
A Topology-Aware Scheduling Strategy for Distributed

Stream Computing System

Bo Li1, Dawei Sun1, *, Vinh Loi Chau2, and Rajkumar Buyya3

1 School of Information Engineering, China University of Geosciences, Beijing, 100083, P.R.

China

libocn@cugb.edu.cn, sundaweicn@cugb.edu.cn
2 School of Information Technology, Deakin University, Victoria 3216, Australia

vlchau@deakin.edu.au
3 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and

Information Systems, The University of Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract. Reducing latency has become the focus of task scheduling research in

distributed big data stream computing systems. Currently, most task schedulers

in big data stream computing systems mainly focus on tasks assignment and im-

plicitly ignore task topology which can have significant impact on the latency

and energy efficiency. This paper proposes a topology-aware scheduling strategy

to reduce the processing latency of stream processing systems. We construct the

data stream graph as a directed acyclic graph and then, divide it using the graph

Laplace algorithm. On the divided graph, tasks will be assigned with a low-la-

tency scheduling strategy. We also provide a computing node selection strategy,

which enables the system to run tasks on the topology with the least number of

computing nodes. Based on this scheduling strategy, the tasks of the data stream

graph can be redistributed and the scheduling mechanism can be optimized to

minimize the system latency. The experimental results demonstrate the efficiency

and effectiveness of the proposed strategy.

Keywords: Stream Computing, Big Data System, Topology-aware, Schedul-

ing, Graph Division.

1 Introduction

With the increase in demand for real-time data processing especially in streaming ap-

plications, timeliness of data has become prominent with the rising number of applica-

tions deployed in streaming computing platforms across various fields such as finance

and banking [1] [2], intelligent recommendation system [3], and Internet of Things [4].

Currently, many big data streaming solutions have been provided [1] [5], such as Storm,

Flink, Spark Streaming, etc. Storm is one of the most popular open source big data

stream computing systems [7]. It provides powerful distributed cluster management,

millisecond latency, rich APIs and high fault tolerance mechanisms, and is widely used

in the field of real-time data processing [8].

mailto:libocn@cugb.edu.cn
mailto:sundaweicn@cugb.edu.cn
mailto:vlchau@deakin.edu.au
mailto:rbuyya@unimelb.edu.au

2

Storm's stream processing can be viewed as a directed acyclic graph (DAG) topology

[5]. Stream is an abstraction of data transmission between different vertices. It is an

unbounded sequence of tuples in time. Storm has two types of vertices: Spout and Bolt.

Spout is the source representing the Stream and is responsible for emitting Streams

from a specific data source of the topology. Bolt can receive any number of streams as

input and then process the data. Bolt can also emit new streams to the downstream Bolt

for processing.

System latency and system throughput are important metrics to measure the perfor-

mance of a stream computing system [7-9]. Therefore, reducing system latency and

improving system throughput are the major challenges for task schedulers. Task sched-

uling for stream computing systems is an effective way to achieve these goals. If tasks

are assigned based on the transfer rate between them and the computing resources on

the compute nodes, system latency and system throughput can be significantly im-

proved.

The topology-aware scheduling policy is able to place tasks on the appropriate com-

pute nodes based on the structure of the topology. To achieve this goal, we first need to

construct DAGs and divide them rationally, and assign tasks to as few compute nodes

as possible.

1.1 Contributions

In this paper, our primary focus is to reduce the time delay of distributed stream pro-

cessing systems. Our contributions are as follows:

(1) We established the DAG model, and a graph partitioning method based on graph

Laplacian which can be used to create high-quality partitioning results quickly and

efficiently.

(2) Based on the partitioning results, tasks are allocated using a low-latency schedul-

ing strategy. We then proposed a computing node selection strategy to run tasks

on the topology with the least number of nodes. We named this approach Ts-

Stream.

(3) We conducted experiments to evaluate system performance using time delay as a

metric. The experiments demonstrated the effectiveness of our proposed strategy.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 will explain DAG model and

communication model. In Section 3, the graph partitioning method based on graph La-

placian and the Ts-Stream scheduling strategy are introduced. Section 4 dictates the

experiment set up and report the evaluation results. Section 5, summarizes related stud-

ies on the scheduling problem. Finally, conclusions and future works are presented in

Section 6.

