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HUNTER: AI based Holistic Resource Management for Sustainable Cloud Computing

Shreshth Tu ariou7,

Abstract
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e adoption of cloud data centers (CDCs) has given rise to the ubiquitous demand for hosting application
Further, contemporary data-intensive industries have seen a sharp upsurge in the resource requirements o

This has led to the provisioning of an increased number of cloud servers, giving rise to higher energy con
ntly, sustainability concerns. Traditional heuristics and reinforcement learning based algorithms for energy
management address the scalability and adaptability related challenges to a limited extent. Existing work o

endencies across thermal characteristics of hosts, resource consumption of tasks and the corresponding sc
s leads to poor scalability and an increase in the compute resource requirements, particularly in environm
resource demands. To address these limitations, we propose an artificial intelligence (AI) based holistic

echnique for sustainable cloud computing called HUNTER. The proposed model formulates the goal of o
cy in data centers as a multi-objective scheduling problem, considering three important models: energy, the
TER utilizes a Gated Graph Convolution Network as a surrogate model for approximating the Quality o
stem state and generating optimal scheduling decisions. Experiments on simulated and physical cloud envi
udSim toolkit and the COSCO framework show that HUNTER outperforms state-of-the-art baselines in

ption, SLA violation, scheduling time, cost and temperature by up to 12, 35, 43, 54 and 3 percent respectiv

olistic Resource Management, Energy-Efficiency, Cloud Computing, Artificial Intelligence, Thermal Manag

on

ting has proven to be a reliable, cost-effective
omputing service choice to host and deliver soft-
s for diverse industrial applications [1]. Many
e migrated to cloud data centers (CDCs) to take

on-demand, elastic and scalable resource provi-
g companies on capital investments and mainte-
use infrastructure [2]. The plethora of deploy-

offered by most cloud providers allows users to
ources according to their objectives. However,
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the rise of AI and Internet of Things (IoT) applicatio
dustry 4.0 [3] has led to an increase in the overall requ
of cloud resources. In particular, cloud providers, such
zon, Microsoft and Google, have witnessed heavy rel
increase in the number of cloud data centers to fulfi
creasing demands of users [4].

A large amount of energy is required to run these c
centers efficiently. Specifically, there is a need to ma
cloud resources effectively to lower the energy con
and help reduce the cost and carbon footprints. This de
ten comes with high energy consumption, a major part
is attributed to the cooling costs [2]. The cooling infra
of a CDC can consume almost the same level of ener
computing nodes themselves [5]. Major public cloud
need to invest in large scale cooling infrastructures, ma
expensive exercise [6]. Producing holistic energy-awar
for resource management, that consider both cooling
putational costs, has been acknowledged as an impor
problem [6]. Specifically, the research gap presents a
task scheduling in CDCs that considers the energy, the
cooling costs as optimization objectives [2].

Challenges. The problem of providing holistic
management for sustainable cloud computing is funda
challenging because the relationship between energy c
tion, the computational infrastructure and the cooling
complex. Another challenge is the coordination of the
ing decisions for different tasks that considers both c
power and cooling power in tandem. Another facto

d to Journal of Systems and Software Septem
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Journal Pre-proof
he system [6]. Consequently, as non-stationary
required to be serviced, the cooling systems and
er and temperature metrics of hosts change dy-
Furthermore, tasks running in a datacenter may
on one another. This is a common case when

ated to a cloud environment with each job con-
tiple independent tasks and service level agree-
being defined for each job. The overall response
violations would then be defined at the job level

ng measured for each task. Moreover, in hybrid
clouds, the host machines have different resource
rms of their CPU, RAM, disk and network capa-
issues further complicate scheduling as now a

of the system also needs to capture the inter task
and host heterogeneity.
lutions. Over the past few years many re-

ement techniques have been proposed that target
ce and the improvement of Quality of Service
ecific solutions that target sustainable comput-

eraging monitored metrics like energy consump-
erature of host machines [2]. Only a few solu-
sider the energy and cost implications of cool-
[6]. Most prior work presents meta-heuristic al-
nd deep learning techniques [7]. Most state-of-
use meta-heuristic approaches like genetic algo-

ger linear programming [6, 8, 9, 10, 11]. Other
s use reinforcement learning (RL), specifically
tabular models like Q-Learning [12, 13]. How-
ta-heuristic and RL techniques require several
cisions before updating their models, making it
t quickly in highly volatile settings, considering

