
Impact of Adaptive Resource Allocation Requests in

Utility Cluster Computing Environments

Marco A. S. Netto Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{netto, raj}@csse.unimelb.edu.au

Abstract

Maximizing resource provider profit and satisfying user

requirements at the same time is a challenging problem in

utility computing environments. In this paper, we intro-

duce adaptive resource allocation requests and investigate

the impact of using them in utility cluster computing en-

vironments. The Service Level Agreements established be-

tween users and resource providers rely not only on fixed

values, but also on functions that associate allocation pa-

rameters. In addition, the resource provider scheduler can

automatically modify the number of resources and usage

time of allocation requests, as well as split them into subre-

quests. Users may receive incentives for supplying flexible

requests which produce more scheduling options. By us-

ing rescheduling, resource providers are able to prioritize

the most profitable requests dynamically and still satisfy the

requirements of the already accepted user requests. From

our experimental results we observed an increase of 14% in

the resource provider profit and a reduction of 20% in the

average response time of user requests when compared to

traditional approaches.

1. Introduction

Organizations interested in providing computing re-

sources and infrastructure management to customers on de-

mand, charging them according to their usage, rely on the

utility computing model [8]. In this model, computing re-

sources are provided as services in the same way as other

utility services, such as electrical power, water, and Inter-

net access. For users, the most important benefit of this

model is the reduction of costs and complexities regarding

computing resources and infrastructure management. Com-

panies can bring more agility and flexibility to their busi-

ness with the ability to decide when, from which provider,

and how much resource they wish to use without having

to make large investments. Moreover, utility computing

enables small companies to take on projects requiring IT-

related services far beyond what their budgets would nor-

mally allow. Additionally, for resource providers, utility

computing is a valuable model for increasing their prof-

its. As the resources and infrastructure are not available and

configured to a single user solution, it is easier to provide

services for a larger variety of customers. Consequently,

resource providers can reduce operational costs and under-

utilized resources.

Scheduling the incoming user requests in such a way

as to satisfy user Quality of Service and maximize re-

source provider profit is a challenging problem. One of

the main reasons is that usually the objectives of the re-

source providers and users are in conflict. When the re-

source provider receives an allocation request, its scheduler

must find a free timeslot in its queue of requests according

to some optimization criteria. The user requests are usually

composed of parameters such as the number of resources,

usage time, deadline, and the cost for satisfying all these

parameters. The use of rigid allocation parameters reduces

the number of mapping possibilities the scheduler can con-

sider.

In this paper, we introduce adaptive resource alloca-

tion requests for utility computing environments, in par-

ticular for cluster machines, and show their impact for re-

source provider profit and user response time. In these en-

vironments, guarantees are important since users are pay-

ing to access the resources. These guarantees are estab-

lished through Service Level Agreements (SLAs), which

are contracts between users and resource providers to spec-

ify the required Quality of Service parameters. By including

flexibility in these contracts, through adaptive requests and

rescheduling techniques, resource providers are able to im-

prove their profit and reduce the average response time of

user requests. This is possible because resource providers

can have more scheduling options; the scheduler can au-

tomatically modify the amount of time and number of re-

sources allocated to each request, as well as split them into

smaller subrequests. With these operations, instead of only

finding free timeslots in the request queue, the scheduler is

able to free new slots by modifying the existing requests.

Moreover, as the scheduling queue is modified over time, it

is easier for the scheduler to adapt the request without user

interaction.

As a way to attract more users, the resource provider

may offer incentives to users supplying requests that sup-

port more scheduling options. The resource provider can

prioritize the most profitable requests dynamically, by us-

ing rescheduling, and still satisfy the requirements of the

already accepted user requests. We develop the scheduler

to work with these adaptive requests and analyze the im-

pact on the resource provider profit, the reduction of aver-

age request completion time and the rejection of requests.

In this work we have considered on-line scheduling of re-

quests with hard deadlines.

