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Abstract Big data analytics proved to be one of the most influential forces in today’s
competitive business environments due to its ability to generate new insights by pro-
cessing a large volume and variety of data. Storing as well as mining these datasets is
one of the primary challenges of the big data era. If data are stored in a well-defined
pattern, then its updation mining and deletion processes become easy. In this paper,
granular computing concept is used to store heterogeneous data in the format of ten-
sor. A multi-dimensional matrix, also known as tensor, stores data in the raw format,
and then, raw tensor is replicated to multiple tensors of different abstraction levels
based on concept hierarchy of each attribute. Mathematical foundation of tensor for-
mation and query processing are developed. The proposed method is successful in
creating tensors of a diabetes dataset proving its applicability. The proposed system
provides faster computation, low response time, better privacy and high relevancy as
compared to baseline PARAFAC2 and CANDELINC tensor analysis method when
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run on Microsoft Azure cloud infrastructure. Different levels of information granules
in the form of tensors make data storage and its query processing effective.

Keywords Cloud computing · Big data · Granular computing · Tensor · Healthcare
data · PARAFAC2 · Data mining

1 Introduction

Data generated by today’s Internet-based applications in business environments is
voluminous, complex and contains a large variety of formats. Big Data Analytics
(BDA) is useful in taming such heterogeneous data so that effective dependencies can
be recognized [1]. BDA has proved to be the most influential force in today’s competi-
tive business environment even though it is still in its maturing phase. It helps business
organizations in understanding customers’ needs in a more effective manner and gen-
erate large revenue. Mining healthcare data is no different. Many useful predictions
and relationships can be derived from raw healthcare data [2]. For example, it was
assumed that the success rate of ‘tamoxifen,’ a cancer treatment medicine, is around
80%. But, the big healthcare data analysis revealed that ‘tamoxifen’ is effective 100%
in 80% of cancer patients and completely ineffective in rest 20% [3]. Such important
results can be easily derived using BDA on healthcare data. Hence, effective medical
data mining is an important research direction.

In this direction, healthcare data mining poses three major challenges: heterogene-
ity, privacy and abstraction. Heterogeneity of medical data emerges from the fact
that the data are generated from various sources such as health sensors, scan images,
ECG, medical reports and prescribed medications. Such heterogeneous data must be
stored in a manageable form such that it can be effectively processed. Moreover, since
medical data contain crucial personal information, it must be protected from privacy
violations in order to meet the second challenge. The third challenge is abstraction.
Each stakeholder in any business/healthcare organization requires simplified and effec-
tive information that is relevant only to their respective thinking space so that they can
derive efficient decisions. For example, government healthcare agencies are concerned
with high-level information; hospitals require mining about their required infrastruc-
ture, while individual users need predictions for their personal health. Therefore,
different healthcare agencies require different levels of abstraction from the avail-
able healthcare data. In other words, results required from healthcare data mining are
of multiple granularities.

Granularity is ‘scale or level of detail in a set of data’ [4], and it provides a level
of abstraction to the underlying details so that highlighted focus can be applied to
important or required attributes. Granular computing (GrC) [5] is an art of extracting
information at different, yet finite level of abstractions such that each computing
problem is solved at different level of granularity by removing irrelevant details from
the available datasets. It uses the concepts of many existing theories such as fuzzy set,
set theory, rough sets, and divides & conquer to solve such problems. Furthermore,
Yao stated that GrC is inspired from three basic practical requirements [5]: simplicity,
low cost clarity and high tolerance for uncertainty; and serves four main objectives
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[6]: (a) effective representation of real-world problems, (b) concurrency with human
problem-solving techniques, (c) simplification of input as well as output, and (d) cost-
effectiveness of the whole process. By careful observation of healthcare data, it is
observed that all the above practical requirements and objectives are applicable in
healthcare data mining too. Consequently, GrC is found to be an effective technique
for medical data mining. In addition, it is found that tensors can be effectively used to
store and process big data [7,8].

In order to address all the three challenges for bigmedical datamining, a tensor- and
GrC-based big data mining approach for healthcare data is proposed. The aim of the
study conducted in this paper is to design a collaborative framework. The proposed
framework contains mathematical foundation of GrC and BDA in the above-stated
three tasks. A comparison with PARAFAC2 tensor decomposition technique is also
provided using Microsoft Azure cloud computing infrastructure.

The rest of the paper is organized as follows: Section 2 discusses the relatedwork on
use of granular computing in healthcare and big data. Section 3 provides preliminaries
for tensors. Section 4 evaluates the proposed framework on its theoretical aspect.
Section 5 provides experimental evaluation and comparison of proposed method with
PARAFAC2 and CANDELINC tensor analysis method. Section 6 concludes the paper
with discussion on future work.

2 Related work

Health BDA is gaining momentum due to increased amount of data available in
healthcare sector. Research projects and researchers are turning their attention toward
extraction of useful information and knowledge from big data in order to furnish better
medical facilities. The authors in [9] proposed a method for improving the innovation
in medical devices. The proposed method used BDA and regulatory sciences to foster
new innovations. On the other hand, the authors in [10] proposed a framework which
allows users to avail home-diagnosis services by using big data mining. In addition,
BDA finds other interesting applications in health care as discussed by authors in
[11–15].

