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Abstract

Users perceive varying levels of utility for each different job completed by the cluster. Therefore, there is a need for existing
cluster Resource Management Systems (RMS) to provide a means for the user to express its perceived utility during job submission.
The cluster RMS can then obtain and consider these user-centric needs such as Quality-Of-Service requirements in order to achieve
utility-driven resource management and allocation. We advocate the use of computational economy for this purpose. In this paper,
we describe an architectural framework for a utility-driven cluster RMS. We present a user-level job submission specification for
soliciting user-centric information that is used by the cluster RMS for making better resource allocation decisions. In addition,
we propose a dynamic pricing function that the cluster owner can use to determine the level of sharing within a cluster. Finally,
we define two user-centric performance evaluation metrics: Job QoS Satisfaction and Cluster Profitability for measuring the
effectiveness of the proposed pricing function in realizing utility-driven resource management and allocation.

I. INTRODUCTION

Cluster computing [1][2] is increasingly used for high-performance, high-throughput and high-availability computing in a
wide variety of application areas. Clusters are not only used for executing compute-intensive applications, but also as replicated
storage and backup servers that provide the essential fault tolerance and reliability for critical applications.

Mission critical cluster middlewares create the Single System Image (SSI) [3] that presents a single unified computing resource
to the user. This provides better usability and transparency for the users as it hides the complexities of the underlying distributed
and heterogeneous nature of clusters from them. An example of such a middleware is the cluster Resource Management System
(RMS) that provides a single interface for user-level sequential and parallel applications to be executed on the cluster.

For effective and efficient management, the cluster RMS requires knowledge of how users value the resources that are being
competed for [4] and having a feedback mechanism that prevents users from submitting unlimited quantities of work [5].
However, existing cluster RMSs provide no or minimal support for users to define Quality of Service (QoS) requirements
during job submission. For instance, the user cannot specify the deadline when the job should finish execution and the budget
that he is willing to pay for the execution before the deadline. They continue to use system-centric approaches that focus
on increasing the throughput and maximizing the utilization of the cluster. They neglect the need to use utility models for
allocation and management of resources that would otherwise consider and thus able to achieve the users’ desired utility.

We advocate the use of computational economy [6][7][8][9][10][11] for achieving utility-driven resource management
and allocation in clusters since system-centric management for shared resources is not effective due to lack of economic
accountability. Computational economy is able to regulate supply and demand of cluster resources at market equilibrium,
provides feedback in terms of economic incentives for both users and cluster owner, and promotes QoS-based resource allocation
that caters to users’ needs.

This paper focuses on a pricing mechanism to support utility-driven management and allocation of resources in a cluster.
First, the architecture of existing cluster RMS that uses system-centric approaches is extended to adopt economy-based resource
management and allocation. A simple and extensible user-level job submission specification provides a means for users to specify
user-centric information such as resource and QoS requirements. Economy-based mechanisms then make use of this information
and incorporate a pricing function to enforce resource allocations. The effectiveness of the economy-based mechanisms is
examined using two user-centric evaluation metrics: Job QoS Satisfaction and Cluster Profitability.

The rest of this paper is organized as follows. Section II discusses related work. Section III presents an architectural
framework for a utility-driven cluster RMS. Section IV describes the user-level job submission specification for soliciting
user-centric information for each job. Section V defines a pricing function that satisfies four essential requirements for pricing
cluster resources. Section VI outlines the admission control, resource allocation, and job control mechanisms that together
enforce the utility to be achieved by the cluster. Section VII discusses performance evaluation results of the proposed pricing
function using two user-centric evaluation metrics and Section VIII concludes this paper.



II. RELATED WORK

There are a number of cluster RMSs such as Condor [12], LoadLeveler [13], Load Sharing Facility (LSF) [14], Portable
Batch System (PBS) [15], and Sun Grid Engine (SGE) [16]. But, these existing Cluster RMSs adopt system-centric approaches
that optimize overall cluster performance. For example, the cluster RMS aims to maximize processor throughput and utilization
for the cluster, and minimize average waiting time and response time for the jobs. But, these system-centric approaches neglect
and thus ignore user-centric required services that truly determine users’ needs and utility. There are no or minimal means for
users to define QoS requirements and their valuations during job submission so that the cluster RMS can improve the value
of utility. We propose an architectural framework for extending these existing cluster RMSs to support utility-driven resource
management and allocation, and describes how economy-based mechanisms can be incorporated to achieve that.

Maui [17] is an advanced scheduler that supports configurable job prioritization, fairness policies and scheduling policies to
maximize resource utilization and minimize job response time. It provides extensive options for the administrator to configure
and define various priorities of jobs to determine how resources are allocated to jobs. Maui also allows users to define QoS
parameters for jobs that will then be granted additional privileges and supports advance reservation of resources where a set of
resources can be reserved for specific jobs at a particular timeframe. In addition, Maui can be integrated as the scheduler for
traditional cluster RMS such as Loadleveler, LSF, PBS and SGE. But, Maui does not provide economic incentives for users
to submit jobs with lower priority or QoS requirements and cluster owner to share resources.

