
 
Abstract 
 
The last decade has seen a considerable increase in 
commodity computer and network performance, mainly as 
a result of faster hardware and more sophisticated software. 
Nevertheless, there are still problems, in the fields of 
science, engineering and business, which cannot be dealt 
effectively with the current generation of supercomputers. 
In fact, due to their size and complexity, these problems are 
often numerically and/or data intensive and require a 
variety of heterogeneous resources that are not available 
from a single machine. A number of teams have conducted 
experimental studies on the cooperative use of 
geographically distributed resources conceived as a single 
powerful computer. This new approach is known by several 
names, such as, metacomputing, seamless scalable 
computing, global computing, and more recently grid 
computing. The early efforts in grid computing started as a 
project to link supercomputing sites, but now it has grown 
far beyond its original intent. In fact, there are many 
applications that can benefit from the grid infrastructure, 
including collaborative engineering, data exploration, high 
throughput computing, and of course distributed 
supercomputing. Moreover, the rapid and impressive 
growth of the Internet, there has been a rising interest in 
web-based parallel computing. In fact, many projected have 
been incepted to exploit the Web as an infrastructure for 
running coarse-grained distributed parallel applications. In 
this context, the web has the capability to become a suitable 
and potentially infinite scalable metacomputer for parallel 
and collaborative work as well as a key technology to create 
a pervasive and ubiquitous grid infrastructure. This paper 
aims to present the state-of-the-art of grid computing and 
attempts to survey the major international adventures in 
developing this upcoming technology.  
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I. INTRODUCTION 

The popularity of the Internet and the availability of 
powerful computers and high-speed networks as low-cost  
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commodity components are changing the way we use 
computers today. This technology opportunity has led to the 
possibility of using networks of computers as a single, 
unified computing resource. It is possible to cluster or 
couple a wide variety of resources including 
supercomputers, storage systems, data sources, and special 
classes of devices distributed geographically and use them 
as a single unified resource, thus forming what is popularly 
known as a “computational grid”.  
 
 

 
 
The origin of the terms metacomputer and metacomputing 
are believed to have come out of the CASA project [1] one 
of several U.S. Gigabit testbeds around in late 1980’s. Larry 
Smarr, the NCSA Director, is generally accredited with 
popularizing the term thereafter. In particular, Catlett and 
Smarr have related the term metacomputing to “the use of 
powerful computing resources transparently available to the 
user via a networked environment” [2]. Their view is that a 
metacomputer is a networked virtual supercomputer. To an 
extent our usage of the term metacomputing still holds true 
to this definition apart from explicitly referring to 
“powerful” computing resources. Other terms have also 
been used to describe this computing paradigm, such as 
seamless, scalable or global computing and more recently 
grid computing. 
 
The concept of grid computing started as a project to link 
supercomputing sites, but now it has grown far beyond its 
original intent. In fact, there are many several applications 
that can benefit from the grid infrastructure, including 
collaborative engineering, data exploration, high throughput 
computing, and of course distributed supercomputing. 
According to Larry Smarr, a grid is a seamless, integrated 
computational and collaborative environment (see Figure 
1). Grid functions can be bisected into two logical grids: the 
computational grid and the access grid. Through the 
computational grid the scientists will be able to access 
virtually unlimited computing and distributed data 
resources. The access grid will provide a group 

The Grid: International Efforts in Global Computing    

Figure 1. Towards Grid Computing: A Conceptual 
i

Mark Baker, Rajkumar Buyya and Domenico Laforenza 



collaboration environment. Through a Web browser, users 
will be able to view and select all the grid resources and 
services in a virtual infinite machine room [3][4]. To build 
a grid requires the development and deployment of a 
number of services, including those for: resource discovery, 
scheduling configuration management, security, and 
payment mechanisms in an open environment [5][6][10].  
 
Grid applications (multi-disciplinary applications) couple 
resources that cannot be replicated at a single site even or 
may be globally located for other practical reasons. These 
are some of the driving forces behind the inception of grids. 
In this light, grids let users solve larger or new problems by 
pooling together resources that could not be coupled easily 
before.  
 
Hence the Grid is not only a computing paradigm for just 
providing computational resources for grand-challenge 
applications. It is an infrastructure that can bond and unify 
globally remote and diverse resources ranging from 
meteorological sensors to data vaults, from parallel 
supercomputers to personal digital organizers. As such, it 
will provide pervasive services to all users that need them. 
 
This paper aims to present the state-of-the-art of grid 
computing and attempts to survey the major international 
efforts in this area. A set of general principles and design 
criteria that can be followed in the grid construction are 
given in Section 2. Some of the current grid experiments 
selected as representative of the possible technologies are 
presented in Section 3. We conclude and then discuss future 
trends in Section 4. 

II. GRID CONSTRUCTION: GENERAL PRINCIPLES 

This section briefly highlights some of the general 
principles that underlie the construction of the grid. In 
particular, the idealized design features that are required by 
a grid to provide users with a seamless computing 
environment are discussed. There are three main issues that 
characterize computational grids:  

• Heterogeneity: a grid involves a multiplicity of 
resources that are heterogeneous in nature and might 
span numerous administrative domains across wide 
geographical distances. 