Big data mining operation can be performed using various techniques. The authors
in [16] conducted a survey on state-of-art tools and technologies for big data pro-
cessing. They found that the techniques such as cloud computing, granular computing
and quantum computing could be used effectively for harnessing big data capabili-
ties. Cloud computing and quantum computing provide powerful platforms for big
data processing, while granular computing captures the essence of big data process-
ing by taming the size of big data with the use of granules such as clusters, intervals
and subsets. The details of big data and its mathematical models can be studied in
[4,17–22].

Granular computing (GrC) has been extensively used by various authors in different
research domains such as soft computing [23], concept learning [24–26], signal pro-
cessing [27], clustering [28,29], regression [30,31], surrogatemodeling [32], ontology
[33], and in similarity algorithms [34]. Other than these, GrC has also been used in
data mining and information processing by few authors. Specifically, the author in
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[35] listed the importance of granular computing in data mining by discussing various
issues related to data mining using GrC and concluded that GrC can be very efficiently
used for extracting useful information from the given data set(s). Later, the authors
in [36] used GrC for data mining and knowledge reduction for larger data sets. In
2006, the authors in [37] provided a detailed theory for application of GrC for infor-
mation processing. They also provided a practical example of traffic delays using the
mentioned theory.

As far as big data processing using GrC is concerned, a few works have explored it.
The work in [38] used GrC for Social Network Analysis (SNA) and found that there
is a natural connection between GrC and graph theory which makes GrC suitable for
SNA. In 2015, Qian et al. [39] turned their attention toward attribute reduction in
big data using GrC. The results showed that GrC can be efficiently used for big data
processing.

In addition to the above-mentioned work, the work in [40] explored privacy protec-
tion of medical data using GrC and emphasized that different levels of granularity can
be used to efficiently process medical data without violating the privacy requirements.
Furthermore, the successful application of GrC on tensors has been discussed in [41].
But, to the best of our knowledge, none of the existing works have addressed the
problem of mining big medical data using various abstraction levels and query pro-
cessing based on these abstractions. The inherent property of GrC to provide different
abstraction levels using granulation avoids extra efforts for abstraction management
in healthcare data mining for various healthcare agencies. This paper focuses on theo-
retical foundations of an effective and novel framework for storing big healthcare data
using tensors and mining it using GrC.

3 Background-tensor preliminaries

A tensor is an N-way array of data or objects. A scalar is a zeroth-order tensor; vector
is a first-order tensor; and a matrix is a second-order tensor. Formally, an N th-order
tensor can be defined as:

X ∈ R
I1×I2×···×IN ;

where the size of i th dimension of X is represented by Ii . The two-dimensional
sections of a higher-order tensor are called slices, while the higher-order counterparts
of matrix columns and rows are called fibers of a tensor [42].

Figure1a shows a third-order tensor X . When X is sliced along its 1st dimension,
horizontal slices of X are formed. Similarly, slicing X along 2nd and 3rd dimension
forms lateral and frontal slices, respectively. Figure 1b shows the frontal slices of X .
The number of frontal slices of X is equal to I3. If Xi denotes the i th frontal slice of
X , then X can be written in terms of its frontal slices as:

X = [X1X2 . . . . . . X I3 ]; (1)

If each Xi is further sliced laterally, then column fibers of X are obtained as shown in
Fig. 1c. The number of lateral slices of each Xi is equal to I2. Let xi j denotes the j th
lateral slice of Xi , then
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(a)               (b) (c)  (d)

Fig. 1 a Third-order tensor X , b frontal slices of X , c lateral slices of each frontal slice (column fibers of
X ), d lateral slices of each column fiber of X

Xi = [xi1xi2 . . . . . . xi I2 ]; where 1 ≤ i ≤ I3; (2)

In addition, if xi j is further sliced laterally, then each attribute inside the fiber is
separated as shown in Fig. 1d. The number of lateral slices formed from each xi j

depends upon the number of attributes in it. Let n denotes the number of attributes in
xi j and ai jk denote the kth slice of xi j , then

xi j = [ai j1ai j2 . . . ai jn]; where 1 ≤ i ≤ I3; 1 ≤ j ≤ I2; (3)

In particular, X can be expressed using Eq. (4)

X = [X1X2 . . . . . . ..X I3 ]
= [[

x11x12 . . . . . . .x1I2

] [
x21x22 . . . . . . .x2I2

]
. . . . . . . . . . . . . . .

[
xI31xI32 . . . . . . xI3 I2

]]

=

⎡

⎢⎢
⎣

[[
a111a112 . . . . . . a11n1

] [
a121a122 . . . . . . a12n1

]
. . . . . .

[
a1I21a1I22 . . . . . . a1I2n1

]]

[[
a211a212 . . . . . . a21n2

] [
a221a222 . . . . . . a22n2

]
. . . . . .

[
a2I21a2I22 . . . . . . a2I2n2

]]
. . .

[[
aI311aI312 . . . . . . aI31nI3

] [
aI321aI322 . . . . . . aI32nI3

]
. . . . . .