REXEC [10] is a remote execution environment for a campus-wide network of workstations, which forms part of the
Berkeley Millennium Project. REXEC allows the user to specify the maximum rate (credits per minute) that he is willing to
pay for processor time. The REXEC client then selects a compute node that matches the user requirements and executes the
application directly on it. It uses a proportional resource allocation mechanism that allocates resources to jobs proportional to
the user valuation irrespective of their job needs. However, our economy-based resource allocation mechanism prioritizes and
allocates resources to jobs based on the QoS needs of each job. We allocate resources proportionally to jobs with respect to
their required QoS such as deadline rather than user valuation so that more jobs are completed with their QoS fulfilled.

Libra [11] is an initial work done that successfully demonstrates that an economy-based scheduler is able to deliver more
utility to users compared to traditional scheduling policies. Libra allows users to specify QoS requirements and allocates
resources to jobs proportional to their specified QoS requirements. Thus, Libra can complete more jobs with their QoS
requirements satisfied as compared to system-centric scheduling policies that do not consider various QoS needs of different
jobs. Currently, Libra computes a static cost that provides incentives for jobs with a more relaxed deadline so as to encourage
users to submit jobs with a longer deadline. But, Libra does not consider the actual supply and demand of resources, thus
users can continue to submit unlimited amount of jobs into the cluster if they have the budget. In this paper, we propose an
enhanced pricing function that satisfies four essential requirements for pricing of cluster resources and prevents the cluster
from overloading.

III. ARCHITECTURAL FRAMEWORK

We describe an architectural framework for extending an existing system-centric cluster RMS to support utility-driven
resource management and allocation. Fig. 1 shows the architectural framework for a utility-driven cluster RMS. Four additional
mechanisms: Pricing, Economy-based Admission Control, Economy-based Resource Allocation, and Job Control (shaded in
Fig. 1) are to be implemented as pluggable components into the existing cluster RMS architecture to support utility-driven
resource management.

A utility-driven cluster RMS needs to determine the cost the user has to pay for executing a job and fulfilling his QoS
requirements. This in turn generates economic benefits for the cluster owner to share the cluster resources. We propose a
Pricing mechanism that employs some pricing function for this purpose. Later in this paper, we discuss a pricing function that
aims to be flexible, fair, dynamic and adaptive.

There should also be an admission control mechanism to control the number of jobs accepted into the cluster. If no admission
control is implemented, increasing job submissions will result in fewer jobs to be completed with the required QoS due to
insufficient cluster resources for too many jobs. We propose an Economy-based Admission Control mechanism that uses dynamic
and adaptive pricing (determined by the Pricing mechanism) as a natural means for admission control. For example, increasing
demand of a particular resource increases its price so that fewer jobs that have sufficiently high budget will be accepted. In
addition, our Economy-based Admission Control mechanism also examines the required QoS of submitted jobs to admit only
jobs whose QoS can be satisfied.

After a job is accepted, the cluster RMS needs to determine which compute node can execute the job. In addition, if there
are multiple jobs waiting to be allocated, the cluster RMS needs to determine which job has the highest priority and should be
allocated first. We propose an Economy-based Resource Allocation mechanism that considers user-centric requirements of jobs
such as required resources and QoS parameters like deadline and budget, and allocate resources accordingly to these needs.
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Fig. 1. Architectural framework for a utility-driven cluster RMS. The Economy-based Admission Control mechanism determines whether a job submitted
into the cluster should be accepted or rejected and feedback to the user. If accepted, the Economy-based Resource Allocation mechanism determines the best
compute node to execute the job. The Job Control mechanism then enforces the resource allocation to ensure that the required utility is achieved.

After resource allocation, there should be a mechanism to enforce the resource allocation so as to ensure that the required
level of utility can be achieved. We propose a Job Control mechanism at each compute node that monitors and adjusts the
resource allocation if necessary.

As shown in Fig. 1, there are u local users who can submit jobs to the cluster for execution. The cluster has a single manager
node and c compute nodes. The centralized resource manager of the cluster RMS is installed on the manager node to provide
the user interface for users to submit jobs into the cluster. The typical flow of a job in a utility-driven cluster RMS (circled
numbers in Fig. 1) is as follows:

1) A user submits a job to the cluster RMS using the user-level job submission specification.
2) The Economy-based Admission Control mechanism determines whether the job should be accepted or rejected based on

the job details and QoS requirements given in the job submission specification and current workload commitments of
the cluster. The outcome is feedback to the user.

3) If the job is accepted, the Economy-based Resource Allocation mechanism determines which compute node the job is
to be allocated to. The job manager is then informed to dispatch the job to the selected compute node.