• Scalability: a grid might grow from few resources to 
millions. This raises the problem of potential 
performance degradation as a Grids size increases. 
Consequently, applications that require a large number 
of geographically located resources must be designed 
to be extremely latency tolerant. 

• Dynamicity or Adaptability: in a grid, a resource failure 
is the rule, not the exception. In fact, with so many 
resources in a Grid, the probability of some resource 
failing is naturally high. The resource managers or 
applications must tailor their behaviour dynamically so 
as to extract the maximum performance from the 
available resources and services. 

The steps necessary to realize a computational grid include 

[6]:  

• The integration of individual software and hardware 
components into a combined networked resource.  

• The implementation of middleware to provide a 
transparent view of the resources available.  

• The development of tools that allows management and 
control of grid applications and infrastructure. 

• The development and optimization of distributed 
applications to take advantage of the resources.  

 
The components that are necessary to form a grid are shown 
in Figure 2 and they are briefly discussed below: 
 

 
Figure 2: Grid Components. 
 
• Grid Fabric: It comprises all the resources 

geographically distributed (across the globe) and 
accessible from anywhere on the Internet. They could 
be computers (such as PCs or Workstations running 
operating systems such as UNIX or NT), clusters 
(running cluster operating systems or resource 
management systems such as LSF, Condor or PBS), 
storage devices, databases, and special scientific 
instruments such as a radio telescope.  

• Grid Middleware: It offers core services such as 
remote process management, co-allocation of 
resources, storage access, information (registry), 
security, authentication, and Quality of Service (QoS) 
such as resource reservation and trading.  

• Grid Development Environments and Tools: These 
offer high-level services that allows programmers to 
develop applications and brokers that act as user agents 
that can manage or schedule computations across 
global resources. 

• Grid Applications and Portals: They are developed 
using grid-enabled languages such as HPC++, and 
message-passing systems such as MPI. Applications, 
such as parameter simulations and grand-challenge 



problems often require considerable computational 
power, require access to remote data sets, and may 
need to interact with scientific instruments. Grid 
portals offer web-enabled application services — i.e., 
users can submit and collect results for their jobs on 
remote resources through a web interface.  

 
In attempting to facilitate the collaboration of multiple 
organizations running diverse autonomous heterogeneous 
resources, a number of basic principles should be followed 
so that the grid environment: 

• Does not interfere with the existing site 
administration or autonomy;  

• Does not compromise existing security of users or 
remote sites;  

• Does not need to replace existing operating 
systems, network protocols, or services;  

• Allows remote sites to join or leave the 
environment whenever they choose;  

• Does not mandate the programming paradigms, 
languages, tools, or libraries that a user wants;  

• Provides a reliable and fault tolerance 
infrastructure with no single point of failure;  

• Provides support for heterogeneous components; 
• Uses standards, and existing technologies, and is 

able to interact with legacy applications; 
• Provides appropriate synchronization and 

component program linkage. 
 

Initiative Focus and Technologies Developed 

Computing  
Portals 

A collaborative effort between different 
Computer Science projects to enable desktop 
access to remote resources including, 
supercomputers, network of workstations, 
smart instruments, data resources, and more – 
www.computingportals.org 

Grid  
Forum 

This is a community-initiated forum of 
individual researchers and practitioners 
working on distributed computing, or "grid" 
technologies. This forum focuses on the 
promotion and development of grid 
technologies and applications via the 
development and documentation of "best 
practices," implementation guidelines, and 
standards with an emphasis on rough 
consensus and running code – 
www.gridforum.org 

European  
Grid  
Forum 

EGRID, aims to foster the cooperative use of 
distributed computing resources that are 
accessible via WANs. EGRID is an open 
forum; the community includes individuals 
from European research institutes, universities 
and companies working in the field of wide 
area computing and computational grids - 
www.egrid.org 
Table 1: Major Grid Forums 

 
As one would expect, a grid environment must be able to 
operate on top of the whole spectrum of current and 
emerging hardware and software technologies. An obvious 
analogy is the Web. Users of the Web do not care if the 

server they are accessing is on a UNIX or NT platform. 
From the client browser’s point of view, they “just” want 
their requests to Web services handled quickly and 
efficiently. In the same way, a user of a grid does not want 
to be bothered with details of its underlying hardware and 
software infrastructure. A user is really only interested in 
submitting their application to the appropriate resources and 
getting correct results back in a timely fashion. 
 
An ideal grid environment will therefore provide access to 
the available resources in a seamless manner such that 
physical discontinuities such as differences between 
platforms, network protocols, and administrative 
boundaries become completely transparent. In essence, the 
grid middleware turns a radically heterogeneous 
environment into a virtual homogeneous one. 
 
The following are the main design features required by a 
grid environment: 
 
• Administrative Hierarchy - An administrative hierarchy 

is the way that each grid environment divides itself up 
to cope with a potentially global extent. The 
administrative hierarchy determines how 
administrative information flows through the grid. 

• Communication Services - The communication needs 
of applications using a grid environment are diverse, 
ranging from reliable point-to-point to unreliable 
multicast communications. The communications 
infrastructure needs to support protocols that are used 
for bulk-data transport, streaming data, group 
communications, and those used by distributed objects. 
The network services used also provide the grid with 
important Quality of Service parameters such as 
latency, bandwidth, reliability, fault-tolerance, and 
jitter control. 