[
aI3 I21aI3 I22 . . . . . . aI3 I2nI3

]]

⎤

⎥⎥
⎦

(4)

4 Tensor-based Data Representation and Mining (TDRM)

The proposed tensor-based data representation and mining (TDRM) framework is
divided into three phases for effective collection and analysis of medical data as shown
in Fig. 2. In the first phase, raw medical data containing text, medical reports, scan
images, video and audio files are stored effectively in a tensor called Health Data
Tensor (HdTr). The second phase processes the data in HdTr with the help of concept
hierarchies resulting in creation of various processed tensors, which are spanned over
different levels of granularity. The third phase uses the tensors generated in second
phase for effective query processing and result formation by automatically identifying
granularity level of each attribute required for the final result formation. Each of the
three phases is discussed in detail ahead.

To explain the proposed framework clearly, we used Health Fact Database (HFDB)
[43] as an example. HFDB is a part of national health data warehouse of clinical
records collected from various hospitals in the USA, which use electronic health
service system. It consists of medical data collected for 10years (1999–2008) and
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Fig. 2 Three phases of proposed framework for effectively mining healthcare data

contains more than one hundred thousand instances having 55 health attributes each.
Complete description and whole database are available at [44].

4.1 Phase I: creating Health data Tensor (HdTr)

The healthcare data come from various sources in different formats such as text data,
medical reports, scan images, ECG, audio data and video data. The major challenge
of this phase is how to store such heterogeneous data in a manageable form so that
effective processing can be done later. To achieve this goal, a tensor, called Health
Data Tensor (HdTr), has been proposed to store such data.

Definition 1 (Health Data Tensor) Given an unequally spaced temporal medical data
of ‘n’ patients consisting of ‘m’ health metrics, a health data tensor can be defined by
a third-order tensor HdTr∈ R

IP×IT ×IM , where the orders IP , IT and IM correspond
to the dimensions ‘patients,’ ‘time’ and ‘health metrics,’ respectively, such that IP =
n, IM = m and IT = max({ti }n

i=1)where ti denotes the number of distinct timestamps
for i th patient.

In the above definition,

• The medical data are termed as temporal data since each instance of data for
every patient is associated with a timestamp. In addition, it is called unequally
spaced temporal medical data because the patient’s visit to doctor and data entry
is generally at irregular time intervals.

• Various health metrics are personal data, test reports, medications, etc., as shown
in Fig. 3.

• The timestamp differs from one patient to another, even when they are stored at
the same column fiber of HdTr; hence, the time axis does not have absolute values.

Mathematically, HdTr can be expressed in terms of frontal slices by using Eq. (5).

HdTr = [H1, H2, H3, H4, . . . . . . . . . ., H m] ; (5)

where each Hi is a frontal slice corresponding to ‘m’ health metrics. Further, each
health metric can consist of various attributes. For example, personal data metric
includes attributes such as age, weight and SSN. Therefore, each cell of the frontal
slice itself forms amatrix. Hence, HdTr can be further written in terms of column fibers
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Fig. 3 Tensor representation ofmedical data.MCMedical condition, TR-MC1 test reports formedical con-
dition 1, M-MC1 medication for medical condition 1, AD admission description, DD discharge description

(hi j ) and attributes (ai jk) as shown in Eq. (6). [Equation (6) is written in a similar way
as Eq. (4).]

HdTr =
[[

h11h12 . . . . . . .h1IT

]
,
[
h21h22 . . . . . . .h2IT

]
, . . . . . . . . . . . . . . . ,

[
hIM 1hIM 2 . . . . . . hIM IT

]]

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

[[
a111a112 . . . . . . a11n1

]
,
[
a121a122 . . . . . . a12n1

]
, . . . . . . ,

[
a1IT 1a1IT 2 . . . . . . a1IT n1

]]
,

[[
a211a212 . . . . . . a21n2

]
,
[
a221a222 . . . . . . a22n2

]
, . . . . . . ,

[
a2IT 1a2IT 2 . . . . . . a2IT n2

]]
, . . . ,

[[
aIM 11aIM 12 . . . . . . aIM 1nIM

]
,

[
aIM 21aIM 22 . . . . . . aIM 2nIM

]
, . . . . . . ,

[
aIM IT 1aIM IT 2 . . . . . . aIM IT nIM

]]

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

(6)

For the formation of HdTr from HFDB, various metrics are screened and stored.
Some of the screened metrics of HFDB are listed in Table1. Though Table1 defines
five health metrics and only twomedical conditions, but, without loss of generality, the
healthmetrics as well as themedical conditions can be expanded or reduced depending
upon the dataset requirements. Each healthmetric further consists of some attributes as
listed in Table1. The attribute PiD is assigned to each distinct patient by the proposed
framework in order to uniquely identify each patient. Thereafter, raw HFDB data are
stored in HdTr such that the first order of HdTr corresponds to the patients while the
second and third orders correspond to time and health metrics, respectively. Figure 3
shows frontal slice representation of HdTr where each frontal slice corresponds to one
of the healthmetric.Here, personal data slice represents the personal information about
the patient and his/her medical conditions. It serves the purpose of storing multiple
medical conditions in one tensor slice effectively. With respect to multiple medical
conditions, different test reports, medications, hospital stay and doctors assigned are
stored in the corresponding cells of other tensor slices.