endencies, thermal characteristics or converging
heduling decision [14]. All such features are cru-
tic solution for sustainable scheduling [2].
d and new insights. As is common in most prior
ng the optimization variable, i.e. the scheduling
placement matrix does not capture the inter-task
well [15]. A better approach is to use geometric
he scheduling decisions, particularly as a graph,
tructure specific extraction of the system state in-
cently proposed Artificial Intelligence (AI) tech-
s graph neural networks or graph encoders, cap-
etric data very well [16, 17]. One such network,
raph Convolution Network (GGCN) enables ag-
e graph node information using convolution op-
essage passing [16], making it suitable to model
puting network as a graph. This enables a more

ization approach that also takes into account the
and edge-cloud hierarchy, not considered in most
, 9]. We use a GGCN model as a surrogate of the
scores allowing us to swiftly run placement op-
ch a surrogate model enables us to quickly get
for an input (scheduling decision) without ac-

g it in the physical environment, saving us time
h deep surrogate models are commonly used in

tend our previous work [6] by proposing a Holistic
maNagemenT technique for Energy-efficient cloud c
using aRtificial intelligence, called HUNTER. The
method uses a GGCN network as a QoS surrogate to
the scheduling decision for a hybrid public-private c
vironment. It uses performance to power ratio as a
to explore the scheduling search space that enables t
cantly reduce scheduling time. In our previous wor
proposed a holistic management technique for cloud
and established a relationship between replication an
consolidation to improve the energy-efficiency and cu
bon footprint. However, our previous work did not
heterogeneous resources and dynamic workloads. In t
we extend existing thermal and energy consumption m
also include the cooling overheads [7]. Further, to pr
cessive scheduling overheads, we use performance to
tio as a heuristic to significantly reduce the time to
to a scheduling decision [18]. To adapt in volatile s
we periodically adjust the weights of the deep surroga
using backpropagation.

The contributions of this research work are summar
• We propose a novel energy-efficient resource man

approach (HUNTER) that uses GGCN as a deep
model for quick QoS estimation and three sust
models, viz, thermal, energy and cooling.
• Extensive experiments on simulated (us

CloudSim [19] toolkit) and physical cloud
(using the COSCO [14] framework) show that
posed model outperforms state-of-the-art sched
sustainable computing.
• HUNTER gives the best energy consumption, SL

tion, cost and temperature by 11.90%, 35.41%
and 3.47% respectively. HUNTER achieves
42.78% lower scheduling overheads compared to
baseline.

The rest of the article is organized as follows. S
overviews the related work. Section 3 presents the H
scheduler. Performance evaluation is carried out in
with additional results and analysis in Section 5. Secti
cludes the paper and proposes future work.

2. Related Work

A significant amount of research has been devoted to th
resource management in cloud computing. Table 1 sum
the comparison of HUNTER with existing works base
portant key features. Given our scope of holistic man
of resources particularly focusing on sustainability, w
the state-of-the-art work into two main categories:
heuristic methods (rows 1-3) and 2) reinforcement
models (rows 4-8). The ‘holistic’ column represents
the approach provides an end-to-end solution for sc
considering all parameters for sustainable cloud comp
The ‘dynamic’ column represents whether the techniq
on-the-fly for non-stationary environments.
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Table 1: Comparison of HUNTER with related work (Xmeans that the corresponding feature is present).

Work
st Energy

TOPSIS [20] X
MALE [21] X
CRUZE [6] X
MITEC [8] X
PADQN [12] X
ANN [10] X
SDAE-MMQ [13 X
HDIC [9] X
HUNTER X
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Holistic Dynamic
Technical Sustainability Models QoS and other Optimization Parameters
Approach Energy Thermal Cooling Temperature Time SLA Violation Rate Co

X Threshold Based X X X
X Memory Mapping X X X
X Cuckoo Optimization X X X X X X X

X Genetic Algorithm X X X
X Deep Q Learning X X X
X Neural Network X X

] X Autoencoders X X X
X X NARX Network X X X
X X Surrogate Modelling X X X X X X X

istic Methods. Our previous work, CRUZE [6],
e the total cloud energy consumption whilst max-
ility of the system. It utilizes efficient design
espect to energy, reliability, capacity and cool-
te a scheduling decision, CRUZE uses a Cuckoo
pproach. Another work, FECBench [22] pro-

ance interference prediction models for services
ders to develop resource management techniques.
ave constructed a process pipeline to construct
stressors using machine learning. To minimize

ofiling costs, the authors have explored multi-
esource metrics with minimal experimental runs
f experiments (DoE) that significantly minimizes
ofile cost. In similar efforts, the MALE algo-
s recently introduced to minimize energy con-
cloud datacenter by reducing memory consump-
ntion. This is achieved by mapping memory re-
virtual machines to cloud hosts using a prede-