4) The Job Control mechanism administers the execution of the job and enforces the resource allocation.
5) The job finishes execution and its execution result is returned to the user.

IV. USER-LEVEL JOB SUBMISSION SPECIFICATION

We propose a simple generic user-level job submission specification to capture user-centric information defined as follows:

jobi([Segment1][Segment2]...[Segments]) (1)

Each job i submitted to the cluster has a corresponding submission specification comprising of s segments. Each segment
acts as a category that contains fine-grain parameters to describe a particular aspect of job i.

The job submission specification is designed to be extensible such that new segments can be added into the specification
and new parameters can be added within each segment. This flexibility can thus allow customization for gathering varying
information of jobs belonging to different application models. For instance, a job belonging to a workflow-based application
may have a data dependency segment.

Currently, we identify a basic job submission specification that consists of four segments for a parallel compute-intensive
job:

jobi( [JobDetails][ResourceRequirements]
[QoSConstraints][QoSOptimization]) (2)

The first segment, JobDetails describes information pertaining to the job. This provides the cluster RMS with necessary
knowledge that may be utilized for more effective resource allocation. One basic example of JobDetails is:

1) Runtime Estimate REi: the estimated time needed to complete a job i on a compute node. We define the runtime Ri of
job i as the time period for it to be processed on a compute node provided that it is allocated the node’s full proportion
of processing power. Thus, the runtime varies on nodes of different hardware and software architecture and does not
include any waiting time and communication latency. The runtime can also be expressed in terms of the job length in
million instructions (MI).



The second segment, ResourceRequirements specifies the resources that are needed by the job in order to be executed on
a compute node. This facilitates the cluster RMS to determine whether a compute node has the necessary resources to execute
the job. Two basic examples of ResourceRequirements are:

1) Memory size MEMi: the amount of local physical memory space needed to execute job i.
2) Disk storage size DISKi: the amount of local hard disk space required to store job i.
3) Number of processors PROCi: the number of processors required by job i to run.
The third segment, QoSConstraints states the QoS characteristics that have to be fulfilled by the cluster RMS. This captures

user-centric requirements that are necessary to achieve the user’s perceived utility. Two basic examples of QoSConstraints
are:

1) Deadline Di: the time period in which job i has to be finished.
2) Budget Bi: the budget that the user is willing to pay for job i to be completed with the required QoS (eg. deadline)

satisfied.
The fourth segment, QoSOptimization identifies which QoS characteristics to optimize. This supports user personalization

whereby the user can determine specific QoS characteristics he wants to optimize. Two basic examples of QoSOptimization
are:

1) Finish time FTi: the time when job i finishes execution on a compute node. This means that the user wants the job to
be finished in the shortest time, but within the specified budget.

2) Cost Ci: the actual cost the user pays to the cluster for job i provided that the required QoS is satisfied. This means that
the user wants to pay the lowest cost for completing the job.

This example for a parallel compute-intensive job demonstrates the flexibility and effectiveness of the proposed generic
user-level job submission specification in soliciting user-centric requirements for different application models. Users are able
to express their job-specific needs and desired services that are to be fulfilled by the cluster RMS for each different job. The
cluster RMS can utilize these information to determine which jobs have higher priority and allocate resources accordingly so
as to maximize overall users’ perceived utility, thus achieving utility-driven resource management and allocation.

V. PRICING OF RESOURCES

A. Four Essential Requirements

We outline four essential requirements for defining a pricing function to price cluster resources. First, the pricing function
should be flexible so that it can be easily configured by the cluster owner to modify the pricing of resources to determine the
level of sharing. Second, the pricing function has to be fair. Resources should be priced based on actual usage by the users.
This means that users who use more resources pay more than users who use fewer resources. With QoS, users who specify
high QoS requirements (such as a short deadline) for using a resource pay more than users who specify low QoS requirements
(a long deadline). Third, the pricing function should be dynamic such that the price of each resource is not static and changes
depending on the cluster operating condition. Fourth, the pricing function needs to be adaptive to changing supply and demand
of resources so as to compute the relevant prices accordingly. For instance, if demand for a resource is high, the price of the
resource should be increased so as to discourage users from overloading this resource and to maintain equilibrium of supply
and demand of resources.

B. Pricing Function

We define a pricing function that is able to satisfy the above mentioned four essential requirements for pricing of cluster
resources. Examples of cluster resources that are utilized by a job are processor time, memory size and disk storage size. The
pricing function computes the pricing rate Pij for per unit of cluster resource utilized by job i on compute node j as:

Pij = (α ∗ PBasej) + (β ∗ PUtilij) (3)

The pricing rate Pij comprises of two components: a static component based on the base pricing rate PBasej for utilizing
the resource on compute node j and a dynamic component based on the utilization pricing rate PUtilij of that resource that
takes into account job i. The factors α and β for the static and dynamic components respectively provides the flexibility for
the cluster owner to easily configure and modify the weightage of the static and dynamic components on the overall pricing
rate Pij .