When a new patient registered with the system, he/she is added to HdTr and this
operation is called ‘Data Addition.’ On the other hand, adding a new data entry about
an existing patient in HdTr is called ‘Data Appending.’ These two operations help to
automatically update HdTr with time.
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Definition 2 (Data Addition) Given a health data tensor HdTr∈ R
IP×IT ×IM and data

‘d’ of a new patient, the data addition operation adds ‘d’ in HdTr such that the order
of HdTr remains same but the dimension ‘patients’ expands by one, i.e., IP = IP +
1, IM = IM and IT = IT .

Definition 3 (Data Appending) Given a health data tensor HdTr∈ R
IP×IT ×IM and

new data ‘d’ of an existing patient ‘j,’ the data appending operation adds ‘d’ in HdTr
such that the order of HdTr remains same but the dimension ‘time’ expands by one
if IT = t j , where t j denotes the number of distinct timestamps for patient ‘j,’ i.e.,

IP = IP , IM = IM and IT =
{

IT + 1, IT = t j

IT , otherwise
.

In HdTr, all information is stored in its raw format, i.e., images as images, sound files
as audios and video files as video. These files are stored in their respective database
and linked in the tensor slices. Though HdTr provides an effective way to store new
as well as old information about every patients’ health attributes with time, it is not
efficient to analyze data in such raw formats. To make tensor efficient for information
granularization step, HdTr is converted to processed tensor with the help of BDA tools.
These tools analyze different formats of data, extract information in text format and
store it in the tensor slices as shown in Fig. 4. This step of filtering is well known
and discussed by many researchers [45]. Therefore, we concentrated on information
representation and granularization step. The processed tensor, hence formed, is termed
as Processed HdTr (PHdTr).

4.2 Phase II: information granularization

Once the medical data are effectively stored in PHdTr, it must be converted to different
levels of abstraction, hence forming various granular levels. The second phase of
proposed frameworkmaps processed tensor and granular computing concepts to create
different abstraction levels of tensors. In order to achieve this goal, concept hierarchy is
created for each attribute present in the tensor, as shown in Fig. 5. Then, each attribute is
mapped one to one with the concept hierarchy levels and different tensors are created.
Therefore, each attribute is divided intomulti-level concept hierarchies as shownby the
concept hierarchy tree in Fig. 5 for the Age, Address and Patient Leaving the hospital.
Similarly, concept hierarchies are created for all attributes present in the dataset. Each
concept hierarchy has multiple levels, which are different for all attributes based on
level of classification required. For example, there are three levels for attribute ‘Age’
and ‘Leaving’ while five levels for attribute ‘Address.’

Definition 4 (Concept Hierarchy) Given any medical attribute ‘a’ and its specific-
to-general ordering such that the most-specific order consists of precise values for
‘a,’ while the most-general order has value ‘ANY,’ then the concept hierarchy of ‘a’
is defined by a partial ordered relation from the most-specific to the most-general
ordering of ‘a.’

The concept hierarchy of each medical attribute is created by forming the specific-
to-general ordering of the attribute. For example, for attribute ‘age’ having value
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2years, the specific-to-general ordering is given by <2, infant, child, ANY>. The
most-specific order consists of value ‘2,’while themost-general order has value ‘ANY.’
When such ordering is created for every value in the domain of the attribute, then
concept level of the values can be determined by one-to-one mapping with the concept
hierarchy tree.

Definition 5 (Concept Level (la)) Given concept hierarchy of any medical attribute
‘a,’ then the concept level of any value of ‘a’ in concept hierarchy is defined by (a)
laεZ(b)la = 0 for the domain of values at themost-specific order of ‘a,’ (b) la increases
by one while moving from most-specific to most-general ordering. In other words, a
medical attribute ‘a’ is said to be at i th concept level for each value in the domain of
‘a’ which is at i th level in its concept hierarchy.

Corollary 5.1 Coarser concept: Given two concept levels ‘la’ and ‘l ′a’ of any medical
attribute ‘a’ such that la = i and l ′a = j , then la is coarser than l ′a iff i > j and is
denoted by la � l ′a.

Corollary 5.2 Finer concept: Given two concept levels ‘la’ and ‘l ′a’ of any medical
attribute ‘a’ such that la = i and l ′a = j , then la is finer than l ′a iff i < j and is denoted
by la � l ′a.

Definition 6 (Concept Hierarchy Tree) A concept hierarchy tree for any medical
attribute ‘a’ is defined by a finite set of nodes such that: (a) the tree contains a distinct

Fig. 4 Creation of processed HdTr (PHdTr/TanGle0) from HdTr using analytics tools
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(a)
(b)

(c)

Fig. 5 Concept hierarchy tree of medical attributes stored in the database. a Age, b Address, c Leaving
the hospital

root node such that its concept level lr � lc; ∀c, where ‘c’ is any node other than the
root node, (b) the remaining nodes of the tree form an ordered collection of zero or
more disjoint trees such that concept level of each node ‘d,’ ld = l p − 1, where l p is
the concept level of parent node of ‘d,’ (c) the leaf nodes are at concept level zero.

The concept hierarchies, thus formed, are then used to create tensor granules at
different levels of granularity. Each of the resultant tensor is called T anGLei (Tensor
at Granular Level ‘i’).

