

Abstract

The last decade has seen a considerable increase in
commodity computer and network performance, mainly as
a result of faster hardware and more sophisticated software.
Nevertheless, there are still problems, in the fields of
science, engineering and business, which cannot be dealt
effectively with the current generation of supercomputers.
In fact, due to their size and complexity, these problems are
often numerically and/or data intensive and require a
variety of heterogeneous resources that are not available
from a single machine. A number of teams have conducted
experimental studies on the cooperative use of
geographically distributed resources conceived as a single
powerful computer. This new approach is known by several
names, such as, metacomputing, seamless scalable
computing, global computing, and more recently grid
computing. The early efforts in grid computing started as a
project to link supercomputing sites, but now it has grown
far beyond its original intent. In fact, there are many
applications that can benefit from the grid infrastructure,
including collaborative engineering, data exploration, high
throughput computing, and of course distributed
supercomputing. Moreover, the rapid and impressive
growth of the Internet, there has been a rising interest in
web-based parallel computing. In fact, many projected have
been incepted to exploit the Web as an infrastructure for
running coarse-grained distributed parallel applications. In
this context, the web has the capability to become a suitable
and potentially infinite scalable metacomputer for parallel
and collaborative work as well as a key technology to create
a pervasive and ubiquitous grid infrastructure. This paper
aims to present the state-of-the-art of grid computing and
attempts to survey the major international adventures in
developing this upcoming technology.

Keywords: Metacomputing, Grids, Middleware, Resource
Management and Scheduling, Internet Computing,
Computing Portals.

I. INTRODUCTION

The popularity of the Internet and the availability of
powerful computers and high-speed networks as low-cost

Mark Baker, School of Computer Science, University of
Portsmouth, Mercantile House, Portsmouth, Hants, PO1
2EG, UK – Mark.Baker@port.ac.uk
Rajkumar Buyya, School of Computer Science and
software Eng., Monash University, Caulfield Campus,
Melbourne, Australia,
rajkumar@csse.monash.edu.au

Domenico Laforenza, Advanced Computing Department,
CNUCE-Institute of the Italian National Research Council,
via Vittorio Alfieri, 1, I-56010 Ghezzano, Pisa, Italy
Domenico.Laforenza@cnuce.cnr.it

commodity components are changing the way we use
computers today. This technology opportunity has led to the
possibility of using networks of computers as a single,
unified computing resource. It is possible to cluster or
couple a wide variety of resources including
supercomputers, storage systems, data sources, and special
classes of devices distributed geographically and use them
as a single unified resource, thus forming what is popularly
known as a “computational grid”.

The origin of the terms metacomputer and metacomputing
are believed to have come out of the CASA project [1] one
of several U.S. Gigabit testbeds around in late 1980’s. Larry
Smarr, the NCSA Director, is generally accredited with
popularizing the term thereafter. In particular, Catlett and
Smarr have related the term metacomputing to “the use of
powerful computing resources transparently available to the
user via a networked environment” [2]. Their view is that a
metacomputer is a networked virtual supercomputer. To an
extent our usage of the term metacomputing still holds true
to this definition apart from explicitly referring to
“powerful” computing resources. Other terms have also
been used to describe this computing paradigm, such as
seamless, scalable or global computing and more recently
grid computing.

The concept of grid computing started as a project to link
supercomputing sites, but now it has grown far beyond its
original intent. In fact, there are many several applications
that can benefit from the grid infrastructure, including
collaborative engineering, data exploration, high throughput
computing, and of course distributed supercomputing.
According to Larry Smarr, a grid is a seamless, integrated
computational and collaborative environment (see Figure
1). Grid functions can be bisected into two logical grids: the
computational grid and the access grid. Through the
computational grid the scientists will be able to access
virtually unlimited computing and distributed data
resources. The access grid will provide a group

The Grid: International Efforts in Global Computing

Figure 1. Towards Grid Computing: A Conceptual
i

Mark Baker, Rajkumar Buyya and Domenico Laforenza

collaboration environment. Through a Web browser, users
will be able to view and select all the grid resources and
services in a virtual infinite machine room [3][4]. To build
a grid requires the development and deployment of a
number of services, including those for: resource discovery,
scheduling configuration management, security, and
payment mechanisms in an open environment [5][6][10].

Grid applications (multi-disciplinary applications) couple
resources that cannot be replicated at a single site even or
may be globally located for other practical reasons. These
are some of the driving forces behind the inception of grids.
In this light, grids let users solve larger or new problems by
pooling together resources that could not be coupled easily
before.

Hence the Grid is not only a computing paradigm for just
providing computational resources for grand-challenge
applications. It is an infrastructure that can bond and unify
globally remote and diverse resources ranging from
meteorological sensors to data vaults, from parallel
supercomputers to personal digital organizers. As such, it
will provide pervasive services to all users that need them.

This paper aims to present the state-of-the-art of grid
computing and attempts to survey the major international
efforts in this area. A set of general principles and design
criteria that can be followed in the grid construction are
given in Section 2. Some of the current grid experiments
selected as representative of the possible technologies are
presented in Section 3. We conclude and then discuss future
trends in Section 4.

II. GRID CONSTRUCTION: GENERAL PRINCIPLES

This section briefly highlights some of the general
principles that underlie the construction of the grid. In
particular, the idealized design features that are required by
a grid to provide users with a seamless computing
environment are discussed. There are three main issues that
characterize computational grids:

• Heterogeneity: a grid involves a multiplicity of
resources that are heterogeneous in nature and might
span numerous administrative domains across wide
geographical distances.

• Scalability: a grid might grow from few resources to
millions. This raises the problem of potential
performance degradation as a Grids size increases.
Consequently, applications that require a large number
of geographically located resources must be designed
to be extremely latency tolerant.