The cluster owner specifies the fixed base pricing rate PBasej for per unit of cluster resource. For instance, PBasej can
be $1 per second for processor time, $2 per MB for memory size, and $10 per GB for disk storage size. PUtilij is computed
as a factor of PBasej based on the utilization of the resource on compute node j from time ATi to DTi, where ATi is the
time when job i arrives at the cluster and DTi is the deadline time which job i has to be completed:

PUtilij =
RESMaxj

RESFreeij
∗ PBasej (4)



RESMaxj is the maximum units of the resource on compute node j from time ATi to DTi. RESFreeij is the remaining
free units of the resource on compute node j from time ATi to DTi, after deducting units of resource committed for other
current executing jobs and job i from the maximum units of the resource:

RESFreeij = RESMaxj −

nacceptj∑
k=1

RESk

−RESi (5)

For n jobs submitted to the cluster, naccept jobs are accepted for execution by the admission control. If there is no admission
control, naccept = n. We define nacceptj to be naccept jobs that are executing on compute node j from time ATi to DTi. Our
Economy-based Admission Control and Resource Allocation mechanisms first check that there is sufficient resource on node
j before computing its pricing rate Pij so that RESFreeij is always positive.

The pricing function computes the pricing rate Pij for each different resource to be used by job i on compute node j. Thus,
the overall pricing rate of executing job i on compute node j can be computed as the sum of each Pij . This fine-grain pricing
is fair since jobs are priced based on the amount of different resources utilized. For instance, a compute-intensive job does not
require a large disk storage size as compared to a data-intensive job and therefore is priced significantly lower for using the
disk storage resource.

The pricing function provides incentives that takes into account both user-centric and system-centric factors. The user-centric
factor considered is the amount of a resource RESi required by job i. For example, a low amount of the required resource
(a low RESi) results in a low pricing rate Pij . The system-centric factor taken into account is the availability of the required
resource RESFreeij on the compute node j. For instance, the required resource that is low in demand on node j (a high
RESFreeij) will have a low pricing rate Pij .

Libra [11] gives incentives to jobs with long deadlines as compared to jobs with short deadlines irrespective of the cluster
workload condition. Instead, our proposed pricing function considers the cluster workload because the utilization pricing rate
PUtilij considers the utilization of a resource based on the required deadline of job i (from time ATi to DTi). Consider
this example where the user specifies a short deadline and long deadline of 2 and 5 hours respectively to execute a job i that
requires 10 units of memory size. For the compute node j, we assume that the base pricing rate PBasej is $1 per unit, there
are 100 free units of memory size for each hour of deadline, and there are nacceptj jobs using 90 units of memory size during
both deadlines. So, for a short deadline of 2 hours, PUtilij = (200/(200− 90− 10)) ∗ 1 = $2 per unit. Whereas, for a long
deadline of 5 hours, PUtilij = (500/(500− 90− 10)) ∗ 1 = $1.25 per unit which is lower.

Our proposed pricing function is dynamic since the overall pricing rate of a job varies depending on the availability of
each resource on different compute nodes for the required deadline. It is also adaptive as the overall pricing rate is adjusted
automatically depending on the current supply and demand of resources to either encourage or discourage job submission.

VI. MECHANISMS FOR ENFORCING REQUIRED UTILITY

We enhance the admission control and resource allocation mechanisms from Libra [11] to incorporate the proposed user-level
job submission specification that solicits fine-grain user-centric information for jobs and the proposed pricing function that
computes dynamic and adaptive pricing for resources.

A. Economy-based Admission Control and Resource Allocation

We consider utility-driven resource management and allocation in a simplified cluster operating environment with the
following assumptions:

1) The users submit parallel compute-intensive jobs that require at least one or more processors into the cluster for execution.
2) The runtime estimate of each job is known and given during job submission and is correct. We envision that the nature

of the jobs submitted enables their runtimes to be predicted in advance based on means such as past execution history.
3) The QoS requirements specified by the user during job submission do not change after the job is accepted.
4) The cluster RMS is the only gateway for users to submit jobs to the cluster. In other words, all compute nodes in the

cluster are dedicated for executing jobs that can only be assigned by the cluster RMS. This also implies that the cluster
RMS has the full knowledge of allocated workload currently in execution and the resources available on each compute
node.

5) The compute nodes can be homogeneous (have the same hardware architectures) or heterogeneous (have different
hardware architectures). For heterogeneous compute nodes, the runtime estimate is translated to its equivalent on the
allocated compute node.

6) The underlying operating system at the compute nodes supports time-shared execution mechanism. A time-shared
execution mechanism allows multiple jobs to be executed on a compute node at the same time. Each job shares processor
time by executing within assigned processor time partitions.



