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1402 C. S. YEO AND R. BUYYA

Table I. Continued.

Computing platform Market-based RMS Economic model Brief description

Grids G-commerce [57] Commodity
market, auction

Compares resource allocation using
either commodity market or auction
strategy based on four criteria: price
stability; market equilibrium; consumer
efficiency; and producer efficiency

Gridbus [22] Commodity
market

Considers the data access and transfer
costs for data-oriented applications when
allocating resources based on time or cost
optimization

Gridmarket [58] Auction Examines resource allocation using
Double auction where consumers set
ceiling prices and sellers set floor prices

Grosu and Das [59] Auction Studies resource allocation using
First-price, Vickrey and Double auctions

Maheswaran
et al. [60]

Auction Investigates resource allocation based on
two ‘co-bid’ approaches that aggregate
similar resources: first or no preference
approaches

Nimrod/G * [28] Commodity
market

Allocates resources to task farming
applications using either time or cost
optimization with deadline- and
budget-constrained algorithms

OCEAN [61] Bargaining,
tendering/
contract-net

First discovers potential sellers by
announcing a buyer’s trade proposal and
then allows the buyer to determine the
best seller by using two possible
negotiation mechanisms: yes/no and
static bargain

Tycoon * [30] Auction Allocates resources using ‘auction share’
that estimates proportional share with
consideration for latency-sensitive and
risk-averse applications

Parallel and
Distributed
Systems

Agoric
Systems [62]

Auction Employs the ‘escalator’ algorithm where
users submit bids that escalate over time
based on a rate and the server uses a
Vickrey auction at fixed intervals to
award resources to the highest bidder
who is then charged with the
second-highest bid

D’Agents [33] Bid-based
proportional
resource sharing

The server assigns resources by
computing the clearing price based on the
aggregate demand function of all its
incoming agents

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1403

Table I. Continued.

Computing platform Market-based RMS Economic model Brief description

Parallel and
Distributed
Systems

Dynasty [63] Commodity
market

Uses a hierarchical-based brokering
system where each request is distributed
up the hierarchy until the accumulated
brokerage cost is limited by the budget of
the user

Enterprise [31] Tendering/
contract-net

Clients broadcast a request for bids with
task description and select the best bid,
which is the shortest estimated
completion time given by available
servers

Ferguson et al. [64] Posted price,
auction

Examines how First-price and Dutch
auctions can support a load balancing
economy where each server host its
independent auction and users decide
which auction to participate based on last
clearing prices advertised in bulletin
boards

Kurose and
Simha [65]

Bid-based
proportional
resource sharing

Uses a resource-directed approach where
the current allocation of a resource is
readjusted proportionally according to
the marginal values computed by every
agent using that resource to reflect the
outstanding quantity of resource needed

MarketNet [66] Posted price Advertises resource request and offer
prices on a bulletin board and uses
currency flow to restrict resource usage
so that potential intrusion attacks into the
information systems are controled and
damages caused are kept to the minimum

Preist et al. [67] Auction An agent participates in multiple auctions
selling the same goods in order to secure
the lowest bid possible to acquire a
suitable number of goods for a buyer

Spawn [32] Auction Sub-divides each tree-based concurrent
program into nodes (sub-programs) that
then hold Vickrey auction independently
to obtain resources

Stoica et al. [68] Auction The job with the highest bid starts
execution instantly if the required
number of resources are available; else it
is scheduled to wait for more resources to
be available and has to pay for holding on
to currently available resources

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1404 C. S. YEO AND R. BUYYA

Table I. Continued.

Computing platform Market-based RMS Economic model Brief description

Parallel and
Distributed
Systems

WALRAS [69] Auction Consumer and producer agents submit
their demand and supply curves
respectively for goods and the
equilibrium price is determined through
an iterative auctioning process

Peer-to-Peer Stanford Peers
Initiative * [34]

Auction,
bartering

Uses data trading to create a replication
network of digital archives where a
winning remote site offers the lowest bid
for free space on the local site in
exchange for the amount of free space
requested by the local site on the remote
site

World Wide
Web

Java Market [70] Commodity
market

Uses a cost-benefit framework to host an
internet-wide computational market
where producers (machines) are paid for
executing consumers’ jobs (Java
programs) as Java applets in their Web
browsers

JaWS [37] Auction Uses a Double auction to award a lease
contract between a client and a host that
contains the following information:
agreed price; lease duration;
compensation; performance statistics
vector; and abort ratio

POPCORN [36] Auction Each buyer (parallel programs written
using POPCORN paradigm) submits a
price bid and the winner is determined
through one of three implemented
auction mechanisms: Vickrey, Double
and Clearinghouse Double auctions

SuperWeb [35] Commodity
market

Potential hosts register with client
brokers and receive payments for
executing Java codes depending on the
QoS provided

Xenoservers [71] Commodity
market

Supports accounted execution of
untrusted programs such as Java over the
Web where resources utilized by the
programs are accounted and charged to
the users

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1405

Table II. Survey using the Market Model taxonomy.

Market-based RMS Economic model Participant focus Trading environment QoS attributes

Cluster-On-
Demand

Tendering/
contract-net

Producer Competitive Cost

Enhanced
MOSIX

Commodity
market

Producer Cooperative Cost

Libra Commodity
market

Consumer Cooperative Time, cost

REXEC Bid-based
proportional
resource sharing

Consumer Competitive Cost

Faucets Tendering/
contract-net

Producer Competitive Time, cost

Nimrod/G Commodity
market

Consumer Competitive Time, cost

Tycoon Auction Consumer Competitive Time, cost

Stanford Peers
Initiative

Auction,
bartering

Consumer,
producer

Cooperative Cost

Table III. Survey using the Resource Model taxonomy.

Management Resource Scheduling Accounting
Market-based RMS control composition support mechanism

Cluster-On-Demand Decentralized NA NA Decentralized
Enhanced MOSIX Decentralized Heterogeneous Time-shared Decentralized
Libra Centralized Heterogeneous Time-shared Centralized
REXEC Decentralized NA Time-shared Centralized
Faucets Centralized NA Time-shared Centralized
Nimrod/G Decentralized Heterogeneous NA Decentralized
Tycoon Decentralized Heterogeneous Time-shared Decentralized
Stanford Peers Initiative Decentralized NA NA NA

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1406 C. S. YEO AND R. BUYYA

Table IV. Survey using the Job Model taxonomy.

