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a b s t r a c t

In the age of the information explosion, the energy demand for cloud data centers has increased
markedly; hence, reducing the energy consumption of cloud data centers is essential. Dynamic virtual
machine VM consolidation, as one of the effective methods for reducing energy energy consumption is
extensively employed in large cloud data centers. It achieves the energy reductions by concentrating
the workload of active hosts and switching idle hosts into low-power state; moreover, it improves
the resource utilization of cloud data centers. However, the quality of service (QoS) guarantee is
fundamental for maintaining dependable services between cloud providers and their customers in
the cloud environment. Therefore, reducing the power costs while preserving the QoS guarantee are
considered as the two main goals of this study. To efficiently address this problem, the proposed
VM consolidation approach considers the current and future utilization of resources through the
host overload detection (UP-POD) and host underload detection (UP-PUD). The future utilization of
resources is accurately predicted using a Gray-Markov-based model. In the experiment, the proposed
approach is applied for real-world workload traces in CloudSim and were compared with the existing
benchmark algorithms. Simulation results show that the proposed approaches significantly reduce the
number of VM migrations and energy consumption while maintaining the QoS guarantee.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Cloud computing, also called Internet-based computing, pro-
vides on-demand computing resources and data to computers
and any web-connected devices. By means of various technolo-
gies and concepts (e.g., hardware virtualization and data centers),
cloud computing can achieve economies of scale and is grouped
into three cloud service models and four cloud deployment mod-
els [24], each of which addresses a different type of business
information technology (IT) requirement. In this paper, Infras-
tructure as a Service (IaaS) is investigated [25,29]. Various public
cloud providers such as Amazon, Yahoo, and Microsoft construct
enormous cloud data centers worldwide to offer cloud computing
services to their customers [1,2]. The ever-growing infrastructure
demands of cloud computing have resulted in remarkable growth
in energy consumption at cloud data centers [6]. Excessive energy
consumption not only leads to substantial operation expenses,
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but also produces considerable carbon emissions. Thus, the cost
savings that are associated with energy conservation and effective
energy-aware resource management strategies for cloud data
centers have become essential, as shown in Fig. 1. Additionally,
to satisfy customers’ expectations concerning performance, cloud
service providers and their customers must attain the required
quality of service (QoS) levels. The QoS requirements are de-
fined by service level agreements (SLAs), which are contracts
that enumerate in measurable terms what services the cloud
service provider must furnish, such as system throughput, re-
sponse time, and down-time ratio. Consequently, reducing the
power consumption in cloud data centers while preserving QoS
requirements is this study’s principle objective.

Generally, the average CPU utilization of physical machines
(PMs) is only 15%–20% in their common state. Additionally, idle
PMs comprise the majority of PMs and continuously consume
70% of their peak energy consumption [14]. Evidently, one of the
principal factors in energy waste is that too many idle PMs exist.
Thus, ensuring that the lowest possible number of PMs are active
is an efficient approach to reducing energy expenses in cloud
data centers. Recently, several studies and developments have
been proposed for decreasing the energy expenses of cloud data

https://doi.org/10.1016/j.jpdc.2019.12.014
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.12.014
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.12.014&domain=pdf
mailto:hsiehsy@mail.ncku.edu.tw
mailto:eric81115@gmail.com
mailto:raj@csse.unimelb.edu.au
mailto:albert.zomaya@sydney.edu.au
https://doi.org/10.1016/j.jpdc.2019.12.014


100 S.-Y. Hsieh, C.-S. Liu, R. Buyya et al. / Journal of Parallel and Distributed Computing 139 (2020) 99–109

Fig. 1. Green cloud computing.

Fig. 2. The VM consolidation schematic diagram.

centers. Dynamic virtual machine (VM) consolidation is an effec-
tive approach for decreasing the energy expenses and resource
utilization [6,9]. By leveraging hardware virtualization technol-
ogy [3], several VMs are hosted on the same physical server,
on which each VM can run one or more applications. Moreover,
the hardware virtualization enables individual tasks to fewer
servers to optimize the resources efficiency. By using live VM
migration techniques, VMs can be consolidated and packed on
fewer PMs, thereby reducing the energy consumption [8]. The VM
consolidation schematic diagram is presented in Fig. 2. However,
the workload of diverse application types is dynamically variable.
To most effectively utilize the resources, the VM consolidation
approach must be employed in online.

VM consolidation is commonly split into the following steps
[5]: (1) detecting overloaded hosts; (2) detecting under-loaded
hosts; (3) selecting VMs; and (4) placing VMs. Our study focuses
on the first and second steps of the VM consolidation problem.