Currently, our enhanced Economy-based Admission Control and Resource Allocation mechanisms use a simplified version
of the job submission specification in (2) that excludes the QoSOptimization segment for the parallel compute-intensive jobs:

1) JobDetails:
a) Runtime estimate REi

2) ResourceRequirements:
a) Memory size MEMi

b) Disk storage size DISKi

c) Number of processors PROCi

3) QoSConstraints:
a) Deadline Di

b) Budget Bi

In addition, it only considers a single cluster resource which is the processor time utilized by the job. In this case, the
proposed pricing function only computes the pricing rate for the processor time resource. So, RESFreeij which is the free
processor time resource on compute node j from time ATi to DTi, excluding the runtime estimate REk used by other current
executing jobs and REi by job i is defined as:

RESFreeij = RESMaxj −

nacceptj∑
k=1

REk

−REi (6)

Our enhanced Economy-based Admission Control and Resource Allocation mechanisms determine whether a job can be
accepted or rejected based on three criteria:

1) Resources required by the job to be executed
2) Deadline that the job has to be finished
3) Budget to be paid by the user for the job to be finished within the deadline
Algorithm 1 shows the pseudocode for the enhanced Economy-based Admission Control and Resource Allocation mech-

anisms using the proposed pricing function. First, the Admission Control mechanism determines whether there is sufficient
number of compute nodes that can fulfill the specified resource requirements for job i (line 1–8). This rejects jobs that require
more resources than that can be supported by the cluster. Then, the Admission Control mechanism determines whether there
is sufficient number of these compute nodes that can fulfill the required deadline time DTi and has the required resources for
job i with runtime estimate REi (line 9–16). These compute nodes are then sorted in ascending order using RESFreeij in
(6) (line 17). This ensures that each compute node is allocated jobs to its maximum capacity so that more jobs can be accepted
and completed within their required deadlines. The first PROCi number of compute nodes in the sorted list that is within the
specified budget Bi is then allocated to job i (line 18–34). A node j is allocated if its cost for utilizing the processor time
resource based on the pricing rate Pij in (3) is not more than the specified budget Bi of job i (line 19–25). The cost Ci for
job i is thus computed as the highest cost needed from the allocated PROCi number of allocated compute nodes (line 22–24).
If there is sufficient number of compute nodes meeting Bi, job i is accepted, else it is rejected (line 30–34).

B. Job Control

The Job Control mechanism at each compute node needs to enforce the QoS of a job so as to ensure that the job can finish
with the required utility. Currently, we only consider enforcing a single QoS which is the deadline. We adopt the time-shared
job control mechanism from Libra [11] that implements proportional-share resource allocation based on the required deadline of
the job. The Job Control mechanism computes the initial processor time partition for a newly started job and then periodically
updates processor time partitions for all current executing jobs to enforce that their deadlines can be satisfied.

Algorithm 2 shows the pseudocode for the Job Control mechanism that computes the processor time partition for each job
i that is executing on a compute node j. The job control updates new processor time partition for every executing job i based
on the processor clock time completed so far and the actual wall clock time taken with respect to its runtime estimate REi

and deadline Di (line 1–4).

VII. PERFORMANCE EVALUATION

We evaluate the performance of our enhanced deadline-based proportional processor share policy (referred to as Libra+$)
through simulation for varying cluster workload, varying pricing factor and tolerance against runtime under-estimates.



Algorithm 1: Pseudocode for Economy-based Admission Control and Resource Allocation mechanisms.

for j ← 0 to c do1
if node j has required resources then2

place node j in ListResReqi ;3
endif4

endfor5
if ListResReqi size < PROCi then6

reject job i with cannot meet resources message;7
else8

for j ← 0 to ListResReqi size −1 do9
if node j can finish job i with REi before DTi and node j has required resources for REi then10

place node j in ListDeadlinei ;11
endif12

endfor13
if ListDeadlinei size < PROCi then14

reject job i with cannot meet deadline message;15
else16

sort ListDeadlinei by RESFreeij in ascending order;17
for j ← 0 to ListDeadlinei size −1 do18

compute Pij ;19
if REi ∗ Pij ≤ Bi then20

place node j in ListAllocationi ;21
if ListAllocationi size = 1 or REi ∗ Pij > Ci then22

Ci = REi ∗ Pij ;23
endif24

endif25
if ListAllocationi size = PROCi then26

break;27
endif28

endfor29
if ListAllocationi size < PROCi then30

reject job i with cannot meet budget message;31
else32

accept job i and allocate job i to all nodes in ListAllocationi ;33
endif34

endif35
endif36

Algorithm 2: Pseudocode for Job Control mechanism.

for all job i executing on compute node j do1
get processor clock time clockCPUij completed so far by node j for job i;2
get wall clock time clockWalli currently taken by job i;3

set processor time partition Partitionij =
REi−clockCPUij

Di−clockWalli
;4

endfor5

A. Evaluation Metrics

We define two user-centric performance evaluation metrics to measure the level of utility achieved by the cluster: Job QoS
Satisfaction and Cluster Profitability.