In the next section we present some of the existing works

on job scheduling in utility computing environments. In

Section 3 we define adaptive resource allocation requests,

present two scheduling algorithms used for an initial evalu-

ation of these requests, and discuss about cost functions. In

Section 4 we show the impact of using the adaptive requests

through simulations with different workloads and input pa-

rameters. Finally, in Section 5 we present some concluding

remarks and plans for extending our work.

2 Related Work

Resource allocation and job scheduling are very well re-

searched topics in Computer Science [7]. A number of re-

source management and scheduler systems, such as PBS

[1], Condor [11], and MAUI [4], have been developed with

their own specific purposes. These systems rely on static

request parameters for allocating resources. Moreover, al-

though these systems can be used in utility computing en-

vironments, they do not provide incentive mechanisms for

increasing resource provider profit.

The use of economic models and market-based policies

for resource allocation is becoming more popular. Several

projects make use of these models and policies to increase

resource provider profit while satisfying user required qual-

ity of service (QoS) [12]. Libra [10] is market-based sched-

uler that can be integrated into existing cluster resource

managers to support resource allocation based on users’

QoS. Libra makes use of pricing functions to assist the re-

source providers in determining the value of their resources

according to parameters such as the current system work-

load. Incentive is given to encourage users to submit jobs

with longer deadlines. Chun and Culler [2] discuss market-

based cluster batch scheduling algorithms. They present

a performance analysis of market-based batch schedulers

using user-centric performance metrics. The cost charged

to the users depends on the completion time of their jobs

and decreases linearly over time until it reaches zero. Their

work makes use of only one type of function and they do not

explore the modification of request parameters; only dead-

line and budget.

Kalé et al [6] present an adaptive job scheduler for re-

source allocation of malleable jobs. The goal is to maximize

the utilization of the system and reduce job response time.

In their scheduler, when a high profit request arrives and has

a tight deadline, low priority requests can be shrunk, releas-

ing processors to be allocated to high priority request [5].

Their work focuses on the use of minimum and maximum

values of number of resources. In addition, they do not con-

sider splitting a request into smaller subrequests to assist in

the scheduling process.

The use of adaptive resource allocation requests in util-

ity computing environments has not been well explored. In

this paper we will address this providing a detailed defini-

tion of adaptive requests and discussing the impact of these

requests in utility computing environments.

3 Adaptive Resource Allocation Requests

We investigate the use of adaptive resource allocation re-

quests in utility cluster computing environments. There-

fore, resources here are defined as cluster nodes managed

by Resource Management Systems (RMSs). These sys-

tems contain schedulers responsible for receiving the user

requests and placing them into a waiting queue according

to the available timeslots. The scheduler must decide which

request can receive resources and at what time.

In this work we consider an adaptive request as the one

that can be modified in terms of not only the number of re-

sources and usage time, but also the starting and completion

time that are not fixed when the request has been scheduled.

Instead of using only rigid allocation parameters, the RMSs

can rely on flexible parameters defined through functions

that associate user requirements. This flexibility brings ben-

efits for both users and resource providers. Following are

some of the benefits of using adaptive requests:

• Use of free fragments: Due to the dynamic nature

of the computing environment, the scheduling queue

varies over time. While a user request is waiting for re-

sources, other users may wish to modify or even cancel

a request. In addition, it is common requests finishing

before allocated time due to wrong estimation of ex-

ecution times. These modifications produce timeslot

fragments in the scheduling queue. Adapting user re-

quests to fulfil these fragments demands user request

renegotiation. In this case, user-oriented renegotiation

is avoided since the scheduler automatically adapts the

requests without user interaction.

• Creating new free timeslots: Instead of only finding

free timeslots, the scheduler attempts to create new

ones by modifying the already scheduled requests.

This flexibility is a mechanism for automatically re-

ducing the completion time of user requests and in-

creasing the resource provider profit.

• Rescheduling the requests: As the Service Level

Agreements are flexible, the resource provider can

reschedule the user requests without reducing the qual-

ity of service that users are expecting to receive.