Definition 7 TanGLei (Tensor at Granular Level i): Given processed medical tensor
‘PHdTr.’ If la and l ′a denote, respectively, the jth and finest concept level of anymedical
attribute ‘a,’ then medical tensor at granular level ‘i’ is defined by: (a) T anGle0 =
P HdT r , (b) T anGlei is formed from T anGlei−1 such that ∀ainT anGlei ,

la =
{

i; i f la �= l ′a
l ′a; otherwise

.

The maximum value of ‘i’ is given by max({la}x
a=1), where ‘x’ is the total number of

medical attributes.

Each T anGLei is formed by one-to-one mapping with the concept hierarchy, as
shown in Fig. 6. One-to-one mapping of each concept hierarchy and dimension of
lower tensor will produce a higher level of tensor with more refined information. The
lower- and higher-level tensors are called finer and coarser tensors, respectively.

Corollary 7.1 Coarser tensor : Given two tensors T anGLei and T anGLe j , then
T anGLei is said to coarser than T anGLe j iff i > j and is denoted by T anGLei �
T anGLe j .
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Fig. 6 One-to-one mapping of concept hierarchy of attributes and different level of tensors

Corollary 7.2 Finer tensor: Given two tensors T anGLei and T anGLe j , then
T anGLei is said to finer than T anGLe j iff i < j and is denoted by T anGLei �
T anGLe j .

Hence, a hierarchy of tensors from the finest tensor to the coarsest tensor is formed
such that the finest tensor is at granular level 0, while coarsest tensor is at highest
granular level as shown in Fig. 6.

Mathematically, T anGLei can be written in terms of frontal slices using Eq. (7).

T anGLei = [Hi
1Hi

2Hi
3Hi

4 . . . . . . .Hi
m]; (7)

where the superscript ‘i’ is added to denote the concept levels of each frontal slice.
Furthermore, if an attribute axyz at concept level ’i’ is denoted by ai

xyz , then T anGLei

can be expressed in terms of column fibers and attributes by using Eq. (8).
Therefore, it can be observed that by using this proposed combination of tensor

information representation and concept hierarchy concept, large amount of informa-
tion can be stored in an effective way. Information can be mined at different levels
depending on type of query arrived at the system.

4.3 Phase III: query processing and result formation

After efficient storage of tensors at different granular levels in phase II, the most
important step is to determine how the incoming query is to be processed in order
to generate a correct result. To achieve this goal, initially the query is analyzed to
recognize the attributes required in the query result. A tensor, called ‘Resultant Tensor
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(RTr)’ consisting of all the required attributes and their values is formed. The order and
dimensions of RTr can be different from the HdTr/T anGLei and depends upon the
number of required attributes in the query. The result of the query can then be easily
retrieved from RTr. The benefit creating RTr rather than directly solving the query is
twofold. Firstly, the complexity of data is reduced to only the required attributes and
elimination of non-required information. Secondly, similar to the concept of locality
of reference [46], the probability of relevance of a new query to the previous one is
generally high. Therefore, the next query can be solved using the same RTr resulting
in reduced time for query resolving.

In the light of the above, it can be noted that there are three steps for query process-
ing. The first step identifies the required attributes, while the second step creates RTr.
The third step simply applies functions such as aggregate and sum on RTr to obtain
the result. These steps are explained in detail below.

Step 1: Identifying required attributes In order to do so, keywords are extracted from
the query using keyword extraction algorithm [45]. The keywords are selected such
that they correspond to either a health metric, an attribute or value of attribute.
For example, let the following query arrives:

Q1: ‘How many hospitals in New York have been treating Diabetics patients
in the age group 0–2.’

Here, the keywords include <hospitals, New York, Diabetics (Age, 0–2)>. It can be
noted here that the keyword ‘hospital’ is one of the health metric, keywords ‘New
York’ and ‘diabetics’ are the values for attributes ‘address’ and ‘medical condition,’
respectively, while the keyword ‘age’ is an attribute itself.

T anGLei =
[[

hi
11hi

12 . . . . . . hi
1IT

]
,

[
hi
21hi

22 . . . . . . hi
2IT

]
, . . . . . . . . . . . . . . . ,

[
hi

IM 1hi
IM 2 . . . . . . hi

IM IT

]]

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

[[
ai
111ai

112 . . . . . . ai
11n1

]
,

[
ai
121ai

122 . . . . . . ai
12n1

]
, . . . . . . ,

[
ai
1IT 1ai

1IT 2 . . . . . . ai
1IT n1

]]
,

[[
ai
211ai

212 . . . . . . ai
21n2

]
,

[
ai
221ai

222 . . . . . . ai
22n2

]
, . . . . . . ,

[
ai
2IT 1ai

2IT 2 . . . . . . ai
2IT n2

]]
, . . . ,

[[

ai
IM 11ai

IM 12 . . . . . . ai
IM 1nIM

]

,

[

ai
IM 21ai

IM 22 . . . . . . ai
IM 2nIM

]

, . . . . . . ,

[

ai
IM IT 1ai

IM IT 2 . . . . . . ai
IM IT nIM

]]

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(8)

When the extracted keyword corresponds to the value of some attribute, then the
appropriate attribute is identified using concept hierarchy tree. For example, in case
of keyword ‘New York,’ the attribute ‘address’ is identified.