In detail, when a host is identified as overloaded, some of the
VMs on said host should be properly selected for migration to

other suitable hosts. If no host in an active state with adequate
resources to run the VM, an inactive host is initiated so that the
selected VMs can be allocated to that machine. In addition, when
a host is identified as under-utilized, all VMs from that host are
chosen for migration if they can be consolidated into other suit-
able hosts without exceeding the full load. Furthermore, to save
energy, idle hosts are subsequently switched into a low-power
state. However, switching the power state of a host from idle to
low-power state and vice versa wastes additional energy [15,30].
Hence, to save power, switching hosts’ states is necessary, but
restricting their frequency is even more vital.

In this paper, our approach is used to predict short-term future
resource utilization on the basis of historical data on the sample
hosts. Current and predicted utilization metrics are considered a
reliable characterization of overloaded and under-loaded hosts.
Because CPU utilization has the greatest impact on energy ex-
pense [4,5], our approach focuses on CPU utilization in relation to
CPU resources. Our main contributions are described as follows:
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• An effective utilization prediction approach based on the
Gray–Markov forecasting model to forecast short-term fu-
ture CPU utilization according to the accumulated data on
the considered hosts is proposed. In addition, combining
data on present and near future CPU utilization is a depend-
able characterization of overloaded and under-loaded hosts.
Thus, cloud providers can increase energy efficiency and the
SLA’s performance guarantee.

• Effective dynamic VM consolidation with a utilization pre-
diction algorithm for energy-efficient cloud data centers
is proposed, namely, utilization prediction-based potential
overload detection (UP-POD) and utilization prediction-
based potential underload detection (UP-PUD).

• A power-saving value based on power consumption and
number of migrations for detecting under-loaded hosts is
proposed. This value can be used to more reliably select
under-loaded hosts.

• Through several simulations based on real-world workloads,
the proposed approach reduces the energy consumption
while restricting the number of migrations. Therefore, it
increases the performance of cloud data centers with an
improved SLA performance guarantee.

The remainder of this paper is organized as follows: Section 2
summaries related studies on the dynamic VM consolidation
problem in cloud data centers. The problem statement is provided
in Section 3. The system architecture, Gray–Markov-based predic-
tion model, and the VM consolidation algorithms comprising host
overload detection and host underload detection are presented
in Section 4. The implementation instructions for our approach
are presented in Section 5. Finally, the experimental results and
conclusion are illustrated in Sections 6 and 7, respectively.

2. Related works

In this section, studies on the problem of dynamic VM consol-
idation problem in cloud data centers are discussed. Numerous
studies have sought to address this problem.

The problem of decision-making when a host is overloaded or
under-loaded has been investigated in the literature [6,21,32,33].
The critical concern is the decision of whether a host is considered
overloaded or under-loaded depending on the variations in VM
workload over time and types of user applications. When deter-
mining whether a host is overloaded or under-loaded, several VM
consolidation approaches have considered only current resource
utilization [4,21]. Such approaches only may lead to needless
migrations, thereby aggravating the overhead such as the energy
costs for VM migration, performance degradation attributable
to migration, and extra traffic [12,15,30]. Therefore, the thresh-
old should be robustly decided to restrict the frequency of VM
migration.

Several studies have addressed dynamic VM consolidation
by applying migration techniques to optimize power consump-
tion [5,23,33,34]. In the primary method, thresholds set stati-
cally were applied to decide whether a host is overloaded or
under-utilized. These approaches attempt to maintain the cur-
rent utilization of a host between the hot and cold thresholds.
Zhu et al. [34] proposed a method for determining the static
threshold of CPU utilization to estimate when a host is considered
overloaded. If CPU utilization exceeds 85%, the host is considered
overloaded. However, setting static thresholds and using the cur-
rent resource usage are not effective measurement approaches for
cloud data centers with dynamic workloads, where the utiliza-
tion of VMs running on a physical server continuously changes.
Beloglazov et al. [5] proposed a set of adaptive upper thresholds
(i.e., median absolute deviation (MAD), interquartile range (IQR),
and local regression (LR)) that can be obtained through statistical

analysis of the historical data. Although the considered thresholds
are not static values, these approaches use only current resource
utilization as the principal criterion to make decisions regard-
ing VM migrations. Thus, they cannot make reliable decisions
when the host load needs to be reduced, and this causes energy
waste and unnecessary migrations. In the literature [11,19,33],
the problem of forecasting future resource usage by utilizing
historical data in cloud data centers has been studied. Farah-
nakian et al. [11] proposed a method employing linear regression
to predict CPU usage for VM consolidation. Jheng et al. [19]
applied the Gray prediction model to predict host CPU and RAM
resource utilization. The Gray forecasting model does not require
substantial training data and is based on simple mathematical
derivations. The experimental results indicated that this model
cannot guarantee dependable prediction results for workloads
with frequent fluctuations. Moreover, Markov prediction is effec-
tive for predicting statistical data with frequent fluctuations. To
improve the prediction accuracy of the Gray forecasting model,
adding Markov prediction can enhance systems with severe ran-
domly variable time series. Therefore, in cases of time series with
frequent fluctuations, Gray–Markov prediction model performs
more accurately than does the Gray prediction model [17]; hence
the Gray–Markov model is considerably more suitable for the
dynamic workload of cloud data centers.