criteria. Similarly, TOPSIS [20] presents a set
o significantly reduce energy consumption using
es that are recorded from cooling devices and
approach uses a threshold based load-balancing
revent thermal hotspots and minimize failures due
. A similar work, MITEC [8] uses a genetic algo-
ize scheduling decisions and updates the energy
odels to tune the fitness scores for each alloca-
Other works in this category propose autonomic

management mechanisms for the execution of
ractive workloads by leveraging the multiple re-
nd host heterogeneity to reduce energy consump-
5]. However, most methods in this category in-
E, Ella-W and GRANITE do not adapt in volatile
we include the CRUZE and MITEC methods as
ur experiments to represent this category.

ent Learning. In recent years, several machine
based schedulers have been proposed that aim to
y consumption of CDCs. Reinforcement learn-

sub-field within ML that models the system as an
ironment using QoS parameters to dynamically

heduling policy [26]. One of the most versatile
is the deep Q learning (DQL). Here, a deep neu-
used to estimate a long-term reward (commonly
the Q value) for each state. Many recent works,

for instance PADQN [12] and SDAE-MMQ [13], form
scheduling problem as a RL problem and utilize deep
ing to produce task placement decisions [27]. Here
cision is modelled as the state of the RL system wit
as task migration or allocation decisions. Each action
the model state and gives a reward in the form of a Q
More advanced DQL based approaches use sophisticat
networks to predict the Q values for each scheduling
SDAE-MMQ uses a stacked denoising autoencoder a
network and MiniMax-Q instead of vanilla Q-learn
Another work, HDIC [9], uses a nonlinear auto-regre
work with exogenous inputs (NARX) as a value netw
vanced neural models typically take a long time to
infer Q values for large-scale state inputs. Other work
use a deep neural network to produce a task allocatio
gration decision [28]. For instance, a recent ANN
uses an artificial neural network to produce a softma
for each task [10]. Taking the argmax for each out
us the scheduling decision for each task. The ANN
using a supervised learning framework with actions
warded using QoS metrics like energy consumption an
tion time. Such approaches usually scale well with th
of tasks or hosts in the system, but are unable to capt
task dependencies to efficiently handle task placemen
over, Q-learning based methods are known to be slow
in volatile settings [14]. We use the PADQN, ANN
MMQ and HDIC methods as baselines in our experi
these are empirically the best methods this category.

These approaches focus on particular perspectives
resources management, e.g. computing or network
these works, our approach considers resource manag
a holistic manner by considering energy, thermal an
characteristics whilst reducing scheduling and task m
overheads.

3. The HUNTER Scheduler

3.1. System Model
Figure 1 shows the system model considered in this w
tivated from prior work [29, 14], we consider the f
components of the CDC.
• Cloud Users: The users share workloads as jo

CDC (more details in Section 3.2). The data is
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Figure 1: System Model of HUNTER

sensors and passed on to the CDC using gateway
ke smartphones and tablets [14].
orkload Management Portal: A graphical user
for cloud users to interact with the system for the
n of workloads along with their SLA and QoS

d Manager: Initially, the workload manager pro-
l the incoming workloads. An admission con-
lizes all workloads as container instances [6, 14].

roker: The central cloud server that allocates in-
obs to various compute resources (cloud worker
t consists of the following components:
vice Manager: Contains two elements, SLA and

managers that manage the heterogeneous cloud
ices while processing workloads. The QoS man-

r contains the information about QoS require-
ts for different workloads, while the SLA man-

r contains the information about an agreement
ed between a cloud user and a provider based on
requirements.

C Manager: Continually monitors the resource
ization of all active tasks and hosts in the sys-
. It also monitors the QoS parameters (including
energy and thermal characteristics of cloud hosts)
also performs the task allocation and migration.

his work, we assume tasks as container instances
task migration as the transfer and restoration of

tainer checkpoints.
ource Manager: Decides the schedule for each

in the system. The resource manager includes
sustainability models for energy, thermal and

ling parts of the CDC. For resource schedul-
the manager contains a GGCN based surrogate
el that estimates QoS parameters. It performs

ning and on-the-fly tuning of the GGCN model
dapt in non-stationary settings. This manager
runs an exploration strategy that checks the QoS

res for a set of allocations and chooses the best
as the scheduling decision (more details in Sec-

tion 3.5).
• Cloud Hosts: The cloud broker is connected to

geneous set of worker nodes. Some nodes ar
in the same Local Area Network (LAN) as th
called the private cloud. Others are present in a g
ically distant location and connected using a virt
(VLAN). As is common practice, we assume tha
cloud nodes are resource constrained but offer lo
services, and public-cloud nodes have abundant
but have high communication latency.

