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Abstract. Reducing latency has become the focus of task scheduling research in 

distributed big data stream computing systems. Currently, most task schedulers 

in big data stream computing systems mainly focus on tasks assignment and im-

plicitly ignore task topology which can have significant impact on the latency 

and energy efficiency. This paper proposes a topology-aware scheduling strategy 

to reduce the processing latency of stream processing systems. We construct the 

data stream graph as a directed acyclic graph and then, divide it using the graph 

Laplace algorithm. On the divided graph, tasks will be assigned with a low-la-

tency scheduling strategy. We also provide a computing node selection strategy, 

which enables the system to run tasks on the topology with the least number of 

computing nodes. Based on this scheduling strategy, the tasks of the data stream 

graph can be redistributed and the scheduling mechanism can be optimized to 

minimize the system latency. The experimental results demonstrate the efficiency 

and effectiveness of the proposed strategy. 

Keywords: Stream Computing, Big Data System, Topology-aware, Schedul-

ing, Graph Division. 

1 Introduction 

With the increase in demand for real-time data processing especially in streaming ap-

plications, timeliness of data has become prominent with the rising number of applica-

tions deployed in streaming computing platforms across various fields such as finance 

and banking [1] [2], intelligent recommendation system [3], and Internet of Things [4]. 

Currently, many big data streaming solutions have been provided [1] [5], such as Storm, 

Flink, Spark Streaming, etc. Storm is one of the most popular open source big data 

stream computing systems [7]. It provides powerful distributed cluster management, 

millisecond latency, rich APIs and high fault tolerance mechanisms, and is widely used 

in the field of real-time data processing [8]. 
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Storm's stream processing can be viewed as a directed acyclic graph (DAG) topology 

[5]. Stream is an abstraction of data transmission between different vertices. It is an 

unbounded sequence of tuples in time. Storm has two types of vertices: Spout and Bolt. 

Spout is the source representing the Stream and is responsible for emitting Streams 

from a specific data source of the topology. Bolt can receive any number of streams as 

input and then process the data. Bolt can also emit new streams to the downstream Bolt 

for processing. 

System latency and system throughput are important metrics to measure the perfor-

mance of a stream computing system [7-9]. Therefore, reducing system latency and 

improving system throughput are the major challenges for task schedulers. Task sched-

uling for stream computing systems is an effective way to achieve these goals. If tasks 

are assigned based on the transfer rate between them and the computing resources on 

the compute nodes, system latency and system throughput can be significantly im-

proved. 

The topology-aware scheduling policy is able to place tasks on the appropriate com-

pute nodes based on the structure of the topology. To achieve this goal, we first need to 

construct DAGs and divide them rationally, and assign tasks to as few compute nodes 

as possible. 

1.1 Contributions 

In this paper, our primary focus is to reduce the time delay of distributed stream pro-

cessing systems. Our contributions are as follows: 

(1) We established the DAG model, and a graph partitioning method based on graph 

Laplacian which can be used to create high-quality partitioning results quickly and 

efficiently. 

(2) Based on the partitioning results, tasks are allocated using a low-latency schedul-

ing strategy. We then proposed a computing node selection strategy to run tasks 

on the topology with the least number of nodes. We named this approach Ts-

Stream.  

(3) We conducted experiments to evaluate system performance using time delay as a 

metric. The experiments demonstrated the effectiveness of our proposed strategy. 

1.2 Paper Organization 

The rest of the paper is organized as follows. Section 2 will explain DAG model and 

communication model. In Section 3, the graph partitioning method based on graph La-

placian and the Ts-Stream scheduling strategy are introduced. Section 4 dictates the 

experiment set up and report the evaluation results. Section 5, summarizes related stud-

ies on the scheduling problem. Finally, conclusions and future works are presented in 

Section 6. 
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2 Related Work 

Computational models of Big Data can be divided into batch computing and streaming 
computing [10]. Batch computing are suitable for different big data application scenarios 
when data is first stored for computation and the real-time requirements are not a priority. 
Streaming computing is more suitable for the application scenarios that have strict real-
time requirements and do not need to store data first [11]. 

At the time this work is conducted, researches related to large data batch processing 
and calculation is relatively mature, forming an efficient and stable batch computing 
system represented by Google's MapReduce programming model and the opensource 
Hadoop computing system [6] [12].  

In streaming computing, it is impossible to determine the moment of arrival and the 
order of arrival of data, and it is also impossible to store all the data [13]. Many solutions 
have been proposed to solve this problem. Yahoo launched S4 Streaming Processing 
Computing System in 2010 [14], Twitter launched Storm Streaming Computing System 
in 2011 [5], and Flink originated from a research project called Stratosphere [4]. Storm, 
S4 and Flink have typical streaming data computing architecture, where data is com-
puted in task topology and outputs valuable information, which has largely driven the 
development and application of big data streaming computing technology. 