Job processing Job QoS QoS
Market-based RMS type composition specification update

Cluster-On-Demand Sequential Independent single-task Rate-based Static
Enhanced MOSIX Parallel NA NA NA
Libra Sequential Independent single-task Constraint-based Static
REXEC Parallel, sequential Independent single-task Constraint-based Static
Faucets Parallel NA Constraint-based Static
Nimrod/G Sequential Independent multiple-task Optimization-based Static
Tycoon NA NA Constraint-based Static
Stanford Peers Initiative NA NA NA NA

Table V. Survey using the Resource Allocation Model taxonomy.

Resource allocation Resource allocation QoS
Market-based RMS domain update support

Cluster-On-Demand External Adaptive Soft
Enhanced MOSIX Internal Adaptive NA
Libra Internal Adaptive Hard
REXEC Internal Adaptive Hard
Faucets Internal Adaptive Soft
Nimrod/G External Adaptive Soft
Tycoon Internal Adaptive Soft
Stanford Peers Initiative External Non-adaptive NA

Table VI. Survey using the Evaluation Model taxonomy.

Market-based RMS Evaluation focus Evaluation factors Overhead analysis

Cluster-On-Demand Producer User-centric (cost) NA
Enhanced MOSIX Consumer User-centric (time) NA
Libra Consumer, producer System-centric, NA

user-centric (time, cost)
REXEC Consumer User-centric (cost) NA
Faucets NA NA NA
Nimrod/G NA NA NA
Tycoon Consumer User-centric (time) Interaction

protocol
Stanford Peers Initiative Consumer, producer User-centric (reliability) NA

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1407

5.1. Cluster-On-Demand

Cluster-On-Demand (COD) [72] allows the cluster manager to dynamically create independent
partitions called virtual clusters (vclusters) with specific software environments for each different user
groups within a cluster system. This in turn facilitates external policy managers and resource brokers in
the Grid to control their assigned vcluster of resources. A later work [25] examines the importance of
opportunity cost in a service market where the earnings for a job depreciate linearly over an increasing
time delay. A falling earning can become zero and instead become a penalty for not fulfilling the
contract of task execution. Thus, each local cluster manager needs to determine the best job mix to
balance the gains and losses for selecting one task ahead of another.

The task assignment among various cluster managers adopts the tendering/contract-net economic
model. A user initiates an announcement bid that reflects its valuation for the task to all the cluster
managers. Each cluster manager then considers the opportunity cost (gain or loss) for accepting the
task and proposes a contract with an expected completion time and price. The user then selects and
accepts a contract from the cluster manager that responded.

A competitive trading environment with producer participant focus is supported since each cluster
manager aims to maximize their earnings by assessing the risk and reward for bidding and scheduling
a task. Earnings are paid by users to cluster managers as costs for adhering to the conditions of
the contract. All cluster managers maintain information about their committed workload in order to
evaluate whether to accept or reject a new task, hence exercising decentralized management control
and accounting mechanism.

Tasks to be executed are assumed to single and sequential. For each task, the user provides a
value function containing a constant depreciation rate to signify the importance of the task and thus
the required level of service. The value function remains static after the contract has been accepted
by the user. Tasks are scheduled externally to cluster managers in different administrative domains.
Adaptive resource allocation updates are supported as the cluster manager may delay less costly
committed tasks for more costly new tasks that arrive later to minimize its losses for penalties incurred.
This means that soft QoS support is provided since accepted tasks may complete later than expected.

Performance evaluation focuses on a producer by using a user-centric cost evaluation factor to
determine the average yield or earning each cluster manager achieves. Simulation results show that
considering and balancing the potential gain of accepting a task instantly with the risk of future loss
provides better returns for competing cluster managers.

5.2. Enhanced MOSIX

Enhanced MOSIX [46] is a modified version of MOSIX [73] cluster operating system that employs
an opportunity cost approach for load balancing to minimize the overall execution cost of the cluster.
The opportunity cost approach computes a single marginal cost of assigning a process to a cluster
node based on the processor and memory usages of the process, thus representing a commodity
market economic model. The cluster node with the minimal marginal cost is then assigned the process.
This implies a cooperative trading environment with producer participant focus whereby the cost utility
is measured in terms of usage level of resources.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1408 C. S. YEO AND R. BUYYA

In Enhanced MOSIX, decentralized resource control is established where each cluster node makes
its independent resource assignment decisions. Heterogeneous resource composition is supported by
translating usages of different resources into a single cost measure.

Enhanced MOSIX supports a time-sharing parallel execution environment where a user can execute
a parallel application by first starting multiple processes on one cluster node. Each cluster node
maintains accounting information about processes on its node and exchanges information with other
nodes periodically to determine which processes can be migrated, based on the opportunity cost
approach. Process migration is utilized internally within the cluster to assign or reassign processes
to less loaded nodes, hence supporting adaptive resource allocation updates.

Enhanced MOSIX does not address how QoS can be supported for users. For performance
evaluation, it measures the slowdown of user processes, hence using a user-centric time evaluation
factor. Simulation results show that using the opportunity cost approach returns a lower average
slowdown of processes, thus benefiting the consumers.

5.3. Libra

Libra [24] is designed to be a pluggable market-based scheduler that can be integrated into existing
cluster RMS architectures to support the allocation of resources based on users’ QoS requirements.
Libra adopts the commodity market economic model that charges users using a pricing function. A later
work [53] proposes an enhanced pricing function that supports four essential requirements for pricing
of utility-driven cluster resources: flexibility; fairness; dynamism; and adaptivity.

The pricing function is flexible to allow easy configuration of the cluster owner to determine the level
of sharing. It is also fair as resources are priced based on actual usage; jobs that use more resources
are charged more. The price of resources is dynamic and is not based on a static rate. In addition, the
price of resources adapts to the changing supply and demand of resources. For instance, a high cluster
workload results in an increase in pricing to discourage users from submitting infinitely and thus not
overloading the cluster. This is crucial in providing QoS support since an overloaded cluster is not able
to fulfill QoS requirements. In addition, incentive is given to promote users to submit jobs with longer
deadlines; a job with longer deadline is charged less compared to a job with shorter deadline.

The main objective of Libra is to maximize the number of jobs whose QoS requirements can be met,
thus enabling a consumer participant focus. The enhanced pricing function [53] also improves utility
for the producer (cluster owner) as only jobs with higher budgets are accepted with increasing cluster
workload. Libra also considers both time and cost QoS attributes by allocating resources based on the
deadline and budget QoS parameters for each job. A cooperative trading environment is implied as
users are encouraged to provide a more relaxed deadline through incentives so that more jobs can be
accommodated.