Job QoS Satisfaction measures the level of utility for satisfying job requests. A higher Job QoS Satisfaction represents better
performance. It is computed as the proportion of nQoS jobs whose required QoS (deadline and budget) are fulfilled out of n
jobs submitted:

Job QoS Satisfaction = nQoS/n (7)

nQoS is naccept jobs (accepted by the admission control) with their required QoS satisfied. Currently, we only consider two
basic QoS parameters: deadline Di and budget Bi. To satisfy Di, the finish time must be less than the deadline time, that is
FTi ≤ DTi. To satisfy Bi, the actual cost paid by the user must be less than the budget, that is Ci ≤ Bi.

Cluster Profitability measures the level of utility for generating economic benefits for the cluster owner. A higher Cluster
Profitability denotes better performance. It is computed as the proportion of profit earned by the cluster for meeting job QoS
out of the total budget of jobs that are submitted:

Cluster Profitability =
nQoS∑
i=1

Ci/

n∑
i=1

Bi (8)



TABLE I
DEFAULT SIMULATION SETTINGS.

Parameter Default value
% of high urgency jobs 20.0
% of low urgency jobs 80.0

Deadline high:low ratio 4.0
Deadline low mean 2.0

Budget high:low ratio 4.0
Budget low mean 2.0

Arrival delay factor 0.5
% of inaccuracy 0.0

Libra+$:
Static pricing factor α 1.0

Dynamic pricing factor β 0.1

B. Experimental Methodology

We use GridSim [18] to evaluate the performance. GridSim provides an underlying infrastructure that allows construction
of simulation models for heterogeneous resources, users, applications and schedulers. GridSim has been used for the design
and evaluation of economy-based scheduling algorithms in both cluster [11] and Grid computing [19][20].

For the experiments, we use a subset of the last 5000 jobs in the SDSC SP2 trace (April 1998 to April 2000) version 2.2
from Feitelson’s Parallel Workload Archive [23]. This 5000 job subset is based on the last 3.75 months of the SDSC SP2 trace
and requires an average of 17 processors, average inter arrival time of 1969 seconds (32.8 minutes), and average runtime of
8671 seconds (2.4 hours).

As QoS parameters (deadline and budget) are not recorded in the trace, we follow a similar experimental methodology in
[24] to model these parameters through two job classes: (i) high urgency and (ii) low urgency. Each job in the high urgency
class has a deadline of low Di/Ri value and budget of high Bi/f(Ri) value. f(Ri) is a function to represent the minimum
budget the user will quote with respect to Ri. Conversely, each job in the low urgency class has a deadline of high Di/Ri

value and budget of low Bi/f(Ri) value. This model is realistic since a user who submits a more urgent job to be completed
within a shorter deadline is likely to offer a higher budget for the job to be finished on time. The arrival sequence of jobs
from the high urgency and low urgency classes is randomly distributed.

Values are normally distributed within each of deadline and budget parameters. The ratio of the means for each parameter’s
high-value and low-value is thus known as the high:low ratio. So, a higher budget high:low ratio denotes that high urgency
jobs have larger budgets that of a lower ratio. For instance, a budget high:low ratio of 8 means the Bi/Ri mean of high
urgency jobs is two times more than that of a budget high:low ratio of 4.

Table I lists the default settings for our simulations. We model varying workload thru the arrival delay factor which sets
the arrival delay of jobs based on the inter arrival time from the trace. For example, an arrival delay factor of 0.1 means a
job with 600 seconds of inter arrival time from the trace now has a simulated inter arrival time of 60 seconds. Hence, a lower
delay factor represents higher workload by shortening the inter arrival time of jobs.

We investigate the tolerance against runtime under-estimates so as to examine the impact of delays caused by earlier jobs on
later jobs, in particular failing to meet their required QoS. We do not consider over-estimated value of REi since jobs accepted
by the admission control will still be completed within their required deadlines. The inaccuracy of runtime under-estimates is
computed with respect to the real runtime from the trace. An inaccuracy of 0% assumes runtime estimates are equal to the
real runtimes of the jobs, while a higher percentage denotes higher under-estimation.

For the operating environment, we simulate the 128-node IBM SP2 located at San Diego Supercomputer Center (SDSC)
(where the selected trace originates from) with the following characteristics:

• SPEC rating of each compute node: 168
• Number of compute nodes: 128
• Processor type on each compute node: RISC System/6000
• Operating System: AIX
To facilitate comparison, we also model three backfilling resource allocation policies: (i) FCFS-BF, (ii) SJF-BF, and (iii)

EDF-BF which prioritize jobs based on arrival time (First Come First Serve), runtime estimate (Shortest Job First), and deadline
(Earliest Deadline First) respectively, in addition to Libra [11] and Libra+$. These three policies are implemented as variations
of EASY backfilling [21][22] that assigns unused processors to the next waiting jobs in the queue based on their runtime
estimates, provided that they do not delay the first job with highest priority. This means that each job needs to wait for its
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Fig. 2. Impact of decreasing workload. Libra+$ generates higher Cluster Profitability than all other policies even though it manages similar or lower Job
QoS Satisfaction, thus demonstrating the effectiveness of its pricing function in improving the economic benefit of the cluster owner.

required number of processors to be available in order to run since only a single job can run on a processor at any time (i.e.
space-shared).