• Dynamicity or Adaptability: in a grid, a resource failure
is the rule, not the exception. In fact, with so many
resources in a Grid, the probability of some resource
failing is naturally high. The resource managers or
applications must tailor their behaviour dynamically so
as to extract the maximum performance from the
available resources and services.

The steps necessary to realize a computational grid include

[6]:

• The integration of individual software and hardware
components into a combined networked resource.

• The implementation of middleware to provide a
transparent view of the resources available.

• The development of tools that allows management and
control of grid applications and infrastructure.

• The development and optimization of distributed
applications to take advantage of the resources.

The components that are necessary to form a grid are shown
in Figure 2 and they are briefly discussed below:

Figure 2: Grid Components.

• Grid Fabric: It comprises all the resources

geographically distributed (across the globe) and
accessible from anywhere on the Internet. They could
be computers (such as PCs or Workstations running
operating systems such as UNIX or NT), clusters
(running cluster operating systems or resource
management systems such as LSF, Condor or PBS),
storage devices, databases, and special scientific
instruments such as a radio telescope.

• Grid Middleware: It offers core services such as
remote process management, co-allocation of
resources, storage access, information (registry),
security, authentication, and Quality of Service (QoS)
such as resource reservation and trading.

• Grid Development Environments and Tools: These
offer high-level services that allows programmers to
develop applications and brokers that act as user agents
that can manage or schedule computations across
global resources.

• Grid Applications and Portals: They are developed
using grid-enabled languages such as HPC++, and
message-passing systems such as MPI. Applications,
such as parameter simulations and grand-challenge

problems often require considerable computational
power, require access to remote data sets, and may
need to interact with scientific instruments. Grid
portals offer web-enabled application services — i.e.,
users can submit and collect results for their jobs on
remote resources through a web interface.

In attempting to facilitate the collaboration of multiple
organizations running diverse autonomous heterogeneous
resources, a number of basic principles should be followed
so that the grid environment:

• Does not interfere with the existing site
administration or autonomy;

• Does not compromise existing security of users or
remote sites;

• Does not need to replace existing operating
systems, network protocols, or services;

• Allows remote sites to join or leave the
environment whenever they choose;

• Does not mandate the programming paradigms,
languages, tools, or libraries that a user wants;

• Provides a reliable and fault tolerance
infrastructure with no single point of failure;

• Provides support for heterogeneous components;
• Uses standards, and existing technologies, and is

able to interact with legacy applications;
• Provides appropriate synchronization and

component program linkage.

Initiative Focus and Technologies Developed

Computing
Portals

A collaborative effort between different
Computer Science projects to enable desktop
access to remote resources including,
supercomputers, network of workstations,
smart instruments, data resources, and more –
www.computingportals.org

Grid
Forum

This is a community-initiated forum of
individual researchers and practitioners
working on distributed computing, or "grid"
technologies. This forum focuses on the
promotion and development of grid
technologies and applications via the
development and documentation of "best
practices," implementation guidelines, and
standards with an emphasis on rough
consensus and running code –
www.gridforum.org

European
Grid
Forum

EGRID, aims to foster the cooperative use of
distributed computing resources that are
accessible via WANs. EGRID is an open
forum; the community includes individuals
from European research institutes, universities
and companies working in the field of wide
area computing and computational grids -
www.egrid.org
Table 1: Major Grid Forums

As one would expect, a grid environment must be able to
operate on top of the whole spectrum of current and
emerging hardware and software technologies. An obvious
analogy is the Web. Users of the Web do not care if the

server they are accessing is on a UNIX or NT platform.
From the client browser’s point of view, they “just” want
their requests to Web services handled quickly and
efficiently. In the same way, a user of a grid does not want
to be bothered with details of its underlying hardware and
software infrastructure. A user is really only interested in
submitting their application to the appropriate resources and
getting correct results back in a timely fashion.

An ideal grid environment will therefore provide access to
the available resources in a seamless manner such that
physical discontinuities such as differences between
platforms, network protocols, and administrative
boundaries become completely transparent. In essence, the
grid middleware turns a radically heterogeneous
environment into a virtual homogeneous one.

The following are the main design features required by a
grid environment:

• Administrative Hierarchy - An administrative hierarchy

is the way that each grid environment divides itself up
to cope with a potentially global extent. The
administrative hierarchy determines how
administrative information flows through the grid.

• Communication Services - The communication needs
of applications using a grid environment are diverse,
ranging from reliable point-to-point to unreliable
multicast communications. The communications
infrastructure needs to support protocols that are used
for bulk-data transport, streaming data, group
communications, and those used by distributed objects.
The network services used also provide the grid with
important Quality of Service parameters such as
latency, bandwidth, reliability, fault-tolerance, and
jitter control.

• Information Services - A grid is a dynamic
environment where the location and type of services
available are constantly changing. A major goal is to
make all resources accessible to any process in the
system, without regard to the relative location of the
resource user. It is necessary to provide mechanisms to
enable a rich environment in which information about
grid is reliably and easily obtained by those services
requesting the information. The grid information
(registration and directory) services components
provide the mechanisms for registering and obtaining
information about the grid structure, resources,
services, and status.

• Naming Services – In a grid, like in any distributed
system, names are used to refer to a wide variety of
resources such as computers, services, or data objects.
The naming service provides a uniform name space
across the complete metacomputing environment.
Typical naming services are provided by the
international X.500 naming scheme or DNS, the
Internet's scheme.

• Distributed File Systems and Caching – Distributed
applications, more often than not, require access to
files distributed among many servers. A distributed
file system is therefore a key component in a
distributed system. From an applications point of view
it is important that a distributed file system can provide
a uniform global namespace, support a range of file I/O
protocols, require little or no program modification,
and provide means that enable performance
optimizations to be implemented, such as the usage of
caches.

