
13

Multi-Cloud Provisioning and Load Distribution for Three-Tier
Applications

NIKOLAY GROZEV and RAJKUMAR BUYYA, University of Melbourne, Australia

Cloud data centers are becoming the preferred deployment environment for a wide range of business ap-
plications because they provide many benefits compared to private in-house infrastructure. However, the
traditional approach of using a single cloud has several limitations in terms of availability, avoiding ven-
dor lock-in, and providing legislation-compliant services with suitable Quality of Experience (QoE) to users
worldwide. One way for cloud clients to mitigate these issues is to use multiple clouds (i.e., a Multi-Cloud).
In this article, we introduce an approach for deploying three-tier applications across multiple clouds in or-
der to satisfy their key nonfunctional requirements. We propose adaptive, dynamic, and reactive resource
provisioning and load distribution algorithms that heuristically optimize overall cost and response delays
without violating essential legislative and regulatory requirements. Our simulation with realistic work-
load, network, and cloud characteristics shows that our method improves the state of the art in terms of
availability, regulatory compliance, and QoE with acceptable sacrifice in cost and latency.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures; C.2.4
[Computer-Communication Networks]: Distributed Systems

General Terms: Performance, Legal Aspects, Experimentation

Additional Key Words and Phrases: Cloud computing, Multi-Cloud, three-tier applications, autoscaling, load
balancing

ACM Reference Format:
Nikolay Grozev and Rajkumar Buyya. 2014. Multi-Cloud provisioning and load distribution for three-tier
applications. ACM Trans. Autonom. Adapt. Syst. 9, 3, Article 13 (October 2014), 21 pages.
DOI: http://dx.doi.org/10.1145/2662112

1. INTRODUCTION

Cloud computing is a disruptive IT paradigm that changes the way businesses operate.
Instead of owning, maintaining, and administering their own infrastructure, busi-
nesses can now dynamically rent resources on demand just as they need them [Buyya
et al. 2009; Mell and Grance 2011]. This allows them to avoid upfront investments in
infrastructure that may not fit their dynamic needs at all times, being either under-
or overutilized. Moreover, enterprises can now eliminate activities like infrastructure
maintenance and administration and focus on their core business operations.

The standard model of consuming a cloud service is when a client uses resources
within a single cloud. However, this poses several challenges for cloud clients. First, a
data center outage can leave clients without access to resources, as exemplified by the
outages of several major vendors [Amazon 2014e, 2014f; Google 2014; Microsoft 2014].

Authors’ addresses: N. Grozev and R. Buyya are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne,
Parkville, VIC 3010, Australia; email: ngrozev@student.unimelb.edu.au; rbuyya@unimelb.edu.au.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1556-4665/2014/10-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2662112

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

http://dx.doi.org/10.1145/2662112
http://dx.doi.org/10.1145/2662112

13:2 N. Grozev and R. Buyya

And, as per Berkeley’s report, cloud service unavailability is the greatest inhibitor to
cloud adoption [Armbrust et al. 2009]. Second, interactive online applications (e.g.,
three-tier systems) usually have network latency constraints. A single data center can-
not serve users distributed worldwide with adequate latency. Last, many businesses
that operate across national boundaries need to comply with different regulations in
terms of privacy, security, and data location. This is of special importance for appli-
cations dealing with sensitive data (e.g., in the banking or e-health domains), and
businesses are often required to use data centers within a given territorial jurisdiction
when serving some customers [Bowen 2011]. It is unlikely that a single data center
will comply with the constraints of all targeted jurisdictions.

To overcome these issues, researchers and practitioners have envisioned the usage
of multiple clouds. A Multi-Cloud is a type of Inter-Cloud, in which clients utilize mul-
tiple clouds without relying on any interoperability functionalities implemented by
the providers [Ferrer et al. 2012; Petcu 2013; Grozev and Buyya 2012]. Application
deployment across clouds has recently attracted interest and resulted in the emer-
gence of at least 20 projects facilitating cross-cloud deployment [Grozev and Buyya
2012]. Case studies by IBM [2013] and e-Bay [2014] have demonstrated how three-tier
interactive applications can utilize multiple data centers to provide better availabil-
ity and customer Quality of Experience (QoE) and to quickly adapt to changes in
demand.

Unfortunately, transitioning existing applications to clouds or Multi-Clouds is not
straightforward. A cloud is not merely a deployment environment to which existing
software solutions can be transferred. It introduces novel characteristics not existing in
traditional in-house deployment environments, such as a seemingly endless resource
pool and the risk of unpredictable outages in external infrastructure [Varia 2011].
Hence, software applications need to be more scalable and fault tolerant so they can
dynamically adapt to workload fluctuations by adequately allocating and releasing
computing resources and addressing infrastructure failures autonomously and in a
timely manner. Software engineers need to design for the cloud, not only deploy in
the cloud. This is even more important when using multiple data centers situated
in different legislative domains; constructed with different hardware, network, and
software components; and prone to different environmental risks.

The key contributions of this work are (i) a design approach for interactive three-
tier Multi-Cloud applications and (ii) adaptive dynamic provisioning and autonomous
workload redirection algorithms ensuring that imperative constraints are met with
minimal sacrifice in cost and QoE. We focus on the three-tier architectural pattern
because it is pervasive and many enterprise systems follow it. Our approach does not
modify the three-tier pattern itself, but rather introduces additional components to
manage cross-cloud resource provisioning and workload distribution. This is essential
because it allows the migration of existing applications to a Multi-Cloud environment.
Also, new Multi-Cloud three-tier applications can be developed using a plethora of
existing architectural frameworks thus leveraging proven technologies and existing
know-how. The newly introduced components facilitate the implementation of three-
tier systems that produce (i) increased availability and resilience to cloud infrastruc-
ture failure, (ii) legislation and regulation compliance, (iii) high QoE, and (iv) cost
efficiency.

The rest of this article is organized as follows: In Section 2, we provide an overview
of related works and compare them to ours. Section 3 details the targeted class of
applications. Section 4 outlines our architecture. Section 5 motivates and details our
algorithms for load balancing, autoscaling, and cloud selection. Our experimental set-
tings and results are discussed in Section 6. In Section 7, we conclude the article and
define pathways for future work.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:3

2. RELATED WORK

Significant efforts have been made in the development of Multi-Cloud open-source li-
braries for different languages like JClouds [2014], Apache LibCloud [2014b], Apache
DeltaCloud [2014a], SimpleCloud [2012], and Apache Nuvem [2014c]. All of them pro-
vide a unified API for the management of cloud resources (e.g., Virtual Machines [VMs]
and storage), so that software engineers do not have to program against the specifics of
each vendor’s API. Although not providing application brokering (consisting of provi-
sioning and scheduling) themselves, these libraries can be instrumental in the devel-
opment of new cross-cloud brokering components. Similarly, services like RightScale
[2014], Enstratius (formerly enStratus) [2014], Scalr [2014], and Kaavo [2014] only
provide unified user interfaces, APIs, and tools for managing multiple clouds, and it is
the clients’ responsibility to implement appropriate provisioning and scheduling.