We select EASY backfilling for comparison since it is currently supported and widely used in a number of schedulers,
including LoadLeveler [13], LSF [14], and Maui [17]. However, these backfilling policies have very poor performance without
job admission control as they are not able to restrict the number of jobs which can overload the cluster. So, we have modified
these policies not to run any waiting jobs that have exceeded their deadlines from the queue; the removed jobs are simply
treated as rejected. This generous admission control not only allows the policies to choose their highest priority job at the
latest time, but also ensures that jobs whose deadlines have lapsed are not unnecessarily run to incur propagated delay for later
jobs.

In order to measure the Cluster Profitability metric, we also model the three backfilling policies to incorporate a simple pricing
mechanism. The profit of processing a job is only considered when the deadline of the job is met. The user is then charged
based on the static base pricing rate PBasej of using processing time on node j, so job i has its cost Ci = REi ∗ PBasej .

Libra [11] uses a pricing function that provides incentives for jobs with more relaxed deadlines to compute a static cost,
so job i has its cost Ci = γ ∗ REi + δ ∗ REi/Di. γ is a factor for the first component that computes the cost based on
the runtime of the job, so that longer jobs are charged more than shorter jobs. δ is a factor for the second component that
provides incentives for jobs with more relaxed deadlines, so as to encourage users to submit jobs with longer deadlines. For
our experiments, γ = 1 and δ = 1. Libra is used to evaluate the effectiveness of the proposed pricing function in Libra+$ for
improving utility for the cluster owner.

C. Varying Cluster Workload

Figure 2 shows how Libra+$ performs with respect to other policies for changing cluster workload. We can see that a
decreasing workload (increasing arrival delay factor) results in an increasing Job QoS Satisfaction and Cluster Profitability as
more jobs can have their deadlines met.

For Job QoS Satisfaction (Figure 2(a)), both Libra and Libra+$ are able to achieve substantially higher performance than
FCFS-BF and EDF-BF since they consider the required QoS (deadline and budget) of each different job and allocate resources
proportionally to each job based on its required deadline so that more jobs can be satisfied. However, Libra+$ has a lower Job
QoS satisfaction as compared to Libra. This is because the proposed pricing function computes higher pricing, thus denying
jobs with insufficient budgets.

When the cluster workload is high (with lower arrival delay factor), both Libra and Libra+$ have a lower Job QoS Satisfaction
than SJF-BF and EDF-BF. This is due to the fact that in our experiments, the deadlines are always set as larger factors of
runtimes. Thus, SJF-BF and EDF-BF are able to exploit this as they have a more favorable selection choice due to their
generous admission controls that we implemented to reject jobs only when their deadlines have lapsed, and not when they
are submitted. However, both Libra and Libra+$ are able to overcome this unfairness, as seen in achieving higher Job QoS
Satisfaction than SJF-BF and EDF-BF as workload decreases.

On the contrary, Figure 2(b) shows that the proposed pricing function enables Libra+$ to continue generating significantly
higher Cluster Profitability than Libra and SJF-BF even though fewer jobs are accepted, thus proving its effectiveness in
improving the cluster owner’s economic benefits. Accepting fewer but higher-priced jobs enables Libra+$ to maintain a higher
Cluster Profitability to compensate for a lower Job QoS Satisfaction.
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Fig. 3. Impact of increasing dynamic pricing factor β. A higher β returns lower Job QoS Satisfaction, but higher Cluster Profitability. The cluster owner
can adjust the value of β to determine the level of sharing for the cluster.

Another interesting point to note is that EDF-BF returns a similar Cluster Profitability as FCFS-BF even though it has a
higher Job QoS Satisfaction. This may be due to more urgent jobs being completed first in EDF-BF, but in turn resulting in
other less urgent jobs exceeding their deadlines, thus returning similar Cluster Profitability as FCFS-BF.

D. Varying Pricing Factor for Different Level of Sharing

We study the level of sharing supported by Libra+$. We increase the dynamic pricing factor β to observe its impact on
Libra+$ in supporting the level of sharing.

Figure 3(a) shows that an increasing β for Libra+$ results in decreasing Job QoS Satisfaction, while Figure 3(b) shows that
it results in increasing Cluster Profitability. This demonstrates that the proposed pricing function is able to generate increasing
profit even though a decreasing number of jobs is accepted. This is possible since jobs with sufficient budgets are executed
at a higher cost (due to higher β) to compensate for accepting fewer jobs due to insufficient budgets. A point to note from
Fig. 3(a) is that if β is set too high, the Job QoS Satisfaction can be lower than other policies such as EDF-BF and FCFS-BF.
An increasing β will also ultimately result in lower Cluster Profitability (eg. β = 1.0 in Figure 3(b)) since too many jobs are
rejected by the high quoted prices.