• Security and Authorization – Any distributed system
involves all four aspects of security: confidentiality,
integrity, authentication and accountability. Security
within a grid environment is a complex issue requiring
diverse resources autonomously administered to
interact in a manner that does not impact the usability
of the resources or introduces security holes/lapses in
individual systems or the environments as a whole. A
security infrastructure is key to the success or failure of
a grid environment.

• System Status and Fault Tolerance – To provide a
reliable and robust environment it is important that a
means of monitoring resources and applications is
provided. To accomplish this task, tools that monitor
resources and application need to be deployed.

Initiative Focus and Technologies Developed

DISCWorld

It is an infrastructure for service-based
metacomputing across LAN and WAN
clusters. It allows remote users to login to
this environment over the WWW and
request access to data, and also to invoke
services or operations on the available data
[25] –
dhpc.adelaide.edu.au/Projects/DISCWorld/

Nimrod/G &

GRACE

A global scheduler (resource broker) for
parametric computing over a enterprise
wide clusters or computational grids –
www.dgs.monash.edu.au/~rajkumar/ecogrid

Table 2: Major Australian Grid Computing Efforts

• Resource Management and Scheduling – The
management of processor time, memory, network,
storage, and other components in a grid is clearly very
important. The overall aim is to efficiently and
effectively schedule the applications that need to utilize
the available resources in the metacomputing
environment. From a user’s point of view, resource
management and scheduling should be transparent;
their interaction with it being confined to a
manipulating mechanism for submitting their
application. It is important in a grid that a resource
management and scheduling service can interact with
those that may be installed locally.

• Computational Economy and Resource Trading – The
grid is constructed by coupling resources distributed
across various organizations and administrative
domains and may be owned by different organisations.

The motivations or incentives for contributing
resources towards building grid, to date, has been
driven by public good, prizes, fun, fame, or
collaborative advantage. This is clearly evident from
the construction of public or research test-beds such as
Distributed.net [27], SETI@Home [26], GUSTO [14],
and DAS [30]. The computational resource
contributors to these test-beds are mostly motivated by
the aforementioned reasons. The chances for getting
access to such computational test-beds for solving
commercial problems are rarely possible. This
necessitates the need for a mechanism where one can
buy compute power on-demand from computational
grids or resource owners.

In order to push the concept of grid into mainstream
computing, we need a mechanism that motivates
everyone on the Internet to contribute their machines
(idle) resources. One of the best mechanisms for
achieving this is supporting the concept of
computational economy in building and management
of grid resources [10]. It allows resource owners to
earn money by letting others use their (idle)
computational resources for solving their problems. In
such industrial strength, commercial computational
grid, the resource owners act as sellers and the users act
as buyers. The pricing of resources will be driven by
demand and supply and this is one of the best
mechanisms to regulate and control access to
computational resources.

Initiative Focus and Technologies Developed

distributed.net
An experiment that uses Internet-connected
computers to crack RSA encryption
algorithms – www.distributed.net

SETI@Home

A scientific experiment that uses Internet-
connected computers in the search for
extraterrestrial intelligence -
setiathome.ssl.berkeley.edu

Compute
Power Grid

A portal and an economic based resource
management infrastructure for computing on
internet-wide resources that enables portal
supercomputing – www.computepower.net

Table 3: Major Public Grid Computing Efforts

The grid resource management systems must
dynamically trade for the best resources based on a
metric of the price and performance available and
schedule computations on these resources such that
they meet user requirements. The grid middleware
needs to offer services that help resource brokers and
resource owners to trade for resource access [10].

• Programming Tools and Paradigms – Grid
applications (multi-disciplinary applications) couple
resources that cannot be replicated at a single site even
or may be globally located for other practical reasons.
A grid should include interfaces, APIs, utilities and
tools so as to provide a rich development environment.
Common scientific languages such as C, C++, and
Fortran should be available, as should application-level
interfaces like MPI and PVM. A range of programming

paradigms should be supported, such as message
passing and distributed shared memory. In addition, a
suite of numerical and other commonly used libraries
should be available.

• User and Administrative GUI – The interfaces to the
services and resources available should be intuitive and
easy to use. In addition, they should work on a range of
different platforms and operating systems. They also
need take advantage of web technologies to offer a
view of portal supercomputing. The web-centric
approach to access supercomputing resources should
enable users to access any resource from anywhere
over any platform at any time. That means, the users
should be allowed to submit their jobs to computational
resources through a web interface from any of the
accessible platforms such as PCs, laptops, PDA, etc.
thus supporting the ubiquitous access to the grid. The
provision of access to scientific applications through
the web (e.g., RWCP’s PAPIA (Parallel Protein
Information Analysis) system [29]) leads to the
creation science portals.

III. GRID COMPUTING PROJECTS

There are many grid projects worldwide. Table 1-6 (this is
not an exhaustive) lists some of the most significant
projects. Due to the limited on the size of this paper it is
impossible to describe all here. A more complete listing
can be found in [11] [12]. This section presents some of the
current grid projects representative of the grid technology
approaches. Moreover, a short description of Grid and E-
Grid Forums, two initiatives intended to promote and
develop grid technologies and applications is given at the
end of this section. The projects briefly detailed and
reviewed in this paper include the following:

• USA: Globus, Legion, WebFlow, NetSolve, and
NASA IPG.

• Asia/Japan: Ninf and Bricks

• Australia: Nimrod/G and DISCWorld.

• Europe: UNICORE, CERN Data Grid, MOL, Globe,
DAS, MetaMPI.