The above process results in a list ‘L’ of attributes and/or health metrics required
in the query. In addition, the concept level of each attribute and metric in ‘L’ is also
identified using concept hierarchy tree. For example, in Q1, the concept level of ‘age’
is 0, while the concept level of ‘address’ is 1 (as observed from Fig.5). Hence, the list
‘L’ consists of all the required attributes and/or health metrics along with the concept
level of each.
Mathematically, ‘L’ is given by the following equations.

If Hi =
{

Hi
1, Hi

2, . . . , Hi
m

}
,

Ai =
{

ai
xyz |1 ≤ x ≤ IM , 1 ≤ y ≤ IT , 1 ≤ z ≤ nIM

}
,
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Fig. 7 Creating resultant tensor (RTr)

H =
⋃

i

H i and A =
⋃

i

Ai

then L = L1 ∪ L2;where L1 ⊆ H and L2 ⊆ A.

Step 2: Creation of RTr: Using ‘L,’ RTr is created by:
(a) If L2 = ∅ ⇒ L = L1, i.e., ‘L’ consists of only health metric(s), then RTr
is formed by selecting the frontal slices corresponding to health metric(s) in
‘L.’ For example, if L = {H0

1 , H2
3 , H1

5 , then RT r = [H0
1 , H2

3 , H1
5 ] as shown

in Fig. 7.
(b) If L1 = ∅ ⇒ L = L2, i.e., ‘L’ consists of only attributes, then two cases
arise:
Case 1: All the attributes in ‘L’ belong to different frontal slicesLetai

pqr εL and

a j
xyzεL be two attributes such that p �= x , then RT r = [Hi

p, H j
x ].Without loss

of generality, it can be extended to any number of attributes. In other words,
RTr is formed by selecting the frontal slices corresponding to health metric(s)
which consists of attributes in ‘L,’ i.e., for every ai

pqrεL , RT r = [Hi
p]. For

example, let L = {a2
114, a4

323, then RT r = [H2
1 , H4

3 ].
Case 2: Two or more attributes in ‘L’ belong to same frontal slice Let ai

pqrεL

and a j
xyzεL be two attributes such that p = x , then RTr is created by first

constructing each column fiber and a frontal slice from these fibers such that

h ps =
[
ak

ps1ak
ps2 . . . ai

pqr . . . a j
xyz . . . ak

pqs

]
;

where k =
{

i; i f i > j
j; otherwise and s = {1, 2, . . . , IT } ;

Hp = [
h p1h p2 . . . . . . h pIT

] ;

It can be noted that here superscript of h ps and Hp has been omitted since the
fiber and slice consist of attributes from different concept levels ‘i’ and ‘j.’
In addition, for all the other attributes (belonging to different frontal slices)
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the corresponding frontal slices are selected. Once all the frontal slices are
obtained, RTr is constructed in a similar way as in (a).
(c) If L1 �= ∅ and L2 �= ∅, i.e., ‘L’ consists of health metric(s) as well as
attributes, then RTr is created by using steps of both (a) and (b).

Step 3: Final Result Formation

Once RTr is created, the phase III is just to apply functions such as aggregate and
sum on RTr to obtain the result. Hence, it can be observed that RTr provides a highly
flexible and efficient method to resolve any type of query arriving at the system.

5 Performance evaluation

The proposed method for representation of biomedical data using tensor analysis and
information granularization is experimentally evaluated and compared with baseline
tensor tools and algorithms. Many tensor decomposition tools exist such as CANDE-
COMP/PARAFACDecomposition [47], Tucker Decomposition [48], INDSCAL [49],
PARAFAC2 [50] and CANDELINC [51]. In all traditional decomposition methods,
PARAFAC2 decomposition method is chosen for the comparison with the proposed
TDRM because PARAFAC2 supports the tensor with variable length of rows and
constant columns.

Dataset used in the performance evaluation of the proposed TDRM system was
extracted from the information of 130 clinical care hospitals from 1999 to 2008
(10years) with average number of beds equal to 300. This dataset can be download
from the VCU DMB lab (website available at [44]). This dataset has 117 different
feature values and contains 74,036,643 hospital visits of approximately 17,880,231
unique patients and 2,889,571 facilities providers. This dataset includes all the admis-
sions and discharge from the hospital for inpatients, outpatients and emergency
department. Some adjustments have been made in the dataset so that it can be used
in performance evaluation in this paper. Dataset is converted into the tensor format
using the Tensor Toolbox [52] available in MATLAB, and we are calling this tensor
as processed tensor.

The proposed TDRM has been compared with CANDELINC also for which
we have chosen student performance dataset [53]. CANDELINC requires rows and
columns of tensors to be fixed in complete dataset, and student performance dataset
has been converted to fixed rows and columns so that TDRM can also be compared
with CANDELINC. Student dataset contains 30 distinct attributes with more than
649 instances. Few attributes are classified as personal attributes to check the privacy
feature of proposed TDRM.