3.1 Request definition

Usually a request in a utility computing environment is

defined through the use of four parameters: (i) R, the num-

ber of resources; (ii) T , the resources usage time; (iii) D,

the deadline (i.e. maximum time to finish the request); and

(iv) B, the budget associated to this request—the maximum

amount of money the user is willing to spend to use the re-

sources.

In this work we extend this definition by considering two

request modifications: (i) changing the number of resources

and usage time (moldable requests), and (ii) splitting a re-

quest into smaller subrequests (preemptive requests). Each

one of these modifications has an associated cost defined by

the resource provider. Furthermore, these modifications can

be executed together. For example, after splitting a request,

one or more of these subrequests can be modified to access

fewer resources for more time.

These modifications, together with the rescheduling, en-

able automatic resource negotiation among user requests.

We illustrate an example through Figure 1: let a user, with

a moldable and preemptive request ReqC , who needs the

results of his/her application as soon as possible and is will-

ing to pay for this. The scheduler can modify the other re-

quests to reduce the finish time of the request ReqC . The

figure shows an initial state where the scheduler has two

candidates to analyze, the requests ReqA and ReqB , and

five possible scheduling results.

Moldable requests. The relation between the number of

resources and request duration is defined by the user appli-

cation behavior. Therefore, the users should be responsi-

ble for deciding the number of resources required, and for

how long they are needed. This is because in a real sce-

nario the resource providers may not know the performance

model of the user application. We define this moldability
parameter as a function fmol that has as input the amount

of resources R and the time T required to use these re-

sources, fmol : R → T . The parameter fmol defines the

Figure 1. Five possibilities for reducing the

completion time of the request C.

possible shapes of a request based on speed up functions.

The user can define these functions through benchmarks

and application profiling as discussed by Sevcik [9]. There

is also existing work on characterizing moldable jobs [3].

Besides the function fmol, the user needs to define Rmin

and Rmax, which are the minimum and maximum number

of resources, respectively. Thus, the scheduler can use an

R ∈ N, Rmin ≤ R ≤ Rmax. The user may restrict the

value R to Rmax since the application does not scale prop-

erly after such a value or because the price to access a cer-

tain number of resources is very high. The value Rmin can

be restricted since the application takes long time to execute

if R ≤ Rmin or due to memory requirements. Moreover,

the user can restrict the values that R can assume, such as

R = 2x, where x ∈ N, due to factors such as algorithmic

constraints [3].

Preemptive requests. Splitting a request into smaller sub-

requests is a profitable way for filling fragments in the re-

quest queue or making possible the reduction of the request

completion time. Here, splitting means the possibility of

interrupting and restart later an execution. We define the

parameter Sp to deal with preemptive requests as follows:

Sp = (N, I,M)

The argument N defines the maximum number of subre-

quests that a request can be split: N ∈ N or N =∞; I de-

fines the time intervals a request can be split, i.e. the points

where the request can be split in the time axis: I ∈ N; and

M specifies whether the moldability can be applied inde-

pendently for each subrequest: M = true|false.

Depending on the user application, the execution can be

interrupted at any time or only at same specific times (pa-

rameter I). These interruptions are possible due to several

factors. For example, the application has a checkpointing

support, or the application is composed of a set of parallel

tasks that are executed in sequence. In this second case, ev-

ery time a task finishes, the application could be preempted.

Figure 2. Usage examples of parameter Sp for

preemptive requests.

In the current implementation of our scheduler, we allow

these interruptions to be only at specific times according to

a certain frequency. For example, the request can be split

every 20% of the execution. The user may also restrict the

number of times the scheduler can preempt a request due

to performance reasons, e.g. high cost to execute a check-

pointing (parameter N). Remark that there must be no over-

laps between two subrequests of a request. This means that

if a subrequest finishes at time t, the following subrequest

must start after t.

In Figure 2 we present three usage examples of the pa-

rameter Sp for a given request. The first request can be

split up to 5 subrequests that should be in the same size.