Scheduling problem of streaming applications is an active research area [16].  
In [17], a Storm-based resource-aware scheduling policy, R-Storm, was proposed. 

R-Storm considers resource constraints in three main aspects: CPU, memory, and band-
width. It focuses on memory constraints and considers CPU and network bandwidth 
constraints as soft constraints. 

In [18], a dynamic resource scheduling DRS is proposed to meet the estimation of 
necessary resources required for real-time demand, effective and efficient re-resource 
provisioning and scheduling, and effective implementation of such scheduler in cloud-
based DSMS. 

In [19], a stream computing system T-Storm was proposed. T-Storm monitors data 
traffic and CPU load changes of each worker node in real time through an external plug-
in to achieve fine-grained control and optimized resource usage of the worker nodes. 

Thread-level task migration is also an important research direction for task schedul-
ing. In [20], a thread-level task migration N-Storm is proposed, which can perform 
thread-level task migration without stopping the Storm, avoiding the time wastage due 
to unnecessary Executor and worker stops and restarts. 

The detailed division of the topology is also an important direction to reduce the 
system delay. In [21], an adaptive hierarchical scheduling P-Scheduler was proposed, 
which reduces the system latency by dividing the topological graph using the open 
source graph partitioning software METIS and then dividing the tasks with tightly trans-
mitted data among the same compute nodes after two levels of scheduling.  

Ensuring that the system latency is in a reasonable range is also an important direc-
tion. In [22], the task assignment problem with delay guarantee (TAPLG) is introduced 
and two heuristic algorithms, AHA and PHA, are proposed, while considering the criti-
cal path of the topology to reduce the latency of the stream topology and reduce the 
energy consumption.  

The above task scheduling works on Storm rarely considers the structure of the to-
pology map. In this work, we proposed Ts-Stream strategy uses the graph Laplacian 
algorithm to quickly divide the task graph, and uses fewer computing nodes to run the 
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topology, reducing the system latency of the system. The summary of the comparison 
between our work and other closely related works is given in Table 1. 

Table 1. Comparison of Ts-Stream and related work 

Parameter 
Related Work 

Ts-Stream 
[17] [18] [19] [20] [21] 

Task scheduling        

Communication saving       

Latency saving         

Topology aware       

Graph partition       

3 Problem Statement 

This section introduces DAG model and communication model in big data stream com-

puting environments. 

3.1 DAG Model 

The big data stream processing process can be represented by DAG, in which a vertex 

represents a Spout or a Bolt, and a directed edge between two vertices forms a Stream 

between them. Stream is an infinite sequence of tuples and can be considered as an 

abstraction of data communication between components (Spout or Bolt). A DAG can 

be represented as  ,G V E ,where  1 2, , , nV v v v   represents a finite set of n  

vertices and    1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n     is a finite set of directed edges. The 

Spout component acts as a data source to send tuples to the topology, while Bolt 

implements the processing of data by the topology and passes the results to the 

downstream components. Each component can execute multiple tasks to increase the 

parallelism of the topology. 
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Fig. 1. A topology of Storm 

Figure 1 shows a topology with five components including one Spout and four Bolts. 

The number of vertices in each component is also the number of instances of the com-

ponent. 
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We define ijr  as the transfer rate of tuples between two adjacent vertices, which is 

the number of tuples sent from 
iv  to jv per unit time. Since the arrival rate of the data 

stream changes, when the data stream fluctuates greatly at a certain moment, if this 

value is taken at this point in time, the accuracy of the entire DAG will be affected. In 

order to avoid the effect of violent fluctuations in the data stream at a specific point in 

time, we take the mathematical expectation 
rE of all ijr  in the statistical time as the data 

transfer rate between two vertices. 

 
1

1 n

r ij

i

E r
n 

  ， (1) 

In term of resources required for a task, we only consider CPU to focus more on the 

scheduling issue. However, the proposed solution can be applied for other types of re-

sources including memory and bandwidth. We denote 
vC

R as the total amount of re-

sources to be consumed by the whole topology and it can be represented by (2). 

 
1

=
v vi

n

C C

i

R R


 ， (2) 

where 
vi
CR  is the CPU resources consumed by a task. 

3.2 Communication Model 

In a stream computing system, there are three types of communications causing the 

overhead problem: processes between compute nodes, processes within a compute node 

and threads within a process. 