PARAFAC2 is applied for decomposition of processed tensor created from HFDB
[43,44] using the Tensor Toolbox [52]. On the parallel hand for TDRM, processed
tensor is divided into multiple tensors based on the information granularity levels of
nine features which are age, address, race, doctor specialty, admission department,
admission description, discharge description, diabetic type and diabetic values.
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Table 2 Different types of queries to HFDB tensor

Type of query Probability Description

Normal query .40 Normal queries require data from one dimension of
tensor with maximum two attributes

Personal queries .10 Personal queries ask about personal information of user

Advance queries .30 Advance queries require data from two dimensions of
tensor with maximum four attributes

Complex queries .20 Complex queries require data from all dimensions of
tensor with any number of attributes

5.1 Experimental setup

The main objective of experiment is to check the accuracy achieved in results of
queries by dividing tensor into different information granularity levels. PARAFAC2
is applied for decomposition of processed tensor created from HFDB [43,44] using
the Tensor Toolbox [52]. Similarly, CANDELINC is applied for the decomposition
of processed tensor created from student performance dataset [53] using the Tensor
Toolbox [52]. On the parallel hand for TDRM, processed tensor is divided into mul-
tiple tensors based on the information granularity levels of nine features which are
age, address, race, doctor specialty, admission department, admission description, dis-
charge description, diabetic type and diabetic values. For student performance dataset,
information granularity levels are created for school, age, address, family size, study
time, travel time, failures and health. In the experiment of 60min, 10 queries per
minute are sent to PARAFAC2, CANDELINC and proposed TDRM for respective
datasets. MATLAB Tensor Toolbox [52] is used in both the cases to get the result
of the queries. A set of 400 different types of queries are created for HDFB dataset
and 100 different types of queries are created for student performance dataset. Table2
shows different types of queries and their probability of occurrence for both datasets.
Normal queries are simple select queries from the tensor based on some simple con-
dition, personal queries are select queries which retrieve personal information of the
user, advance queries use join operate to select information based on more than two
dimensions of tensor and complex queries retrieve data using join operation in more
than five dimensions of tensor. MATLAB code has been deployed as Java package,
which selects query randomly from these set of queries following the probability dis-
tribution stated in Table2. Complete experimental setup has been done on Microsoft
Azure DS1V2 instance with 1 cores and 3.5GB of memory, 2 data disks, 3200 max
IOPS using Windows Server 2012 R2, MATLAB R2016a and Java 7. Figure 8 pro-
vides experimental results of TDRM as compared with the PARAFAC2, and Fig. 9
shows experiment results of TDRM as compared with CANDELINC. Discussion of
these results is given in the next subsection.

5.2 TDRM on cloud computing infrastructure

The proposed TDRM has been deployed with different cloud configurations to test
its scalability across public cloud. Table3 shows different cluster configurations used
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Fig. 8 Different metrics from simulation of TDRM and PARAFAC2. a Total number of queries to both
systems, b total unanswered queries of both systems, c total answered queries for personal information of
both systems, d average response to answered queries of both systems, e precision value of PARAFAC2 as
compared to proposed method and f recall values of PARAFAC2 as compared to proposed method

for Microsoft Azure cloud [54]. Figure 10 shows different parameters recorded for
PARAFAC2 and TDRM on Microsoft Azure cloud infrastructure. Figure 11 shows
different parameters recorded for CANDELINCandTDRMonMicrosoftAzure cloud
infrastructure.

5.3 Discussion

For evaluation of the proposed framework, an experiment of 60min is conducted
where both PARAFAC2 and TDRM received same number and type of queries from
the query pool created. Figure 8a shows the total number of queries submitted to both
PARAFAC2 andTDRMsystems usingwhichmultiple important results are generated.
We conducted similar experiments using queries with CANDELINC and TDRMusing
student performance dataset as shown in Fig. 9a.
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Fig. 9 Different metrics from simulation of TDRM and CANDELINC. a Total number of queries to both
systems, b total unanswered queries of both systems, c total answered queries for personal information of
both systems, d precision value of CANDELINC as compared to TDRM, e recall values of CANDELINC
as compared to TDRM and f average response to answered queries of both systems

Unanswered queries are the queries for which there is no result. Due to granu-
larization and concept levels created, almost all queries are answered by the TDRM
effectively, whereas PARAFAC2 and CANDELINC systems are only able to answer
very few queries and very few complex queries are answered by PARAFAC2 and
CANDELINC in given time frame. Figures 8b and 9b show the number of unan-
swered queries by both the systems. Total unanswered queries by PARAFAC2 and
CANDELINC methods increased linearly with time, whereas TDRM unanswered
queries are at same level throughout the experiment.

To study the relevancyofTDRMinbiomedical data storage, it is testedwith personal
information queries as listed in Table2. TDRM did not answer any query related to
personal information of user that is lowest level of concept hierarchies, as shown in
Figs. 8c and 9c. However, traditional tensor decomposition methods PARAFAC2 and
CANDELINC do not distinguish the personal queries from all other queries, which
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Table 3 Different cluster configurations used for experiment

S. no. Name Cores Memory Data disks Max IOPS Cost per hour

1 DS1V2 standard 1 3.5 2 3200 0.16

2 DS2V2 standard 2 7 4 6400 0.312

3 DS3V2 standard 4 14 8 12,800 0.624

4 DS4V2 standard 8 28 16 25,600 1.248

make them unsuitable for medical data mining. Hence, TDRM method is able to
provide privacy and security to medical data of individuals.