The second request can be split up to 5 subrequests with the

same initial size that can be modified independently. In the

third case, the request can be split up to 2 subrequests with

different initial size that can be modified independently. In

this last example, although a subrequest can be created in

each 20% of the request duration, only 2 subrequests can be

created.

The splitting operation can bring benefits for both users

and resource provider. However, it may not be easy to use

this operation since it is highly dependent on the user ap-

plication. Moreover, the user may need to setup additional

configuration to work properly. For this reason, the resource

provider could supply incentive mechanisms to the users in

the form of resource usage discounts for example.

With these new two parameters, fmol and Sp, an

adaptive request Req is defined as:

Req(Rmin, Rmax, fmol,D,B, Sp)

Note that the time T is not explicit present here, since it

is defined in the function fmol. If the request is not mold-

able the function fmol should return a constant value.

3.2 Pricing functions

One common problem in utility computing environments

is the resource usage pricing and the provision of incentive

mechanisms. The resource provider can define the resource

usage price P as a function that receives as input the re-

quest Req, the starting time Ts, resource usage duration,

and number of resources R specified by the scheduler:

P = ω(Req, Ts,Duration,R)

Note that the resource provider can classify users

through different profiles and therefore there can be a dif-

ferent function for each user profile. In addition, depending

on the current workload, the resource provider could adopt

different profiles.

All the user parameters defined in Req are important for

defining the price P . In particular, the parameters fmol and

Sp are an incentive mechanism for the users to supply flex-

ible requests in order to assist the resource provider sched-

uler. Thus, the more shapes these parameters provide, the

greater the discount for using the resources. We define this

number of shapes as flexibility factor.

Internally, the resource provider deals with the ω func-

tion using a set of relations that associate the request param-

eters. These relations are: (i) Time ⇔ Price; (ii) Deadline

⇔ Price; (iii) Resources⇔ Price; and (iv) Flexibility Factor

⇔ Discount. In Section 4 we provide an example of how to

implement the ω function.

3.3 Scheduling

When scheduling user requests, ideally we want to max-

imize the resource providers’ profit1, reduce the completion

time Tc of the users requests and serve as many requests as

possible.

In this initial work, we implemented two simple schedul-

ing strategies to compare the effectiveness of adaptive re-

quests: (i) First in First Out algorithm; and (ii) Missing

Deadline First; both with conservative backfilling. The

main difference between these strategies is that the second

one has a rescheduling phase. Here we consider on-line

scheduling, i.e. the resource provider receives the requests

and schedules them without the knowledge of the future re-

quests. Furthermore, we consider requests with hard dead-

lines. If the resource provider is not able to schedule a re-

quest, the user can modify some allocation parameter and

try a new request. The resource provider does not take the

risk of accepting a request if it cannot be completed before

the deadline.

1In this work we use the term profit as the total incoming from users.

We are not considering that the resource providers have internal expenses

to maintain infrastructure, such as power consumption, resource replace-

ments, and IT staff.

Algorithm 1 presents how the scheduling of adaptive re-

quests is currently performed. For preemptive requests, the

scheduler split them into subrequests and deal with them in-

dependently; but as said in Section 3.1, no subrequest over-

lap is allowed. The SchedulingEventTimes variable in the

algorithm is a list of the expected starting and completion

times of the scheduled requests, and variable Placement
contains information of the request placement in the queue,

such as, starting time, completion time and list of resources.

Algorithm 1 Pseudo-code for scheduling an adaptive re-

quest Reqi.