3

2 Related Work

Computational models of Big Data can be divided into batch computing and streaming
computing [10]. Batch computing are suitable for different big data application scenarios
when data is first stored for computation and the real-time requirements are not a priority.
Streaming computing is more suitable for the application scenarios that have strict real-
time requirements and do not need to store data first [11].

At the time this work is conducted, researches related to large data batch processing
and calculation is relatively mature, forming an efficient and stable batch computing
system represented by Google's MapReduce programming model and the opensource
Hadoop computing system [6] [12].

In streaming computing, it is impossible to determine the moment of arrival and the
order of arrival of data, and it is also impossible to store all the data [13]. Many solutions
have been proposed to solve this problem. Yahoo launched S4 Streaming Processing
Computing System in 2010 [14], Twitter launched Storm Streaming Computing System
in 2011 [5], and Flink originated from a research project called Stratosphere [4]. Storm,
S4 and Flink have typical streaming data computing architecture, where data is com-
puted in task topology and outputs valuable information, which has largely driven the
development and application of big data streaming computing technology.

Scheduling problem of streaming applications is an active research area [16].
In [17], a Storm-based resource-aware scheduling policy, R-Storm, was proposed.

R-Storm considers resource constraints in three main aspects: CPU, memory, and band-
width. It focuses on memory constraints and considers CPU and network bandwidth
constraints as soft constraints.

In [18], a dynamic resource scheduling DRS is proposed to meet the estimation of
necessary resources required for real-time demand, effective and efficient re-resource
provisioning and scheduling, and effective implementation of such scheduler in cloud-
based DSMS.

In [19], a stream computing system T-Storm was proposed. T-Storm monitors data
traffic and CPU load changes of each worker node in real time through an external plug-
in to achieve fine-grained control and optimized resource usage of the worker nodes.

Thread-level task migration is also an important research direction for task schedul-
ing. In [20], a thread-level task migration N-Storm is proposed, which can perform
thread-level task migration without stopping the Storm, avoiding the time wastage due
to unnecessary Executor and worker stops and restarts.

The detailed division of the topology is also an important direction to reduce the
system delay. In [21], an adaptive hierarchical scheduling P-Scheduler was proposed,
which reduces the system latency by dividing the topological graph using the open
source graph partitioning software METIS and then dividing the tasks with tightly trans-
mitted data among the same compute nodes after two levels of scheduling.

Ensuring that the system latency is in a reasonable range is also an important direc-
tion. In [22], the task assignment problem with delay guarantee (TAPLG) is introduced
and two heuristic algorithms, AHA and PHA, are proposed, while considering the criti-
cal path of the topology to reduce the latency of the stream topology and reduce the
energy consumption.

The above task scheduling works on Storm rarely considers the structure of the to-
pology map. In this work, we proposed Ts-Stream strategy uses the graph Laplacian
algorithm to quickly divide the task graph, and uses fewer computing nodes to run the

4

topology, reducing the system latency of the system. The summary of the comparison
between our work and other closely related works is given in Table 1.

Table 1. Comparison of Ts-Stream and related work

Parameter
Related Work

Ts-Stream
[17] [18] [19] [20] [21]

Task scheduling      

Communication saving      

Latency saving      

Topology aware      

Graph partition      

3 Problem Statement

This section introduces DAG model and communication model in big data stream com-

puting environments.

3.1 DAG Model

The big data stream processing process can be represented by DAG, in which a vertex

represents a Spout or a Bolt, and a directed edge between two vertices forms a Stream

between them. Stream is an infinite sequence of tuples and can be considered as an

abstraction of data communication between components (Spout or Bolt). A DAG can

be represented as  ,G V E ,where  1 2, , , nV v v v  represents a finite set of n

vertices and    1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n    is a finite set of directed edges. The

Spout component acts as a data source to send tuples to the topology, while Bolt

implements the processing of data by the topology and passes the results to the

downstream components. Each component can execute multiple tasks to increase the

parallelism of the topology.

a

c

d

f

g

i

j

e kh

l

b

30

30 30

30

30
30 30 30

30

3030

30

30

10

10

10

10

10

10

10

10

Spout A

Bolt B Bolt C Bolt D

Bolt E

Fig. 1. A topology of Storm

Figure 1 shows a topology with five components including one Spout and four Bolts.