The HUNTER scheduler resides as the Resource m
the Cloud Broker, taking tasks as inputs from the W
Manager (see Figure 1). HUNTER uses resource met
the Resource Monitor and executes scheduling decisio
Container Orchestration (as tasks are realized as con
our system).

3.2. Workload Model and Problem Formulation

As common in prior work, we assume that generating
ing decisions is a discrete-time control problem [14,
divide the timeline into equal duration intervals, wit
interval denoted as It (starting from i = 0). We assum
number of host machines and denote the set of cloud
H. The workloads are in the form of jobs Jt, where
ji ∈ Jt is composed of multiple tasks ji = {t0, . . . , t| j
are no precedence constraints among tasks that belo
same job, but the QoS metrics are calculated at the
instead of the task level. Thus, it is important to consi
task dependencies while scheduling. All new jobs crea
interval It are denoted as Nt, with all active jobs being
as At. A job is considered to be active if at least one ta
job is being executed in the cloud environment. If no
job j ∈ Nt can be allocated to a cloud node then it is a
wait queue Wt. All created jobs that are not active an
in the wait queue are considered to be completed an
calculate their metrics like response time and SLA vio

We consider the problem of maximizing the QoS
score accumulated across all intervals in a bounded
periment. We denote the QoS score for interval It b
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consider a total n intervals in an experiment. We denote the uti-
lization metrics of all hosts in interval It−1 as Ut. Now using Ut,
we need to pre
in Nt ∪Wt ∪ A
be formulated

maximize
S t

subject to

In the rest o
for a single in
venience.

3.3. Sustainab
In this work, t
source manag
els: energy, t
produce the fo
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This model is
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The compu
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consumption,
namic consum

where Er
dynamic

sumption of th

Elinear
dynamic is calc

where C is CP
is CPU voltag

where µ1 and µ2 are non-linear model parameters and U j is
CPU utilization of host h j.

n of stor-
perations

. (8)

in mem-
ch is cal-

(9)

ption of
ateways,

ds. (10)

ption of
thers and

(11)

rd(s) and
ort) run-
ies is de-

umed by
datacen-
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tioner in-
ed by the
radiators

IO) water

oom Air
are ther-

st respec-
rature of

(13)

ed using
late CPU

T inital is
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dict a scheduling decision S t. All tasks for jobs
t are called feasible tasks. Thus the problem can
as:

n∑

t=0

Ot

∀ t, S t : Pt ∪ Qt → H,

∀ t, Pt = set of feasible tasks in Nt ∪Wt ∪ At,

∀ t,Qt = set of active tasks in the system
(1)

f the discussion we consider these symbols only
terval and drop the t subscript for notational con-

ility Models
o decouple the different aspects of sustainable re-
ement [6], we have designed three different mod-
hermal and cooling. For completeness, we re-
rmulae from our prior work [6], with necessary

r the new formulation.

Model
designed to encapsulate all parameters related

consumption, ranging from compute devices to
mponents [31]. The total energy of a CDC is

ETotal = EComputing + ECooling. (2)

ting system consists of hosts and its energy con-
udes that of the different components like CPU,
etwork and peripherals. Thus, EComputing can be

EProcessor+EStorage+EMemory+ENetwork+EExtra. (3)

Here, EProcessor represents the processor’s energy
which is calculated by adding the idle and dy-
ption of all cores. Thus,

EProcessor =

cores∑

r=1

Er
dynamic + Er

idle, (4)

and Er
idle are the dynamic and idle energy con-

e r-th core. Here, Edynamic is calculated using

Edynamic =
Elinear

dynamic + Enon-linear
dynamic

2
. (5)

ulated as

Elinear
dynamic = CV2 f , (6)

U capacitance, f is CPU clock frequency, and V
e. Enon-linear

dynamic is calculated using

Enon-linear
dynamic (h j) = µ1 · U j + µ2 · U2

j , (7)

Storage. EStorage represents the energy consumptio
age devices to store data. The data read and write o
account for the energy consumption in such devices

EStorage = EReadOperation + EWriteOperation + EIdle

EMemory represents the energy consumption of the ma
ory (RAM/DRAM) and cache memory (SRAM), whi
culated using

EMemory = ESRAM + EDRAM.