Best Tc ← null
BestP lacement← null
for all et in the SchedulingEventT imes list do

R← Rmax

T ← fmol(R)
repeat

Placement← Allocate R resources for duration T
if (Placement 6= null and

(Best Tc = null or Best Tc > Tc)) then

BestP lacement← Placement
Best Tc ← Tc

end if

Decrement R, T ← fmol(R)
until R < Rmin or Placement 6= null

end for

if BestP lacement 6= null then

Allocate resources for Reqi using BestP lacement
Update SchedulingEventT imes

else

Not possible to schedule request Reqi

end if

The Missing Deadline First algorithm considers the

rescheduling of the requests in the waiting queue. For ev-

ery received request, all requests in the queue waiting for

resources are sorted and rescheduled using Algorithm 1. In

order to sort the requests, the scheduler considers the cur-

rent time, the resource usage time T when for R = Rmax,

and the requests’ deadline. It first places the requests close

to missing their deadlines. Once a request receives the re-

sources and starts execution, it moves to the queue of run-

ning requests (Figure 3). In this case, it is not rescheduled

together with the requests waiting for resources.

The scheduler could attempt to optimize the profit each

time a scheduling event occurs. Examples of events are: (i)

the resource provider receives a new request; (ii) a request

finishes before the expected deadline; and (iii) a user can-

cels or modifies a request. Moreover, it is possible that new

resources become available or are removed from the envi-

ronment. In these cases, the optimization procedure could

also be executed. We plan to consider these events in future.

Figure 3. Scheduling queues.

4 Evaluation

We evaluated the use of adaptive resource allocation re-

quests by simulations. We developed a software that imple-

ments the scheduling heuristics and utilizes the moldable

and preemptive requests. The following sections present

how we setup the environment and the results we obtained.

4.1 Environment setup

The setup of the experiments involves several variables,

such as workload, pricing functions, user profiles, dead-

lines, budgets, and computing environment. Workloads that

consider deadlines, budget, moldable and preemptive re-

quests cannot be easily found. For this reason, we used real

workload data and modified it according to our needs. We

chose the workload of the IBM SP2 system, composed of

128 homogeneous processors, located at the San Diego Su-

percomputer Center (SDSC)2. This workload contains re-

quests performed in an interval of two years. We conducted

the experiments by splitting the workload in intervals of 15

days. We removed the requests whose duration was less

than a minute. Hence we got a workload set composed of 48

files, each file with 244± 68 requests. The total number of

requests was 11244. For each experiment, after collecting

the data, we discarded the four best and four worst results

to reduce the deviation.

As we mentioned in Section 3.1, a request is defined as

Req(Rmin, Rmax, fmol,D,B, Sp). Considering these pa-

rameters, we only got from the workload the number of re-

quested resources, defined as Rmax, and the expected exe-

cution time, defined as Tmin. We used the submission time

from the workload to setup the frequency at which the re-

quests were to be submitted. Table 1 shows the configura-

tion of the other parameters we used to modify the workload

files according to our needs. The 60% and 20% regarding

the Sp and price profile parameters, respectively, were used

randomly.

We considered that the cost of checkpointing/preempting

a request is negligible in relation to the time of executing an

2We used the version 3.1 of the IBM SP2 - SDSC workload, available

at: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

Table 1. Request variable definitions.

Variable Definition Comment

Rmin 80% of Rmax Requests with up to 10 resources have R
min
← R

max

Tmax Tmin ∗Rmax/Rmin Maximum time using minimum resources

fmol k − c ∗R Moldability function—amount of work remains constant

c (Rmax 6= Rmin) (Tmax − Tmin)/(Rmax −Rmin) Constant for the moldability function

c (Rmax = Rmin) 0 Constant for the moldability function

k (Rmax 6= Rmin) Tmin + Rmax ∗ c Constant for the moldability function

k (Rmax = Rmin) Tmin Constant for the moldability function

Sp(N, I,M) (10, 10%, true) Requests less than 1 hour were not split

Only 20% of the requests were considered as preemptive

B Rmax ∗ Tmin ∗ PriceProfile -

Price profile 1 (80%), 3 (20%) We defined two categories of requests

20% of the requests are highly profitable

D (PriceProfile = 1) Tmin ∗DeadlineFactor + three days -

D (PriceProfile = 3) Tmin ∗DeadlineFactor -

DeadlineFactor 5 Gives the additional time to delay the deadline

Incentive for preemp. 0%

Resource usage price 1$ per machine hour -

Algorithm 2 Pseudo-code for calculating the price of an

allocation.
Tc = Ts + Duration

PercentageBeforeDeadline = (Tc−T
min)

(D−T min)

P = Duration ∗R
P = P − ⌊(PercentageBeforeDeadline ∗ P ∗ 0.6)⌋
P = P ∗ PriceProfile
if Req is preemptive then

return P − P ∗ incentive
else

return P
end if

application. Thus, this cost should not interfere with the

results and hence we did not this take into account.