Libra communicates with the centralized resource manager in the underlying cluster RMS that
collects information about resources in the cluster system. For a heterogeneous resource composition,
measures such as estimated execution time are translated to their equivalent on different worker nodes.
The cluster RMS needs to support time-shared execution given that Libra allocates resources to
multiple executing jobs based on their required deadline. This ensures that a more urgent job closer
to its deadline is allocated a larger processor time partition on a worker node when compared with a
less urgent job. Libra uses a centralized accounting mechanism to monitor resource usage of active jobs

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1409

so as to periodically reallocate the time partitions for each active job to ensure all jobs still complete
within their required deadline.

Libra currently assumes that submitted jobs are sequential and single-task. Users can express two
QoS constraints: the deadline that the job needs to be completed; and the budget that the user is willing
to pay. The QoS constraints cannot be updated after the job has been accepted for execution. Libra only
schedules jobs to internal worker nodes within the cluster system. Each worker node has a job control
component that reassigns processor time partitions periodically, based on the actual execution and
required deadline of each active job and thus enforcing hard QoS support. This means that Libra can
allocate resources adaptively to meet the deadline of later arriving but more urgent jobs.

Libra uses average waiting time and average response time as system-centric evaluation factors to
evaluate overall system performance. In addition, Libra defines two user-centric evaluation factors [53]:
Job QoS Satisfaction; and Cluster Profitability to measure the level of utility achieved for the consumers
(users) and producer (cluster owner) respectively. The Job QoS Satisfaction determines the percentage
of jobs where the deadline and budget QoS requirements are satisfied and thus examines the time and
cost utility of the consumers. On the other hand, the Cluster Profitability calculates the proportion of
profit obtained by the cluster owner and thus studies the cost utility of the producer. Simulation results
show that Libra performs better than the traditional First-Come-First-Served scheduling approach for
both system-centric and user-centric evaluation factors.

5.4. REXEC

REXEC [23] implements bid-based proportional resource sharing where users compete for shared
resources in a cluster. REXEC has a consumer participant focus since resources are allocated
proportionally, based on costs that competing users are willing to pay for a resource. Costs are defined
as rates, such as credits per minute to reflect the maximum amount that a user wants to pay for using
the resource.

Decentralized management control is achieved by having multiple daemons to separately discover
and determine the best node to execute a job and then allowing each REXEC client to directly manage
the execution of its jobs on the selected cluster nodes. The cluster nodes support time-shared scheduling
support so that multiple jobs share resources at the same time. A centralized accounting service
maintains credit usage for each user in the cluster. REXEC does not consider the resource composition
since it determines the proportion of resource assignment for a job purely on its user’s valuation.

REXEC supports the execution of both sequential and parallel programs. Users specify constraint-
based cost limits that they are willing to spend and remains static after a job submission. The discovery
and selection of nodes internal to the cluster system is designed to be independent so that users have the
flexibility to determine the node selection policy through their own REXEC client. Existing resource
assignments are recomputed whenever a new job starts or finishes on a node, thus enabling adaptive
resource allocation updates. REXEC only considers a single QoS requirement where the cost of a job
execution is limited to the users’ specified rate. For a parallel program, the total credit required by all
its processes is enforced not to exceed the cost specified by the user.

A later work [74] uses a user-centric evaluation factor; an aggregate utility that adds up all the users’
costs for completing jobs on the cluster. The cost charged to the user depends on the completion time

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1410 C. S. YEO AND R. BUYYA

of his job and decreases linearly over time until it reaches zero. Therefore, this presents a consumer
evaluation focus where cost is the evaluation factor.

5.5. Faucets

Faucets [29] aims to provide efficient resource allocation on the computational Grid for parallel jobs by
improving its usability and utilization. For better usability, users do not need to manually discover the
best resources to execute their jobs or monitor the progress of executing jobs. To improve utilization,
the parallel jobs are made adaptive using Charm++ [75] or adaptive MPI [76] frameworks so that
they can be executed on a changing number of allocated processors during runtime on demand [77].
This allows more jobs to be executed at any one time and no processors are left unused.

Market economy is implemented to promote utilization of the computational Grid where each
individual Grid resource maximizes its profit through maximum resource utilization. For each parallel
job submitted, the user has to specify its QoS contract that includes requirements such as the software
environment, number of processors (can be a single number, a set of numbers or range of numbers),
expected completion time (and how this changes with number of processors) and the payoff that the
user pays the Grid resource (and how this changes with actual job completion time). With this QoS
contract, a parallel job completed by Faucets can have three possible economic outcomes: payoff at
soft deadline; a decreased payoff at hard deadline (after soft deadline); and penalty after hard deadline.

Faucets uses the tendering/contract-net economic model. First, it determines the list of Grid
resources that are able to satisfy the job’s execution requirements. Then, requests are sent out to each
of these Grid resources to inform them about this new job. Grid resources can choose to decline or
reply with a bid. The user then chooses the Grid resource when all the bids are collected.

Faucets has a producer participant focus and competitive trading environment as each Grid resource
aims to maximize its own profit and resource utilization and thus compete with other resources. Faucets
considers the time QoS attribute since each Grid resource that receives a new job request first checks
that it can satisfy the job’s QoS contract before replying with a bid. The cost QoS attribute is decided
by the user who then chooses the resource to execute based on the bids of the Grid resources.

Faucets currently uses a centralized management control where the Faucets Server (FS) maintains
the list of resources and applications that user can execute. However, the ultimate aim of Faucets is
to have a distributed management control to improve scalability. Time-shared scheduling support is
employed in Faucets where adaptive jobs are executed simultaneously but on different proportions of
the allocated processors. A centralized accounting mechanism at the FS keeps track of participating
Grid resources so that owners of these Grid resources can earn credits to execute jobs on other
Grid resources. Faucets is primarily designed to support parallel job processing type only where the
constraint-based QoS contract of a parallel job is given at job submission and remains static throughout
the execution.

In Faucets, the resource allocation domain operates in an internal manner where each Grid resource
is only aware of jobs submitted via the FS and not other remote Grid resources. To maximize system
utilization at each Grid resource, Faucets allocates a proportional number of processors to jobs based on
their QoS priorities since jobs are adaptive to changing number of processors. A new job with a higher
priority is allocated a larger proportion of processors, thus resulting in existing jobs becoming entitled
to shrinking proportion of processors. This results in soft QoS support. Faucets does not describe how
utility-driven performance can be evaluated.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1411

5.6. Nimrod/G

Nimrod/G [28] is the grid-enabled version of Nimrod [78] that allows user to create and execute
parameter sweep applications on the Grid. Its design is based on a commodity market economic
model where each Nimrod/G broker associated with a user obtains service prices from Grid traders at
each different Grid resource location. Nimrod/G supports a consumer participant focus that considers
deadline (time) and budget (cost) QoS constraints specified by the user for running his application.
Prices of resources thus vary between different executing applications depending on the time and
selection of Grid resources that suits the QoS constraints. This means that users have to compete with
one another in order to maximize their own personal benefits, thus establishing a competitive trading
environment.