Network. ENetwork represents the energy consum
networking equipment such as routers, switches and g
LAN cards, etc., and is calculated as

ENetwork = ERouter + ESwitches + EGateways + ELAN car

Peripherals. EExtra represents the energy consum
other parts, including the current conversion loss and o
is calculated as

EExtra = Emotherboard +
∑

f∈F

E f
connector

where Emotherboard is energy consumed by motherboa∑
f∈F E f

connector is energy consumed by a connector (p
ning at the frequency f, where the set of port frequenc
noted by F.

3.3.2. Cooling Model
In the cooling model, ECooling denotes the energy cons
cooling devices to maintain the temperature of a cloud
ter, which is calculated using

ECooling = EAC + ECompressor + EFan + EPump,

where EAC is the energy consumption of the air-condi
side the cloud-datacenter, ECompressor is the energy us
compressor, EFan is that of the fans attached to the
and EPump is that of the pump within the all-in-one (A
cooling solution.

3.3.3. Thermal Model
To design the thermal model, we use the Computer R
Conditioning (CRAC) model and RC (where R and C
mal resistance (k/w) and heat capacity (j/k) of the ho
tively) used as a time-constant to estimate the tempe
the CPU for each host (T cu) [6, 7]. Thus,

T cu = PR + Tempinlet + T initial ∗ e-RC,

where the inlet temperature (Tempinlet) is calculat
CRAC model (T cu); the RC model is used to calcu
temperature (T CPU); P is the dynamic power of host.
the initial temperature of the CPU, which is taken as
ent temperature of the datacenter [7].

The detailed description of the thermal model and th
metrics is given in our previous works [6].
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based surrogate model of HUNTER. The three inputs to the
ph structure are shown in red. Feed-forward and graph con-
s are shown in blue and purple respectively. All activations

n and all data structures are shown in grey.

ased Surrogate Model

n Section 1, we model the inputs of our surrogate
geometric graph representation (see Figure 2).

graphs D and S . The former represents the inter
cies and the latter represents the bi-partite graph
to the scheduling decision. D = (VD, ED), where
e tasks as nodes and ED denotes the inter-task
terms of the jobs they belong to as undirected

ask has a feature vector corresponding to the In-
Second (IPS), RAM, Disk and Bandwidth con-
e RAM, Disk and Bandwidth consumption also
ad and write speeds of such tasks. Each edge
s an unordered pair such that tasks tp and tq be-

e job j ∈ J. S = (VS , ES ) is a bi-partite graph
two types: tasks and hosts. The edges of the
ES correspond to the allocation decision of the

here task tp is allocated to host hr. Similar to D,
a feature vector corresponding to the IPS, RAM,
dwidth consumption. The feature vectors of the

consist of the IPS, RAM, Disk and Bandwidth
nd capacities.
graph convolutions, we combine S and D into a
eneous graph, where the edge set now becomes

that each edge now also has an edge type (task
r allocation relation). This hetero-graph is then

CN model to run convolution operations. The
executes convolutions across the edges of the

he convolution operations are weighted using a
nt Unit (GRU). The convolution operations al-

l to share information across different tasks and

Figure 3: A sample power to load curve for a cloud server. R
with permission. Source: SPEC benchmark power profile
https://www.spec.org/power_ssj2008/results/res2021q

ssj2008-20210528-01098.html

hosts whilst inferring a latent representation of the sc
decision. This information sharing helps the downstre
ations to explicitly leverage the inter-task dependencie
implications of an allocation or migration decision on
lization characteristics. The GRU based weighting a
model to be flexible with respect to the extent to whic
ture vectors of hosts and tasks should be combined.
the message passing leads to graph-to-graph updates

r0
i = Tanh (W ei + b) ,

xk
i =

∑

j∈n(i)

Wkrk−1
j ,

rk
i = GRU

(
rk−1

i , xk
i

)
.

Here, W, b are parameters of the feed-forward layer w
GGCN network, ei is the feature-vector (described pr
of a node i ∈ VD ∪ VS in the heterogeneous graph and
from 1 to p. Also, the messages for task i are aggreg
one-step connected neighbors n(i) over the p convolu
sulting in an embedding rp

i for each task node in the gr
stacked representation for all tasks is represented as rp

lutions across these edge types help as the dependenc
utilization characteristics with the allocated hosts is t
mum and much lower for hosts on which the task is
cated. This allows the scheduling decision to properly
task and hosts utilization characteristics while also co
the changing demands of tasks. We generate the grap
ing eS by passing rp through a feed-forward layer as

eS = FeedForward(rp).