Algorithm 2 defines the ω function (Section 3.1) used by

the scheduler to calculate the price of an allocation request.

Note that the price associated with a request decreases ac-

cording to its finish time. We allow this decrement to be up

to 60% of the original user request budget.

After modifying the workload according to our needs,

the simulator reads the workload file considering each re-

quest as a rectangle that must be fit in a Gantt chart accord-

ing to the scheduling algorithm. These rectangles represent

the number of resources and request duration. The budget,

deadline, and the preemptive and moldability functions de-

fine the properties of these rectangles. Therefore, the speed

of the simulated machine, i.e. the IBM SP2, and other en-

vironment details were not required to perform the experi-

ments.

4.2 Experiments and results

Given the described environment set up, we first mea-

sured the impact of the adaptive requests by analyzing three

metrics: (i) total resource provider profit; (ii) average re-

quest finish time; and (iii) number of rejected requests. We

executed the experiments using four types of requests: (a)

rigid; (b) preemptive; (c) moldable; and (d) preemptive plus

moldable. We performed the experiments using the Miss-

ing Deadline First algorithm, which has rescheduling, and

FIFO, which has no rescheduling.

As the amount of load that a resource provider must deal

with affects the results, we performed the experiments by

varying the frequency of request submissions. We increased

the frequency of the original workload until 50%. For these

experiments we consider no additional incentive for pre-

emptive requests.

Figure 4 shows the percentage of profit gain compared to

the conventional approach according to the workload. It is

possible to observe that the maximum benefit on the original

workload is only approximately 4.5% for moldable and pre-

emptive plus moldable requests—both using the reschedul-

ing approach. Without the rescheduling, the maximum ben-

efit is only 2%. However, there is a considerable benefit

when we increase the load of the resource provider and use

the rescheduling approach. With the increased frequency of

submissions of 50%, the use of moldable requests makes the

profit increase approximately 3% compared to use of rigid

requests, using rescheduling, and 14% compared to the tra-

ditional approach (FIFO with rigid requests).

In Figure 5 we can see a clear advantage of using

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50

P
ro

fi
t

g
a

in
 (

%
)

Increased frequency of submissions (%)

Preemptive

With Rescheduling
No Rescheduling

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50

P
ro

fi
t

g
a

in
 (

%
)

Increased frequency of submissions (%)

Moldable

With Rescheduling
No Rescheduling

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50

P
ro

fi
t

g
a

in
 (

%
)

Increased frequency of submissions (%)

Preemptive+Moldable

With Rescheduling
No Rescheduling

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50

P
ro

fi
t

g
a

in
 (

%
)

Increased frequency of submissions (%)

Rigid

With Rescheduling

Figure 4. Profit gain according to cluster

load.

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

C
o

m
p

le
ti
o

n
 T

im
e

 R
e

d
u

c
ti
o

n
 (

%
)

Increased frequency of submissions (%)

Preemptive

With Rescheduling
No Rescheduling

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50

C
o

m
p

le
ti
o

n
 T

im
e

 R
e

d
u

c
ti
o

n
 (

%
)

Increased frequency of submissions (%)

Moldable

With Rescheduling
No Rescheduling

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

C
o

m
p

le
ti
o

n
 T

im
e

 R
e

d
u

c
ti
o

n
 (

%
)

Increased frequency of submissions (%)

Preemptive+Moldable

With Rescheduling
No Rescheduling

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

C
o

m
p

le
ti
o

n
 T

im
e

 R
e

d
u

c
ti
o

n
 (

%
)

Increased frequency of submissions (%)

Rigid

With Rescheduling

Figure 5. Average reduction of the request

completion time according to cluster load.

rescheduling for reducing the completion time of user re-

quests. In this case, the preemptive requests provide the

best results. Note also that the there is a reduction of the

benefit when we increase the cluster load. In addition, we

can observe a considerable variation on the results for each

different load. Therefore, the completion time reduction is

highly dependent on the workload.