Apart from these Multi-Cloud libraries and services, the OPTIMIS [Ferrer et al.
2012], Contrail [Carlini et al. 2012], mOSAIC [Petcu et al. 2011], MODAClouds
[Ardagna et al. 2012], and STRATOS [Pawluk et al. 2012] projects also facilitate
Multi-Cloud application deployment. In all of these projects, the geographical loca-
tions of the serving data centers cannot be considered. Thus, often, it is not possible to
implement legislation-aware application brokering. In contrast, in our approach, the
Entry Points and Data Center Control layers enable legislation-compliant user routing
to eligible clouds through a process called matchmaking broadcast. In addition, all of
these projects only manage resource allocation and software component deployment,
and none of them facilitates the distribution of the incoming workload to the allocated
resources. Their components are only concerned with resource provisioning and set-up
and do not deal with the load distribution and autoscaling of the application once it is
installed. In contrast, in this work, we manage the incoming workload and dynamically
provision resources accordingly through the components of the Entry Points and Data
Center Control layers.

Furthermore, these projects are SLA-based, which means that the application bro-
kering is specified in a Service Level Agreement (SLA) using a declarative formalism.
The Cloud Standards Customer Council (CSCC) discusses in a technical report that
SLAs currently offered by cloud providers are immature [2012]. Thus, to achieve flexi-
ble application brokering, these approaches rely on advances in the currently adopted
SLA practices or the introduction of new brokering components that can interpret
novel SLA formalisms. In contrast, our approach directly manages the underlying pro-
visioning and mapping of workload to resources without relying on advances in SLA
specifications, and thus it is applicable right away.

Cloud services like Route 53 [Amazon 2014c] and AWS Elastic Load Balancer (ELB)
[Amazon 2014d] can distribute incoming users to servers in multiple data centers
using standard load balancing techniques. AWS ELB can distribute workload among
servers located in single or multiple AWS availability zones, but it cannot direct users
to clouds of other providers. Route 53 is Amazon’s Domain Name System (DNS) web
service. It supports Latency Based Routing (LBR), which redirects incoming users
to the AWS region with the lowest latency. Both Route 53 and ELB do not consider
applications’ regulatory requirements when selecting a data center site. Moreover, they
do not consider the cost and degree of utilization of the employed resources within a
data center. In contrast, our approach for directing users to cloud sites accounts for all
these aspects.

3. PRELIMINARIES

By definition, an interactive three-tier application has three layers [Fowler 2003;
Ramirez 2000; Aarsten et al. 1996]:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:4 N. Grozev and R. Buyya

—Presentation Layer: Represents the user interface
—Business/Domain Layer: Features the main business logic; accesses and modifies

the data layer
—Data Layer: Manages the persistent data

The presentation layer executes at the end user’s site, not in the back-end servers,
and thus we do not consider it. The domain layer consists of one or several Application
Servers (AS). In Infrastructure as a Service (IaaS) cloud environments, they are hosted
in separate VMs. The data layer consists of one or several database servers. In a Multi-
Cloud environment, this software stack is replicated across all used cloud data centers.
Clients arrive at one or several entry points, from where they are redirected to the
appropriate data center to serve them.

The domain layer within a data center can scale horizontally by adding more AS
VMs. For a given application, within a data center there is a load balancer that dis-
tributes the incoming requests to the AS servers. Every request arrives at the load
balancer, which selects the AS to serve it. There are two types of three-tier applica-
tions in terms of the domain layer design: stateful and stateless. Stateful applications
keep session data (e.g., shopping carts and user meta-data) in the memory of the as-
signed AS server. Hence, they require sticky load balancing, which ensures that all
requests of a session are routed to the same server. Stateless applications do not keep
any state/data in memory and therefore their requests can be routed to different AS
servers.

The data layer often becomes the performance bottleneck because of requirements for
transactional access and atomicity. This makes it hard to scale horizontally. As to the fa-
mous Consistency, Availability, and Partition Tolerance (CAP) theorem [Brewer 2000,
2012], a distributed architecture should balance between persistent storage consis-
tency, availability, and partition tolerance. The field of distributed horizontally scaling
databases has been well explored in recent years. For example Cattell [2010] sur-
veyed more than 20 novel NoSQL and NewSQL distributed database projects. Tradi-
tional techniques like replication, caching, and sharding also allow for some level of
horizontal scalability.

The eligible data caching and replication strategies are very much application spe-
cific, and it is impossible to incorporate them within a general framework encompassing
all three-tier applications. In other words, the right balance among CAP requirements
is domain inherent. For example, one application may require that data are not repli-
cated across legislative regions, whereas another may allow it in order to achieve better
availability. Therefore, in this work, we do not deal with application-specific data de-
ployment. We investigate flexible provisioning and load distribution provided the data
are already deployed with respect to the application-specific CAP requirements. It is
the system architect’s responsibility to design the data layer in a scalable way that
obeys all domain-specific legislation rules so that it can be accessed quickly from the
domain layer. This is a reasonable constraint because database design is usually the
first step in a three-tier system design, and it often serves other applications (e.g.,
reporting and analytics) as well. Our approach ensures that once the data are deployed
appropriately, users will be redirected accordingly and enough processing capacities
will be present in the AS layer.

4. OVERALL ARCHITECTURE

4.1. Architectural Components

Figure 1 depicts the proposed architecture. We augment the traditional three-tier
architectural pattern with two additional layers of components:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:5

Fig. 1. Overall layered architecture. The brokering components manage the system’s provisioning and
workload distribution, whereas a standard three-tier software stack serves the end users.

—Entry Point Layer: Responsible for redirecting incoming users to an appropriate cloud
data center to serve them

—Data Center Control Layer: Responsible for (i) providing information to the entry
point layer regarding the suitability of a data center for a given user, (ii) monitoring
and scaling of the provisioned resources within a data center, and (iii) directing the
incoming requests

The Entry Point Layer consists of one or several VMs, which can be deployed in
several data centers for better resilience. When users come to the system, they are
initially served at an entry point VM. Based on the users’ location, identity, and
information about each data center, the entry point selects an appropriate cloud
and redirects the user to it. After this, the user is served within the selected data
center and has no further interaction with the entry point. We emphasize that the
cross-cloud interactions between entry points and admission controllers happen only
once, immediately after user arrival, and hence do not result in further communication
delay as the user is being served.

At first glance, an entry point can be likened to a standard load balancer because
it redirects users to serving data centers. However, standard load balancers redirect
each user request, whereas entry points redirect users only upon arrival. Furthermore,
entry points collaborate with the admission controllers to implement cloud selection
respecting legislative, data location, cost, and QoE requirements, functions that are
not implemented in standard load balancers.

In each data center, the Data Center Control Layer consists of three VMs:

—Admission Controller: Decides whether a user can be served within this data center
and provides an estimation of the potential cost for serving him or her. Upon request,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:6 N. Grozev and R. Buyya

Fig. 2. Component interaction. Cloud site selection happens once, upon user arrival. Subsequent requests
are handled within the selected data center.

it provides feedback to the entry point VMs to facilitate their choice of a data center
for a user.

—Load Balancer: The standard load balancer component from the three-tier reference
architecture. We consider it as a logical part of the Data Center Control Layer because
it redirects requests to the application servers.

—DC Controller: Responsible for observing the performance utilization of the run-
ning AS servers and reactively shutting down or starting AS VM instances to meet
resource demands at minimal cost.