The Gray–Markov prediction model has been used in many
fields such as electricity demand [31], fire accidents [22], and
traffic volume [29]. No studies have implemented the Gray–
Markov prediction model for analyzing resource demand in cloud
data centers. Thus,we did so in this study to optimize the Gray
forecasting model.

3. Problem statement

The problem is presented in Fig. 3. Suppose that a large cloud
data center supplies computing resources in the form of VM
instances. In this paper, the VM consolidation problem concerns
the decision regarding a host is overloaded or under-loaded.
Once the overloaded hosts have been identified, all VMs with
a potential increase in CPU utilization are migrated from these
hosts to maintain QoS; once the under-loaded hosts have been
identified, all VMs from this host are migrated from these hosts
to reduce energy consumption.

An efficacious VM consolidation approach optimizes VM place-
ment for the maximum expected benefit to reduce the number of
hosts in an active state. The benefit originates from two main fac-
tors: the number of VM migrations and the rate of SLA violations.
More crucially, by assigning VMs to hosts on the basis of their
near-future resource utilization, these benefits can be realized
in advance. To describe the problem of the conventional VM
consolidation approach and the benefits of the prediction-based
approach, example is represented in Fig. 3.

Suppose that there are two hosts and three VMs.

1. At time t , the CPU utilization of Host1 and Host2 is 0.35 and
0.60, respectively. Because Host1 has sufficient resources
to run VM3, a normal VM consolidation migrates VM3 to
Host1 to minimize the number of hosts in an active state
and switches Host2 into a low-power state.

2. At time t + 1, the CPU utilization requested by VM3 in-
creases from 0.60 to 0.75. Because Host1 has inefficient free
capacity to contain VM3, Host1 is overloaded and some SLA
violations occur.

3. At time t+2, VM3 migrates to Host2 to avoid additional SLA
violations. Hence, if a VM consolidation approach predicts
the resource requirements of a VM before migration, the
unnecessary migrations can be evaded and the rate of SLA
violations can be reduced.
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Fig. 3. Problem statements for Example.

Fig. 4. System architecture.

4. Proposed utilization-prediction-aware VM consolidation

In this section, our proposed utilization-prediction-aware VM
consolidation approach for cloud data centers is divided into sev-
eral parts. In Sections 4.1 and 4.2, the system architecture of the
cloud data center and the Gray–Markov-based prediction model
is presented. In addition and most crucially, the resource uti-
lization prediction algorithms (UP-POD and UP-PUD) and power
saving value based on the predicted CPU utilization are presented
in Section 4.3.

4.1. System architecture

Our system architecture is presented in Fig. 4.
Our implementation consists of m heterogeneous hosts (i.e.,

H = ⟨h1, h2 . . . , hm⟩) in a cloud data center. Each host is char-
acterized by different resource types such as CPU, memory size,
network bandwidth, and storage capacity. Additionally, CPU is
usually measured in million instructions per second (MIPS). At
any given time, many simultaneous users use the services of a
cloud data center. The provisioning of n VMs (i.e., V = ⟨v1, v2 . . . ,

vn⟩) is requested by users. The VMs are initially allocated to
hosts applying the best fit decreasing (BFD) algorithm, which is
one of the most widely used heuristic algorithms for solving the

bin-packing problem. Because of the BFD algorithm, all unuti-
lized space in the destination hosts is minimized. The algorithm
selects a host for which the amount of available resources is
closest to the amount of resources requested by the VM. This
explains why the BFD algorithm effectively performs the initial
allocation of VMs. However, the requested utilizations of running
hosts and VMs change over time due to dynamic workloads with
frequent fluctuation: hence the initial allocation approach must
be enhanced with a VM consolidation algorithm that can be
implemented periodically to optimize the performance of cloud
data centers. Our proposed approach is conducted every 5 min in
a cloud data center to reduce energy expenses and the number
of hosts in active state.

The system architecture comprises two types of agents: (1) a
global manager (GM) deployed in a master node, and (2) entirely
distributed local managers (LMs) in all hosts. The two agents
execute the following steps at each iteration:

1. The current resource utilization of all VMs in a host is
monitored by each LM periodically. Each LM predicts the
future CPU utilization of a host on the basis of historical
data in a log file by applying the Gray–Markov prediction
model precisely.