• Information Services - A grid is a dynamic 
environment where the location and type of services 
available are constantly changing. A major goal is to 
make all resources accessible to any process in the 
system, without regard to the relative location of the 
resource user. It is necessary to provide mechanisms to 
enable a rich environment in which information about 
grid is reliably and easily obtained by those services 
requesting the information. The grid information 
(registration and directory) services components 
provide the mechanisms for registering and obtaining 
information about the grid structure, resources, 
services, and status.  

• Naming Services – In a grid, like in any distributed 
system, names are used to refer to a wide variety of 
resources such as computers, services, or data objects.  
The naming service provides a uniform name space 
across the complete metacomputing environment. 
Typical naming services are provided by the 
international X.500 naming scheme or DNS, the 
Internet's scheme. 



• Distributed File Systems and Caching – Distributed 
applications, more often than not, require access to 
files distributed among many servers.  A distributed 
file system is therefore a key component in a 
distributed system. From an applications point of view 
it is important that a distributed file system can provide 
a uniform global namespace, support a range of file I/O 
protocols, require little or no program modification, 
and provide means that enable performance 
optimizations to be implemented, such as the usage of 
caches. 

• Security and Authorization – Any distributed system 
involves all four aspects of security: confidentiality, 
integrity, authentication and accountability. Security 
within a grid environment is a complex issue requiring 
diverse resources autonomously administered to 
interact in a manner that does not impact the usability 
of the resources or introduces security holes/lapses in 
individual systems or the environments as a whole. A 
security infrastructure is key to the success or failure of 
a grid environment. 

• System Status and Fault Tolerance – To provide a 
reliable and robust environment it is important that a 
means of monitoring resources and applications is 
provided. To accomplish this task, tools that monitor 
resources and application need to be deployed.  

Initiative Focus and Technologies Developed 

DISCWorld 

It is an infrastructure for service-based 
metacomputing across LAN and WAN 
clusters. It allows remote users to login to 
this environment over the WWW and 
request access to data, and also to invoke 
services or operations on the available data 
[25] – 
dhpc.adelaide.edu.au/Projects/DISCWorld/ 

 
Nimrod/G & 

GRACE 

A global scheduler (resource broker) for 
parametric computing over a enterprise 
wide clusters or computational grids – 
www.dgs.monash.edu.au/~rajkumar/ecogrid

Table 2: Major Australian Grid Computing Efforts 
 

• Resource Management and Scheduling – The 
management of processor time, memory, network, 
storage, and other components in a grid is clearly very 
important.  The overall aim is to efficiently and 
effectively schedule the applications that need to utilize 
the available resources in the metacomputing 
environment.  From a user’s point of view, resource 
management and scheduling should be transparent; 
their interaction with it being confined to a 
manipulating mechanism for submitting their 
application. It is important in a grid that a resource 
management and scheduling service can interact with 
those that may be installed locally. 

• Computational Economy and Resource Trading – The 
grid is constructed by coupling resources distributed 
across various organizations and administrative 
domains and may be owned by different organisations. 

The motivations or incentives for contributing 
resources towards building grid, to date, has been 
driven by public good, prizes, fun, fame, or 
collaborative advantage. This is clearly evident from 
the construction of public or research test-beds such as 
Distributed.net [27], SETI@Home [26], GUSTO [14], 
and DAS [30]. The computational resource 
contributors to these test-beds are mostly motivated by 
the aforementioned reasons.  The chances for getting 
access to such computational test-beds for solving 
commercial problems are rarely possible. This 
necessitates the need for a mechanism where one can 
buy compute power on-demand from computational 
grids or resource owners. 

In order to push the concept of grid into mainstream 
computing, we need a mechanism that motivates 
everyone on the Internet to contribute their machines 
(idle) resources. One of the best mechanisms for 
achieving this is supporting the concept of 
computational economy in building and management 
of grid resources [10]. It allows resource owners to 
earn money by letting others use their (idle) 
computational resources for solving their problems. In 
such industrial strength, commercial computational 
grid, the resource owners act as sellers and the users act 
as buyers. The pricing of resources will be driven by 
demand and supply and this is one of the best 
mechanisms to regulate and control access to 
computational resources. 

Initiative Focus and Technologies Developed 

distributed.net 
An experiment that uses Internet-connected 
computers to crack RSA encryption 
algorithms – www.distributed.net 

SETI@Home 

A scientific experiment that uses Internet-
connected computers in the search for 
extraterrestrial intelligence - 
setiathome.ssl.berkeley.edu 

Compute  
Power Grid 

A portal and an economic based resource 
management infrastructure for computing on 
internet-wide resources that enables portal 
supercomputing – www.computepower.net 

Table 3: Major Public Grid Computing Efforts 
 

The grid resource management systems must 
dynamically trade for the best resources based on a 
metric of the price and performance available and 
schedule computations on these resources such that 
they meet user requirements. The grid middleware 
needs to offer services that help resource brokers and 
resource owners to trade for resource access [10].  