Figures 8d and 9f depict the average response time of answered queries for both the
systems with TDRM. TDRM initially has large response time than PARAFAC2 and
CANDELINC because it must create resultant tensor for each query. But after approx.
28min of experiment for PARAFAC2 and 20min for CANDELINC, response time of
proposed system decreases to 50% due to cache storage of resultant tensors. However,
PARAFAC2 and CANDELINC response time increases linearly since the number of
queries increased with time throughout the experiment.

Precision and recall values are very important metrics for any query system. Both
precision and recall explains themeasure of relevance of any system. In case of TDRM,
precision is the ratio of retrieved relevant answers to the specific queries, whereas recall
is the ratio of relevant answers to the all the queries that are generated by the system.
It provides a measure to check the answer provided by the system because irrelevant
answer will again confuse the user and decrease the usability of the system. Precision
of the TDRM is above 85% from the starting, and it ranges between 94% and 99% after
10min of the experiment. On the other hand, precision in case of PARAFAC2 is around
50% in the starting and reaches tomaximumof 87% till the end of experiment as shown
in Fig. 8e. For CANDELINC, precision rate started around 60% and was similar to
TDRM at the end of experiment. This is due to the fact that student performance
dataset is small and size is also fixed as shown in Fig. 9d. Similarly, recall values are
very high for the proposed method as compared to PARAFAC2. The proposed method
provides recall values above 85% throughput the experiment, whereas PARAFAC2
reaches maximum to 70% as shown in Fig. 8f. For CANDELINC, recall values reach
from 60 to 80% throughout the experiment as shown in Fig. 9e. These values prove
that proposed system not only provides answers to more queries but answers provided
by the system are relevant also.

Figures 10a and 11a provide average response time of PARAFAC2 and CAN-
DELINC with TDRM, respectively, for 60min of experiments. TDRM provides
approximately 30% improvement from PARAFAC2 and 20% improvement with
CANDELINC in all four types of instances types due to granularization of tensors.
Figure 11b provides the comparison of execution time on Microsoft Azure for CAN-
DELINC for 500 queries of student performance dataset. Response time for both
methods decreased for larger instance type due to parallel running of queries. Experi-
ments are conducted for different sizes of input queries to test the total execution time
of both methods in providing results to all the submitted queries. Figure 10b, c pro-
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Fig. 10 Different metrics from PARAFAC2 and TDRM experiment onMicrosoft Azure cloud instances of
different configurations. a Average response time of queries for 60min of experiment on different instance
types, b total execution time for different sets of queries and instances types for PARAFAC2, c total
execution time for different sets of queries and instances types for TDRM. d Comparison of execution time
for PARAFAC2 and TDRM for 1500 queries, e cost of running PARAFAC2 on different instance types, f
cost of running TDRM on different instance types and g comparison of cost for PARAFAC2 and TDRM
for 1500 queries

vides total execution time for both systems for different query sizes and instance types.
Difference in execution time for different query sizes is less in TDRM as compared
to PARAFAC2 due to storage of resultant tensors. Figure 10d provides the compar-
ison of execution time for PARAFAC2 and TDRM using 1500 queries. Figure10e,

123



612 R. Sandhu et al.

Fig. 11 Different metrics from CANDELINC and TDRM experiment on Microsoft Azure cloud instances
of different configurations. aAverage response time of queries for 60min of experiment on different instance
types and b comparison of execution time for CANDELINC and TDRM for 500 queries

f shows the total cost of running experiments for both PARAFAC2 and TDRM. For
PARAFAC2, cost of running the experiments is almost same for all instance types.
However, TDRM reduces the cost to around 60% from DS1 to DS4 because TDRM
stores resultant tensor which makes faster execution of application so less cost for run-
ning it. Figure 10g provides the comparison of cost for the execution of PARAFAC2
and TDRM on different Microsoft instances using 1500 queries.

From all the experimental results, it is clear that proposed system provides a unique
method to store as well as mine medical data using tensors and information gran-
ularization. The proposed system provides faster computation, low response time,
more privacy and high relevancy as compared to baseline PARAFAC2 tensor analysis
method.

6 Conclusions and future work

Big Data storage and mining research is the latest trend in data mining communi-
ties, and we proposed a tensor-based data representation and mining framework for
healthcare data. Our work provides an efficient method to store data in the form of
information granules. Key element of our work is the storage of raw data in the form
of multi-dimensional matrix and replicating this matrix at different abstraction lev-
els using concept hierarchy of each attribute. We provided the theoretical as well as
experimental aspects behind the proposed methodology, which is effective and effi-
cient in big data storage. Experimental results conducted on Microsoft Azure cloud
show reduction in execution time and cost for TDRM as compared to PARAFAC2 and
CANDELINC.

In the future, we plan to implement our framework using parallel programs of tensor
decomposition using frameworks such as Aneka and Hadoop to harness the power of
multiple nodes (VMs) across one or more cloud datacenter infrastructure. We also
plan to extend this method to different application domains such as agriculture.
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