Initiative Focus and Technologies Developed

UNICORE

The UNiform Interface to Computer Resources
aims to deliver software that allows users to
submit jobs to remote high performance
computing resources – www.fz-
juelich.de/unicore

MOL

Metacomputer OnLine is a toolbox for the
coordinated use of WAN/LAN connected
systems. MOL aims at utilizing multiple
WAN-connected high performance systems for
solving large-scale problems that are
intractable on a single supercomputer –
www.uni-paderborn.de/pc2/projects/mol

METODIS

Metacomputing Tools for Distributed Systems
–
www.hlrs.de/structure/organisation/par/project
s/metodis/

Globe Globe is a research project aiming to study and

implement a powerful unifying paradigm for
the construction of large-scale wide area
distributed systems: distributed shared objects
– www.cs.vu.nl/~steen/globe

Poznan
Metacomputing

Poznan Centre works on development of tools
and methods for metacomputing -
www.man.poznan.pl/metacomputing/

CERN Data
Grid

This project aims to develop middleware and
tools necessary for the data-intensive
applications of high-energy physics -
grid.web.cern.ch/grid/

MetaMPI

MetaMPI supports the coupling of
heterogeneous MPI systems, thus allowing
parallel applications developed using MPI to
be run on grids without alteration –
www.lfbs.rwth-
aachen.de/~martin/MetaMPICH/

DAS

This is a wide-area distributed cluster, used for
research on parallel and distributed computing
by five Dutch universities –
www.cs.vu.nl/das

JaWs

JaWS is an economy-based computing model
where both resource owners and programs
using these resources place bids to a central
marketplace that generates leases of use –
roadrunner.ics.forth.gr:8080/

Table 4: Major European Grid Computing Efforts

A. Globus

Globus [13][15] provides a software infrastructure that
enables applications to handle distributed, heterogeneous
computing resources as a single virtual machine. The
Globus project is a U.S. multi-institutional research effort
that seeks to enable the construction of computational grids.
A computational grid, in this context, is a hardware and
software infrastructure that provides dependable, consistent,
and pervasive access to high-end computational
capabilities, despite the geographical distribution of both
resources and users. A central element of the Globus system
is the Globus Metacomputing Toolkit (GMT), which
defines the basic services and capabilities required to
construct a computational grid. The toolkit consists of a set
of components that implement basic services, such as
security, resource location, resource management, and
communications.

It is necessary for computational grids to support a wide
variety of applications and programming paradigms.
Consequently, rather than providing a uniform
programming model, such as the object-oriented model, the
GMT provides a bag of services from which developers of
specific tools or applications can use to meet their own
particular needs. This methodology is only possible when
the services are distinct and have well-defined interfaces
(API) that can be incorporated into applications or tools in
an incremental fashion.

Globus is constructed as a layered architecture in which
high-level global services are built upon essential low-level
core local services. The Globus toolkit is modular, and an
application can exploit Globus features, such as resource

management or information infrastructure, without using
the Globus communication libraries. The GMT currently
consists of the following:
• Resource allocation and process management (GRAM)
• Unicast and multicast communications services

(Nexus)
• Authentication and related security services (GSI)
• Distributed access to structure and state information

(MDS)
• Monitoring of health and status of system components

(HBM)
• Remote access to data via sequential and parallel

interfaces (GASS)
• Construction, caching, and location of executables

(GEM)
• Advanced Resource Reservation and Allocation

(GARA)

Initiative Focus and Technologies Developed

Globus

This project is developing basic software
infrastructure for computations that integrate
geographically distributed computational and
information resources – www.globus.org

Legion

Legion is an object-based metasystem. Legion
supports transparent scheduling, data
management, fault tolerance, site autonomy, and
a wide range of security options –
legion.virginia.edu

JAVELIN Javelin: Internet-Based Parallel Computing
Using Java – www.cs.ucsb.edu/research/javelin/

AppLes

This is an application-specific approach to
scheduling individual parallel applications on
production heterogeneous systems –
www.infospheres.caltech.edu/

NASA IPG

The Information Power Grid is a testbed that
provides access to a grid – a widely distributed
network of high performance computers, stored
data, instruments, and collaboration
environments – www.ipg.nasa.gov

Condor

The Condor project aims is to develop and
deploy, and evaluate mechanisms and policies
that support high throughput computing (HTC)
on large collections of distributed computing
resources – www.cs.wisc.edu/condor/

Harness

Harness builds on the concept of the virtual
machine and explores dynamic capabilities
beyond what PVM can supply. It focused on
developing three key capabilities: Parallel plug-
ins, Peer-to-peer distributed control, and
multiple virtual machines –
www.cs.wisc.edu/condor/

NetSolve

NetSolve is a project that aims to bring together
disparate computational resources connected by
computer networks. It is a RPC based
client/agent/server system that allows one to
remotely access both hardware and software
components –
www.cs.utk.edu/netsolve/

Table 5: Major American (USA) Grid Computing Efforts

Globus can be viewed as a metacomputing framework
based on a set of APIs to the underlying services. Globus

provides application developers with a pragmatic means of
implementing a range of services to provide a wide-area
application execution environment.

B. Legion

Legion [16][17] is an object-based metasystem developed
at the University of Virginia. Legion provides the software
infrastructure so that a system of heterogeneous,
geographically distributed, high performance machines can
interact seamlessly. Legion attempts to provide users, at
their workstations, with a single, coherent, virtual machine.
Legion is organized by classes and metaclasses (classes of
classes). In the Legion system:
• Everything is an object - Objects represent all hardware

and software components. Each object is an active
process that responds to method invocations from other
objects within the system. Legion defines an API for
object interaction, but not the programming language
or communication protocol.

• Classes manage their instances - Every Legion object
is defined and managed by its own active class object.
Class objects are given system-level capabilities; they
can create new instances, schedule them for execution,
activate or deactivate an object, as well as provide state
information to client objects.

• Users can define their own classes - As in other object-
oriented systems users can override or redefine the
functionality of a class.