The number of vertices in each component is also the number of instances of the com-

ponent.

5

We define ijr as the transfer rate of tuples between two adjacent vertices, which is

the number of tuples sent from
iv to jv per unit time. Since the arrival rate of the data

stream changes, when the data stream fluctuates greatly at a certain moment, if this

value is taken at this point in time, the accuracy of the entire DAG will be affected. In

order to avoid the effect of violent fluctuations in the data stream at a specific point in

time, we take the mathematical expectation
rE of all ijr in the statistical time as the data

transfer rate between two vertices.

1

1 n

r ij

i

E r
n 

  ， (1)

In term of resources required for a task, we only consider CPU to focus more on the

scheduling issue. However, the proposed solution can be applied for other types of re-

sources including memory and bandwidth. We denote
vC

R as the total amount of re-

sources to be consumed by the whole topology and it can be represented by (2).

1

=
v vi

n

C C

i

R R


 ， (2)

where
vi
CR is the CPU resources consumed by a task.

3.2 Communication Model

In a stream computing system, there are three types of communications causing the

overhead problem: processes between compute nodes, processes within a compute node

and threads within a process.

Processes between compute nodes usually have higher communication overhead

than processes within a compute node. These first two type of communication over-

heads are more significant than the third type which happens between threads in a pro-

cess [17]. Therefore, in this research, we will ignore the inter-threads communication

and focus on solving the top two types.

a

c

d

f

g

i

j

e kh

l

b

30

30 30

30

30
30 30 30

30

3030

30

30

10

10

10

10

10

10

10

10

Fig. 2. Task assignment

6

As shown in Figure 2, placing adjacent nodes with high communication rates in the

same process or computing node can effectively reduce communication delays.

 1 2, , uP p p p  is used to denote the compute nodes in the cluster. The amount of

data transfer between compute nodes in the cluster
Pdtv is denoted by (3).

  
1 1

, , ,
u u

P i j

i j

dtv dtv p p i j
 

  (3)

subjected to

  
0 no data transmission between and ,

,
otherwise,

i j

i j

r

p p
dtv p p

E q


 


 (4)

where  ,i jdtv p p denotes the data transfer rate between
ip and jp , and q denotes

the number of task pairs communicated between
ip and jp .

Use  1 2, , , hW w w w  to denote the processes within the same compute node, and

its total data transfer
Wdtv is denoted by (5).

  
1 1

, , ,
h h

W i j

i j

dtv dtv w w i j
 

  (5)

subjected to

  
0 no data transmission between and ,

,
otherwise,

i j

i j

r

w w
dtv w w

E a


 


 (6)

where  ,i jdtv w w denotes the data transfer rate between
iw and jw , and a denotes

the number of task pairs communicated between
iw and jw .

Sdtv denotes the total data transmission and will be calculated as follows.

 ,S P Wdtv dtv dtv  (7)

If we can minimize the amount of data transferred between compute nodes and between

processes, we can largely reduce the communication overhead of the system and reduce

the system latency.

    ,cd SMin S Min dtv (8)

where
cdS represents the system communication delay.

Therefore, we can reduce
Pdtv by assigning tasks to as few compute nodes as possible.

In the selection of compute nodes, compute nodes are selected in descending order for

7

task assignment based on the amount of available CPU resources in the compute nodes.

This approach allows a single compute node to accommodate more tasks, and in addi-

tion to further reducing the amount of data transfer between compute nodes, it also

reduces system energy consumption by shutting down and hibernating idle compute

nodes.

4 Ts-Stream Overview

Ts-Stream is a task scheduling strategy based on topology awareness. It is used to reduce
the latency and energy consumption of distributed stream computing systems. This sec-
tion focuses on a detailed discussion of Ts-Stream, including its system architecture,
graph Laplacian-based graph partitioning approach, and task assignment strategy.

4.1 System Architecture

The Ts-Stream system adds a monitoring module, a database module, and a Ts-Stream

scheduling generation module to the Storm system architecture, as shown in Figure 3.