• Programming Tools and Paradigms – Grid 
applications (multi-disciplinary applications) couple 
resources that cannot be replicated at a single site even 
or may be globally located for other practical reasons. 
A grid should include interfaces, APIs, utilities and 
tools so as to provide a rich development environment. 
Common scientific languages such as C, C++, and 
Fortran should be available, as should application-level 
interfaces like MPI and PVM. A range of programming 



paradigms should be supported, such as message 
passing and distributed shared memory. In addition, a 
suite of numerical and other commonly used libraries 
should be available. 

• User and Administrative GUI  – The interfaces to the 
services and resources available should be intuitive and 
easy to use. In addition, they should work on a range of 
different platforms and operating systems. They also 
need take advantage of web technologies to offer a 
view of portal supercomputing. The web-centric 
approach to access supercomputing resources should 
enable users to access any resource from anywhere 
over any platform at any time. That means, the users 
should be allowed to submit their jobs to computational 
resources through a web interface from any of the 
accessible platforms such as PCs, laptops, PDA, etc. 
thus supporting the ubiquitous access to the grid. The 
provision of access to scientific applications through 
the web (e.g., RWCP’s PAPIA (Parallel Protein 
Information Analysis) system [29]) leads to the 
creation science portals. 

III. GRID COMPUTING PROJECTS 

There are many grid projects worldwide. Table 1-6 (this is 
not an exhaustive) lists some of the most significant 
projects. Due to the limited on the size of this paper it is 
impossible to describe all here.  A more complete listing 
can be found in [11] [12]. This section presents some of the 
current grid projects representative of the grid technology 
approaches. Moreover, a short description of Grid and E-
Grid Forums, two initiatives intended to promote and 
develop grid technologies and applications is given at the 
end of this section. The projects briefly detailed and 
reviewed in this paper include the following: 

• USA: Globus, Legion, WebFlow, NetSolve, and 
NASA IPG. 

• Asia/Japan: Ninf and Bricks 

• Australia: Nimrod/G and DISCWorld. 

• Europe: UNICORE, CERN Data Grid, MOL, Globe, 
DAS, MetaMPI. 

Initiative Focus and Technologies Developed 

UNICORE 

The UNiform Interface to Computer Resources 
aims to deliver software that allows users to 
submit jobs to remote high performance 
computing resources – www.fz-
juelich.de/unicore 

MOL 

Metacomputer OnLine is a toolbox for the 
coordinated use of WAN/LAN connected 
systems. MOL aims at utilizing multiple 
WAN-connected high performance systems for 
solving large-scale problems that are 
intractable on a single supercomputer – 
www.uni-paderborn.de/pc2/projects/mol 

METODIS 

Metacomputing Tools for Distributed Systems 
– 
www.hlrs.de/structure/organisation/par/project
s/metodis/ 

Globe Globe is a research project aiming to study and 

implement a powerful unifying paradigm for 
the construction of large-scale wide area 
distributed systems: distributed shared objects 
– www.cs.vu.nl/~steen/globe 

Poznan 
Metacomputing 

Poznan Centre works on development of tools 
and methods for metacomputing - 
www.man.poznan.pl/metacomputing/ 

CERN Data 
Grid 

This project aims to develop middleware and 
tools necessary for the data-intensive 
applications of high-energy physics - 
grid.web.cern.ch/grid/ 

MetaMPI 

MetaMPI supports the coupling of 
heterogeneous MPI systems, thus allowing 
parallel applications developed using MPI to 
be run on grids without alteration – 
www.lfbs.rwth-
aachen.de/~martin/MetaMPICH/ 

DAS 

This is a wide-area distributed cluster, used for 
research on parallel and distributed computing 
by five Dutch universities –    
www.cs.vu.nl/das 

JaWs 

JaWS is an economy-based computing model 
where both resource owners and programs 
using these resources place bids to a central 
marketplace that generates leases of use – 
roadrunner.ics.forth.gr:8080/ 

Table 4: Major European Grid Computing Efforts 

A. Globus 

Globus [13][15] provides a software infrastructure that 
enables applications to handle distributed, heterogeneous 
computing resources as a single virtual machine. The 
Globus project is a U.S. multi-institutional research effort 
that seeks to enable the construction of computational grids. 
A computational grid, in this context, is a hardware and 
software infrastructure that provides dependable, consistent, 
and pervasive access to high-end computational 
capabilities, despite the geographical distribution of both 
resources and users. A central element of the Globus system 
is the Globus Metacomputing Toolkit (GMT), which 
defines the basic services and capabilities required to 
construct a computational grid. The toolkit consists of a set 
of components that implement basic services, such as 
security, resource location, resource management, and 
communications. 
 
It is necessary for computational grids to support a wide 
variety of applications and programming paradigms. 
Consequently, rather than providing a uniform 
programming model, such as the object-oriented model, the 
GMT provides a bag of services from which developers of 
specific tools or applications can use to meet their own 
particular needs. This methodology is only possible when 
the services are distinct and have well-defined interfaces 
(API) that can be incorporated into applications or tools in 
an incremental fashion. 
 