Each Nimrod/G broker acts on behalf of its user to discover the best resources for their application
and does not communicate with other brokers, thus implementing a decentralized management control.
It also has its own decentralized accounting mechanism to ensure that the multiple tasks within the
parameter sweep application do not violate the overall constraints. In addition, the Nimrod/G broker
is able to operate in a highly dynamic Grid environment where resources are heterogeneous since they
are managed by different owners, each having their own operating policies. The broker does not need
to know the scheduling support of each Grid resource as each resource feedbacks to the broker their
estimated completion time for a task.

A parameter sweep application generates multiple independent tasks with different parameter values
that can execute sequentially on a processor. For each parameter sweep application, the Nimrod/G
broker creates a plan to assign tasks to resources that either optimizes time or cost within the deadline
and budget constraints or only satisfies the constraints without any optimization [79]. The QoS
constraints for a parameter sweep application can only be specified before the creation of the plan
and remains static when the resource broker discovers and schedules suitable resources.

The Nimrod/G broker discovers external Grid resources across multiple administrative domains.
Resources are discovered and assigned progressively for the multiple tasks within an application
depending on current resource availability that is beyond the control of the broker. Therefore,
Nimrod/G is only able to provide soft QoS support as it tries its best to fulfill the QoS constraints.
It supports some level of adaptive resource allocation updates as it attempts to discover resources
for remaining tasks yet to be scheduled based on the remaining budget from scheduled tasks so that
the overall budget is not exceeded. It also attempts to reschedule tasks to other resources if existing
scheduled tasks fails to start execution. However, Nimrod/G stops assigning remaining tasks once the
deadline or budget QoS constraint is violated, thus wasting budget and time spent on already completed
tasks. Nimrod/G does not describe how utility-driven performance can be evaluated.

5.7. Tycoon

Tycoon [30] examines resource allocation in Grid environments where users are self-interested with
unpredictable demands and service hosts are unreliable with changing availability. It implements
a two-tier resource allocation architecture that differentiates between user strategy and allocation
mechanism. The user strategy captures high-level preferences that are application-dependent and vary
across users, while the allocation mechanism provides means to solicit true user valuations for more
efficient execution. The separation of user strategy and allocation mechanism therefore allows both
requirements not to be limited and dependent of one another.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1412 C. S. YEO AND R. BUYYA

Each service host utilizes an auction share scheduler that holds First-price auctions to determine
resource allocation. The request with the highest bid is then allocated the processor time slice. The bid
is computed as the pricing rate that the user pays for the required processor time, hence both time
and cost QoS attributes are considered. Consumer participant focus is supported as users can indicate
whether the service requests are latency-sensitive or throughput-driven. Based on these preferences,
consumers have to compete with one another for Grid sites that can satisfy their service requests.

A host self-manages its local selection of applications, thus maintaining decentralized resource
management. Hosts are heterogeneous since they are installed in various administrative domains and
owned by different owners. Applications are assigned processor time slices so that multiple requests
can be concurrently executed. Each host also keeps accounting information of its local applications to
calculate the usage-based service cost to be paid by the user and determine prices of future resource
reservation for risk-averse applications.

Tycoon is assumed to handle general service applications that include Web and database services.
Service execution requests are specified in terms of constraints such as the amount of cost to spend and
the deadline for completion. These constraints do not change after initial specification. Each auction
share scheduler performs resource assignment internally within the service host. It also enables
adaptive resource allocation updates as new service requests modify and reduce the current resource
entitlements of existing executing requests. This results in soft QoS support that can have a negative
impact for risk-averse and latency-sensitive applications. To minimize this, Tycoon allows users to
reserve resources in advance to ensure sufficient entitlements.

The performance evaluation concentrates on consumer using a user-centric time evaluation factor.
A metric called scheduling error assesses whether users get their specified amount of resources and
also justifies the overall fairness for all users. The mean latency is also measured for latency-sensitive
applications to examine whether their requests are fulfilled. Simulation results show that the Tycoon is
able to achieve high fairness and low latency when compared with a simple proportional-share strategy.
In addition, Tycoon minimizes interaction protocol overheads by holding auctions internally within
each service host to reduce communication across hosts.

5.8. Stanford Peers Initiative

The Stanford Peers Initiative [34] employs a peer-to-peer data trading framework to create a digital
archiving system. It utilizes a bid trading auction mechanism where a local site that wants to replicate
its collection holds an auction to solicit bids from remote sites by first announcing its request for storage
space. Each interested remote site then returns a bid that reflects the amount of disk storage space to
request from the local site in return for providing the requested storage space. The local site then selects
the remote site with the lowest bid for maximum benefit.

An overall cooperative trading environment with both producer and consumer participant focus
is supported through a bartering system whereby sites exchange free storage spaces to benefit both
themselves and others. Each site minimizes the cost of trading, which is the amount of disk storage
space it has to provide to the remote site for the requested data exchange. The Stanford Peers Initiative
implements decentralized management control as each site makes its own decision to select the most
suitable remote sites to replicate its data collection.

Each site is external of one another and can belong to different owners. Once a remote site is selected,
the specified amount of storage space remains fixed, hence implying non-adaptive resource allocation

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1413

Table VII. Comparison of cluster and Grid/peer-to-peer computing.

Characteristic Cluster Grid/peer-to-peer

Administrative domain Single Multiple
Availability Committed Uncommitted
Component Homogeneous Heterogeneous
Coupling Tight Loose
Location Local Global
Ownership Single Multiple
Policy Homogeneous Heterogeneous
Size Limited Unlimited

update. The job model taxonomy does not apply to the Stanford Peers Initiative because the allocation
of resources is expressed in terms of data exchange and not jobs.

The Stanford Peers Initiative evaluates performance based on reliability against failures since the
focus of an archiving system is to preserve data as long as possible. Reliability is measured using the
mean time to failure (MTTF) for each local site that is both a producer and consumer. Simulation results
show that sites that use bid trading achieve a higher reliability than sites that trade equal amounts of
space without bidding.

6. GAP ANALYSIS

The gap analysis differentiates between what is required and what is currently available for market-
based RMSs to support utility-driven cluster computing. It first examines key attributes of utility-driven
cluster computing through a comparison with other computing platforms such as Grids and peer-to-
peer. Then, it identifies design issues that are still outstanding for constructing practical market-based
cluster RMSs to support utility-driven cluster computing.