The number of rejected requests has a direct impact on

the amount of profit the resource provider loses due to an

inappropriate scheduling strategy. Furthermore, in a real

environment, it is not of interest to a resource provider to

reject a large number of customers, since reputation comes

into play. From Figure 6 we observe that rescheduling plays

an important role in preventing the rejection of requests.

In these experiments we considered no additional incen-

tive for preemptive requests. We performed another exper-

iment that consists of measuring the maximum incentive a

-20

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50R
e

d
u

c
ti
o

n
 o

f
re

je
c
te

d
 r

e
q

s
.

(%
)

Increased frequency of submissions (%)

Preemptive

With Rescheduling
No Rescheduling

-20

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50R
e

d
u

c
ti
o

n
 o

f
re

je
c
te

d
 r

e
q

s
.

(%
)

Increased frequency of submissions (%)

Moldable

With Rescheduling
No Rescheduling

-20

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50R
e

d
u

c
ti
o

n
 o

f
re

je
c
te

d
 r

e
q

s
.

(%
)

Increased frequency of submissions (%)

Preemptive+Moldable

With Rescheduling
No Rescheduling

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50R
e

d
u

c
ti
o

n
 o

f
re

je
c
te

d
 r

e
q

s
.

(%
)

Increased frequency of submissions (%)

Rigid

With Rescheduling

Figure 6. Reduction of rejected requests ac-

cording to cluster load.

-5

 0

 5

 10

 15

 20

00 05 10 15 20 25 30 35 40

P
ro

fi
t
g
a
in

 (
%

)

Incentive for preemptive requests (% of request cost)

Preemptive+Rescheduling

Figure 7. Resource provider profit according

to the incentive for preemptive requests.

resource provider should give to those users who provide

preemptive requests. We selected the best obtained result

in the previous experiment, which is the rescheduling ap-

proach using preemptive requests on a workload with the

increased submission rate of 50%. Then we varied the in-

centive from 0 to 40%. We can observe in Figure 7 that

after 30% of the resource usage price the resource provider

has a benefit of less than 1%, after that, in our experiments,

the resource provider starts to lose profit. This value “30%”

could be less if we added more preemptive requests in our

workload. However, the important issue to consider here

is that there a risk of choosing a wrong incentive value for

preemptive requests. We will investigate in future how to

choose appropriately a correct incentive value for preemp-

tive requests. However, remark that there is already an im-

plicit benefit for the users to supply preemptive requests

since they reduce average finish time.

We also analyzed the characteristics of the accepted

moldable requests. First we measured the percentage of

moldable requests that used fewer resources than Rmax, i.e.

the number of moldable requests that the scheduler modi-

fied to improve the scheduling (Figure 8). Second we mea-

sured how much such requests were modified, e.g. if a re-

quest used Rmin the scheduler modified 100%, if the re-

quest used Rmax the scheduler has not modified the request

(Figure 9). From these experiments, we observe that the

scheduler tends to use the moldable requests more in highly

utilized clusters. Moreover, when moldable requests can be

split, the scheduler modifies more of the requests in order

to bring them as close as possible to the current time.

 0

 5

 10

 15

 20

 25

 30

0 10 20 30 40 50R
e
q
s
.
u
s
e
d
 m

o
ld

a
b
ili

ty
 (

%
)

Increased frequency of submissions (%)

Moldable+With Rescheduling
Moldable+No Rescheduling

Preemptive+Moldable+With Rescheduling
Preemptive+Moldable+No Rescheduling

Figure 8. Moldable requests that used fewer

resources than Rmax.