The monitoring module regularly collects information from the system, such as the data

transfer rate between executors, the load of executors and the load of worker nodes, and

then stores them in the database. The Ts-Stream module reads this information from

the database, first divides the different sub-topological graphs through the graph parti-

tioning algorithm, and then generates a new schedule and delivers it to the Nimbus

master node. To deploy our proposed task scheduling strategy, IScheduler will be im-

plemented as an interface in Storm's custom scheduler.

Zookeeper

Slot

Worker

Executor

Task

Monitor module

Worker NodeWorker Node

Database

Pluggable

Scheduler

Nimbus Ts-Stream

Graph

partition

Supervisor Supervisor

Fig. 3. Ts-Stream topology

8

In a distributed stream computing environment, the data stream rate and the load of the

computing node are constantly changing. Moreover, due to the existence of a fault-

tolerant mechanism, tasks may be restarted on other computing nodes. The existence

of these problems will affect the performance of the system, so dynamic adaptive sched-

uling is essential. Ts-Stream will periodically check the operating status of the system.

When the system is in a high-latency state for a long time or the remaining capacity of

the computing node exceeds the threshold, it will generate a new schedule based on the

topology information at this time.

4.2 Graph Division

Graph partitioning is used to divide the graph into two or k subgraphs to minimize the

weights of the edges connecting different subgraphs and maximize the weights of the

edges within the same subgraph. However, minimizing the value of cut edges can lead

to some bad partitions, such as the partitioning of the topological graph into 1 vertex

and 1n vertices in Figure 4 (a). In order to achieve a good partitioning as in Figure 4

(b), we can adjust the objective function, while making the sum of the edge weights in

each part of the divided subgraphs as large as possible, the sum of the edge weights

among the subgraphs is as small as possible. Using the Laplacian matrix, such segmen-

tation results can be obtained simply and effectively.

1

1

5

7

2

(a) Bad Division

(b) Good Division

1

4

5

5

Fig. 4. Two different graph division results

In the graph partitioning phase, a graph partitioning method is described in Algorithm

1.
Algorithm 1: Graph partitioning algorithm based on graph Laplacian.

1. Input:    1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n    , k .

2. Output: k subgraphs after division, weights of cut edges.

3. for M do

4. ij ijm e

5. end for

6. for D do

7. if i j do

9

8.
1

0

n

ij ij

j

d m






9. else

10. 0ijd 

11. end if

12. end for

13. Calculate the eigenvalues and eigenvectors of L , and
nkZ

14.    1 2 1 2, , , , , ,nk n nk kZ y y y Z z z z    

15. for
iy do

16. Perform k-means clustering on iy


17.    i iclass y class y 

18. end for

19. return k subgraphs and cut edge value.

The input of the algorithm includes the edge weight set

   1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n    of DAG and the number of subgraphs k to be

divided. The output is the divided k subgraphs and the cut edge value. Steps 2 to 14

are to generate the adjacency matrix M and the degree matrix D according to the

weights of the directed edges of the DAG. According to the result, the Laplace matrix

L is solved, and the first k minimum eigenvalues  1 2, , , n     and the corre-

sponding eigenvector  1 2, , ,nk kZ z z z  of L are solved. According to the Rayleigh-

Ritz theory [23], k-means clustering is performed on the row vectors of the matrix com-

posed of eigenvectors, and the results are mapped to the original graph to complete the

division of DAG.

With this graph division method, adjacent tasks with high transmission rates can be

allocated into the same node, and the amount of data transmission between computing

nodes and between processes can be reduced, thereby realizing low-latency processing

of the system.

4.3 Algorithm Description of Ts-Stream

In the task assignment phase, we propose a topology-aware task allocation strategy de-

scribed in Algorithm 2.
Algorithm 2: Topology-aware task scheduling strategy.

1. Input:
rE and

cnC

2. Output: data stream task scheduling based on topology awareness.

3.  1 2, , , nV v v v 

4.    1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n   

10

5.    1 2, , , ,kG G G G G V E   

6. Arrange
cnC in descending order.

7. If DAG || nG null C null  then

8. return null;

9. end if

10. while DAG !G null do

11. Create a collection
subG ;

12. for
maxcnC do

13. Add the two subgraphs connected by the cut edge with the largest

current weight to
subG ;

14. while
maxsubG cnC C do

15. Add to G the subgraph with the largest weight of the edge

connected to
subG ;

16. end while

17.
max subcn GC C ;

18. end for

19. G null ;

20. end while

21. return topology-aware task scheduling

First, the data transfer rate between tasks is collected by the monitoring module to

construct a DAG. Although there can be multiple tasks on an executor, in our experi-

ments, there is only one task on an executor by default. Then submit the DAG and the

parameter k of the number of subgraphs that need to be divided to the graph partition-

ing module. Where k by (9).

e

n
k

w
 ， (9)

where
ew takes the value of the number of executors in the worker.