6.1. Characteristics of utility-driven cluster computing

A comparison between the characteristics of cluster computing and that of other computing platforms
enables a better understanding of why market-based cluster RMSs designed for other computing
platforms may not be applicable or suitable for cluster computing and vice versa. To be consistent
with the scope of the survey, the other computing platforms for comparison are again only restricted to
Grid and peer-to-peer computing.

Table VII highlights how cluster computing differs from Grid and peer-to-peer computing. It can be
seen that a cluster system has different characteristics from a Grid or peer-to-peer system. In particular,
a cluster system has simpler characteristics that can be managed more easily.

A cluster system is owned by a single owner and resides in a single administrative domain, while a
Grid or peer-to-peer system comprises of resources owned by multiple owners and distributed across

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1414 C. S. YEO AND R. BUYYA

multiple administrative domains. It is easier to gain access to cluster resources as a single owner can
easily commit the cluster system to be available for use. On the other hand, resources in a Grid or peer-
to-peer system are uncommitted and may not always be available as various owners have the authority
to decline access at anytime. This high level of uncertainty can thus lead to low reliability if not handled
properly.

A cluster system is tightly coupled, located at a single local site and limited in size, whereas a
Grid or peer-to-peer system is loosely coupled with multiple remote sites distributed globally and can
be unlimited in size. This implies that a cluster system does not need to be as scalable as a Grid or
peer-to-peer system. In a cluster system, nodes typically have homogeneous components and policies
to facilitate standard management and control. On the other hand, each site in a Grid or peer-to-peer
system can have heterogeneous components and policies, thus requiring greater coordination effort.

In a cluster system, middlewares such as the cluster RMS creates a Single System Image (SSI) [4]
to operate like a single computer that hides the existence of multiple cluster nodes from consumers and
manages job execution from a single user interface. The cluster RMS has complete state information
of all jobs and resources within the cluster system. To support utility-driven cluster computing, the
market-based cluster RMS emphasizes on providing utility from the system perspective collectively for
consumers using the cluster system. It can also administer that overall resource allocation to different
users is fair, based on criteria such as their SLA requirements in order to maximize aggregate utility
for consumers.

On the other hand, a Grid or peer-to-peer system operates like a collection of computing services.
In a Grid or peer-to-peer system, each site competes with other sites whereby sites are under different
ownership and have heterogeneous policies implemented by various producers (owners). In fact, each
Grid or peer-to-peer site can be a cluster system. Thus, the market-based RMS for each site is greedy
and only maximizes utility for its individual site, without considering other sites since these sites are
beyond its control. To support the heterogeneity of components and policies across sites, the market-
based RMS at each site may need to communicate using multiple interfaces, which is a tedious process.
Moreover, the market-based RMS needs to consider scalability issues, such as communication and data
transfer costs owing to sites being distributed globally over multiple administrative domains.

Therefore, market-based RMSs designed to achieve utility in Grid or peer-to-peer computing are
not suitable for cluster computing since both computing platforms have distinctive characteristics and
varying emphasis of utility. In addition, market-based RMSs designed for Grid or peer-to-peer systems
address complexities that do not exist and are thus redundant in cluster systems.

6.2. Outstanding issues

From the survey, we can identify outstanding issues that are yet to be explored but are important
for market-based cluster RMSs to support utility-driven cluster computing in practice. There are
currently only a few market-based RMSs designed specifically for cluster systems such as Cluster-
On-Demand [25], Enhanced MOSIX [46], Libra [24] and REXEC [23]. Among them, only Libra
and REXEC provide a consumer participant focus that is crucial for satisfying QoS-based requests
to generate utility for consumers. None of these market-based cluster RMSs supports other important
QoS attributes such as reliability and trust/security that are essential in a utility-driven service market
where consumers pay for usage and expect good quality service.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1415

These market-based cluster RMSs mostly only support fairly simple job models with sequential job
processing type and single-task job composition and static QoS update. However, more advanced job
models that comprise parallel job processing type and multiple-task job composition, such as message-
passing, parameter-sweep and workflow applications are typically required by users for their work
execution in reality. Consumers may also need to modify their initial QoS specifications after job
submission as their service requirements may vary over time, thus requiring the support of dynamic
QoS updates.

A larger pool of resources can be available for usage if the market-based cluster RMSs can be
extended to discover and utilize external resources in other cluster systems or Grids. Service requests
may then continue to be fulfilled when there are insufficient internal resources within the cluster
systems to meet demands. Current market-based cluster RMSs also do not support both soft and hard
QoS supports.

For evaluation purposes, both system-centric and user-centric evaluation factors need to be defined
to measure the effectiveness of market-based cluster RMSs in achieving overall system performance
and actual benefits for both consumers and producers. Metrics for measuring system and interaction
protocol overheads incurred by the market-based cluster RMSs are also required to evaluate their
efficiency.

There is also a possibility of incorporating strengths proposed in market-based RMSs for other
computing platforms in the context of cluster computing. For instance, the tendering/contract-net
economic model in Faucets [29] may be applied in a cluster system with decentralized management
control where the consumer determines the resource selection by choosing the best node based on
bids from competing cluster nodes. Optimization-based QoS specification in Nimrod/G [28] and the
‘auction share’ scheduling algorithm in Tycoon [30] can improve utility for consumers, in particular
those with latency-sensitive applications. Bartering concepts in the Stanford Peers Initiative [34] can
augment the level of sharing across internal and external resource allocation domains.

7. SUMMARY AND CONCLUSION

In this paper, a taxonomy is proposed to characterize and categorize various market-based cluster
RMSs that can support utility-driven cluster computing in practice. The taxonomy emphasizes on five
different perspectives: (i) the Market Model; (ii) the Resource Model; (iii) the Job Model; (iv) the
Resource Allocation Model; and (v) the Evaluation Model. A survey is also conducted where the
taxonomy is mapped to selected market-based RMSs designed for both cluster and other computing
platforms. The survey enables us to analyze the gap between what is already available in existing
market-based cluster RMSs and what is still required so that we can identify outstanding research issues
that can result in more practical market-based cluster RMSs being designed in future. The mapping of
the taxonomy to the range of market-based RMSs has successfully demonstrated that the proposed
taxonomy is sufficiently comprehensive to characterize existing and future market-based RMSs for
utility-driven cluster computing.