These results show that the dynamic pricing factor β has a significant impact on both Job QoS Satisfaction and Cluster
Profitability. A higher β lowers the level of sharing (a lower Job QoS Satisfaction), but increases the economic benefit of the
cluster owner (a higher Cluster Profitability). However, β should not be set too high such that more jobs will be rejected and
result in lower profit. Thus, the cluster owner can determine the level of sharing by adjusting the value of β. This demonstrates
the flexibility of the pricing function in enabling the cluster owner to easily configure and determine the level of sharing based
on his objective.

Figure 4 presents the impact of decreasing workload on the dynamic pricing factor β. Figure 4(b) shows that Libra+$
always return a higher Cluster Profitability than Libra, thus demonstrating the effectiveness of its pricing function in computing
pricing based on demand (higher pricing for higher workload). This can also be verified by observing Libra+$ achieving higher
Cluster Profitability when the workload is high (arrival delay factor <= 0.5) in Figure 4(b), though it manages lower Job QoS
Satisfaction in Figure 4(a). In particular, a higher β is still able to generate higher Cluster Profitability with lower Job QoS
Satisfaction.

A larger increase in Cluster Profitability is also obtained for higher β as the workload decreases. For example, the Cluster
Profitability in Figure 4(b) increases by 25% for β = 0.5 (from 32% when the arrival delay factor is 0.25 to 57% when the
arrival delay factor is 1.0). On the other hand, there is only an increase of 17% in Cluster Profitability for β = 0.1 (from 23%
when the arrival delay factor is 0.25 to 40% when the arrival delay factor is 1.0). But again, if β is set too high (eg. β = 1.0
compared to β = 0.5), a smaller increase in Cluster Profitability is obtained instead (only 13% increase from 31% when the
arrival delay factor is 0.25 to 44% when the arrival delay factor is 1.0).

However, Figure 5(b) shows that a high β (eg. β = 1.0) is able to generate higher Cluster Profitability when there are more
high urgency jobs, but it can result in lower Cluster Profitability when there are less high urgency jobs. In addition, as seen
in Figure 5(a), a high β also has higher Job QoS Satisfaction that gradually increases to almost equivalent to that of low β.
This reinforces the need for a cluster owner to be aware of how the configuration of the dynamic pricing factor can easily
influence the level of sharing and profit earned for his cluster.
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Fig. 4. Impact of decreasing workload with dynamic pricing factor β. Decreasing workload results in a larger increase in Cluster Profitability for higher β,
but smaller increase if β is set too high.
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Fig. 5. Impact of increasing number of high urgency jobs with dynamic pricing factor β. A higher β will generate higher Cluster Profitability when there
are more high urgency jobs, even though it can result in lower Cluster Profitability when there are less high urgency jobs.

E. Tolerance against runtime under-estimates

Figure 6(a) shows that when there is no runtime under-estimates (0% of inaccuracy of runtime estimates), a higher dynamic
pricing factor β for Libra+$ results in much lower Job QoS Satisfactions. But, with increasing under-estimates (increasing
negative inaccuracy), a higher β results in higher Job QoS satisfaction, whereas Libra has the lowest Job QoS satisfaction.
This shows that a higher β provides a higher degree of tolerance against runtime under-estimates since fewer jobs are accepted
and thus the possibility of delays occurring on later jobs is lower.

Figure 6(b) shows that increasing runtime under-estimates results in the lowest Cluster Profitability for Libra as fewer jobs are
accepted due to delays caused by earlier jobs. However, a higher β = for Libra+$ can still maintain higher Cluster Profitability
with increasing runtime under-estimates. This reiterates the effectiveness of the proposed pricing function in improving the
economic benefit of the cluster owner, even in the case of runtime under-estimates.

VIII. CONCLUSION

We have demonstrated the importance of an effective pricing mechanism for achieving utility-driven resource management
and allocation in clusters, especially when demand exceeds supply of cluster resources. We show that our enhanced pricing
function meets the four essential requirements for pricing of resources. In particular, our pricing function provides flexibility
for the cluster owner to easily configure the pricing of his cluster resources to modify the level of sharing. Our pricing function
also adapts to the changing supply and demand of resources by computing higher pricing when cluster workload increases.
This serves as an effective means for admission control to prevent the cluster from overloading and tolerate against job runtime
under-estimates. Finally, the pricing function generates a higher economic benefit for the cluster owner.
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Fig. 6. Impact of increasing runtime under-estimates with dynamic pricing factor β. A higher β provides a higher level of tolerance against runtime
under-estimates (better performance) for both Job QoS Satisfaction and Cluster Profitability.
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