2. The information and status from the LMs are gatherd
by the GM to comprehend the overall situation of hosts
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(i.e, current and future CPU resource utilization and num-
bers of VMs running on each host).

3. The GM sends migration commands to the virtual machine
monitor (VMM) to perform the UP-POD and UP-PUD algo-
rithms of our proposed approach. The commands indicate
which VMs should be migrated to which destination hosts
on the basis of the consolidation algorithms.

4. After receiving the commands from the GM, the VMMs
migrate the VMs.

4.2. Prediction method

4.2.1. GM(1, 1) grey prediction model
Among the family of gray forecasting models, the most fre-

quently used is the GM(1, 1) model [10]. Conventional forecasting
techniques usually handle original historical data series directly
and attempt to approximate their evolutionary behavior. How-
ever, through a preliminary transformation, the initial GM(1, 1)
model starts by converting the original data series into a mono-
tonically increasing data series; this is called an accumulated
generating operation (AGO). By applying the AGO technique, the
noise of the original data series is efficiently reduced, and the
generated new data series exhibits exponential behavior approx-
imately. Because the solution of first-order differential equations
also takes the exponential form, the first-order gray differential
equations are constructed to model the data series from the AGO
and forecast the future behavior of the system. Generally, the
procedure of a Gray model is derived as follows:

Step 1: Assume the host’s historical data on CPU utilization
with n samples (time point) as

X (0)
= {x(0)(1), x(0)(2), . . . , x(0)(n)}, (1)

Step 2: Construct the AGO. Let X (1) be the transformation
sequence of X (0):

X (1)
= {x(1)(1), x(1)(2), . . . , x(1)(n)}, (2)

where

X (1)(k) =

k∑
i=1

x(0)(i), k = 1, 2, 3, . . . , n. (3)

Consequently, the model of the first-order differential equation
GM(1, 1) is

dx(1)

dt
+ ax(1) = b, (4)

where t is independent variable, a is the development coefficient,
and b is the gray control variable.

Step 3: Perform the conversion treatment on the former and
latter terms. Consider the following:

dx(1)

dt
−→ x(1)(k + 1) − x(1)(k). (5)

Through an inverse AGO (IAGO), it can be derived that

x(1)(k + 1) − x(1)(k) = x(0)(k + 1). (6)

Its definition in x(1)1 (t) is

x(1)(k) −→ 0.5x(1)(k) + 0.5x(1)(k − 1) = z(1)(k). (7)

After collation, it is known that

dx(1)

dt
+ ax(1) = b −→ x(0)(k) + az(1)(k) = b. (8)

Step 4: Determine a, b by using the least squares method.
Consider the following:[

a
b

]
= (BTB)−1BTYn (9)

where the accumulated matrix B and constant term Yn are

Y =

⎡⎢⎢⎢⎣
−z(1)(2) 1
−z(1)(3) 1

... 1
−z(1)(n) 1

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
x(0)(2)
x(0)(3)

...

x(0)(n)

⎤⎥⎥⎥⎦ . (10)

Step 5: Construct the gray prediction model. The equation in
GM(1, 1) is

x(0)(k) + az(1)(k) = b (11)

where the primitive condition of x(1) is x(0)(1) = x(1)(1).
The whitening equation is expressed as follows:

dx1(t)
dt

+ ax(1)(t) = b. (12)

Step 6: According to Eq. (12), the solution of x(1)(t) at time k is

x̂(1)(k + 1) = [x(0)(1) −
b
a
]e−ak

+
b
a
. (13)

To obtain the predicted value of the primitive data at time (k +
1), the IAGO is used to establish the following gray model:

x̂(0)(k + 1) = [x(0)(1) −
b
a
]e−ak(1 − ea). (14)

and the predicted value of the primitive data at time (k + H):

x̂(0)(k + H) = [x(0)(1) −
b
a
]e−a(k+H−1)(1 − ea). (15)

4.2.2. Gray–Markov method
The Gray–Markov prediction model combines the Gray model

and Markov chain [20,22]. In this approach, the initial prediction
is employed by applying Grey prediction model; furthermore, the
Markov chain is implemented to predict the error in prediction
determined using the Gray prediction model. By adding this pre-
dicted error to the predicted outcome of the Gray system, the
whole prediction error decreases one step further and the predic-
tion accuracy increases markedly. The procedure for integrating
the Markov method into forecasting is presented as follows.

1. Determining the state of error
In the first step, errors in the Gray prediction model for
several previous predictions considered (in this paper, 24
previous prediction errors are considered). The interval of
these states is equal and defined as

Ri =
(errmax − errmin)

NS
(16)

where errmax and errmin are the maximum and minimum
values of the samples, respectively, and NS is the number
of states.