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50

R
e
q
u
e
s
t
m

o
d
if
ic

a
ti
o
n
 (

%
)

Increased frequency of submissions (%)

Moldable+With Rescheduling
Moldable+No Rescheduling

Preemptive+Moldable+With Rescheduling
Preemptive+Moldable+No Rescheduling

Figure 9. Moldable request modification.

5 Conclusion and Further work

In this paper we have presented a definition of adap-

tive resource allocation requests and their impact in utility

cluster computing environments. The Service Level Agree-

ments between users and resource providers should be flex-

ible, in order to increase the resource provider profit and,

at the same time, reduce the average response time of user

requests.

We observed in our experiments that by making use of

preemptive requests and the rescheduling technique, the re-

source provider was able to increase the profit by 14% and

the average user response time was reduced by 20% in a

highly utilized cluster environment. It is important to men-

tion that these results are based on a subset of workloads.

We will evaluate in different workloads to have more pre-

cisely conclusions.

As next steps we will mainly focus on developing bet-

ter scheduling algorithms for these requests. We will ex-

plore cost functions that consider the current load of the re-

sources and imprecision of user requirements. For example,

defining precisely when the execution preemptions occur or

when an application finishes in advance is difficult, and in

some cases, not feasible. Therefore, handling imprecision

is an important issue to deploy the scheduling algorithms in

utility computing environments.

Acknowledgments

We would like to thank Kyong Hoon Kim, Hussein Gib-

bins, and the anonymous reviewers for their valuable com-

ments.

References

[1] A. Bayucan. Portable Batch System Administration Guide,

August 2000.
[2] B. Chun and D. Culler. User-centric performance analysis

of market-based cluster batch schedulers. In Proceedings

of the 2nd IEEE/ACM Symposium on International Cluster

Computing and the Grid, pages 30–38, Berlin, Germany, 21-

24 May 2002.
[3] W. Cirne and F. Berman. A model for moldable supercom-

puter jobs. In Proceedings of the 15th International Parallel

and Distributed Processing Symposium, page 59, 2001.
[4] D. B. Jackson, Q. Snell, and M. J. Clement. Core algorithms

of the maui scheduler. In Proceedings of the 7th Interna-

tional Workshop on Job Scheduling Strategies for Parallel

Processing, pages 87–102, Cambridge, USA, 16 Nov. 2001.
[5] L. Kalé, S. Kumar, M. Potnuru, J. DeSouza, and S. Band-

hakavi. Faucets: efficient resource allocation on the compu-

tational grid. In Proceedings of the 33rd International Con-

ference on Parallel Processing, volume 1, pages 396–405,

Montreal, Canada, 2004.
[6] L. V. Kalé, S. Kumar, and J. DeSouza. A malleable-job sys-

tem for timeshared parallel machines. In Proceedings of the

2nd IEEE/ACM International Symposium on Cluster Com-

puting and the Grid, pages 230–237, 21-24 May 2002.
[7] M. Pinedo. Scheduling: theory, algorithms, and systems.

Prentice Hall, Englewood Cliffs, N.J., 1995.
[8] M. A. Rappa. The utility business model and the future

of computing services. IBM Systems Journal, 43(1):32–42,

2004.
[9] K. C. Sevcik. Characterizations of parallelism in applica-

tions and their use in scheduling. In SIGMETRICS, pages

171–180, 1989.
[10] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Li-

bra: a computational economy-based job scheduling system

for clusters. Software: Practice and Experience, 34(6):573–

590, 2004.
[11] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-

puting in practice: the condor experience. Concurrency -

Practice and Experience, 17(2-4):323–356, 2005.
[12] C. S. Yeo and R. Buyya. A taxonomy of market-based re-

source management systems for utility-driven cluster com-

puting. Software: Practice and Experience, 36(13):1381–

1419, 2006.