The graph segmentation module divides the DAG into k parts and arranges all the

cut edges in descending order according to the cut edge weights. The working nodes

are also arranged in the order of capacity from largest to smallest. First, the two sub-

graphs connected by the edge with the largest weight are selected and put into the first

working node, and then the subgraphs connected by the edge with the largest weight of

its adjacent edges are also assigned to this working node until this working node reaches

the set threshold
aC . The value of

aC by (10).

a cnC C   ， (10)

11

where
cnC is the available computational resources of the node and alpha is factor for

resource utilization (set to 0.7 by default).

Then the subgraphs are assigned to other compute nodes in turn until all subgraphs

are assigned. This allows the allocation to be done using the least number of compute

nodes, and the rest of the nodes are dormant or shut down, which has resulted in energy

saving. This also reduces the cross-node communication and reduces the system la-

tency.

5 Performance Evaluation

In this section, we evaluate our Ts-Stream system. We first discuss the experimental

environment and parameter settings, and then analyze the performance results.

5.1 Experimental Environment and Parameter Setup

Our proposed Ts-Stream system is developed based on Storm 2.1.0 and installed on

CentOS 6.8. This cluster has 9 nodes, where 1 node is designed as a Nimbus node, 2

nodes are designed as Zookeeper nodes and the remaining 6 nodes are designed as Su-

pervisor nodes. The Nimbus node uses DELL’s R410, equipped with 12 Intel(R)

Xeon(R) CPU X5650 @ 2.67 GHz 6-core processors and 12GB of memory. Zookeeper

nodes and Supervisor nodes are virtual machines, equipped with 2 Intel(R) Xeon(R)

CPU X5650 @ 2.67 GHz 2-core processors and 4GB of RAM. Each machine uses

Storm 2.1.0 as the base system and is coordinated by Zookeeper 3.4.14. The software

configuration of the Ts-Stream platform is shown in Table 2.

Table 2. Software configuration of the Ts-Stream

Software Version

OS CentOS 6.8 64bit

Storm apache-storm-2.1.0
JDK jdk1.8 64bit

Zookeeper zookeeper-3.4.14

Python python 2.7.2
Maven Maven 3.6.2

MySQL MySQL-5.1.73

We evaluate the system latency and system throughput by running WordCount and

Top-N task topology. The task topology of WordCount and Top-N is shown in Figure

5.

12

a

b

c

d

e

f

g

h

i

j

Spout A

Blot B

Blot C

Blot D

Word

Count

Rank

Merge

Field

Grouping

Field

Grouping

Global

Grouping

a

d

c

b

f

e

h

i

g

Spout A

Blot B

Blot C

Shuffle

Grouping
Field

Grouping

Emit

Split

Count

(a) The topology of WordCount (b) The topology of Top-N

Fig. 5. The topology of WordCount and Top-N

5.2 Performance Results

The experimental setting contains two evaluation parameters: system latency and sys-

tem throughput.

(1) System latency

An important feature of stream computing systems is that they can process data in

real time, so system latency is an important evaluation criterion. System latency is con-

sidered acceptable to users if it can be kept at the millisecond level. The lower the

system latency, the better the real-time performance of the stream computing system.

In Storm platform, the system latency can be obtained through Storm UI. We compare

Ts-Stream with Storm's default scheduler. The processing latency metric is measured

periodically over a period of 600 seconds.

Fig. 6. System latency for running WordCount

In the WordCount experiment, the processing latency of the system fluctuated over

time, but Ts-Stream's processing latency was lower than the default task policy of the

Storm platform. As shown in Figure 6, the processing latency of the TS-Stream policy

13

and the default Storm policy are 1.91 ms and 2.72 ms, respectively. It is clear that the

average system latency of Ts-Stream is smaller than the default Storm policy when the

system is stable.