Globus is constructed as a layered architecture in which 
high-level global services are built upon essential low-level 
core local services. The Globus toolkit is modular, and an 
application can exploit Globus features, such as resource 



management or information infrastructure, without using 
the Globus communication libraries. The GMT currently 
consists of the following:  
• Resource allocation and process management (GRAM) 
• Unicast and multicast communications services 

(Nexus)  
• Authentication and related security services (GSI) 
• Distributed access to structure and state information 

(MDS) 
• Monitoring of health and status of system components 

(HBM) 
• Remote access to data via sequential and parallel 

interfaces (GASS) 
• Construction, caching, and location of executables 

(GEM) 
• Advanced Resource Reservation and Allocation 

(GARA) 
 

Initiative Focus and Technologies Developed 

Globus 

This project is developing basic software 
infrastructure for computations that integrate 
geographically distributed computational and 
information resources – www.globus.org 

Legion 

Legion is an object-based metasystem. Legion 
supports transparent scheduling, data 
management, fault tolerance, site autonomy, and 
a wide range of security options – 
legion.virginia.edu 

JAVELIN Javelin: Internet-Based Parallel Computing 
Using Java – www.cs.ucsb.edu/research/javelin/

AppLes 

This is an application-specific approach to 
scheduling individual parallel applications on 
production heterogeneous systems – 
www.infospheres.caltech.edu/ 

NASA IPG 

The Information Power Grid is a testbed that 
provides access to a grid – a widely distributed 
network of high performance computers, stored 
data, instruments, and collaboration 
environments – www.ipg.nasa.gov 

Condor 

The Condor project aims is to develop and 
deploy, and evaluate mechanisms and policies 
that support high throughput computing (HTC) 
on large collections of distributed computing 
resources – www.cs.wisc.edu/condor/ 

Harness 

Harness builds on the concept of the virtual 
machine and explores dynamic capabilities 
beyond what PVM can supply. It focused on 
developing three key capabilities: Parallel plug-
ins, Peer-to-peer distributed control, and 
multiple virtual machines – 
www.cs.wisc.edu/condor/ 

NetSolve 

NetSolve is a project that aims to bring together 
disparate computational resources connected by 
computer networks. It is a RPC based 
client/agent/server system that allows one to 
remotely access both hardware and software 
components – 
www.cs.utk.edu/netsolve/ 

Table 5: Major American (USA) Grid Computing Efforts 
 
Globus can be viewed as a metacomputing framework 
based on a set of APIs to the underlying services. Globus 

provides application developers with a pragmatic means of 
implementing a range of services to provide a wide-area 
application execution environment.  

B. Legion 

Legion [16][17] is an object-based metasystem developed 
at the University of Virginia. Legion provides the software 
infrastructure so that a system of heterogeneous, 
geographically distributed, high performance machines can 
interact seamlessly. Legion attempts to provide users, at 
their workstations, with a single, coherent, virtual machine. 
Legion is organized by classes and metaclasses (classes of 
classes). In the Legion system:  
• Everything is an object - Objects represent all hardware 

and software components. Each object is an active 
process that responds to method invocations from other 
objects within the system. Legion defines an API for 
object interaction, but not the programming language 
or communication protocol. 

• Classes manage their instances - Every Legion object 
is defined and managed by its own active class object. 
Class objects are given system-level capabilities; they 
can create new instances, schedule them for execution, 
activate or deactivate an object, as well as provide state 
information to client objects.  

• Users can define their own classes - As in other object-
oriented systems users can override or redefine the 
functionality of a class.  

 
This feature allows functionality to be added or removed to 
meet a user’s needs. Core objects - Legion defines the API 
to a set of core objects that support the basic services 
needed by the metasystem. The Legion system has the 
following set of core object types: 
• Classes and Metaclasses – Classes can be considered 

managers and policy makers. Metaclasses are classes 
of classes. 

• Host objects – Host objects are abstractions of 
processing resources, they may represent a single 
processor or multiple hosts and processors. 

• Vault objects – Vault objects represents persistent 
storage, but only for the purpose of maintaining the 
state of Object Persistent Representation (OPR).  

• Implementation Objects and Caches – Implementation 
objects hide the storage details of object 
implementations and can be thought of as equivalent to 
executable files in UNIX. Implementation cache 
objects provide objects with a cache of frequently used 
data. 

• Binding Agents – A binding agent maps object IDs to 
physical address. Binding agents can cache bindings 
and organize themselves in hierarchies and software 
combining trees. 

• Context objects and Context spaces – Context objects 
map context names to Legion object IDs, allowing 
users to name objects with arbitrary-length string 
names. Context spaces consist of directed graphs of 
context objects that name and organize information. 

 



A Legion object is an instance of its class. Objects are 
independent, active, and capable of communicating with 
each other via unordered non-blocking calls. Like other 
object-oriented systems, the set of methods of an object 
describes its interface. The Legion interfaces are described 
in an Interface Definition Language (IDL). 
 
Legion takes a different approach to provide a 
metacomputing environment: it encapsulates all its 
components as objects. The methodology used has all the 
normal advantages of an object-oriented approach, such as 
data abstraction, encapsulation, inheritance, and 
polymorphism. It can be argued that many aspects of this 
object-oriented approach potentially make it ideal for 
designing and implementing a complex environment such 
as a metacomputer. However, using an object-oriented 
methodology does not come without a raft of problems, 
many of these is tied-up with the need for Legion to interact 
with legacy applications and services. In addition, as 
Legion is written in Mentat Programming Language (MPL), 
it is necessary to “port” MPL onto each platform before 
Legion can be installed. 