This feature allows functionality to be added or removed to
meet a user’s needs. Core objects - Legion defines the API
to a set of core objects that support the basic services
needed by the metasystem. The Legion system has the
following set of core object types:
• Classes and Metaclasses – Classes can be considered

managers and policy makers. Metaclasses are classes
of classes.

• Host objects – Host objects are abstractions of
processing resources, they may represent a single
processor or multiple hosts and processors.

• Vault objects – Vault objects represents persistent
storage, but only for the purpose of maintaining the
state of Object Persistent Representation (OPR).

• Implementation Objects and Caches – Implementation
objects hide the storage details of object
implementations and can be thought of as equivalent to
executable files in UNIX. Implementation cache
objects provide objects with a cache of frequently used
data.

• Binding Agents – A binding agent maps object IDs to
physical address. Binding agents can cache bindings
and organize themselves in hierarchies and software
combining trees.

• Context objects and Context spaces – Context objects
map context names to Legion object IDs, allowing
users to name objects with arbitrary-length string
names. Context spaces consist of directed graphs of
context objects that name and organize information.

A Legion object is an instance of its class. Objects are
independent, active, and capable of communicating with
each other via unordered non-blocking calls. Like other
object-oriented systems, the set of methods of an object
describes its interface. The Legion interfaces are described
in an Interface Definition Language (IDL).

Legion takes a different approach to provide a
metacomputing environment: it encapsulates all its
components as objects. The methodology used has all the
normal advantages of an object-oriented approach, such as
data abstraction, encapsulation, inheritance, and
polymorphism. It can be argued that many aspects of this
object-oriented approach potentially make it ideal for
designing and implementing a complex environment such
as a metacomputer. However, using an object-oriented
methodology does not come without a raft of problems,
many of these is tied-up with the need for Legion to interact
with legacy applications and services. In addition, as
Legion is written in Mentat Programming Language (MPL),
it is necessary to “port” MPL onto each platform before
Legion can be installed.

C. WebFlow

WebFlow [18][19] is a computational extension of the Web
model that can act as a framework for the wide-area
distributed computing and metacomputing. The main goal
of the WebFlow design was to build a seamless framework
for publishing and reusing computational modules on the
Web so that end users, via a Web browser, can engage in
composing distributed applications using WebFlow
modules as visual components and editors as visual
authoring tools. Webflow has a three-tier Java-based
architecture that can be considered a visual dataflow
system. The front-end uses applets for authoring,
visualization, and control of the environment. WebFlow
uses servlet-based middleware layer to manage and interact
with backend modules such as legacy codes for databases
or high performance simulations. Webflow is analogous to
the Web. Web pages can be compared to WebFlow
modules and hyperlinks that connect Web pages to inter-
modular dataflow channels. WebFlow content developers
build and publish modules by attaching them to Web
servers. Application integrators use visual tools to link
outputs of the source modules with inputs of the destination
modules, thereby forming distributed computational graphs
(or compute-webs) and publishing them as composite
WebFlow modules. A user activates these compute-webs by
clicking suitable hyperlinks, or customizing the
computation either in terms of available parameters or by
employing some high-level commodity tools for visual
graph authoring. The high performance backend tier is
implemented using the Globus toolkit:
• The Metacomputing Directory Services (MDS) is used

to map and identify resources.
• The Globus Resource Allocation Manager (GRAM) is

used to allocate resources.
• The Global Access to Secondary Storage (GASS) is

used for a high performance data transfer.

With WebFlow, new applications can be composed
dynamically from reusable components just by clicking on
visual module icons, dragging them into the active
WebFlow editor area, and linking them by drawing the
required connection lines. The modules are executed using
Globus components combined with the pervasive
commodity services where native high performance
versions are not available. The prototype WebFlow system
is based on a mesh of Java-enhanced Web Servers
(Apache), running servlets that manage and coordinate
distributed computation. This management infrastructure is
implemented by three servlets: Session Manager, Module
Manager, and Connection Manager. These servlets use
URL addresses and can offer dynamic information about
their services and current state. Each management servlet
can communicate with others via sockets. The servlets are
persistent and application-independent. Future
implementations of WebFlow will use emerging standards
for distributed objects and take advantage of commercial
technologies, such as the CORBA [32] as the base
distributed object model. WebFlow takes a different
approach to both Globus and Legion. It is implemented in a
hybrid manner using a three-tier architecture that
encompasses both the Web and third party backend
services. This approach has a number of advantages,
including the ability to ``plug-in'' to a diverse set of
backend services. For example, many of these services are
currently supplied by the Globus toolkit, but they could be
replaced with components from CORBA or Legion.
WebFlow also has the advantage that it is more portable
and can be installed anywhere a Web server supporting
servlets is capable of running.

D. NetSolve

NetSolve [20][21][22] is a client/server application
designed to solve computational science problems in a
distributed environment. The Netsolve system is based
around loosely coupled distributed systems, connected via a
LAN or WAN. Netsolve clients can be written in C and
Fortran, use Matlab or the Web to interact with the
server. A Netsolve server can use any scientific package to
provide its computational software. Communications within
Netsolve is via sockets. Good performance is ensured by a
load-balancing policy that enables NetSolve to use the
computational resources available as efficiently as possible.
NetSolve offers the ability to search for computational
resources on a network, choose the best one available, solve
a problem (with retry for fault-tolerance), and return the
answer to the user.

E. NASA Information Power Grid (IPG)

The NAS Systems Division is leading the effort to build
and test NASA’s Information Power Grid (lPG) [38], a
network of high performance computers, data storage
devices, scientific instruments, and advanced user
interfaces. The overall mission of the IPG is to provide
NASA’s scientific and engineering communities a
substantial increase in their ability to solve problems that
depend on use of large-scale and/or distributed resources.