Fig. 7. System latency for running Top-N

When the system latency stabilizes over time, Ts-Stream has better system pro-

cessing latency compared to the Storm platform. As shown in Figure 7, the average

system latency is 2.31 ms and 2.98 ms for Ts-Stream and Storm default task assignment

policy, respectively, within [150,600] seconds.

(2) System throughput

System throughput reflects the system's ability to process data, which is estimated in

terms of the number of tuples output by the DAG per second. The higher the system

throughput, the better the stream computing system is able to process the data. In this

set of experiments, we set the input rate of the data stream to 1000 tuples/s. The pro-

cessing latency metric is measured periodically over 600 seconds.

Fig. 8. System throughput for running WordCount

14

When the data transfer rate is kept stable, Ts-Stream has higher system throughput

compared to the default Storm policy. As shown in Figure 8, when the rate is set to

1000 tuples/s, the average system throughput of Ts-Stream and the default Storm policy

during the stabilization phase is distributed as 412 tuples/s and 234 tuples/s. The aver-

age throughput of Ts-Stream proves to be higher than that of the default Strom policy.

Fig. 9. System throughput for running Top-N

As shown in Figure 9, Ts-Stream has higher system throughput compared to the

default policy of Storm when running the task topology of Top-N. During the stabili-

zation phase of both policies, the average throughput of Ts-Stream and Storm's default

policy are 405 tuples/s and 222 tuples/s, respectively.

6 Conclusions and Future Work

We proposed a topology-aware task scheduling policy Ts-Stream. it uses a graph parti-

tioning algorithm based on graph Laplacian to partition the task topology graph into k

subgraphs with higher internal task communication. In the task scheduling phase, it min-
imizes the number of turned-on nodes by assigning tasks to the compute nodes with the
highest capacity. Experimental results show that Ts-Stream performs significantly better
than Storm's default scheduling, reducing system latency and improving throughput.

As part of future work, we will focus on the following areas:

(1) Consider other system resource constraints combined with the state of DAG

vertices to further reduce the delay of the distributed stream computing system.

(2) Deploy Ts-Stream in the actual big data stream computing environment, such

as intelligent recommendation system, real-time stock market analysis, embed-

ded advertising and other scenarios.

Acknowledgements. This work is supported by the National Natural Science Foun-

dation of China under Grant No. 61972364; the Fundamental Research Funds for the

15

Central Universities under Grant No. 2652021001; and Melbourne-Chindia Cloud

Computing (MC3) Research Network.

References

1. Chintapalli, S., Dagit, D., et al.: Benchmarking Streaming Computation Engines: Storm,

Flink and Spark Streaming. In: 2016 IEEE International Parallel and Distributed Pro-

cessing Symposium Workshops, IPDPSW, Chicago, IL, USA, pp. 1789-1792. IEEE

(2016).

2. Shih, D., Hsu, H., Shih, P.: A Study of Early Warning System in Volume Burst Risk

Assessment of Stock with Big Data Platform. In: 2019 IEEE 4th International Confer-

ence on Cloud Computing and Big Data Analysis, ICCCBDA, Chengdu, China, pp.

244-248. IEEE (2019).

3. Kridel, D., Dolk, D., Castillo, D.: Adaptive Modeling for Real Time Analytics: The

Case of "Big Data" in Mobile Advertising. In: 2015 48th Hawaii International Confer-

ence on System Sciences, Kauai, HI, USA, pp. 887-896 (2015).

4. Sharif, A., Li, J., Khalil, M., Kumar, R., Sharif, M.I., Sharif, A.: Internet of things —

smart traffic management system for smart cities using big data analytics. In: 2017 14th

International Computer Conference on Wavelet Active Media Technology and Infor-

mation Processing, ICCWAMTIP, Chengdu, China, pp. 281-284 (2017).

5. Storm Homepage, http://storm.apache.org/, last accessed 2021/4/25.

6. Hadoop Homepage, http://hadoop.apache.org/, last accessed 2021/4/25.

7. Farahabady, M R H., Samani, H R D., Wang, Y., et al.: A QoS-aware controller for

Apache Storm. In: 2016 IEEE 15th International Symposium on Network Computing

and Applications, NCA, pp. 334-342. (2016).