C. WebFlow  

WebFlow [18][19] is a computational extension of the Web 
model that can act as a framework for the wide-area 
distributed computing and metacomputing. The main goal 
of the WebFlow design was to build a seamless framework 
for publishing and reusing computational modules on the 
Web so that end users, via a Web browser, can engage in 
composing distributed applications using WebFlow 
modules as visual components and editors as visual 
authoring tools. Webflow has a three-tier Java-based 
architecture that can be considered a visual dataflow 
system. The front-end uses applets for authoring, 
visualization, and control of the environment. WebFlow 
uses servlet-based middleware layer to manage and interact 
with backend modules such as legacy codes for databases 
or high performance simulations. Webflow is analogous to 
the Web. Web pages can be compared to WebFlow 
modules and hyperlinks that connect Web pages to inter-
modular dataflow channels. WebFlow content developers 
build and publish modules by attaching them to Web 
servers. Application integrators use visual tools to link 
outputs of the source modules with inputs of the destination 
modules, thereby forming distributed computational graphs 
(or compute-webs) and publishing them as composite 
WebFlow modules. A user activates these compute-webs by 
clicking suitable hyperlinks, or customizing the 
computation either in terms of available parameters or by 
employing some high-level commodity tools for visual 
graph authoring. The high performance backend tier is 
implemented using the Globus toolkit:  
• The Metacomputing Directory Services (MDS) is used 

to map and identify resources. 
• The Globus Resource Allocation Manager (GRAM) is 

used to allocate resources. 
• The Global Access to Secondary Storage (GASS) is 

used for a high performance data transfer.  

With WebFlow, new applications can be composed 
dynamically from reusable components just by clicking on 
visual module icons, dragging them into the active 
WebFlow editor area, and linking them by drawing the 
required connection lines. The modules are executed using 
Globus components combined with the pervasive 
commodity services where native high performance 
versions are not available. The prototype WebFlow system 
is based on a mesh of Java-enhanced Web Servers 
(Apache), running servlets that manage and coordinate 
distributed computation. This management infrastructure is 
implemented by three servlets: Session Manager, Module 
Manager, and Connection Manager. These servlets use 
URL addresses and can offer dynamic information about 
their services and current state. Each management servlet 
can communicate with others via sockets. The servlets are 
persistent and application-independent. Future 
implementations of WebFlow will use emerging standards 
for distributed objects and take advantage of commercial 
technologies, such as the CORBA [32] as the base 
distributed object model. WebFlow takes a different 
approach to both Globus and Legion. It is implemented in a 
hybrid manner using a three-tier architecture that 
encompasses both the Web and third party backend 
services.  This approach has a number of advantages, 
including the ability to ``plug-in'' to a diverse set of 
backend services. For example, many of these services are 
currently supplied by the Globus toolkit, but they could be 
replaced with components from CORBA or Legion. 
WebFlow also has the advantage that it is more portable 
and can be installed anywhere a Web server supporting 
servlets is capable of running. 

D. NetSolve 

NetSolve [20][21][22] is a client/server application 
designed to solve computational science problems in a 
distributed environment. The Netsolve system is based 
around loosely coupled distributed systems, connected via a 
LAN or WAN. Netsolve clients can be written in C and 
Fortran, use Matlab or the Web to interact with the 
server. A Netsolve server can use any scientific package to 
provide its computational software. Communications within 
Netsolve is via sockets. Good performance is ensured by a 
load-balancing policy that enables NetSolve to use the 
computational resources available as efficiently as possible. 
NetSolve offers the ability to search for computational 
resources on a network, choose the best one available, solve 
a problem (with retry for fault-tolerance), and return the 
answer to the user. 

E. NASA Information Power Grid (IPG) 

The NAS Systems Division is leading the effort to build 
and test NASA’s Information Power Grid (lPG) [38], a 
network of high performance computers, data storage 
devices, scientific instruments, and advanced user 
interfaces. The overall mission of the IPG is to provide 
NASA’s scientific and engineering communities a 
substantial increase in their ability to solve problems that 
depend on use of large-scale and/or distributed resources. 



The project team is focused on creating an infrastructure 
and services to locate, combine, integrate, and manage 
resources from across NASA centers. An important goal of 
the IPG is to produce a common view of these resources, 
and at the same time provide for distributed management 
and local control. The IPG team at NAS is working to 
develop: 
• Independent but consistent tools and services that 

support a range of programming environments used to 
build applications in widely distributed systems. 

• Tools, services, and infrastructure for managing and 
aggregating dynamic collections of resources: 
processors, data storage/information systems, 
communications systems, real-time data sources and 
instruments, as well as human collaborators. 

• Facilities for constructing collaborative, application-
oriented workbenches and problem solving 
environments across NASA, based on the IPG 
infrastructure and applications. 

• A common resource management approach that 
addresses areas such as systems management, user 
identification, resource allocations, accounting, and 
security. 

• An operational grid environment that incorporates 
major computing and data resources at multiple NASA 
sites in order to provide an infrastructure capable of 
routinely addressing larger scale, more diverse, and 
more transient problems than is currently possible. 