In principle, the DC Controller and the Load Balancer VMs may be replaced by
services like Amazon Auto Scaling [2014a] and AWS ELB [2014d]. Nevertheless, not
all cloud providers have such services. Even if a provider offers autoscaling services, it is
often not possible (unlike Amazon Auto Scaling) to monitor custom performance metrics
(e.g., number of live application sessions). Moreover, in Section 5, we introduce novel
algorithms for load balancing and autoscaling that, in conjunction, reduce cost and the
probability of server overload. These are not implemented by current cloud providers
and hence, for generality, we consider the usage of separate VMs for these purposes.

4.2. Component Interaction

Figure 2 depicts the interaction between components upon user arrival. In the first
phase, the brokering components select an appropriate cloud site for the user based on
his or her identity. As a first step, the user authenticates to one of the entry points. At
this point, the entry point has the user’s identity and geographical location (extracted
from the IP address). As a second step, the entry point broadcasts the user’s identifier to
the admission controllers of all data centers. We call this step matchmaking broadcast.

There are no restrictions on the location of the entry points. Ideally, they should be
positioned in a way that minimizes network latency effects during the matchmaking
broadcast. One reasonable approach is to deploy each entry point in one of the used
clouds, given that the clouds are already selected in a way that serves the expected
user base with adequate latency.

Within each data center, the admission controller checks if the persistent data for
this user are present. Additionally, each admission controller implements application-
specific logic to determine which users can be served in the data center based on

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:7

regulatory requirements. The admission controllers respond to the entry point whether
the user’s data are present and if they are allowed (in terms of legislation and regu-
lations) to serve the user. In the response, they also include information about costs
within the data center.

Based on the admission controllers’ responses, the entry point selects the data center
to serve the user and redirects him or her to the load balancer deployed within it. The
entry point filters all clouds that have the user’s data and are eligible to serve him
or her. If there is more than one such cloud, the entry point selects the most suitable
with respect to network latency and pricing. If no cloud meets the data location and
legislative requirements, the user is denied service.

After a data center is selected, the user is served by the AS and DB servers within
the chosen cloud as prescribed by the standard three-tier architecture. He or she does
not have any further interaction with the brokering components. Hence, we consider
that AS servers deployed in a data center can only access DB servers in the same
data center. This is a reasonable constraint because often there is no SLA concerning
network speed and latency between data centers, and thus cross-cloud data access
can lead to performance issues. Furthermore, transferring persistent data across the
public Internet may be a breach of the legislative and policy requirements of many
applications.

5. PROVISIONING AND WORKLOAD MANAGEMENT

5.1. Scalability within a Cloud

Currently, the practices for load balancing among a dynamic number of VMs in a cloud
environment and among a fixed number of physical servers are the same: round robin
or some of its adaptations. When using physical servers, one usually tries to distribute
the load so that the servers are equally loaded, and all sessions are served equally
well. In a cloud environment, if the number of AS VMs is insufficient, new ones can be
provisioned dynamically. Similarly, if there are more than enough allocated AS VMs,
some of them could be stopped to reduce costs. If the load of a stateful application
is equally distributed among underutilized VMs, then no VM can be stopped without
failing the sessions served there.

This is not an impediment for stateless applications because sessions are not bound to
servers, and hence VMs can be stopped without causing service disruption. Thus, stan-
dard load balancing techniques like weighted round robin or “least connection” can be
effective. However, in the case of stateful sessions, in order to stop an AS VM one needs
to make sure it does not serve any sessions. One approach is to transfer all sessions
from an AS VM to another one before shut down. However, this is not straightfor-
ward because active sessions together with their states need to be transferred without
service interruption. A better approach is to balance the incoming workload in a way
that consolidates the sessions in as few servers as possible without violating Quality of
Service (QoS) requirements. This results in a maximum number of stoppable (i.e., not
serving any sessions) servers. In essence, if the load balancer packs as many sessions
as possible (without causing overload) onto a few servers, then the number of stoppable
servers (not serving any sessions) will be maximal.

This idea is implemented in Algorithm 1. It defines a sticky load balancing policy;
thus, after the first session’s request is assigned to a server, all successive ones are
assigned to it as well. It takes as input the newly arrived session si, the list of already
deployed AS servers VMas, and two ratio numbers in the interval (0, 1)—the CPU and
RAM thresholds thcpu and thram. As a first step in the algorithm, we sort the available
AS VMs in a descending order with respect to their CPU utilization. Then we assign the
incoming session to the first VM in the list whose CPU and RAM utilizations are below

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:8 N. Grozev and R. Buyya

ALGORITHM 1: Load Balancing Algorithm
input: si, thcpu, thram, VMas

sortDescendinglyByCPUUtilisation(VMas);
hostVM ←− last element of VMas;
for vmi ∈ VMas do

vmcpu ←− CPU utilisation of vmi ;
vmram ←− RAM utilisation of vmi ;
if vmcpu < thcpu and vmram < thram and !networkBuffersOverloaded() then

hostVM ←− vmi ;
break;

end
end
assignSessionTo(s, hostVM)

thcpu and thram, respectively, and whose input and output TCP network buffers/queues
are not becoming overloaded. These buffer sizes are denoted by the Recv-Q and Send-
Q values returned by the netstat command. To simplify the algorithm’s definition,
we have extracted this logic in a new boolean function networkBuffersOverloaded().
It simply checks if there is a TCP socket for which any of the ratios of the Recv-Q
and Send-Q values to the maximum capacities of those queues is greater than 0.9. If
there is no such server, the session is assigned to the least utilized one (line 2). An
obvious postcondition of the algorithm is that a newly arrived session is assigned to
the most utilized in terms of the CPU server whose CPU and RAM utilizations are
under the thresholds. If there is no such server, the one with the least utilized CPU
is used. By increasing the thresholds, we can achieve better consolidation of sessions
at the expense of a higher risk of CPU or RAM contention, which may result in lower
response time. On the contrary, when the thresholds are lower, the overall number of
underutilized VMs will be higher. Therefore reasonable values for these thresholds are
the autoscaling triggers (used by our autoscaling algorithm) that define if a server is
overloaded.

The DC controller is responsible for adjusting the number of AS VMs accordingly. This
implementation of the load balancer (Algorithm 1) allows the DC controller to stop AS
VMs that serve no sessions. The DC controller is also responsible for instantiating new
AS VMs when needed. Algorithm 2 details how this can be done when using on-demand
VM instances. This algorithm is periodically executed every � seconds to ensure that
the provisioned resources match the demand at all times. The input parameters of the
algorithm are:

—tcur—the current time of the algorithm call;
—tgrcpu—CPU trigger ratio in the interval (0, 1);
—tgrram—RAM trigger ratio in the interval (0, 1);
—VMas—list of currently deployed AS VMs;
—n—number of overprovisioned AS VMs to cope with sudden peaks in demand; and
—�—time period between algorithm repetitions.

If an AS VM’s CPU or RAM utilization exceeds tgrcpu and tgrram respectively, or some
of its input/output TCP network buffers are becoming overloaded, we call this server
overloaded. In the beginning of Algorithm 2 (lines 1–11) we inspect the statuses of all
available AS VMs and note if they are overloaded or free (i.e., not serving any sessions).