The project team is focused on creating an infrastructure
and services to locate, combine, integrate, and manage
resources from across NASA centers. An important goal of
the IPG is to produce a common view of these resources,
and at the same time provide for distributed management
and local control. The IPG team at NAS is working to
develop:
• Independent but consistent tools and services that

support a range of programming environments used to
build applications in widely distributed systems.

• Tools, services, and infrastructure for managing and
aggregating dynamic collections of resources:
processors, data storage/information systems,
communications systems, real-time data sources and
instruments, as well as human collaborators.

• Facilities for constructing collaborative, application-
oriented workbenches and problem solving
environments across NASA, based on the IPG
infrastructure and applications.

• A common resource management approach that
addresses areas such as systems management, user
identification, resource allocations, accounting, and
security.

• An operational grid environment that incorporates
major computing and data resources at multiple NASA
sites in order to provide an infrastructure capable of
routinely addressing larger scale, more diverse, and
more transient problems than is currently possible.

The starting point for IPG "middleware" is the Globus
Metacomputing Toolkit. This IPG middleware will make its
systems interoperable by providing a set of commands that
lets researchers execute computational jobs on remote
systems.

Initiative Focus and Technologies Developed

Ninf

Ninf allows users to access computational
resources including hardware, software and
scientific data distributed across a wide area
network with an easy-to-use interface –
ninf.etl.go.jp

Bricks

Bricks is a performance evaluation system that
allows analysis and comparison of various
scheduling schemes on a typical high-
performance global computing setting –
matsu-www.is.titech.ac.jp/~takefusa/bricks/

Table 6: Major Japanese Grid Computing Efforts

F. NINF

The Network Infrastructure [36][37] for global computing
(Ninf) is a client/server- based system that allows access to
multiple remote compute and database servers. Ninf clients
can semi-transparently access remote computational
resources from languages such as C and Fortran. A
programmer is able to build a global computing application
by using the Ninf remote libraries as its components,
without being aware of the complexities of the underlying
system they are programming.

G. Nimrod/G Resource Broker and GRACE

Nimrod is a tool for parametric computing on clusters and it
provides a simple declarative parametric modeling
language for expressing a parametric experiment [8].
Domain experts can easily create a plan for a parametric
computing (task farming) and use the Nimrod runtime
system to submit, run, and collect the results from multiple
computers (cluster nodes). Nimrod has been used to run
applications ranging from bio-informatics and operations
research, to the simulation of business processes. A
reengineered version of Nimrod, called Clustor, has been
commercialized by Active Tools [28]. However, research
on Nimrod has been continued, to address its use in the
global computational grid environment and to overcome
shortcomings of the earlier system.

Nimrod has been used successfully with a static set of
computational clusters, but is unsuitable as implemented in
the large-scale dynamic context of computational grids,
where resources are scattered across several administrative
domains, each with their own user policies, employing their
own queuing system, varying access cost and processing
power. These shortcomings are addressed by a new system
called Nimrod/G [7][9] that uses the Globus [13]
middleware services for dynamic resource discovery and
dispatching jobs over wide-area distributed systems called
computational grids.

Nimrod/G allows scientists and engineers to model whole
parametric experiments and transparently stage the data and
program at remote sites, and run the program on each
element of a data set on different machines and finally
gather results from remote sites to the user site. The user
need not worry about the way in which the complete
experiment is set up, data or executable staging, or
management. The user can also set the deadline by which
the results are needed and the Nimrod/G broker tries to find
the cheapest computational resources available in the grid
and use them so that the user deadline is met and cost of
computation is kept to a minimum.

The current focus of the Nimrod/G project team is on the
use of economic theories in grid resource management and
scheduling as part of a new framework called GRACE
(Grid Architecture for Computational Economy) [10]. The
components that make up GRACE include global scheduler
(broker), bid-manager, directory server, and bid-server
working closely with grid middleware and fabrics. The
GRACE infrastructure also offers generic interfaces (APIs)
that the grid tools and applications programmers can use to
develop software supporting the computational economy.
The grid resource brokers such as (Nimrod/G) uses GRACE
services to dynamically trade with resources owner agents
to select those resources that offer low-cost access services
yet meet the user requirements.

H. UNICORE

UNICORE (UNiform Interface to COmputer REsources)
[23][24] is a project funded by the German Ministry of
Education and Research. A consortium of people from

universities, national research laboratories, software
industry, and computer vendors develops UNICORE.
Initially, it was a two years project ending in December
1999 but there is a plan to retarget it and extend it for
another two/three years. UNICORE main focus is in
providing a uniform interface for job preparation and
control that offers seamless and secure access to
supercomputer resources. The idea behind UNICORE is to
support the users by hiding the system and site-specific
idiosyncrasies and by helping to develop distributed
applications.

Distributed applications within UNICORE are defined as
multi-part applications where the different parts may run on
different computer systems asynchronously or sequentially
synchronized. A UNICORE job contains a multi-part
application as described above augmented by the
information about the destination systems, the resource
requirements, and the dependencies between the different
parts. From a structural viewpoint a UNICORE job is a
recursive object containing job groups and tasks. Job
groups themselves consist of other job groups and tasks.
UNICORE jobs and job groups carry the information of the
destination system for the included tasks. A task is the unit,
which boils down to a batch job for the destination system.