We also capture the thermal-characteristics of the
chines in terms of their current temperatures (Tcu)
power to load profile10 (see Figure 3 for a sample per

10We use Standard Performance Evaluation Corporation (SP
consumption models to generate power to load performance curves
hosts. URL: https://www.spec.org/power_ssj2008/
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s Hosts

Host Feature
Vectors

esource Utilization
and Capacities)
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Estimate of the
QoS objective

Simuated or
Physical Execution QoS Scores

Prediction
Error

Backpropagate
Loss to Update

Weights

Model Testing

Explore Decision Space
to Optimize QoS estimate

4: Graphical representation of the GGCN model.

le). We model the thermal profile and current
f all hosts as vectors (Temp) and pass through a
network

(FeedForward(ReLU(FeedForward(Temp)))).
(16)

e Bahdanau style self-attention [32] to generate
f the QoS objective. This allows the model to
those hosts that can potentially become thermal

moid(FeedForward(eS · Softmax(eT ))). (17)

operator allows us to generate an output within
training with normalized QoS scores. The GGCN
stic to the QoS objective in general; however, in
ts we use energy, temperature and SLA violation
nd fine-tune the model (see Section 3.5). To train
del, we use the Mean-Square-Error (MSE) loss

redicted and ground-truth QoS scores.

CN Model for Scheduling

nt the modus operandi of the proposed HUNTER
uling technique using the GGCN network as a

el (summarized in Algorithm 1). Figure 4 shows
presentation of the HUNTER scheduler. The in-
eduler is the resource utilization metrics of the
s that need to be allocated or migrated and the

cteristics of the cloud hosts. These are obtained
rce monitoring and the thermal management ser-
ud broker (see Figure 1). These metrics are then
enerate the S and D graphs and the T vector as
ection 3.4. The allocation in the S graph is ob-
e scheduling decision of the previous interval for

0 and a random allocation otherwise (line 2 in
, from the input [S ,D,T ] we obtain an estimate
re Ô. Now to generate a scheduling decision, we

s of all tasks and hosts, each of size K. We sort
on the power consumption of their hosts, break-

he CPU utilization and consider top K such tasks
. 1). Now, for each such high energy-resource

Pre-trained GGCN model f
Convergence threshold ε
Consideration parameter K; Learning rate γ

1: procedure HUNTER(s)
2: S ,D,T ← ResourceMonitor()
3: O← f ([S ,D,T ])
4: Tasks← get top K tasks based on power cons
5: Hosts ← get bottom K hosts based on perfor

power ratio
6: for (t ∈ Tasks) do
7: host← arg maxh∈Hosts f ([S (t, h),D,T ])
8: if (allocation of t to h is feasible)
9: Allocate or migrate t to h.

10: else
11: Add t to wait queue.
12: end if
13: end for
14: O = 1 − (α · AEC + β · AT + γ · S LAV)
15: Datapoint← ([S ,D,T ],O)
16: Backpropagate f using Datapoint and MSE lo
17: end procedure

consumption task, we choose a target host where it ca
grated. To do this, we sort all hosts in terms of the per
to power ratio and choose the bottom K hosts (line 5 i
Now, we consider all K × K combinations and choose
h that maximizes the objective score estimate obtained
surrogate model. We denote the updated S graph with
allocation (t, h) by S (t, h) (line 7 in Alg. 1).

To choose the value of the K parameter, we leverag
work transfer constraints. Consider the router band
MB/s) in a CDC to be denoted by B and the size of a
ing interval (in seconds) by IS . Also, let us denote the m
size of a container in the CDC in MB by R. Then we d

K =
B × IS

R
.

Intuitively, this denotes the upper-bound of the numbe
that can be migrated in the scheduling interval. If
migrate more than K tasks in any decision, the tas
take more than IS seconds, rendering the migration u
new decisions are taken every IS seconds. For a ty
ting with bandwidth of 100-MB/s, scheduling interva
seconds and container size of 3000-MB, K = 10 all
to check only 100 task-to-host allocations. This can b
cantly more efficient than checking all task-host comb
which may be in thousands.