In an online application, the resource demand can rise unexpectedly in the time
periods between two subsequent executions of the scaling algorithm. Moreover, booting
and setting up new AS VMs is not instantaneous and can take up to a few minutes

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:9

ALGORITHM 2: Scale Up/Down Algorithm
input: tcur , tgrcpu, tgrram, VMas, n, �
nOverloaded ←− 0;
listFreeVms ←− empty list;

for vm ∈ VMas ; // Inspect the status of all AS VMs
do

vmcpu ←− CPU utilization of vm;
vmram ←− RAM utilization of vm;
if vmcpu >= tgrcpu or vmram >= tgrram or networkBuffersOverloaded() then

nOverloaded ←− nOverloaded + 1;
else if vmi serves no sessions then

listFreeVms.add(vm);
end

end
nFree ←− length of listFreeVms;
nAS ←− length of VMas;
allOverloaded ←− nOverloaded + nFree = nAS and nOverloaded > 0;

if nFree ≤ n ; // Provision more VMs
then

nVmsToStart ←− 0;
if allOverloaded then

nVmsToStart ←− n − nFree + 1;
else

nVmsToStart ←− n − nFree
end
launch nVmsToStart AS VMs

else
nVmsToStop ←− 0 ; // Release VMs
if allOverloaded then

nVmsToStop ←− nFree − n;
else

nVmsToStop ←− nFree − n + 1
end

sortAscendinglyByBillingTime(listFreeVms);
for i = 1 to nVmsToStop do

billT ime ←− billing time of listFreeVms[i];
if billT ime − tcur < � then

terminate listFreeVms[i];
else

break
end

end
end

depending on the underlying infrastructure. Hence, resources cannot be provisioned
instantly in response to increased workload. If the workload spike is significant, this
can result in server overload and performance degradation. One solution is to over-
provision AS VMs, so that unexpected workload spikes can be handled. The n input
parameter of the algorithm denotes exactly that—how many AS VMs should be over-
provisioned to cope with unexpected demand.

As a postcondition of the algorithm execution, there should be at least n + 1 free AS
VMs if all other AS VMs are overloaded, or n otherwise. For example, in the special

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:10 N. Grozev and R. Buyya

case when n = 0, one AS VM is provisioned only if all others are overloaded. This is
ensured by lines 16–24 of the algorithm.

Similarly, to avoid charges, some overprovisioned VMs should be stopped whenever
their number exceeds n. However, it is not beneficial to terminate a running VM ahead
of its next billing time. It is better to keep it running until its billing time in order to
reuse it if resources are needed again. This is ensured by lines 25–40 of the algorithm.
First, we sort the free VMs in ascending order with respect to their next billing time.
Next, we iterate through the excessively allocated VMs and terminate only those for
which the next billing time is earlier than the next algorithm execution time.

Last, in the previous discussion, we assumed that the application is stateful (i.e., it
maintains contextual user information in the memory of the AS server). For scalability
reasons, many applications are stateless, or they store session state in an external
in-memory cache like Amazon ElastiCache [2014b]. Algorithm 2 can handle this type
of applications as well by considering each AS server to be assigned 0 sessions at all
times. This is reflective of the main characteristic of stateless applications, in that
each request can be served on a different server because no session state is kept in the
servers’ memory. Consequently, in the algorithm, all AS servers that are not overloaded
will be considered free (lines 9–11) and will be viable for termination. Therefore, our
approach encompasses both stateful and stateless applications.

5.2. Data Center Selection

We can largely classify the requirements for data center selection as constraints and
objectives. Constraints should not be violated under any circumstances. In this work,
we consider the following constraints: (i) users should be served in data centers that are
compliant with regulatory requirements, and (ii) users should be served in data centers
containing their data in the application’s data layer. The system should prefer to deny
service than to violate these constraints. In contrast, the system can continue to serve
a user even if an objective is not optimized. We consider the following objectives: (i) cost
minimization and (ii) latency minimization. In other words, upon a user’s arrival, the
entry point extracts those data centers that satisfy the constraints and selects the most
suitable among them in terms of latency and cost.

Although cost minimization is a natural goal of cloud clients, it should not be pursued
at the expense of end user QoE, and hence we must balance between the two objectives.
The maximum acceptable latency between users and data centers can be considered as
a part of the application’s SLA. Thus, we can choose the optimal data center, in terms
of cost, whose network latency is less than the one predefined in the SLA.

Algorithm 3 implements this idea and details the data center selection procedure.
The algorithm selects clouds for multiple users at once. Hence, users arriving at the sys-
tem at approximately the same time can be dispatched to serving clouds in batch thus
avoiding excessive cross-cloud communication. The input parameters of the algorithm
are:

—users: Identifiers of the users for which the entry point should select a cloud
—timeout: Period after which, if a data center’s admission controller has not responded,

it is discarded
—clouds: A list of the used data centers. For each of them, we can obtain the IP

addresses of the admission controller and the load balancer.
—latencySLA: SLA for the network latency between a user and the serving data center

In the beginning of the algorithm (lines 1–4), the entry point asynchronously broad-
casts all users’ identifiers to the clouds’ admission controllers. After that, the entry
point waits until all contacted admission controllers respond or the timeout period

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:11

ALGORITHM 3: Cloud Site Selection Algorithm
input: users, timeout, clouds, latencySLA

// Broadcast users’ data to admission controllers
for ci ∈ clouds do

aci ←− IP address of ci ’s admission controller;
send to aci users’ identifier;

end

wait timeout seconds or until all clouds respond;

for ui ∈ users do
cloudsaccept ←− clouds eligible to serve ui ;
sortAscendinglyByPrice(cloudsaccept);
selectedCloud ←− null;
selectedLatency ←− +∞ ;
for ci ∈ cloudsaccept do

latency ←− latency between u and ci ;
if latency < latencySLA then

selectedCloud ←− ci ;
break;

else if selectedLatency > latency then
selectedCloud ←− ci ;
selectedLatency ←− latency;

end
end

if selectedCloud = null then
Deny Service;

else
lb ←− IP of load balancer in selectedCloud;
redirect u to lb;

end
end

elapses (line 5). At this stage, unresponsive clouds whose admissions controllers fail to
respond within the timeout are discarded.

For each user, the response of the clouds’ admission controllers includes (i) a boolean
value, whether the cloud is eligible to serve the user and (ii) an estimation of the cost
for serving a user. Based on this input, for every user, the entry point retains the clouds
eligible to serve him or her (line 7). If no eligible cloud is present, the user is denied
service. Otherwise, the cloud that has the smallest cost and provides latency below
the SLA requirement is selected (lines 9–20). If there is no eligible cloud meeting the
network latency SLA, the one with the lowest network latency to the user is selected
(lines 16–19).

Note that the decision of whether a cloud site is eligible for a given user is application
specific. For some applications with no additional privacy, security, and legislative
requirements, all clouds may be eligible for all users. In others, certain users will
have to be served within a specific legislative domain or within certified data centers
based on their nationality. We assume that this application-specific eligibility logic is
implemented in admission controllers by application developers.