ACKNOWLEDGEMENTS

We would like to acknowledge all developers of the market-based RMSs described in the paper. This work is
partially supported by the Australian Research Council (ARC) Discovery Project and StorageTek Fellowship for
Grid Computing.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1416 C. S. YEO AND R. BUYYA

REFERENCES

1. Gropp W, Lusk E, Sterling T (eds.). Beowulf Cluster Computing with Linux (2nd edn). MIT Press: Cambridge, MA, 2003.
2. Pfister GF. In Search of Clusters (2nd edn). Prentice-Hall PTR: Upper Saddle River, NJ, 1998.
3. Buyya R (ed.). High Performance Cluster Computing: Architectures and Systems. Prentice-Hall PTR: Upper Saddle River,

NJ, 1999.
4. Buyya R, Cortes T, Jin H. Single system image. The International Journal of High Performance Computing Applications

2001; 15(2):124–135.
5. University of Wisconsin-Madison. Condor version 6.7.1 manual.

http://www.cs.wisc.edu/condor/manual/v6.7 [6 December 2004].
6. IBM. LoadLeveler for AIX 5L version 3.2 using and administering, October 2003.

http://www-1.ibm.com/servers/eserver/pseries/library/sp books/loadleveler.html [6 December 2004].
7. Platform Computing. LSF version 4.1 administrator’s guide, 2001.

http://www.platform.com/services/support [6 December 2004].
8. Altair Grid Technologies. OpenPBS release 2.3 administrator guide, August 2000.

http://www.openpbs.org/docs.html [6 December 2004].
9. Sun Microsystems. Sun ONE Grid Engine, administration and user’s guide, October 2002.

http://gridengine.sunsource.net/project/gridengine/documentation.html [6 December 2004].
10. Foster I, Kesselman C (eds.). The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann: San Francisco,

CA, 2003.
11. Buyya R, Abramson D, Giddy J. A case for economy Grid architecture for service oriented Grid computing. Proceedings of

the 10th International Heterogeneous Computing Workshop (HCW 2001), San Francisco, CA, April 2001. IEEE Computer
Society Press: Los Alamitos, CA, 2001.

12. Buyya R, Abramson D, Giddy J. Nimrod/G: An architecture for a resource management and scheduling system in a global
Computational Grid. Proceedings of the 4th International Conference on High Performance Computing in Asia-Pacific
Region (HPC Asia 2000), Beijing, China, May 2000. IEEE Computer Society Press: Los Alamitos, CA, 2000.

13. Venugopal S, Buyya R, Winton L. A Grid service broker for scheduling distributed data-oriented applications on global
Grids. Proceedings of the 2nd International Workshop on Middleware for Grid Computing (MGC 2004), Toronto, Canada,
October 2004. ACM Press: New York, NY, 2004; 75–80.

14. Yu J, Buyya R. A novel architecture for realizing Grid workflow using Tuple Spaces. Proceedings of the 5th International
Workshop on Grid Computing (GRID 2004), Pittsburgh, PA, November 2004. IEEE Computer Society Press: Los Alamitos,
CA, 2004; 119–128.

15. The TeraGrid project. http://www.teragrid.org [6 December 2004].
16. The LHC computing Grid project. http://lcg.web.cern.ch/LCG [6 December 2004].
17. The NAREGI project. http://www.naregi.org [6 December 2004].
18. The APAC Grid project. http://www.apac.edu.au [6 December 2004].
19. IBM Grid computing. http://www.ibm.com/grid [6 December 2004].
20. HP Grid computing. http://www.hp.com/techservers/grid [6 December 2004].
21. Sun Microsystems utility computing. http://www.sun.com/service/utility [6 December 2004].
22. Buyya R, Abramson D, Venugopal S. The Grid economy. Proceedings of the IEEE 2005; 93(3):698–714.
23. Chun BN, Culler DE. Market-based proportional resource sharing for clusters. Technical Report CSD-1092, Computer

Science Division, University of California at Berkeley, January 2000.
24. Sherwani J, Ali N, Lotia N, Hayat Z, Buyya R. Libra: A computational economy-based job scheduling system for clusters.

Software: Practice and Experience 2004; 34(6):573–590.
25. Irwin DE, Grit LE, Chase JS. Balancing risk and reward in a market-based task service. Proceedings of the 13th

International Symposium on High Performance Distributed Computing (HPDC13), Honolulu, HI, June 2004. IEEE
Computer Society Press: Los Alamitos, CA, 2004; 160–169.

26. Anastasiadi A, Kapidakis S, Nikolaou C, Sairamesh J. A computational economy for dynamic load balancing and data
replication. Proceedings of the 1st International Conference on Information and Computation Economies (ICE ’98),
Charleston, SC, October 1998. ACM Press: New York, NY, 1998; 166–180.

27. Stonebraker M, Devine R, Kornacker M, Litwin W, Pfeffer A, Sah A, Staelin C. An economic paradigm for query
processing and data migration in Mariposa. Proceedings of the 3rd International Conference on Parallel and Distributed
Information Systems (PDIS ’94), Austin, TX, September 1994. IEEE Computer Society Press: Los Alamitos, CA, 1994;
58–68.

28. Abramson D, Buyya R, Giddy J. A computational economy for Grid computing and its implementation in the Nimrod-G
resource broker. Future Generation Computer Systems 2002; 18(8):1061–1074.

29. Kalé LV, Kumar S, Potnuru M, DeSouza J, Bandhakavi S. Faucets: Efficient resource allocation on the Computational
Grid. Proceedings of the International Conference on Parallel Processing (ICPP 2004), Montreal, Canada, August 2004.
IEEE Computer Society Press: Los Alamitos, CA, 2004; 396–405.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1417

30. Lai K, Huberman BA, Fine L. Tycoon: A distributed market-based resource allocation system. Technical Report
cs.DC/0404013, HP Lab, Palo Alto, April 2004.

31. Malone TW, Fikes RE, Grant KR, Howard MT. Enterprise: A market-like task scheduler for distributed computing
environments. The Ecology of Computation, Huberman BA (ed.). Elsevier Science Publisher: New York, NY, 1988;
177–205.

32. Waldspurger CA, Hogg T, Huberman BA, Kephart JO, Stornetta WS. Spawn: A distributed computational economy. IEEE
Transactions on Software Engineering 1992; 18(2):103–117.

33. Bredin J, Kotz D, Rus D. Utility driven mobile-agent scheduling. Technical Report PCS-TR98-331, Department of
Computer Science, Dartmouth College, October 1998.

34. Cooper BF, Garcia-Molina H. Bidding for storage space in a peer-to-peer data preservation system. Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS 2002), Vienna, Austria, July 2002. IEEE Computer
Society Press: Los Alamitos, CA, 2002; 372–381.