The motivation behind using the performance-to-po
to sort hosts is as follows. Consider the sample per
to power ratio profile shown in Figure 3. This ratio
the amount of CPU computational performance we ge
watt of power consumed. It is apparent that this ratio
for 70% CPU load and reduces for higher or lower CP
Most cloud servers have similar trends in their power
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Journal Pre-proof
cate tasks to host with 80% CPU load. However,
ptimal target host for lower CPU loads is chal-
the heterogeneity of the host power profiles. This
using the performance-to-power ratio allows us

he number of migrations as well as the time to
nt scheduling options.

adapt in volatile settings, at every scheduling in-
the neural approximator using back-propagation.
obtain the latest QoS objective score from the

of the cloud broker and fine-tune the weights of
del by back-propagating the MSE loss between
nd true QoS scores. The ground-truth QoS score
(lines 14-16 in Alg. 1)

1 − (α · AEC + β · AT + γ · S LAV), (19)

T and S LAV denote the average normalized en-
tion, average normalized temperature and SLA
he leaving tasks in the previous interval. Here,
vex-combination weights. To minimize the met-
, temperature and SLA violations, we maximize
s training of the model allows it to quickly adapt
orkloads and also consider changing scheduling
use these as well to consider task migrations and
s shown in line 8 in Alg. 1, for each container,

llocation to the host corresponding to the maxi-
re of the GGCN model is feasible, if yes we al-
the container to this host else add it to the wait

ocessed in the next interval.
onal Complexity. Assuming that the inference
ral network is an O(1) operation, we provide

onal complexity in the Big-O notation. Assume
ctive tasks and q = |H| hosts in the system. Se-
hosts and tasks from these sets based on the pre-
bed metric is an O(q log K) and O(p log K) oper-
ng all K × K task to host allocations is a O(K2)
erall, the computational complexity of checking
ocation choices is O(K2 +q log K + p log K). This

better than checking all possible task-host com-
O(pq) in the typical case where p > q.

ce Evaluation

ribe how we evaluate the HUNTER scheduler
t against the state-of-the-art baselines: PADQN,
EC, ANN, SDAE-MMQ and HDIC as described

n Setup
d our proposed approach in both real and sim-
nvironments using the COSCO framework [14]
Sim toolkit [19]. We keep the size of the schedul-

5 minutes or 300 seconds and run our experi-
scheduling intervals to generate QoS results. For
ificance, we average over 5 runs. The first is a

• Private Cloud. 6 Azure machines, four of type B
core CPU with 4 GB RAM) and two of type B4m
core with 16 GB RAM). They were instantiated in
don, UK Azure datacenter.
• Public Cloud. 4 Azure machines, two of ty

(quad-core with 16 GB RAM) and two of type B8
core with 32 GB RAM). They were instantiated i
ginia, USA Azure datacenter.

We also tested on a simulated platform with 5 time
stances as described above to give a total of 50 hosts.
mer allows more accurate testing of our approach whi
ter allows large-scale experimentation. We use the SPE
benchmarks to determine the energy consumption of
centers as done in prior work [14]. We used the R and
in (13) as 0.5 and 0.03 based on prior work [33]. We
the same implementation details that were used and
in previous work [14, 30, 34].

4.2. Workloads
For our physical experiments we use the DeFog be
ing applications for their diverse and non-stationa
loads [35]. DeFog consists of various compute inte
applications like Yolo, PocketSphinx and Aeneas. Th
workloads in the form of object detection in imag
ral language processing, audio-text synchronization an
recognition. We encapsulate these workloads as Do
tainers to execute in our cloud servers. At the star
scheduling interval we create Poisson(λ) jobs with
The jobs are sampled uniformly from the three applic
Yolo, PocketSphinx and Aeneas. We divide the input
each job into 3 to 5 parts and send them to separate c
(each container acts as a task).

In our simulated setup, we use the popular dynam
from the BitBrain dataset to emulate a large-scal
tion [36]. The dataset consists of performance metric
than a thousand hosts in a heterogeneous CDC. The
are collected from the Alibaba distributed datacenter,
very popular for providing services to perform busin
putations and manage hosting of industrial application
ers (Aegon), credit card operators (ICS) and many ma
(ING) are the main customers of this datacenter. Fur
ious financial computing applications (e.g. Algorith
Towers Watson) related to credit worthiness domain a
here. Moreover, traces are divided into two categories:
fastStorage. To allow diverse workloads, we use both
our experiments. These traces consist of time-series m
CPU, RAM, Disk and Bandwidth utilization character
in the physical setup, we create jobs using the the P
distribution with each job is sampled uniformly at rand
the Rnd and fastStorage categories and has 3 to 5 tas
parameter is chosen based on prior work [14].

4.3. Model Training
The GGCN model takes as an input, the utilization
the active tasks and the capacity matrix of the target ho
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Figure 5: Comparison of HUNTER against baselines on physical setup with 10 hosts

etrics like CPU, RAM, Disk and Network Band-
so include the SLA deadline as part of the task
trix. To train the model we first run a random
over as much of the state space as possible. We
1000 scheduling intervals and create a dataset of
D,T ],O)}.
Reproducibility: We pass the input through a 4
odel with 64 nodes each and initialize the hidden

RU by a zero vector. We use AdamW optimizer
g rate of 10−4 to train our model and use early-
r convergence criterion [37]. All model training
ts were performed on a system with configura-
10700K CPU, 64GB RAM, Nvidia GTX 1060
11 OS.

n Metrics
e proposed HUNTER method against the base-

we use the following metrics:
onsumption given as Etotal in (2).