Algorithm 3 uses the network latency between the end user and the prospective
serving data centers. Hence, the entry point needs to evaluate the latencies between
them based on their IP addresses. By latency, we denote only the network latency.
We do not try to estimate the entire response time consisting of network and server

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:12 N. Grozev and R. Buyya

delays. We argue that this simplification does not reduce the generality of our approach
because for an interactive three-tier application, the server delays should be small and
similar in all clouds provided there is no significant resource contention. In this case,
the variable part of the overall delay is the network latency. In Algorithm 2, we make
sure the domain layer scales horizontally and that enough resources are present at all
times. If contention does occur within a cloud site because of either a nonscalable DB
layer or an inappropriate choice of parameters for Algorithm 2, then we provide a back-
off mechanism through the cost estimation, as discussed later. Hence, we minimize the
probability of resource contention within the Multi-Cloud setup, and therefore servers’
delays should be small and similar in all cloud sites.

An approximation of the network latency can be achieved in two steps. First, we can
identify the geographical locations (longitude and latitude) of the user and a given cloud
based on his or her IP address. For this, we use the GeoLite [2014] database, mapping IP
addresses to geospatial coordinates. As a second step, we compute the latency between
a user and a cloud based on the extracted coordinates by using the PingER [2014]
service. PingER is an end-to-end Internet Performance Measurement (IEPM) project
that constantly records the network metrics among more than 300 hosts positioned
worldwide. The geospatial coordinates of each host are provided. To approximate the
latency between a user and a cloud, we select the three pairs of PingER hosts that are
closest to the user and the cloud, respectively, and define the latency as a weighted sum
of the three latencies between the hosts in these three pairs. The weights are defined
proportionally to the proximity of the hosts to the user and the cloud. To compute the
distance between the geospatial positions, we use the well- known Vincenty’s formulae.
The data from both GeoLite and PingER can be downloaded and used offline. If latest
up-to-date Internet performance data are needed, they can be periodically downloaded
and updated automatically.

The last missing piece of information is the cost evaluation for serving a user by a
cloud (used in line 8), performed by the admission controllers. The difficulty here is to
define a unified cost evaluation for different clouds with different pricing policies and
different VM types and performance.

First, if the application’s infrastructure within a data center is overloaded and it
should not accept further users, it returns +∞ as a cost estimation. One reason for an
overload may be a lack of scalability in the DB layer. As discussed, it can be hard to
scale horizontally, and given significant workload, the center can be easily overloaded.
Another reason may be a bottleneck in the data center infrastructure; for example,
internal network congestion may threaten to slow down the application’s inter-tier
communication. This could be easily detected in the case of a private data center. In
a public data center, obtaining such information may be more difficult because the
cloud provider would have to expose such internal performance data to its clients. By
returning +∞ cost to the entry point, the admission controller ensures that users are
sent to this cloud only as a last resort. Hence, admission controllers use the cost as a
back-off mechanism.

As a first step in session cost estimation, we define p(vmi) to be the price per minute
of a virtual machine vmi. For cloud providers that charge for longer intervals (e.g., an
hour, as in Amazon AWS), we compute this value by dividing by the number of minutes
in a charge period. For each virtual machine vmi, based on its current utilization and
the number of currently served sessions, we can approximate how many sessions f (vmi)
it will be able to serve if fully utilized:

f (vmi) = numSessions(vmi)
max(utilcpu(vmi), utilram(vmi))

. (1)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:13

Therefore the term p(vmi)/ f (vmi) is representative of the session cost per minute in
vmi. To achieve better estimation, we average the cost estimations of all AS servers V
that currently serve sessions in the cloud. If no sessions are served in the cloud, we
use the last successful estimation for this data center or 0 if there has not been such.
Equation (2) summarizes the previous discussion:

session cost per minute =

⎧⎪⎪⎨
⎪⎪⎩

+∞ if overloaded
previous estimation if V = ∅∑

vmi∈V p(vmi)/ f (vmi)
|V | otherwise.

(2)

In the preceding discussion, for each VM vmi we used only the price per minute
(p(vmi)), number of sessions, and its CPU and memory utilizations. Therefore our cost
evaluation can be used even if the types of the VMs are different as long as we can
evaluate these characteristics. It is also worthwhile noting that this cost estimation
strategy is a heuristic forecast of the future cost incurred by a user because we cannot
know in advance how long the user will use the system, what exactly will be his or her
actions, and the like.

5.3. Fault Tolerance

Within the given architecture, a data center outage can be seamlessly overcome by
incorporating time-outs in the entry points. If an admission controller does not make
a timely reply to the matchmaking broadcast, the entry point does not consider its
respective cloud.

Within a cloud, the DC controller manages how the AS VMs are instantiated and
stopped in order to meet QoS requirements with minimal costs. Doing so, it also mon-
itors the AS VMs in the data center and restarts them upon failure. In this setting,
it is obvious that a failure of the DC Controller would disable the fault tolerance and
scalability of the architecture. Hence, the admission controller and the load balancer
run background threads that check the status of the DC controller and restart it upon
failure.

VMs can take up to a few minutes to boot. A failure of the load balancer and the
admission controller would mean that no users can be served in this data center during
such an outage. Thus, applications requiring high availability can have multiple load
balancers and admission controllers working in parallel to achieve resilience against
such failure.

6. PERFORMANCE EVALUATION

Our approach to application provisioning and workload distribution is generic, and
testing it with all possible middleware technologies, workloads, cloud offerings, and
data center locations is an extremely laborious task. In this section, we demonstrate
how, under typical workload and set-up, our approach meets imperative requirements
like legislation compliance with only minimal losses in terms of latency and cost.

To validate our work, we use the CloudSim discrete event simulator [Calheiros et al.
2011], which has been used in both industry and academia for performance evaluation
of cloud environments and applications. We use one of the latest CloudSim extensions
that allows modeling, simulation, and performance evaluation of three-tier applications
in Multi-Cloud environments [Grozev and Buyya 2013].

6.1. Experiment Setting

In our experimental setup, we create four cloud data centers. We model the first two
with the characteristics of Amazon EC2. We position one of them in Dublin, Ireland and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:14 N. Grozev and R. Buyya

Table I. Simulation Parameters

Parameter Value Component/Algorithm
thC PU 0.7 Load balancer (AS Server Selection)
thRAM 0.7 Load balancer (AS Server Selection)
tgrC PU 0.7 DC Controller (Autoscaling)
tgrRAM 0.7 DC Controller (Autoscaling)
n 1 DC Controller (Autoscaling)
� 10 sec DC Controller (Autoscaling)
latencySLA 30 ms Entry point (Cloud Selection)

the other one in New York City. These are actual locations of EC2 availability zones.
Later, we call these data centers DC-EU-E and DC-US-E, respectively. We assign the
VMs from these data centers IP address from Dublin and New York, respectively,
which are extracted from GeoLite. All VMs we allocate in these data centers have the
performance characteristics and the price of EC2 m1.small instances with Linux in
the respective AWS regions. We model the VM start-up times based on the empirical
performance study by Mao and Humphrey [2012]. Just as in Amazon EC2, the on-
demand VM billing in DC-EU-E and DC-US-E is done per hour.