Processes between compute nodes usually have higher communication overhead 

than processes within a compute node. These first two type of communication over-

heads are more significant than the third type which happens between threads in a pro-

cess [17]. Therefore, in this research, we will ignore the inter-threads communication 

and focus on solving the top two types.  
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Fig. 2. Task assignment 
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As shown in Figure 2, placing adjacent nodes with high communication rates in the 

same process or computing node can effectively reduce communication delays. 

 1 2, , uP p p p   is used to denote the compute nodes in the cluster. The amount of 

data transfer between compute nodes in the cluster 
Pdtv  is denoted by (3). 

  
1 1

, , ,
u u

P i j

i j

dtv dtv p p i j
 

   (3) 

subjected to 

  
0 no data transmission between  and ,

,
otherwise,

i j

i j

r

p p
dtv p p

E q


 


 (4) 

where  ,i jdtv p p  denotes the data transfer rate between 
ip  and jp , and q denotes 

the number of task pairs communicated between 
ip  and jp . 

Use  1 2, , , hW w w w   to denote the processes within the same compute node, and 

its total data transfer 
Wdtv  is denoted by (5). 

  
1 1

, , ,
h h

W i j

i j

dtv dtv w w i j
 

   (5) 

subjected to 

  
0 no data transmission between  and ,

,
otherwise,

i j

i j

r

w w
dtv w w

E a


 


 (6) 

where  ,i jdtv w w  denotes the data transfer rate between 
iw and jw , and a  denotes 

the number of task pairs communicated between 
iw  and jw . 

Sdtv denotes the total data transmission and will be calculated as follows. 

 ,S P Wdtv dtv dtv   (7) 

If we can minimize the amount of data transferred between compute nodes and between 

processes, we can largely reduce the communication overhead of the system and reduce 

the system latency.  

    ,cd SMin S Min dtv  (8) 

where 
cdS  represents the system communication delay. 

Therefore, we can reduce 
Pdtv  by assigning tasks to as few compute nodes as possible. 

In the selection of compute nodes, compute nodes are selected in descending order for 
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task assignment based on the amount of available CPU resources in the compute nodes. 

This approach allows a single compute node to accommodate more tasks, and in addi-

tion to further reducing the amount of data transfer between compute nodes, it also 

reduces system energy consumption by shutting down and hibernating idle compute 

nodes. 

4 Ts-Stream Overview 

Ts-Stream is a task scheduling strategy based on topology awareness. It is used to reduce 
the latency and energy consumption of distributed stream computing systems. This sec-
tion focuses on a detailed discussion of Ts-Stream, including its system architecture, 
graph Laplacian-based graph partitioning approach, and task assignment strategy. 

4.1 System Architecture 

The Ts-Stream system adds a monitoring module, a database module, and a Ts-Stream 

scheduling generation module to the Storm system architecture, as shown in Figure 3. 

The monitoring module regularly collects information from the system, such as the data 

transfer rate between executors, the load of executors and the load of worker nodes, and 

then stores them in the database. The Ts-Stream module reads this information from 

the database, first divides the different sub-topological graphs through the graph parti-

tioning algorithm, and then generates a new schedule and delivers it to the Nimbus 

master node. To deploy our proposed task scheduling strategy, IScheduler will be im-

plemented as an interface in Storm's custom scheduler.  

Zookeeper

Slot

Worker

Executor

Task

Monitor module

Worker NodeWorker Node

Database

Pluggable

Scheduler

Nimbus Ts-Stream

Graph 

partition

Supervisor Supervisor

 

Fig. 3. Ts-Stream topology 



8 

In a distributed stream computing environment, the data stream rate and the load of the 

computing node are constantly changing. Moreover, due to the existence of a fault-

tolerant mechanism, tasks may be restarted on other computing nodes. The existence 

of these problems will affect the performance of the system, so dynamic adaptive sched-

uling is essential. Ts-Stream will periodically check the operating status of the system. 

When the system is in a high-latency state for a long time or the remaining capacity of 

the computing node exceeds the threshold, it will generate a new schedule based on the 

topology information at this time. 

4.2 Graph Division 

Graph partitioning is used to divide the graph into two or k  subgraphs to minimize the 

weights of the edges connecting different subgraphs and maximize the weights of the 

edges within the same subgraph. However, minimizing the value of cut edges can lead 

to some bad partitions, such as the partitioning of the topological graph into 1 vertex 

and 1n  vertices in Figure 4 (a). In order to achieve a good partitioning as in Figure 4 

(b), we can adjust the objective function, while making the sum of the edge weights in 

each part of the divided subgraphs as large as possible, the sum of the edge weights 

among the subgraphs is as small as possible. Using the Laplacian matrix, such segmen-

tation results can be obtained simply and effectively. 