2. Constructing the probability transition matrix
A procedure by which the nth sample from state i changes
to the (n+1)th sample at state j is the transition Tij. Higher
orders of transition T (m)

ij are defined when the nth sample
is in state i being changed to the (n + m)th sample, which
is in state j. The probability of the transition from state i to
state j can be determined using the following equation:

P (m)
ij =

M (m)
ij

Mi
(17)

where i and jmay vary from 1 to the number of states.M (m)
ij

and Mi denote the number of transitions from state i to
state j and the number of data items in state i, respectively.
The matrices constructed from various orders of transition
probability are viewed as transition probability matrices.
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Table 1
Notations.
H Set of hosts
Hactive Set of active hosts
Hover Set of overloaded hosts
Hunder Set of candidate for under-loaded hosts
V Set of VMs
Lh(t) Load of the host h at time t
Ch(t) Total CPU capacity of the host h at time t
Uh(t) CPU utilization of the host h at time t
Dh(t) The length of historical data of the host h at time t
Ph Power consumption of the host h
P̂h Predicted power consumption of the host h
Sh Power saving value of the host h
Mh Number of VMs running on the host h
tu The upper threshold value of CPU utilization
tl The lower threshold value of CPU utilization

Each array displays the probability of m order transition
from state i to state j:

P (m)
=

⎡⎢⎢⎢⎢⎢⎣
P (m)
11 P (m)

12 · · · P (m)
1n

P (m)
21 P (m)

22 · · · P (m)
2n

...
...

...
...

P (m)
n1 P (m)

n2 · · · P (m)
nn

⎤⎥⎥⎥⎥⎥⎦ (18)

3. Determining high-probability transitions
Several flow-order probability transition matrices (the
third-order probability matrix is considered the highest
order in this paper) are applied. Moreover, the highest
probability of transition from the preceding sample is ac-
quired.

4. Forecasting the prediction error
Finally, the state where the next sample is most likely
to be, is applied to predict the error. Using the following
equation, which calculates the average state decided in
Step c, the number of predicted samples are obtained.
Consequently, by adding this value to the predicted value
from the Gray prediction model, the outcome of the final
prediction is produced as follows:

X̂ (0)
GM (k + 1) = X (0)

G (k + 1) +
1
2
(A + B) (19)

where X̂ (0)
GM denotes the predicted value using the Gray–

Markov prediction model and X̂ (0)
G denotes the predicted

value by using only the Gray prediction model. In addition,
A and B are end points of the interval that describes the
future state of error of the Gray prediction model, which is
calculated in step c.

4.3. The resource utilization prediction algorithm

The preliminary notations and definition employed in our
proposed algorithms are listed in Table 1.

4.3.1. Utilization prediction-based overload detection
In every dynamic VM consolidation process, each host must

be identified whether overloaded or not. As motivated by [18],
the proposed utilization prediction based potential overload de-
tection (UP-POD) is presented in Algorithm 1.

The input of Algorithm 1 is a set of active hosts Hactive. For
every host in Hactive, which are overloaded is determined. Sub-
sequently, the overloaded hosts are added into Hover as output
to execute the migration decision. Algorithm 1 can be explained
step by step as follows.

In line 1, the GM receives Uh(t), which is defined as Lh(t)
divided by Ch(t). In line 2, by obtaining the historical data on
CPU utilization of a host h recorded in a log file, the short-
term utilization of CPU (i.e., Uh(t + 1)) can be calculated using
a time-series-based forecasting model. Gray–Markov time-series
model is used to predict Uh(t + 1) as the output X̂ (0)

GM (k + 1)
presented in Section 4.2. Furthermore, the input of our time
series data is the historical data on CPU utilization recorded at
5-min intervals in each host. In line 3, after preprocessing, the
decision is made in accordance with the dynamic upper threshold
method. In this method, if a host’s utilization is higher than
the upper threshold, it is considered overloaded. The dynamic
upper threshold is set by applying the median absolute deviation
(MAD) approach presented in [5], and the parameter s is 2.5 in
conformity with [5]. In lines 5–9, to forecast the Uh(t + 1) pre-
cisely, the time-series model requires sufficient historical data for
computation. If insufficient historical CPU utilization data on each
host is available, the decision can only using Uh(t). During the
simulation, our experiments tested historical data with lengths
of 12, 16, 20, 24, and 28. On the basis of the results, the proposed
algorithms perform optimally with historical data with a length
of 24. Thus, if the length of the historical data dh(t) is less than 24,
Uh(t) is considered to make the decision. The hosts would be
considered overloaded and added into Hover if their Uh(t) values
are higher than tu. By contrast, in lines 10–13, dh(t) is at least 24,
the host is considered overloaded and is added into Hover if the
present and predicted short-term values of CPU utilization are
higher than tu (i.e., Uh(t) > tu and Uh(t + 1) > tu). This situation
demonstrates that the host is a potential candidate that executes
the migration decision when it is overloaded in both the present
and near future.