 
The starting point for IPG "middleware" is the Globus 
Metacomputing Toolkit. This IPG middleware will make its 
systems interoperable by providing a set of commands that 
lets researchers execute computational jobs on remote 
systems.  
 

Initiative Focus and Technologies Developed 

Ninf 

Ninf allows users to access computational 
resources including hardware, software and 
scientific data distributed across a wide area 
network with an easy-to-use interface – 
ninf.etl.go.jp 

Bricks 

Bricks is a performance evaluation system that 
allows analysis and comparison of various 
scheduling schemes on a typical high-
performance global computing setting – 
matsu-www.is.titech.ac.jp/~takefusa/bricks/ 

Table 6: Major Japanese Grid Computing Efforts 

F. NINF 

The Network Infrastructure [36][37] for global computing 
(Ninf) is a client/server- based system that allows access to 
multiple remote compute and database servers. Ninf clients 
can semi-transparently access remote computational 
resources from languages such as C and Fortran. A 
programmer is able to build a global computing application 
by using the Ninf remote libraries as its components, 
without being aware of the complexities of the underlying 
system they are programming. 

G. Nimrod/G Resource Broker and GRACE 

Nimrod is a tool for parametric computing on clusters and it 
provides a simple declarative parametric modeling 
language for expressing a parametric experiment [8]. 
Domain experts can easily create a plan for a parametric 
computing (task farming) and use the Nimrod runtime 
system to submit, run, and collect the results from multiple 
computers (cluster nodes). Nimrod has been used to run 
applications ranging from bio-informatics and operations 
research, to the simulation of business processes. A 
reengineered version of Nimrod, called Clustor, has been 
commercialized by Active Tools [28]. However, research 
on Nimrod has been continued, to address its use in the 
global computational grid environment and to overcome 
shortcomings of the earlier system. 

Nimrod has been used successfully with a static set of 
computational clusters, but is unsuitable as implemented in 
the large-scale dynamic context of computational grids, 
where resources are scattered across several administrative 
domains, each with their own user policies, employing their 
own queuing system, varying access cost and processing 
power. These shortcomings are addressed by a new system 
called Nimrod/G [7][9] that uses the Globus [13] 
middleware services for dynamic resource discovery and 
dispatching jobs over wide-area distributed systems called 
computational grids.   

Nimrod/G allows scientists and engineers to model whole 
parametric experiments and transparently stage the data and 
program at remote sites, and run the program on each 
element of a data set on different machines and finally 
gather results from remote sites to the user site. The user 
need not worry about the way in which the complete 
experiment is set up, data or executable staging, or 
management. The user can also set the deadline by which 
the results are needed and the Nimrod/G broker tries to find 
the cheapest computational resources available in the grid 
and use them so that the user deadline is met and cost of 
computation is kept to a minimum.  

The current focus of the Nimrod/G project team is on the 
use of economic theories in grid resource management and 
scheduling as part of a new framework called GRACE 
(Grid Architecture for Computational Economy) [10]. The 
components that make up GRACE include global scheduler 
(broker), bid-manager, directory server, and bid-server 
working closely with grid middleware and fabrics. The 
GRACE infrastructure also offers generic interfaces (APIs) 
that the grid tools and applications programmers can use to 
develop software supporting the computational economy. 
The grid resource brokers such as (Nimrod/G) uses GRACE 
services to dynamically trade with resources owner agents 
to select those resources that offer low-cost access services 
yet meet the user requirements.   

H. UNICORE 

UNICORE (UNiform Interface to COmputer REsources) 
[23][24] is a project funded by the German Ministry of 
Education and Research. A consortium of people from 



universities, national research laboratories, software 
industry, and computer vendors develops UNICORE. 
Initially, it was a two years project ending in December 
1999 but there is a plan to retarget it and extend it for 
another two/three years. UNICORE main focus is in 
providing a uniform interface for job preparation and 
control that offers seamless and secure access to 
supercomputer resources. The idea behind UNICORE is to 
support the users by hiding the system and site-specific 
idiosyncrasies and by helping to develop distributed 
applications.  
 
Distributed applications within UNICORE are defined as 
multi-part applications where the different parts may run on 
different computer systems asynchronously or sequentially 
synchronized. A UNICORE job contains a multi-part 
application as described above augmented by the 
information about the destination systems, the resource 
requirements, and the dependencies between the different 
parts. From a structural viewpoint a UNICORE job is a 
recursive object containing job groups and tasks. Job 
groups themselves consist of other job groups and tasks. 
UNICORE jobs and job groups carry the information of the 
destination system for the included tasks. A task is the unit, 
which boils down to a batch job for the destination system.  
 
The design goals for UNICORE include a uniform and easy 
to use GUI, an open architecture based on the concept of an 
abstract job, a consistent security architecture, minimal 
interference with local administrative procedures, 

exploitation of existing and emerging technologies, zero-
administration user interface through standard Web browser 
and Java applets, and a production ready prototype within 
two years. UNICORE is designed to support batch jobs, it 
does not allow for interactive processes. At the application 
level asynchronous metacomputing is supported allowing 
for independent and dependent parts of a UNICORE job to 
be executed on a set of distributed systems. The user is 
provided with a unique UNICORE user-id to uniformly get 
access to all UNICORE sites. An intuitive GUI allows job 
preparation and control. It should be noted that the 
prototype excludes metacomputing at the application level 
(synchronous metacomputing), resource brokerage, and 
interactive applications including application steering. 
UNICORE has laid a solid basis for seamless computing 
and is well accepted by non-expert users. Future 
developments will integrate features to support more users 
with more sophisticated applications. 