35. Alexandrov AD, Ibel M, Schauser KE, Scheiman CJ. SuperWeb: Research issues in Java-based global computing.
Concurrency: Practice and Experience 1997; 9(6):535–553.

36. Regev O, Nisan N. The POPCORN market—an online market for computational resources. Proceedings of the 1st
International Conference on Information and Computation Economies (ICE ’98), Charleston, SC, October 1998. ACM
Press: New York, NY, 1998; 148–157.

37. Lalis S, Karipidis A. JaWS: An open market-based framework for distributed computing over the Internet. Proceedings
of the 1st International Workshop on Grid Computing (GRID 2000), Bangalore, India, December 2000 (Lecture Notes in
Computer Science, vol. 1971). Springer: Heidelberg, Germany, 2000; 36–46.

38. Casavant TL, Kuhl JG. A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Transactions
on Software Engineering 1988; 14(2):141–154.

39. Rotithor HG. Taxonomy of dynamic task scheduling schemes in distributed computing systems. IEEE Proceedings of
Computers and Digital Techniques 1994; 141(1):1–10.

40. Ekmecić I, Tartalja I, Milutinović V. EM3: A taxonomy of heterogeneous computing systems. IEEE Computer 1995;
28(12):68–70.

41. Ekmecić I, Tartalja I, Milutinović V. A survey of heterogeneous computing: Concepts and systems. Proceedings of the
IEEE 1996; 84(8):1127–1144.

42. Braun TD, Siegel HJ, Beck N, Bölöni L, Maheswaran M, Reuther AI, Robertson JP, Theys MD, Yao B. A taxonomy
for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems. Proceedings of
the 17th Symposium on Reliable Distributed Systems, West Lafayette, IN, October 1998. IEEE Computer Society Press:
Los Alamitos, CA, 1998; 330–335.

43. Krauter K, Buyya R, Maheswaran M. A taxonomy and survey of Grid resource management systems for distributed
computing. Software: Practice and Experience 2002; 32(2):135–164.

44. Buyya R, Abramson D, Giddy J, Stockinger H. Economic models for resource management and scheduling in Grid
computing. Concurrency and Computation: Practice and Experience 2002; 14(13–15):1507–1542.

45. Yeo CS, Buyya R. Service level agreement based allocation of cluster resources: Handling penalty to enhance utility.
Proceedings of the 7th IEEE International Conference on Cluster Computing (CLUSTER 2005), Boston, MA, September
2005. IEEE Computer Society Press: Los Alamitos, CA, 2005 (CDROM).

46. Amir Y, Awerbuch B, Barak A, Borgstrom RS, Keren A. An opportunity cost approach for job assignment in a scalable
computing cluster. IEEE Transactions on Parallel and Distributed Systems 2000; 11(7):760–768.

47. Ranjan R, Buyya R. A case for cooperative and incentive-based coupling of distributed clusters. Proceedings of the 7th
IEEE International Conference on Cluster Computing (CLUSTER 2005), Boston, MA, September 2005. IEEE Computer
Society Press: Los Alamitos, CA, 2005 (CDROM).

48. Barmouta A, Buyya R. GridBank: A Grid accounting services architecture (GASA) for distributed systems sharing
and integration. Proceedings of the 3rd Workshop on Internet Computing and E-Commerce (ICEC 2003), International
Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, France, April 2003. IEEE Computer Society Press:
Los Alamitos, CA, 2003.

49. Jackson SM. Allocation management with QBank. http://www.emsl.pnl.gov/docs/mscf/qbank [6 December 2004].
50. IBM. Business Process Execution Language for Web Services, version 1.1.

http://www.ibm.com/developerworks/library/specification/ws-bpel [25 July 2005].
51. Global Grid Forum. Web Services Agreement Specification (WS-Agreement), version 1.1, draft 18.

http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-agreement.pdf [25 July 2005].
52. Keller A, Ludwig H. The WSLA framework: Specifying and monitoring service level agreements for Web services. Journal

of Network and Systems Management 2003; 11(1):57–81.
53. Yeo CS, Buyya R. Pricing for utility-driven resource management and allocation in clusters. Proceedings of the 12th

International Conference on Advanced Computing and Communication (ADCOM 2004), Ahmedabad, India, December
2004. Allied Publisher: New Delhi, India, 2004; 32–41.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

1418 C. S. YEO AND R. BUYYA

54. Byde A, Sallé M, Bartolini C. Market-based resource allocation for utility data centers. Technical Report HPL-2003-188,
HP Lab, Bristol, September 2003.

55. AuYoung A, Chun BN, Snoeren AC, Vahdat A. Resource allocation in federated distributed computing infrastructures.
Proceedings of the 1st Workshop on Operating System and Architectural Support for the on demand IT InfraStructure
(OASIS 2004), Boston, MA, October 2004 (CDROM).

56. Eymann T, Reinicke M, Ardaiz O, Artigas P, Freitag F, Navarro L. Decentralized resource allocation in application layer
networks. Proceedings of the 3rd International Symposium on Cluster Computing and the Grid (CCGrid 2003), Tokyo,
Japan, May 2003. IEEE Computer Society Press: Los Alamitos, CA, 2003; 645–650.

57. Wolski R, Plank JS, Brevik J, Bryan T. Analyzing market-based resource allocation strategies for the Computational Grid.
International Journal of High Performance Computing Applications 2001; 15(3):258–281.

58. Chen M, Yang G, Liu X. Gridmarket: A practical, efficient market balancing resource for Grid and P2P
computing. Proceedings of the 2nd International Workshop on Grid and Cooperative Computing (GCC 2003), Shanghai,
China, December 2003 (Lecture Notes in Computer Science, vol. 3033). Springer: Heidelberg, Germany, 2003;
612–619.

59. Grosu D, Das A. Auction-based resource allocation protocols in Grids. Proceedings of the 16th International Conference on
Parallel and Distributed Computing and Systems (PDCS 2004), Cambridge, MA, November 2004. ACTA Press: Calgary,
Canada, 2004; 20–27.

60. Chen C, Maheswaran M, Toulouse M. Supporting co-allocation in an auctioning-based resource allocator for Grid systems.
Proceedings of the 11th International Heterogeneous Computing Workshop (HCW 2002), Fort Lauderdale, FL, April 2002.
IEEE Computer Society Press: Los Alamitos, CA, 2002.

61. Padala P, Harrison C, Pelfort N, Jansen E, Frank MP, Chokkareddy C. OCEAN: The open computation exchange and
arbitration network, a market approach to meta computing. Proceedings of the 2nd International Symposium on Parallel and
Distributed Computing (ISPDC 2003), Ljubljana, Slovenia, October 2003. IEEE Computer Society Press: Los Alamitos,
CA, 2003; 185–192.