Consequently, Algorithm 1 considers not only the present situ-
ation but also the near future situation. Algorithm 1 can prevent
unnecessary migrations to reduce the overall number of migra-
tions and execute an appropriate migration decision; moreover,
the SLA violation rate can be maintained in advance.

Input: Hactive
Output: Hover
Uh(t)=Lh(t)/Ch(t) ; /* RequiredMIPS(t)/TotalMIPS(t) */
predict Uh(t + 1); /* using Grey-Markov prediction */
set tu; /* applying MAD=1-s*Mad */
foreach h ∈ Hactive do

if Dh(t) < 24 then
if Uh(t) > tu then

return true;
end
else

return false;
end

end
if Uh(t) > tu and Uh(t + 1) > tu then

return true;
end
else

return false
end

end
Algorithm 1: UP-POD

4.3.2. Utilization prediction-based underload detection
After overloaded hosts have been identified, the underload de-

tection algorithm commences. To reduce the number of hosts in
an active state to reduce, thereby reducing energy consumption,
determining which host is under-loaded and switching it into
low-power mode is essential.
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Table 2
Workloads data characteristics (CPU utilizaton).
Workloads Date of Workloads Number of servers Number of VMs Mean St.dev. Quartile 1 Median Quartile3

W1 03/03/2011 800 1052 12.31% 17.09% 2% 6% 15%
W2 06/03/2011 800 898 11.44% 16.83% 2% 5% 13%
W3 09/03/2011 800 1061 10.70% 15.57% 2% 4% 13%
W4 22/03/2011 800 1516 9.26% 12.78% 2% 5% 12%
W5 25/03/2011 800 1078 10.56% 14.14% 2% 6% 14%
W6 03/04/2011 800 1463 12.39% 16.55% 2% 6% 17%
W7 09/04/2011 800 1358 11.12% 15.09% 2% 6% 15%
W8 11/04/2011 800 1233 11.56% 15.07% 2% 6% 16%
W9 12/04/2011 800 1054 11.54% 15.15% 2% 6% 16%
W10 20/04/2011 800 1033 10.43% 15.21% 2% 5% 12%

The proposed UP-PUD is presented in Algorithm 2. The input
of Algorithm 1 is a set of active hosts Hactive. For every host
in Hactive, which hosts are candidates of under-loaded hosts is
determined, and these hosts are subsequently added to Hunder as
output. Algorithm 2 can be explained step by step as follows.
The procedure and concept of Algorithm 2 are similar to those
of Algorithm 1. The difference is that in lines 5–9, if Uh(t) is less
than or equal to tl, the host is added into Hunder . Additionally,
in lines 10–13, dh(t) is at least 24, and the host is considered
under-loaded and added into Hunder if the present and predicted
short-term values for CPU utilization are less than or equal to tl
(i.e., Uh(t) > tl and Uh(t + 1) > tl).

Input: Hactive
Output: Hunder
Uh(t)=Lh(t)/Ch(t) ; /* RequiredMIPS(t)/TotalMIPS(t) */
predict Uh(t + 1); /* using Grey-Markov prediction */
set tl; /* tl = 30% */
foreach h ∈ Hactive do

if Dh(t) < 24 then
if Uh(t) ≤ tl then

return true;
end
else

return false;
end

end
if Uh(t) ≤ tl and Uh(t + 1) ≤ tl then

return true ;
end
else

return false
end

end
Algorithm 2: UP-PUD

After candidates of under-loaded hosts are selected and added
into Hunder by Algorithm 2, the proposed Sh value is applied to
select the final under-loaded host from Hunder .

R. Nathuji et al. [27] and X. Fu et al. [13] have explained that
the host’s power consumption is near proportional to its CPU
utilization. Therefore, the power consumption of each host can
be calculated using Eq. (20):

P(µ) = 0.7 ∗ Pmax + 0.3 ∗ Pmax ∗ µ (20)

where notation Pmax denotes the host’s power consumption value
when it is in full load. The notation µ denotes the host’s CPU
utilization, which is observed variably. Therefore, the host’s CPU
utilization is mainly considered for employment in our VM con-
solidation approach.

In [16], a power-efficient value for a host in an active state.
This value can be applied to select under-loaded host. On the basis
of our prediction model, a power-saving value (Sh) is proposed
in Eq. (21) by improving the power-efficient value. This value can

be used to more precisely detect under-loaded hosts.

Sh =
Ph + P̂h

Mh
(21)

In Eq. (21), Ph represents the power consumption of the hth
host in the cloud data center, P̂h represents the power consump-
tion of the hth host by using Uh(t + 1) for calculation, and Mh
represents the number of VMs running on the hth host.