1
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(a) Bad Division

(b) Good Division
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Fig. 4. Two different graph division results 

In the graph partitioning phase, a graph partitioning method is described in Algorithm 

1. 
Algorithm 1: Graph partitioning algorithm based on graph Laplacian. 

1. Input:    1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n    , k . 

2. Output: k  subgraphs after division, weights of cut edges. 

3. for M  do 

4.   ij ijm e  

5. end for 

6. for D  do  

7.    if i j  do 
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8.     
1

0

n

ij ij

j

d m




  

9.    else  

10.     0ijd   

11.    end if 

12. end for 

13. Calculate the eigenvalues and eigenvectors of L , and
nkZ  

14.    1 2 1 2, , , , , ,nk n nk kZ y y y Z z z z      

15. for 
iy do 

16.   Perform k-means clustering on iy
  

17.      i iclass y class y   

18. end for 

19. return k  subgraphs and cut edge value. 
 

The input of the algorithm includes the edge weight set 

   1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n     of DAG and the number of subgraphs k  to be 

divided. The output is the divided k  subgraphs and the cut edge value. Steps 2 to 14 

are to generate the adjacency matrix M  and the degree matrix D according to the 

weights of the directed edges of the DAG. According to the result, the Laplace matrix 

L  is solved, and the first k  minimum eigenvalues  1 2, , , n      and the corre-

sponding eigenvector  1 2, , ,nk kZ z z z   of L  are solved. According to the Rayleigh-

Ritz theory [23], k-means clustering is performed on the row vectors of the matrix com-

posed of eigenvectors, and the results are mapped to the original graph to complete the 

division of DAG.  

With this graph division method, adjacent tasks with high transmission rates can be 

allocated into the same node, and the amount of data transmission between computing 

nodes and between processes can be reduced, thereby realizing low-latency processing 

of the system. 

4.3 Algorithm Description of Ts-Stream 

In the task assignment phase, we propose a topology-aware task allocation strategy de-

scribed in Algorithm 2. 
Algorithm 2: Topology-aware task scheduling strategy. 

1. Input: 
rE  and 

cnC  

2. Output: data stream task scheduling based on topology awareness. 

3.  1 2, , , nV v v v   

4.    1,2 1,3 ,, , , , 1,2, ,n i nE e e e i n     
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5.    1 2, , , ,kG G G G G V E     

6. Arrange 
cnC  in descending order. 

7. If DAG || nG null C null   then 

8.   return null; 

9. end if 

10. while DAG !G null  do 

11.    Create a collection
subG ; 

12.    for 
maxcnC  do 

13.      Add the two subgraphs connected by the cut edge with the largest 

current weight to 
subG ; 

14.      while 
maxsubG cnC C  do 

15.         Add to G  the subgraph with the largest weight of the edge 

connected to 
subG ; 

16.      end while 

17.      
max subcn GC C ; 

18.    end for 

19.    G null ; 

20. end while 

21. return topology-aware task scheduling 

 

First, the data transfer rate between tasks is collected by the monitoring module to 

construct a DAG. Although there can be multiple tasks on an executor, in our experi-

ments, there is only one task on an executor by default. Then submit the DAG and the 

parameter k  of the number of subgraphs that need to be divided to the graph partition-

ing module. Where k  by (9). 

 
e

n
k

w
 ， (9) 

where 
ew  takes the value of the number of executors in the worker. 

The graph segmentation module divides the DAG into k  parts and arranges all the 

cut edges in descending order according to the cut edge weights. The working nodes 

are also arranged in the order of capacity from largest to smallest. First, the two sub-

graphs connected by the edge with the largest weight are selected and put into the first 

working node, and then the subgraphs connected by the edge with the largest weight of 

its adjacent edges are also assigned to this working node until this working node reaches 

the set threshold 
aC . The value of 

aC  by (10). 

 
a cnC C   ， (10) 
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where 
cnC  is the available computational resources of the node and alpha is factor for 

resource utilization (set to 0.7 by default). 

Then the subgraphs are assigned to other compute nodes in turn until all subgraphs 

are assigned. This allows the allocation to be done using the least number of compute 

nodes, and the rest of the nodes are dormant or shut down, which has resulted in energy 

saving. This also reduces the cross-node communication and reduces the system la-

tency. 

5 Performance Evaluation 

In this section, we evaluate our Ts-Stream system. We first discuss the experimental 

environment and parameter settings, and then analyze the performance results. 