I. Grid Applications 

Although wide-area distributed supercomputing has been a 
popular application of the grid, there are a number of other 
applications that can benefit from it [4]. These include 
collaborative engineering, high-throughput computing 
(large-scale simulation and parameter studies), remote 
software access, data-intensive computing, and on-demand 
computing. Some of these applications were demonstrated 
at SC’98 [41] by the international computational science 
community. 

 
Some applications that have been designed and developed 
using message passing interfaces, and to run on parallel 
platforms can be executed on computational grids without 
porting  – message passing interfaces are available for grid 
environments. A number of computational physics 
applications are not grid-enabled [39]. Today, large-scale 
parameter-study (embarrassingly parallel) applications are 
exploiting computational grid resources heavily and have 
been termed as killer applications [7][40]. Projects, such as 
SETI@Home [26] and Distributed.Net [27], build grids by 
linking multiple low-end computational resources, such as 
PCs, across the Internet to detect extraterrestrial intelligence 
and crack security algorithms respectively. The nodes in 
these grids work simultaneously on different parts of the 
problem and pass results to central system for post-
processing. 
 
Grid resources can be used to solve grand challenge 
problems in areas such as biophysics, chemistry, biology, 
high energy physics, data mining, financial analysis, 
nuclear simulations, material science, chemical engineering, 
environmental studies, molecular biology, structural 
analysis, mechanical CAD/CAM, weather prediction, 
astrophysics, scientific instrumentation, and so on. 

IV. CONCLUSIONS AND FUTURE TRENDS 

There are currently a large number of projects and diverse 
range of emerging grid developmental approaches being 
pursued. These systems range from metacomputing 
frameworks to application testbeds, and from collaborative 
environments to batch submission mechanisms.   
 
It is very difficult to predict the future and this is 
particularly true in a field such as information technology 
where the technological advances are moving very fast. 
Hence, it is not an easy task to forecast what will be the 
“dominant” grid approach in the next future. Windows of 
opportunity for ideas and products seem to open and close 
in the seeming “blink of the eye”. However, some trends 
are evident. One of those is growing interest in the use of 
Java [31] for network computing. In fact, it is interesting to 
note some that some of the projects described in this paper 
are using Java and the Web as the communications 
infrastructure. 
 
The Java programming language successfully addresses 
several key issues that plague the development of grid 
environments, such as heterogeneity and security. It also 
removes the need to install programs remotely; the 
minimum execution environment is a Java-enabled Web 
browser. Java, with its related technologies and growing 
repository of tools and utilities, is having a huge impact on 
the growth and development of grid environments. From a 
relatively slow start, the development of metacomputers is 
accelerating fast with the advent of these new and emerging 
technologies. It is very hard to ignore the presence of the 
sleepy giant CORBA [32] in the background. We believe 
that frameworks incorporating CORBA services will be 



very influential on the design of grid environments in the 
future.  
Another promising Java technology is Jini [33][34]. The 
Jini architecture exemplifies a new approach to computing 
systems that is netcentric. By replacing the notion of 
peripherals and applications with that of network-available 
devices and services with clients that use those services. 
Jini helps breakdown the conventional view of what a 
computer is, while including new classes of devices 
working together in a federated architecture. The ability to 
move code from the service to its client is the core 
difference between the Jini environment and other 
distributed systems, such as the Common Object Request 
Broker Architecture (CORBA) and the Distributed 
Common Object Model (DCOM) [35]. 
 
Whatever the technology or computing paradigm that 
becomes influential or most popular, it can be guaranteed 
that at some stage in the future its star will wane. 
Historically, in the computing field, this fact can be 
repeatedly observed. The lesson from this observation must 
therefore be drawn that, in the long term, backing only one 
technology can be an expensive mistake. The framework 
that provides a grid environment must be adaptable, 
malleable, and extensible. As technology and fashions 
change it is crucial that a grid computing environment 
evolves with them. 
 
Larry Smarr observes in [5] that grid computing has serious 
social consequences and is going to have as revolutionary 
an effect as railroads did in the American mid-West in the 
early nineteenth century. Instead of a 30 to 40 year lead-
time to see its effects, however, its impact is going to be 
much faster. He concludes that the effects of computational 
grids are going to change the world so quickly that mankind 
will struggle to react and change in the face of the 
challenges and issues they present. So, at some stage in the 
future, our computing needs will be satisfied in the same 
pervasive and ubiquitous manner that we use the electricity 
power grid. The analogies with the generation and delivery 
of electricity are hard to ignore, and the implications are 
enormous. In fact, the computational grid is analogous to 
electricity (power) grid and the vision is to offer a (almost) 
dependable, consistent, pervasive, and inexpensive access 
to high-end resources irrespective their location of physical 
existence and the location of access. 
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