Finally, the host with the maximal Sh value can be chosen as
the under-loaded host. Evidently, because Sh has considered only
the host’sôspresent power consumption, power consumption at
time t+1, and the number of VM migrations into consideration, it
will be more efficiently when detecting an under-loaded host.

5. Experimental setup

In this section, workload types, the simulation environment,
and performance metrics are implemented to analyze the perfor-
mance of our proposed approach.

5.1. Workload data

For effective comparison with [5], our simulation uses work-
loads of the same 10-day period. The CPU utilization of the VMs
corresponds to their workloads and their statistical analysis is
described in Table 2. The experiments are implemented using
real-world publicly available workloads, in the form of PlanetLab
data [28] provided as a portion of the CoMon project: a moni-
toring infrastructure for PlanetLab. The workload data comprise
CPU utilization of a VM logged at 5-min intervals and were
measured on 10 different days during March and April 2011. Each
VM contains 288 records on CPU utilization, and the records are
plugged into dynamic VM consolidation. Additionally, the data
are assembled from more than 1000 VMs hosted on servers in
more than 500 locations worldwide. In reality, the workload is
representative of an IaaS cloud environment such as Amazon EC2,
where VMs are controlled and created by individual users.

5.2. Simulation environment

To impartially compare the efficiency of the proposed time
series prediction of our short-term-based VM consolidation ap-
proach, the experiment employs the CloudSim 3.0.3 toolkit [7].
Our simulation involved a data center comprising 800 heteroge-
neous PMs. Half of the PMs are HP ProLiant ML110 G4 servers
with 1860 MIPS per core, and the other half are HP ProLiant
ML110 G5 servers with 2660 MIPS per core in each workload.
In detail, each PM is modeled to have two cores, 4 GB of mem-
ory and 1 GB/s of network bandwidth. Table 3 specifies the
CPU MIPS rating and memory amount characteristics of the four
VM instances employed in CloudSim corresponding to Amazon
EC2 [3].
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Table 3
VM details.
VM type CPU (MIPS) RAM (GB)

High-CPU medium instance 2500 0.85
Extra-large instance 2000 3.75
Small instance 1000 1.7
Micro instance 500 0.613

5.3. Performance metrics

The objectives of our approach are: (1) to reduce power con-
sumption; (2) to reduce the SLA violation rate; (3) to reduce the
number of hosts in an active state; (4) to reduce the number of
migrations. Hence, the following metrics are used to assess the
performance of the proposed approach:

• SLA Violations:
To maintain the QoS guarantee in an IaaS between cloud
service providers and users, thereby achieving an agreeable
SLA, Eq. (22) can be used to judge the quality of the cloud
service. The rate of SLA violations is measured using two
metrics: SLA violations due to over-utilization (SLAVO) and
SLA violations due to migration (SLAVM):

SLAV = SLAVO × SLAVM (22)

where SLAVO represents the average ratio for the period
when the host experiences 100% CPU utilization, as shown
in Eq. (23):

SLAVO =
1
M

M∑
i=1

Tsi
Tai

(23)

where M denotes the number of hosts and Tsi denotes the
total time host i has experienced the 100% CPU utilization
that causes an SLA violation. The notation Tai denotes the
time at which host i is in an active state. SLAVM repre-
sents the overall performance degradation by VMs due to
migrations, as shown in Eq. (24):

SLAVM =
1
N

N∑
j=1

Cdj

Crj
(24)

where N denotes the number of VMs, Cdj denotes the per-
formance degradation caused by migrating VM, and Crj de-
notes the total CPU utilization requested by VM j during its
lifetime.

• Energy consumption:
Most studies have determined that CPU resources uses more
power consumption than memory, network interface, or
disk storage. Measuring energy consumption is based on
real data on SPECpower benchmark results [5]. Table 4 il-
lustrates that at different load levels, energy consumption in
HP ProLiant G4 servers and HP ProLiant G5 servers changes.
Notably, when under-utilized servers enter the low-power
state, energy consumption decreases significantly. There-
fore, reducing the number of hosts in an active state is
necessary.

• Number of VM Migrations:
Live VM migration incurs extra expenses and additional per-
formance degradation such as the source host’s extra CPU
utilization, extra network bandwidth, applications down-
time during VM migrations, and whole migration time [26].
Therefore, reducing the number of VM migrations is essen-
tial because this likely causes SLA violations.

• Energy and SLA Violations (ESV):
The main objective of the proposed VM consolidation ap-
proach is to simultaneously reduce energy expenses and
SLA violations. Because a trade-off occurs between energy

Fig. 5. Comparison of energy consumption for 10 workloads.

consumption and performance, a combined metric called
Energy and SLA Violations that can be used to effectively
judge the trade-off is shown in Eq. (25):

ESV = E × SLAV (25)

5.4. Comparison benchmarks

For efficient verification, the proposed approach is compared
with the algorithms proposed for detecting overloaded hosts
as follows [5]. These algorithms are presented in the CloudSim
simulator [7].