To demonstrate the usage of heterogeneous cloud resources from multiple cloud
providers, we model the other two data centers after Google Compute Engine. We posi-
tion them in Hamina, Finland and Dalles, Oregon because these are actual locations of
Google data centers, and we assign all their VMs IP addresses from these locations. We
call these data centers DC-EU-G and DC-US-G. All VM characteristics and prices are
modeled after the n1-standard-1-d VM type in the respective locations. Because Google
Compute Engine is a new cloud offering, there is no statistical analysis of its VM boot-
ing times. Thus, in our simulation, we consider the start-up time of an n1-standard-1-d
VM to be the same as the one of an EC2 m1.small VM. As in Google Compute Engine,
VMs in DC-EU-G and DC-US-G are billed in 1-minute increments, and all VMs are
charged for 10 minutes at least.

In our simulation, we deploy the aforementioned three-tier architecture and broker-
ing components as described in the previous sections. We model one entry point VM
in each data center. To demonstrate how our approach handles resource contention
in the data layer, in the experiments, we assume that in each cloud the DB layer is
static (i.e., not scalable) and consists of two DB servers holding equally sized database
shards. Table I summarizes the values of the algorithms’ parameters that we use in
the simulation.

6.2. Experimental Application and Workload

We base our experimental workload on the Rice University Bidding System (RUBiS)
benchmarking environment [RUBiS 2014; Amza et al. 2002]. RUBiS implements an e-
commerce dynamic web site similar to eBay.com and follows the three-tier architectural
pattern by having AS and DB servers.

RUBiS’s main and (to the best of our knowledge) newest competitor in the area of
three-tier application benchmarking is CloudSuite’s CloudStone [2014]. Unlike RU-
BiS, which has a simple synchronous web interface lacking any JavaScript, Cloud-
Stone implements a more sophisticated asynchronous (i.e., AJAX) web user interface.
Although this is important for evaluating how end users interact with a system, in this
work, we are interested in how to provision for and load balance the incoming server-
side requests. RUBiS follows the guidelines of the TPC-W [2002] specification of the
Transaction Processing Performance Council (TPC), which is an industry standard for
testing three-tier e-commerce systems. The RUBiS client implements features like end
user “think times” and page transitions in accordance with the predefined statistical

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:15

Fig. 3. User arrival frequencies per minute in the entry points of the EU data centers (DC-EU-E, DC-EU-G)
and the US ones (DC-US-E, DC-US-G).

distributions defined in TPC-W. Thus, it is our method of choice for a typical three-
tier application in terms of incoming server request patterns per user compared to
CloudStone, which does not follow a public specification.

The RUBiS workload consists of sessions, each of which consists of a string of user
requests. We have deployed in a local virtualized environment the PHP version of
RUBiS with a standard nonclustered MySql database in the backend, and we run a
test with 100 concurrent sessions. During the test, we monitor how the performance
utilizations (in terms of CPU, RAM, and disk) of the servers change over time as a result
of the executed workload. Based on that, we define the performance utilizations over
time of a typical RUBiS session. We will not describe the exact procedure for extracting
a session performance model because our previous work [Grozev and Buyya 2013]
details this procedure and demonstrates experimentally the validity of the extracted
model. We use this derived session performance model for our simulation.

The number of incoming sessions over a short time period can be well modeled with
Poisson distribution with a constant mean λ [Cao et al. 2003; Robertson et al. 2003].
However, over longer time periods, the frequencies of user arrivals can change and are
rarely constant. Hence, the number of session arrivals over time can be represented
as a Poisson distribution over a frequency function of time λ(t), which represents the
variations in session arrival frequencies [Grozev and Buyya 2013].

Our experiment has a duration of 24 hours with a workload that is more intensive
during working hours and lower otherwise. We model the user arrival frequencies in
the entry points of the two European (EU) data centers to be the same. The arrival
frequencies in the US data centers are the same as those in the EU ones, only “shifted”
by 12 hours to represent the time zone difference. Figure 3 depicts how the arrival
frequencies per minute (i.e., λ(t)) in the entry points of the European and the US data
centers change over time.

In our simulation, each user/session is assigned an IP address that, as explained
previously, can be used to approximate the user’s physical location and the latencies to
the candidate data centers. The GeoLite [2014] database provides IP ranges for every
country. In the simulation, whenever we model the arrival of a user in a US data center,
we take a random US IP from GeoLite. Similarly, all users arriving in the EU data
centers are assigned random IP addresses from EU countries.

To demonstrate how our system handles regulatory requirements, we introduce an
additional legislative constraint. In the simulation, we assign a citizenship to each user

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:16 N. Grozev and R. Buyya

and impose the requirement that a user with US citizenship should be served in a US
data center and an EU citizen should be served in the EU. As discussed, we implement
this logic in the admission controllers. We assign US citizenship to 10% of the users
arriving in the EU entry points and EU citizenship to 10% of the users arriving in the
US clouds. Furthermore, in our simulation, the data of all EU citizens are replicated
in both EU data centers, and the data of all US citizens are replicated in both US cloud
sites. Therefore, an EU or a US citizen can be served in any EU or US data center,
respectively.

6.3. Baseline Approach

We compare our approach to a baseline method that uses standard industry practices.
More specifically, we have implemented a baseline simulation that distributes incoming
users to those data centers that can serve them with the lowest latency, similarly to
the Route 53 LBR service [Amazon 2014c]. Following the design of the AWS ELB
[Amazon 2014d], within each data center we implement sticky load balancing that
assigns new sessions to running AS servers following the round-robin algorithm. Last,
in our baseline simulation, we implement automatic autoscaling following the design
of AWS AustoSale [Amazon 2014a]. More specifically, if all AS servers within a data
center reach a CPU utilization of more than 80%, a new AS server is started. If an AS
server reaches a CPU utilization of below 10%, it is stopped. We have also implemented
a cool-down period of 2.5 minutes. Just as in AWS AustoSale, we do not allow for two
consequent autoscaling actions to happen within a period shorter than the cool-down
period.

6.4. Results

Figure 4 depicts the number of served sessions in each data center over time. In the
diagram, a session is classified as failed if some of the servers handling it failed (e.g.,
due to out-of-memory errors). A session is rejected if it is assigned to a data center that
is not eligible to serve it. In our simulation, this happens if a US citizen is assigned to
a European data center or vice versa. Otherwise, a session is considered served.

From Figure 4, we can see that the baseline approach redirects many fewer sessions
to data centers DC-EU-G and DC-US-G in comparison to the others. This is because of
the location of these data centers and the end users. As described, in our experiment,
all IP addresses within the EU and US are likely to be used as sources of sessions with
the same probability. As to the GeoLite database and the PingER service, there are
many more IP addresses located nearby and with lower latency to Dublin, Ireland and
New York City than to Hamina, Finland and Dalles, Oregon. Therefore, the baseline
approach redirects the majority of incoming sessions to these data centers. Because
the data layer cannot scale up, this leads to resource contention during peak workload
periods (10h–14h in the EU data centers and 22h–24h, 0h–2h in the US). This in turn
causes congestion in the DB servers resulting in a slowdown in session serving. As a
result, the number of concurrently served sessions is increased significantly, causing
AS servers keeping in memory the sessions’ states to fail with “out-of-memory” errors
(in the case of DC-US-E) or to degrade response time (in the case of DC-EU-E).