The design goals for UNICORE include a uniform and easy
to use GUI, an open architecture based on the concept of an
abstract job, a consistent security architecture, minimal
interference with local administrative procedures,

exploitation of existing and emerging technologies, zero-
administration user interface through standard Web browser
and Java applets, and a production ready prototype within
two years. UNICORE is designed to support batch jobs, it
does not allow for interactive processes. At the application
level asynchronous metacomputing is supported allowing
for independent and dependent parts of a UNICORE job to
be executed on a set of distributed systems. The user is
provided with a unique UNICORE user-id to uniformly get
access to all UNICORE sites. An intuitive GUI allows job
preparation and control. It should be noted that the
prototype excludes metacomputing at the application level
(synchronous metacomputing), resource brokerage, and
interactive applications including application steering.
UNICORE has laid a solid basis for seamless computing
and is well accepted by non-expert users. Future
developments will integrate features to support more users
with more sophisticated applications.

I. Grid Applications

Although wide-area distributed supercomputing has been a
popular application of the grid, there are a number of other
applications that can benefit from it [4]. These include
collaborative engineering, high-throughput computing
(large-scale simulation and parameter studies), remote
software access, data-intensive computing, and on-demand
computing. Some of these applications were demonstrated
at SC’98 [41] by the international computational science
community.

Some applications that have been designed and developed
using message passing interfaces, and to run on parallel
platforms can be executed on computational grids without
porting – message passing interfaces are available for grid
environments. A number of computational physics
applications are not grid-enabled [39]. Today, large-scale
parameter-study (embarrassingly parallel) applications are
exploiting computational grid resources heavily and have
been termed as killer applications [7][40]. Projects, such as
SETI@Home [26] and Distributed.Net [27], build grids by
linking multiple low-end computational resources, such as
PCs, across the Internet to detect extraterrestrial intelligence
and crack security algorithms respectively. The nodes in
these grids work simultaneously on different parts of the
problem and pass results to central system for post-
processing.

Grid resources can be used to solve grand challenge
problems in areas such as biophysics, chemistry, biology,
high energy physics, data mining, financial analysis,
nuclear simulations, material science, chemical engineering,
environmental studies, molecular biology, structural
analysis, mechanical CAD/CAM, weather prediction,
astrophysics, scientific instrumentation, and so on.

IV. CONCLUSIONS AND FUTURE TRENDS

There are currently a large number of projects and diverse
range of emerging grid developmental approaches being
pursued. These systems range from metacomputing
frameworks to application testbeds, and from collaborative
environments to batch submission mechanisms.

It is very difficult to predict the future and this is
particularly true in a field such as information technology
where the technological advances are moving very fast.
Hence, it is not an easy task to forecast what will be the
“dominant” grid approach in the next future. Windows of
opportunity for ideas and products seem to open and close
in the seeming “blink of the eye”. However, some trends
are evident. One of those is growing interest in the use of
Java [31] for network computing. In fact, it is interesting to
note some that some of the projects described in this paper
are using Java and the Web as the communications
infrastructure.

The Java programming language successfully addresses
several key issues that plague the development of grid
environments, such as heterogeneity and security. It also
removes the need to install programs remotely; the
minimum execution environment is a Java-enabled Web
browser. Java, with its related technologies and growing
repository of tools and utilities, is having a huge impact on
the growth and development of grid environments. From a
relatively slow start, the development of metacomputers is
accelerating fast with the advent of these new and emerging
technologies. It is very hard to ignore the presence of the
sleepy giant CORBA [32] in the background. We believe
that frameworks incorporating CORBA services will be

very influential on the design of grid environments in the
future.
Another promising Java technology is Jini [33][34]. The
Jini architecture exemplifies a new approach to computing
systems that is netcentric. By replacing the notion of
peripherals and applications with that of network-available
devices and services with clients that use those services.
Jini helps breakdown the conventional view of what a
computer is, while including new classes of devices
working together in a federated architecture. The ability to
move code from the service to its client is the core
difference between the Jini environment and other
distributed systems, such as the Common Object Request
Broker Architecture (CORBA) and the Distributed
Common Object Model (DCOM) [35].

Whatever the technology or computing paradigm that
becomes influential or most popular, it can be guaranteed
that at some stage in the future its star will wane.
Historically, in the computing field, this fact can be
repeatedly observed. The lesson from this observation must
therefore be drawn that, in the long term, backing only one
technology can be an expensive mistake. The framework
that provides a grid environment must be adaptable,
malleable, and extensible. As technology and fashions
change it is crucial that a grid computing environment
evolves with them.

Larry Smarr observes in [5] that grid computing has serious
social consequences and is going to have as revolutionary
an effect as railroads did in the American mid-West in the
early nineteenth century. Instead of a 30 to 40 year lead-
time to see its effects, however, its impact is going to be
much faster. He concludes that the effects of computational
grids are going to change the world so quickly that mankind
will struggle to react and change in the face of the
challenges and issues they present. So, at some stage in the
future, our computing needs will be satisfied in the same
pervasive and ubiquitous manner that we use the electricity
power grid. The analogies with the generation and delivery
of electricity are hard to ignore, and the implications are
enormous. In fact, the computational grid is analogous to
electricity (power) grid and the vision is to offer a (almost)
dependable, consistent, pervasive, and inexpensive access
to high-end resources irrespective their location of physical
existence and the location of access.

ACKNOWLEDGMENTS

The authors would like to acknowledge all developers of
the systems or projects described in this paper. In the past
we had intellectual communication and exchanged views on
this upcoming technology with David Abramson (Monash),
Fran Berman (UCSD), David C. DiNucci (Elepar), Jack
Dongarra (UTK/ORNL), Ian Foster (ANL), Geoffrey Fox
(Syracuse), Wolfgang Gentzsch (GRIDware), Jon Giddy
(DSTC), Al Geist (ORNL), and Tom Haupt (Syracuse). We
thank all of them for sharing their knowledge with us.

REFERENCES

[1] Lyster P., Bergman L., Li P., Stanfill D., Crippe B., Blom R., Pardo

C., Okaya D., CASA Gigabit Supercomputing Network:
CALCRUST three-dimensional real-time multi-dataset rendering,
Proceedings of Supercomputing ’92

[2] Catlett C., Smarr L., Metacomputing, Communications of the ACM,
vol. 35(6), pages 44-52, 1992.