62. Miller MS, Drexler KE. Incentive engineering for computational resource management. The Ecology of Computation,
Huberman BA (ed.). Elsevier Science Publisher: New York, NY, 1988; 231–266.

63. Backschat M, Pfaffinger A, Zenger C. Economic-based dynamic load distribution in large workstation networks.
Proceedings of the 2nd International Euro-Par Conference (Euro-Par 1996), Lyon, France, August 1996 (Lecture Notes in
Computer Science, vol. 1124). Springer: Heidelberg, Germany, 1996; 631–634.

64. Ferguson DF, Yemini Y, Nikolaou C. Microeconomic algorithms for load balancing in distributed computer systems.
Proceedings of the 8th International Conference on Distributed Computing Systems (ICDCS’88), San Jose, CA, June
1988. IEEE Computer Society Press: Los Alamitos, CA, 1988; 491–499.

65. Kurose JF, Simha R. A microeconomic approach to optimal resource allocation in distributed computer systems. IEEE
Transactions on Computers 1989; 38(5):705–717.

66. Yemini Y, Dailianas A, Florissi D, Huberman G. MarketNet: Protecting access to information systems through financial
market controls. Decision Support Systems 2000; 25(1–2):205–216.

67. Preist C, Byde A, Bartolini C. Economic dynamics of agents in multiple auctions. Proceedings of the 5th International
Conference on Autonomous Agents (AGENTS 2001), Montreal, Canada, May–June 2001. ACM Press: New York, NY,
2001; 545–551.

68. Stoica I, Abdel-Wahab H, Pothen A. A microeconomic scheduler for parallel computers. Proceedings of the 1st Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP ’95), Santa Barbara, CA, April 1995 (Lecture Notes in
Computer Science, vol. 949). Springer: Heidelberg, Germany, 1995; 200–218.

69. Wellman MP. A market-oriented programming environment and its application to distributed multicommodity flow
problems. Journal of Artificial Intelligence Research 1993; 1:1–23.

70. Amir Y, Awerbuch B, Borgstrom RS. A cost-benefit framework for online management of a metacomputing system.
Proceedings of the 1st International Conference on Information and Computation Economies (ICE ’98), Charleston, SC,
October 1998. ACM Press: New York, NY, 1998; 140–147.

71. Reed D, Pratt I, Menage P, Early S, Stratford N. Xenoservers: Accountable execution of untrusted programs. Proceedings
of the 7th Workshop on Hot Topics in Operating Systems (HotOS-VII), Rio Rico, AZ, March 1999. IEEE Computer Society
Press: Los Alamitos, CA, 1999; 136–141.

72. Chase JS, Irwin DE, Grit LE, Moore JD, Sprenkle SE. Dynamic virtual clusters in a Grid site manager. Proceedings of
the 12th International Symposium on High Performance Distributed Computing (HPDC12), Seattle, WA, June 2003. IEEE
Computer Society Press: Los Alamitos, CA, 2003; 90–100.

73. Barak A, La’adan O. The MOSIX multicomputer operating system for high performance cluster computing. Future
Generation Computer Systems 1998; 13(4–5):361–372.

74. Chun BN, Culler DE. User-centric performance analysis of market-based cluster batch schedulers. Proceedings of the 2nd
International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany, May 2002. IEEE Computer
Society Press: Los Alamitos, CA, 2002; 22–30.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

A TAXONOMY FOR UTILITY-DRIVEN CLUSTER COMPUTING 1419

75. Kalé LV, Krishnan S. Charm++: Parallel programming with message-driven objects. Parallel Programming Using C++,
Wilson GV, Lu P (eds.). MIT Press: Cambridge, MA, 1996; 175–213.

76. Bhandarkar M, Kalé LV, de Sturler E, Hoeflinger J. Adaptive load balancing for MPI programs. Proceedings of the
International Conference on Computational Science (ICCS 2001), San Francisco, CA, May 2001 (Lecture Notes in
Computer Science, vol. 2074). Springer: Heidelberg, Germany, 2001; 108–117.

77. Kalé LV, Kumar S, DeSouza J. A malleable-job system for timeshared parallel machines. Proceedings of the 2nd
International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany, May 2002. IEEE Computer
Society Press: Los Alamitos, CA, 2002; 215–222.

78. Abramson D, Sosic R, Giddy J, Hall B. Nimrod: A tool for performing parametrised simulations using distributed
workstations. Proceedings of the 4th International Symposium on High Performance Distributed Computing (HPDC4),
Pentagon City, VA, August 1995. IEEE Computer Society Press: Los Alamitos, CA, 1995; 112–121.

79. Buyya R, Giddy J, Abramson D. An evaluation of economy-based resource trading and scheduling on computational power
Grids for parameter sweep applications. Proceedings of the 2nd Annual Workshop on Active Middleware Services (AMS
2000), Pittsburgh, PA, August 2000. Kluwer Academic Publishers: Dordrecht, Netherlands, 2000.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 36:1381–1419
DOI: 10.1002/spe

	1 INTRODUCTION
	2 RELATED WORK
	3 ABSTRACT MODEL FOR MARKET-BASED CLUSTER RESOURCE MANAGEMENT SYSTEM
	4 TAXONOMY
	4.1 Market Model taxonomy
	4.1.1 Economic model
	4.1.2 Participant focus
	4.1.3 Trading environment
	4.1.4 QoS attributes

	4.2 Resource Model taxonomy
	4.2.1 Management control
	4.2.2 Resource composition
	4.2.3 Scheduling support
	4.2.4 Accounting mechanism

	4.3 Job Model taxonomy
	4.3.1 Job processing type
	4.3.2 Job composition
	4.3.3 QoS specification
	4.3.4 QoS update

	4.4 Resource Allocation Model taxonomy
	4.4.1 Resource allocation domain
	4.4.2 Resource allocation update
	4.4.3 QoS support

	4.5 Evaluation Model taxonomy
	4.5.1 Evaluation focus
	4.5.2 Evaluation factors
	4.5.3 Overhead analysis

	5 SURVEY
	5.1 Cluster-On-Demand
	5.2 Enhanced MOSIX
	5.3 Libra
	5.4 REXEC
	5.5 Faucets
	5.6 Nimrod/G
	5.7 Tycoon
	5.8 Stanford Peers Initiative

	6 GAP ANALYSIS
	6.1 Characteristics of utility-driven cluster computing
	6.2 Outstanding issues

	7 SUMMARY AND CONCLUSION