Another reason for session failure in the baseline approach is autoscaling, which
terminates AS servers with low utilization even if they serve sessions. This is visible
in the case of DC-EU-E during the 16h–24h period and in DC-US-E during the 0h–4h
period, when the scaling down causes several session failures because sessions are
stateful. Our approach terminates servers only if they do not serve any sessions and
thus reduces the number of session failures for stateful applications. Consequently, the
overall rate of session failures in the baseline is approximately 7%.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:17

Fig. 4. Session outcome over time.

In contrast to the baseline approach, during the workload peak periods, our approach
redirects many sessions to DC-EU-G and DC-US-G even though they may not be
optimal in terms of cost or latency. This is because the cost of a data center is evaluated
as +∞ if it is overloaded (see Equation (2)), and this is used by the cloud selection
Algorithm 3. As a result, our approach minimizes session failure by diverting users
from overloaded data centers to alternative ones. During off-peak hours, our approach
also redirects most users to DC-EU-E and DC-US-E, which, as discussed, is optimal in
terms of latency.

Furthermore, the baseline approach does not consider the stated regulatory require-
ments during the cloud selection stage and only uses latency as selection criteria. Thus,
about 10% of the incoming sessions are redirected to ineligible clouds and are rejected.
In contrast, our approach takes this into consideration and redirects users to eligible
data centers, even if this means suboptimality in terms of latency and cost.

A session delay is defined as the sum of the latency delay and the execution delay.
The latency delay is the time lost in network transfer between a user and the cloud
during a session. Execution delay is the time lost due to resource contention (e.g., CPU
preemption) on the server side. The session delay is a measurement of the end user
experience. The simulation environment allows us to measure execution delay [Grozev
and Buyya 2013], and we can compute the latency delay based on the latency and the
average number of interactions/requests during a session.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

13:18 N. Grozev and R. Buyya

Fig. 5. Session delays in seconds.

Figure 5 depicts the session delays of those users served in the European and US data
centers. The delays in DC-EU-E and DC-US-E during the peak workload periods of the
baseline approach significantly exceed those of our approach. Similar to the session
failures, this is caused by resource contention in the DB layer. In contrast, all delays
in DC-EU-G and DC-US-G are insignificant since the baseline approach redirects very
few users there and therefore resource contention is small. The delays in DC-US-E are
smaller than those in DC-EU-E because the failures there were much more frequent,
and therefore fewer sessions were actually measured (see Figure 4). In our approach,
DB layer contentions are mitigated because users are redirected to alternative data
centers whenever the data layer in a given cloud is overloaded. Moreover, the overall
session delays in our approach are less than 10s at all times in all data centers, showing
that the effect of selecting a cloud with less than optimal latency in some cases is small.

Figure 6 shows the distributions of the achieved latencies between clients and clouds
using the baseline and our approaches. The average baseline latency is lower by ap-
proximately 10ms than the one in our approach because the baseline method greedily
selects the data center with lowest latency. Also, our approach honors the stated regula-
tory requirements, and hence 10% of the users are served overseas, which contributes
to the increased average latency. Still, in our approach, the mean, median, and in-
terquartile range of the latencies is below the stated SLA of 30ms thus providing for
adequate QoE. End users experience the network latency through application response
delays. In our approach, the average network delay is higher, but the execution delay
is much lower, resulting in lower overall delay (see Figure 5) and better QoE.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:19

Fig. 6. Network latency between users and serving data centers in milliseconds. The mean is denoted with
a rhombus.

Last, the overall cost incurred by our approach is about 28% more than the cost
of the baseline. First, this can be attributed to the number of rejected and failed
(approximately 17%) sessions in the baseline experiment. Since the baseline approach
effectively served many fewer sessions, it needed fewer servers and therefore its cost is
lower. Also, in order to prevent failure, our approach redirects many sessions to more
expensive data centers thus resulting in increased overall cost.

7. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel approach for adaptive resource provisioning and
workload distribution of three-tier applications across clouds. It encompasses all as-
pects of resource management and workload redirection including (i) cloud selection,
(ii) load balancing, and (iii) autoscaling. We introduced new architectural components
and algorithms that ensure that imperative requirements like regulation compliance
and high availability are not violated without sacrificing too much cost and end-user
QoE. To validate our approach, we performed simulations with realistic cloud data
center settings, VM types, costs, and network characteristics derived from a real-life
benchmarking applications, cloud providers, and Internet monitoring services. We com-
pared our approach to a baseline approach that follows current industrial best practices.
Results show that our approach is a significant improvement over the baseline in terms
of achieved availability, accumulative session delay, and regulatory compliance while
maintaining acceptably low cost and latency between users and serving data centers.

In the future, we plan to extend our algorithms to utilize a mixture of reserved and
on-demand VM instances. Also, we intend to investigate how to automatically select
the most appropriate (in terms of performance and cost) type of VM in each cloud.
Another interesting extension would be to consider data center availability (defined in
the provider’s SLAs or by a third party) in the cloud selection Algorithm 3.

ACKNOWLEDGMENTS

We thank Rodrigo Calheiros, Amir Vahid Dastjerdi, Adel Nadjaran Toosi, Atefeh Khosravi, Yaser Mansouri,
Chenhao Qu, and Deborah Magalhães for their comments on improving this work. We also thank
Amazon.com, Inc. for their support through the AWS in Education Research Grant.

REFERENCES

A. Aarsten, D. Brugali, and G. Menga. 1996. Patterns for three-tier client/server applications. In Proceedings
of Pattern Languages of Programs (PLoP’96).

Amazon. 2014a. Amazon Auto Scaling. (Feb. 3 2014). http://aws.amazon.com/autoscaling/.
Amazon. 2014b. Amazon ElastiCache. (Feb. 3 2014). http://aws.amazon.com/elasticache/.
Amazon. 2014c. Amazon Route 53. Retrieved from http://aws.amazon.com/route53/.
Amazon. 2014d. Elastic Load Balancing. Retrieved from http://aws.amazon.com/elasticloadbalancing/.
Amazon. 2014e. Summary of the Amazon EC2 and Amazon RDS Service Disruption. Retrieved from

http://aws.amazon.com/message/65648/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

http://aws.amazon.com/autoscaling/.
http://aws.amazon.com/elasticache/.
http://aws.amazon.com/route53/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/message/65648/

13:20 N. Grozev and R. Buyya

Amazon. 2014f. Summary of the AWS Service Event in the US East Region. Retrieved from http://aws.
amazon.com/message/67457/.

C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, K. Rajamani, W. Zwaenepoel, E. Cecchet, and J. Marguerite.
2002. Specification and implementation of dynamic Web site benchmarks. In Proceedings of the IEEE
International Workshop on Workload Characterization. 3–13.

Apache Foundation. 2014a. Apache Delta Cloud. Retrieved from http://deltacloud.apache.org/.
Apache Foundation. 2014b. Apache Libcloud. Retrieved from http://libcloud.apache.org/.
Apache Foundation. 2014c. Apache Nuvem. Retrieved from http://incubator.apache.org/nuvem/.
D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale, P. Matthews, C.-S.

Nechifor, D. Petcu, A. Gericke, and C. Sheridan. 2012. MODAClouds: A model-driven approach for the
design and execution of applications on multiple Clouds. In Proceedings of the Workshop on Modeling in
Software Engineering (MISE’12). 50–56. DOI:http://dx.doi.org/10.1109/MISE.2012.6226014

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. H. Katz. 2009. Above the Clouds: A Berkeley View
of Cloud Computing. Technical Report. Electrical Engineering and Computer Sciences, University of
California at Berkeley.