1. Static threshold (THR): the hot threshold value is set at 90%.
If the current CPU utilization of hosts exceed 90%, the hosts
are considered overloaded.

2. Two adaptive thresholds: the median absolute deviation
(MAD) and interquartile range (IQR). The algorithm func-
tions identically to the THR. The detailed calculation of
MAD and IQR is presented in [5].

3. A dynamic threshold called the local regression (LR)
method [5]: Overloaded hosts are decided according to the
calculation of local regression changes over time.

6. Experimental results

In this section, the proposed approach is compared with the
four benchmark algorithms introduced in Section 5.4. The VM se-
lection policy is the maximum correlation policy proposed in [5].
Figs. 5–10 present the comparison results of ten days workloads.
Each workload is evaluated over a time span of 24 h.

Fig. 5 illustrates a comparison of performance according to
the energy consumption metric. The proposed approach reduces
energy consumption by an average of 25.6%, 23.7%, 22.4%, and
9.6% compared with THR, IQR, MAD, and LR, respectively. By
employing UP-PUD and the power-saving value to identify under-
loaded hosts, such hosts can be selected more precisely. After
identifying the under-loaded hosts, all VMs in these hosts can be
migrated to other suitable hosts, and the host could be switched
into sleep mode. Consequently, energy can be saved by switching
idle hosts to low-power states during the consolidation process.
Fig. 6 presents the comparison of performance with regard to
the SLAVO metric. Compared with THR, IQR, MAD, and LR, the
performance does not exhibit improvements. Efforts made to
most efficiently maximize the resource use of the hosts and
inaccuracy attributable to the approach implemented based on
prediction may explain the lack of improvement. However, the
SLAV metric is the multiplication of SLAVO and SLAVM metrics,
owing to our performance in SLAVM metric is pretty good, the
performance in SLAVO metric somewhat has not apparent im-
provement that can be negligible in the proposed algorithm. This
can be clearly observed by analyzing performance according to
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Table 4
Power comsumption of the selected servers at different load levels (in Watts).
Server Sleep mode 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 10 93.7 97 101 105 110 116 121 125 129 133 135

Fig. 6. Comparison of the SLAVO metric for 10 workloads.

Fig. 7. Comparison of the SLAVM metric for 10 workloads.

Fig. 8. Comparison of the SLAV metric for 10 workloads.

the SLAV metric. Fig. 7 presents the comparison of performances
with regard to the SLAVM metric. Compared with THR, IQR, MAD,
and LR, the performance exhibits a greater improvement because
our approach resulted in a substantial reduction in the number
of VM migrations.

Fig. 8 presents the performance comparison according to the
SLAV metric. The proposed approach reduces SLA violation rate by
an average of 21.6%, 18.3%, 21.7%, and 26.7% compared with THR,
IQR, MAD, and LR, respectively, because our prediction-based
approach performs on the SLAVM metric.

Fig. 9 presents the performance comparison according to the
ESV metric. The proposed approach reduces energy consump-
tion by an average of 42.7%, 38.1%, 39%, and 33.1% compared
with THR, IQR, MAD, and LR, respectively. Our approach causes
such considerable improvement because of the reductions in
energy consumption and the SLAV violation rate. In truth, these
notable results indicate that our approach involves a success-
ful trade-off between power cost and QoS guarantee. Fig. 10

Fig. 9. Comparison of the ESV metric for 10 workloads.

Fig. 10. Comparison of number of VM migrations for 10 workloads.

presents the performance comparison based on the number of
migrations. Compared with THR, IQR, MAD, and LR, performance
improved. Through UP-POD and UP-PUD, the number of VM
migrations was considerably reduced. The prediction-based al-
gorithm and power-saving value detect hosts that are likely to
overload and underload in the near future. Thus, they prevent
repeated migrations of VMs.

Overall, our proposed approach significantly outperforms real-
world benchmarks applications.

7. Conclusions

In this paper, the dynamic VM consolidation problem is solved
by forecasting CPU utilization on the basis of the Gray–Markov
model. The objective of our approach is to minimize unnecessary
VM migrations and the number of active hosts to economize
on energy. Through our resource utilization prediction approach,
this paper proposes a consolidation approach with UP-POD and
UP-PUD algorithms for energy-efficient cloud data centers. With
proper consideration of several aspects, the proposed approach
effectively reduces the number of migrations, energy consump-
tion of the hosts, and SLA violations. The results for different
PlanetLab workload days verify that our approach reduces the en-
ergy consumption by switching idle hosts into low-power mode
with an appropriate balance with the SLA.
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