[3] Smarr L., Infrastructure for Science Portals, IEEE Internet
Computing, January/February 2000, 71-73.

[4] Leinberger W., Kumar V., Information Power Grid: The new
frontier in parallel computing? IEEE Concurrency, October-
December 1999, 75-84

[5] Foster I. and Kesselman C. (editors), The Grid: Blueprint for a
Future Computing Infrastructure, Morgan Kaufmann Publishers,
USA, 1999.

[6] Baker M., Fox G., Metacomputing: Harnessing Informal
Supercomputers, High Performance Cluster Computing:
Architectures and Systems, Buyya, R. (ed.), Volume 1, Prentice Hall
PTR, NJ, USA, 1999.

[7] Abramson D., Giddy J., and Kotler L., High Performance
Parametric Modeling with Nimrod/G: Killer Application for the
Global Grid? International Parallel and Distributed Processing
Symposium (IPDPS), IEEE Computer Society Press, 2000.

[8] Nimrod/G - http://www.dgs.monash.edu.au/~davida/nimrod.html
[9] Buyya R, Abramson D, and Giddy J, Nimrod/G: An Architecture

for a Resource Management and Scheduling System in a Global
Computational Grid, The 4th International Conference on High
Performance Computing in Asia-Pacific Region (HPC Asia'2000),
Beijing, China. IEEE Computer Society Press, USA, 2000.

[10] Buyya R, Abramson D, and Giddy J, Economy Driven Resource
Management Architecture for Computational Power Grids,
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’2000), Las Vegas, USA,
2000.

[11] Gentzsch W. (editor), Special Issue on Metacomputing: From
Workstation Clusters to Internet computing, Future Generation
Computer Systems, No. 15, North Holland, 1999.

[12] Grid Computing Infoware - http://www.gridcomputing.com/
[13] Globus - http://www.globus.org/
[14] Globus Testbeds - http://www-fp.globus.org/testbeds/
[15] Foster I. and Kesselman C., Globus: A Metacomputing

Infrastructure Toolkit, International Journal of Supercomputer
Applications, 11(2): 115-128, 1997.

[16] Legion - http://legion.virginia.edu/
[17] Grimshaw A., Wulf W. et al., The Legion Vision of a Worldwide

Virtual Computer. Communications of the ACM, vol. 40(1), January
1997.

[18] WebFlow –
http://osprey7.npac.syr.edu:1998/iwt98/products/webflow/

[19] Haupt T., Akarsu E., and Fox G., Furmanski W, Web Based
Metacomputing, Special Issue on Metacomputing, Future
Generation Computer Systems, North Holland 1999.

[20] NetSolve – http://www.cs.utk.edu/~casanova/NetSolve/
[21] Casanova H. and Dongarra, J., NetSolve: A Network Server for

Solving Computational Science Problems, Inernational Journal of
Supercomputing Applications and High Performance Computing,
Vol. 11, No. 3, 1997.

[22] Casanova H., Kim M., Plank J., and Dongarra J., Adaptive
Scheduling for Task Farming with Grid Middleware, International
Journal of Supercomputer Applications and High-Performance
Computing, 1999.

[23] Almond J., Snelling D., UNICORE: uniform access to
supercomputing as an element of electronic commerce, Future
Generation Computer Systems, 15(1999) 539-548, NH-Elsevier.

[24] UNICORE - http://www.unicore.org
[25] Hawick K., James H., Silis A, Grove D., Kerry K., Mathew J.,

Coddington P., Patten C., Hercus J., Vaughan F., DISCWorld: An
Environment for Service-Based Metacomputing, Future Generation
Computing Systems (FGCS), Vol. 15, 1999.

[26] SETI@Home – http://setiathome.ssl.berkeley.edu/
[27] Distributed.Net – http://www.distributed.net/
[28] Active Tools – http://www.activetools.com

[29] PAPIA: Parallel Protein Information Analysis system –
http://www.rwcp.or.jp/papia/

[30] Distributed ASCI Supercomputer (DAS) – http://www.cs.vu.nl/das/
[31] Arnold, K., and Gosling, J. The Java Programming Language,

Addison-Wesley, Longman, Reading, Mass., 1996.
[32] Object Management Group, Common Object Request Broker:

Architecture and Specification, OMG Doc. No. 91.12.1, 1991.
[33] Waldo J., The JINI Architecture for Network-Centric Computing,

Communications of the ACM, Vol. 42, No. 7, July 1999.
[34] Sun Microsystems, Inc., Jini architectural overview –

http://www.sun.com/jini/whitepapers/
[35] Rogerson, D. Inside COM, Microsoft Press, Redmond, Wash.,

1997.
[36] Ninf – http://ninf.etl.go.jp/
[37] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and

H. Takagi, Ninf: A Network based Information Library for a Global
World-Wide Computing Infrastructure, Lecture Notes in Computer
Science, High-Performance Computing and Networking, Springer
Verlag, pp. 491-502, 1997.

[38] NASA Information Power Grid (IPG) – http://www.ipg.nasa.gov
[39] Smarr L, Computational Physics in the Grid Computing Era,

http://doug-pc.itp.ucsb.edu/online/numrel00/smarr1/
[40] Smallen, S., et al., Combining Workstations and Supercomputers to

Support Grid Applications: The Parallel Tomography Experience,
9th Heterogenous Computing Workshop (HCW 2000@IPDPS),
Cancun, Mexico.

[41] Brown, M., et al, The International Grid (iGrid): Empowering
Global Research Community Networking Using High Performance
International Internet Services, April 1999, http://www-
fp.globus.org/documentation/papers.html.