5.1 Experimental Environment and Parameter Setup 

Our proposed Ts-Stream system is developed based on Storm 2.1.0 and installed on 

CentOS 6.8. This cluster has 9 nodes, where 1 node is designed as a Nimbus node, 2 

nodes are designed as Zookeeper nodes and the remaining 6 nodes are designed as Su-

pervisor nodes. The Nimbus node uses DELL’s R410, equipped with 12 Intel(R) 

Xeon(R) CPU X5650 @ 2.67 GHz 6-core processors and 12GB of memory. Zookeeper 

nodes and Supervisor nodes are virtual machines, equipped with 2 Intel(R) Xeon(R) 

CPU X5650 @ 2.67 GHz 2-core processors and 4GB of RAM. Each machine uses 

Storm 2.1.0 as the base system and is coordinated by Zookeeper 3.4.14. The software 

configuration of the Ts-Stream platform is shown in Table 2. 

Table 2. Software configuration of the Ts-Stream 

Software Version 

OS CentOS 6.8 64bit 

Storm apache-storm-2.1.0 
JDK jdk1.8 64bit 

Zookeeper zookeeper-3.4.14 

Python python 2.7.2 
Maven Maven 3.6.2 

MySQL MySQL-5.1.73 

 

We evaluate the system latency and system throughput by running WordCount and 

Top-N task topology. The task topology of WordCount and Top-N is shown in Figure 

5. 
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Fig. 5. The topology of WordCount and Top-N 

5.2 Performance Results 

The experimental setting contains two evaluation parameters: system latency and sys-

tem throughput. 

(1) System latency 

An important feature of stream computing systems is that they can process data in 

real time, so system latency is an important evaluation criterion. System latency is con-

sidered acceptable to users if it can be kept at the millisecond level. The lower the 

system latency, the better the real-time performance of the stream computing system. 

In Storm platform, the system latency can be obtained through Storm UI. We compare 

Ts-Stream with Storm's default scheduler. The processing latency metric is measured 

periodically over a period of 600 seconds. 

 

Fig. 6. System latency for running WordCount 

In the WordCount experiment, the processing latency of the system fluctuated over 

time, but Ts-Stream's processing latency was lower than the default task policy of the 

Storm platform. As shown in Figure 6, the processing latency of the TS-Stream policy 
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and the default Storm policy are 1.91 ms and 2.72 ms, respectively. It is clear that the 

average system latency of Ts-Stream is smaller than the default Storm policy when the 

system is stable. 

 

Fig. 7. System latency for running Top-N 

When the system latency stabilizes over time, Ts-Stream has better system pro-

cessing latency compared to the Storm platform. As shown in Figure 7, the average 

system latency is 2.31 ms and 2.98 ms for Ts-Stream and Storm default task assignment 

policy, respectively, within [150,600] seconds. 

(2) System throughput 

System throughput reflects the system's ability to process data, which is estimated in 

terms of the number of tuples output by the DAG per second. The higher the system 

throughput, the better the stream computing system is able to process the data. In this 

set of experiments, we set the input rate of the data stream to 1000 tuples/s. The pro-

cessing latency metric is measured periodically over 600 seconds. 

 

Fig. 8. System throughput for running WordCount 
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When the data transfer rate is kept stable, Ts-Stream has higher system throughput 

compared to the default Storm policy. As shown in Figure 8, when the rate is set to 

1000 tuples/s, the average system throughput of Ts-Stream and the default Storm policy 

during the stabilization phase is distributed as 412 tuples/s and 234 tuples/s. The aver-

age throughput of Ts-Stream proves to be higher than that of the default Strom policy. 

 

Fig. 9. System throughput for running Top-N 

As shown in Figure 9, Ts-Stream has higher system throughput compared to the 

default policy of Storm when running the task topology of Top-N. During the stabili-

zation phase of both policies, the average throughput of Ts-Stream and Storm's default 

policy are 405 tuples/s and 222 tuples/s, respectively. 

6 Conclusions and Future Work 

We proposed a topology-aware task scheduling policy Ts-Stream. it uses a graph parti-

tioning algorithm based on graph Laplacian to partition the task topology graph into k  

subgraphs with higher internal task communication. In the task scheduling phase, it min-
imizes the number of turned-on nodes by assigning tasks to the compute nodes with the 
highest capacity. Experimental results show that Ts-Stream performs significantly better 
than Storm's default scheduling, reducing system latency and improving throughput. 

As part of future work, we will focus on the following areas: 

(1) Consider other system resource constraints combined with the state of DAG 

vertices to further reduce the delay of the distributed stream computing system. 

(2) Deploy Ts-Stream in the actual big data stream computing environment, such 

as intelligent recommendation system, real-time stock market analysis, embed-

ded advertising and other scenarios. 
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