J. A. Bowen. 2011. Legal issues in cloud computing. In Cloud Computing: Principles and Paradigms,
R. Buyya, J. Broberg, and A. M. Goscinski (Eds.). Wiley Press, Chapter 24, 593–613.

E. Brewer. 2000. Towards robust distributed systems. In Proceedings of the Annual ACM Symposium on
Principles of Distributed Computing, Vol. 19. ACM, New York, NY, US, 7–10.

E. Brewer. 2012. CAP twelve years later: How the “Rules” have changed. Computer 45, 2 (2012), 23.
R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. 2009. Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation
Computer Systems 25, 6 (Jun. 2009), 599–616.

R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya. 2011. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience 41, 1 (January 2011), 23–50.

J. Cao, M. Andersson, C. Nyberg, and M. Kihl. 2003. Web server performance modeling using an M/G/1/K*PS
queue. In Proceedings of the 10th International Conference on Telecommunications (ICT’03), Vol. 2.
1501–1506.

E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti. 2012. Cloud federations in contrail. In Proceedings
of Euro-Par 2011: Parallel Processing Workshops, Michael Alexander et al. (Eds.). Lecture Notes in
Computer Science, Vol. 7155. Springer, Berlin, 159–168.

R. Cattell. 2010. Scalable SQL and NoSQL data stores. SIGMOD Record 39, 4 (May 2010), 12–27.
CloudSuite. 2014. CloudSuite’s CloudStone. Retrieved from http://parsa.epfl.ch/cloudsuite/web.html.
CSCC Workgroup. 2012. Practical Guide to Cloud Service Level Agreements Version 1.0. Technical Report.

Cloud Standards Customer Council (CSCC).
Ebay. 2014. Ebay. (Feb. 3 2014). http://www.ebay.com/.
Enstratius. 2014. Enstratius. Retrieved from https://www.enstratius.com/.
A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sirvent, J. Guitart, R. Badia,

K. Djemame, W. Ziegler, T. Dimitrakos, S. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif, and C. Sheridan. 2012. OPTIMIS: A holistic approach
to cloud service provisioning. Future Generation Computer Systems 28, 1 (2012), 66–77.

M. Fowler. 2003. Patterns of Enterprise Application Architecture. Addison-Wesley Professional.
GeoLite. 2014. GeoLite2 Free Downloadable Databases. Retrieved from http://dev.maxmind.com/geoip/

legacy/geolite/.
Google. 2014. Post-mortem for February 24th, 2010 Outage. Retrieved from https://groups.google.com/group/

google-appengine/browse_thread/thread/a7640a2743922dcf?pli=1.
N. Grozev and R. Buyya. 2012. Inter-Cloud architectures and application brokering: Taxonomy and survey.

Software: Practice and Experience 44, 3 (2012), 369–390.
N. Grozev and R. Buyya. 2013. Performance modelling and simulation of three-tier applications in cloud and

multi-cloud environments. Computer Journal (in press) (2013).
IBM. 2013. IBM Takes Australian Open Data onto Private Cloud. Technical Report. IBM.
JClouds. 2014. JClouds. Retrieved from http://www.jclouds.org/.
Kaavo. 2014. Kaavo. Retrieved from http://www.kaavo.com/.
M. Mao and M. Humphrey. 2012. A performance study on the VM startup time in the cloud. In Proceedings

of the 5th IEEE Conference on Cloud Computing (CLOUD’12). 423–430.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

http://aws.amazon.com/message/67457/
http://aws.amazon.com/message/67457/
http://deltacloud.apache.org/
http://libcloud.apache.org/
http://incubator.apache.org/nuvem/
http://dx.doi.org/10.1109/MISE.2012.6226014
http://parsa.epfl.ch/cloudsuite/web.html
http://www.ebay.com/.
https://www.enstratius.com/
http://dev.maxmind.com/geoip/legacy/geolite/
http://dev.maxmind.com/geoip/legacy/geolite/
https://groups.google.com/group/google-appengine/browsethread/thread/a7640a2743922dcf?pli=1
https://groups.google.com/group/google-appengine/browsethread/thread/a7640a2743922dcf?pli=1
http://www.jclouds.org/
http://www.kaavo.com/

Multi-Cloud Provisioning and Load Distribution for Three-Tier Applications 13:21

P. Mell and T. Grance. 2011. The NIST Definition of Cloud Computing. Special Publication 800-145. National
Institute of Standards and Technology.

Microsoft. 2014. Windows Azure Service Disruption Update. Retrieved from http://blogs.msdn.com/b/
windowsazure/archive/2012/03/01/windows-azure-service-disruption-update.aspx.

P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski. 2012. Introducing STRATOS: A cloud broker
service. In Proceedings of the IEEE International Conference on Cloud Computing (CLOUD’12). IEEE.

D. Petcu. 2013. Multi-Cloud: Expectations and current approaches. In Proceedings of the International
Workshop on Multi-Cloud Applications and Federated Clouds (Multi-Cloud’13). ACM, New York, NY,
1–6.

D. Petcu, C. Crăciun, M. Neagul, S. Panica, B. Di Martino, S. Venticinque, M. Rak, and R. Aversa. 2011.
Architecturing a sky computing platform. In Proceedings of the International Conference towards a
Service-Based Internet (ServiceWave’10), Michel Cezon and Yaron Wolfsthal (Eds.). Lecture Notes in
Computer Science, Vol. 6569. Springer-Verlag, Berlin, 1–13.

PingER. 2014. Ping End-to-End Reporting. Retrieved from http://www-iepm.slac.stanford.edu/pinger/.
A. Ramirez. 2000. Three-tier architecture. Linux Journal 2000, 75, Article 7.
RightScale. 2014. RightScale. Retrieved from http://www.rightscale.com/.
A. Robertson, B. Wittenmark, and M. Kihl. 2003. Analysis and design of admission control in Web-server

systems. In Proceedings of the American Control Conference, Vol. 1. 254–259.
RUBiS. 2014. RUBiS: Rice University Bidding System. Retrieved from http://rubis.ow2.org/.
Scalr. 2014. Scalr. Retrieved from http://scalr.net/.
Simple Cloud. 2012. Simple Cloud API. Retrieved from http://simplecloud.org/.
Transaction Processing Performance Council (TPC). 2002. TPC BENCHMARK W (Web Commerce). Specifi-

cation, version 1.8. Transaction Processing Performance Council (TPC).
J. Varia. 2011. Best practices in architecting cloud applications in the AWS cloud. In Cloud Computing:

Principles and Paradigms, R. Buyya, J. Broberg, and A. M. Goscinski (Eds.). Wiley, 459–490.

Received February 2014; revised April 2014; accepted June 2014

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 3, Article 13, Publication date: October 2014.

http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/windows-azure-service-disruption-update.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/03/01/windows-azure-service-disruption-update.aspx
http://www-iepm.slac.stanford.edu/pinger/
http://www.rightscale.com/
http://rubis.ow2.org/
http://scalr.net/
http://simplecloud.org/