8. Liu, Y., Shi, X., Jin, H.: “Runtime-aware adaptive scheduling in stream processing,” In:

Concurrency and Computation: Practice and Experience, vol. 28(14), pp. 3830-3843.

(2016).

9. Dongen, G., Poel, D.: Evaluation of Stream Processing Frameworks. In: IEEE Transac-

tions on Parallel and Distributed Systems, vol. 31, no. 8, pp. 1845-1858. (2020).

10. Benjelloun, S., et al.: Big Data Processing: Batch-based processing and stream-based

processing. In: 2020 Fourth International Conference On Intelligent Computing in Data

Sciences, ICDS, Fez, Morocco, pp. 1-6. (2020).

11. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in Storm. In Proceed-

ings of the 7th ACM international conference on Distributed event-based systems, pp.

207–218. ACM (2013).

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

In: Communications of the ACM, vol. 51, no. 1, pp. 107-113. ACM (2008).

13. Mehmood, E., Anees, T.: Challenges and Solutions for Processing Real-Time Big Data

Stream: A Systematic Literature Review. In: IEEE Access, vol. 8, pp. 119123-119143.

IEEE (2020).

14. Xhafa, F., Naranjo, V., Caballé, S.: Processing and Analytics of Big Data Streams with

Yahoo!S4. In: 2015 IEEE 29th International Conference on Advanced Information Net-

working and Applications, Gwangju, Korea (South), pp. 263-270. IEEE (2015).

https://ieeexplore.ieee.org/author/38468175100
https://ieeexplore.ieee.org/document/8301496
https://ieeexplore.ieee.org/document/8301496
https://ieeexplore.ieee.org/document/8301496
https://ieeexplore.ieee.org/document/8301496
http://storm.apache.org/
http://hadoop.apache.org/

16

15. Liu, Y., Buyya, R.: Resource Management and Scheduling in Distributed Stream Pro-

cessing Systems: A Taxonomy, Review, and Future Directions. In: ACM Computing

Surveys, Volume 53, No. 3, Article No. 50, Pages: 1-41. ISSN: 0360-0300, New York,

USA, ACM (2020).

16. Govindarajan, K., Kamburugamuve, S., Wickramasinghe, P., Abeykoon, V., Fox, G.:

Task Scheduling in Big Data - Review, Research Challenges, and Prospects. In: 2017

Ninth International Conference on Advanced Computing, ICoAC, Chennai, India, pp.

165-173. (2017).

17. Peng, Y., Hosseini, M., Hong, H., Farivar, Reza., Campbell, Roy.: R-Storm: Resource-

Aware Scheduling in Storm. In: Proceedings of the 16th Annual Middleware Confer-

ence, Association for Computing Machinery, New York, NY, USA, pp. 149–161.

(2015).

18. Fu, T., Ding, J., Ma, R., Winslett, M., Yang, Y., Zhang, Z.: DRS: Dynamic resource

scheduling for real-time analytics over fast streams. In: Proc. 2015 IEEE 35th Interna-

tional Conference on Distributed Computing Systems, ICDCS, pp. 411–420. IEEE

(2015).

19. Xu, J., Chen, Z., Tang, J., Su, S.: T-Storm: Traffic-Aware Online Scheduling in Storm.

In: 2014 IEEE 34th International Conference on Distributed Computing Systems, Ma-

drid, Spain, pp. 535-544. IEEE (2014).

20. Zhang, Z., Jin, P., Wang, X., Liu, R., Wan, S.: N-Storm: Efficient Thread-Level Task

Migration in Apache Storm. In: 2019 IEEE 21st International Conference on High Per-

formance Computing and Communications, pp. 1595-1602. IEEE (2019).

21. Eskandari, L., Huang, Z., Eyers, D.: P-Scheduler: Adaptive hierarchical scheduling in

Apache Storm. In: Proceedings of the Australasian Computer Science Week Multicon-

ference. p. 26. ACM (2016).

22. Wei, H., Wei, X., Li, L.: Topology-aware task allocation for online distributed stream

processing applications with latency constraints. In: Physica A: Statistical Mechanics

and its Applications, Volume 534, (2019).

23. Luxburg, U.: A tutorial on spectral clustering. Stat Comput 17, pp. 395–416. (2007).