• SLA Violations which is given as
∑

i S LAVi∑
i ji

,

where S LAVi is the 1 if SLA of job ji is violated
• Average Response Time which is the mean respo

for all completed jobs in an experiment
• Datacenter Temperature given by (13).
• Cost is given by Time × Price. We use the M

Azure pricing calculator to obtain the cost of exec
hour (in US Dollars) https://azure.microso
en-gb/pricing/calculator/.
• Fairness is given by the Jain’s fairness index [14
• Scheduling Time is the average time to generate a

ing decision.
• Wait Time is given as the average time a job spen

waiting queue.
• Migration Time is the average time a task spend

tainer migration.
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Figure 6: Comparison of HUNTER against baselines on simulator with 50 hosts

lts
6 show the QoS parameters on the COSCO

d CloudSim simulator respectively. Figures 5(a)
the energy consumption in a scheduling interval
the number of tasks. Among the baselines, HDIC

Q provide the most energy efficient policies. As
0 to 50 hosts, the gaps in the energy consump-
hedulers increase, showing how robust the mod-
mizing energy consumption in large-scale setups.
TER gives the lowest energy consumption, re-
o 11.90% compared to the best baselines (HDIC
d SDAE-MMQ in simulated testbeds). This is
high number of tasks that complete execution in
ER and the use of the performance-to-power ra-
(g) and 6(g)). Figures 5(b) and 6(b) show that
es the lowest average temperature for both se-
reduction of up to 3.47% compared to the best
◦C (HDIC). This is because of the thermal-aware
tion in the GGCN based surrogate model that al-

lows HUNTER to emphasize scheduling for hosts t
act as thermal hostpots. Figures 5(c), 5(d), 6(d) and 6
the CPU and RAM utilization of all models. All mo
similar resource utilization metrics, with some cases w
RAM consumption in the HUNTER approach is qu
Checking the execution traces in case of the HUNTE
uler shows that this is due to the strict load-balancing
prefer keeping the number of containers in hosts to
the highest performance to load. Migrations based on
approach can, in rare cases, lead to slight resource c
at the cost of minimizing energy or temperature. Th
marily when there are sudden spikes in task resource
having a cascading effect on other tasks running in
host. Avoiding such cases is left as part of the futu
Figures 11(d) and 6(e) show that the proposed approa
to reduce SLA violations by up to 35.41% compared t
baselines (HDIC). This is primarily due to the accurate
jective prediction, allowing the model to minimize the
lation rates by checking the QoS estimate for several p
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Figure 7: Sensitivity analysis of HUNTER and baselines with increasing number of workloads on physical setup with 10 hosts.
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Figure 8: Sensitivity analysis of HUNTER and baselines with increasing number of workloads on simulated setup with 50 hosts.

es 5(f) and 6(f) show that all models have compa-
index values. Figures 11(e) and 6(h) show the av-
task for each model. The HUNTER method has
rage cost giving up to 53.86% compared to the

(SDAE-MMQ). PADQN has very high cost due
e migration overheads as shown by Figures 5(k),
. HUNTER like many other baselines has low
igs. 5(j) and 6(j)). Compared to the best base-
nd SDAE-MMQ), HUNTER has 42.78% lower
e (Figs. 5(i) and 6(i)).

y Analysis

how various models scale with the number of
e results in the previous section were time bound,
heduling intervals. Now we show how the QoS
ry with the number of workloads (see Figs. 7
es 7(a) and 8(a) show the variation in the con-
nergy with increasing number of jobs. HUNTER
o 19.8% less as compared to best baseline models
AE-MMQ). Overall, the rise in energy consump-
ber of jobs for HUNTER is not as high as other
ods. This is because HUNTER uses the perfor-
er profiles of cloud hosts to maintain optimal per-
le minimizing energy consumption. Figures 7(b)
the change in the temperature with the variation
. The value of temperature in HUNTER is 5.5%

less than CRUZE because HUNTER uses CRAC-ba
ing management [7] that avoids overloading and und
of resources and can switch off idle resources autom
Figures 7(c) and 8(c) show the change in the SLA viol
with the variation of number of jobs. The value of SL
tion rate in HUNTER is up to 42.12% lower as compa
HDIC baseline. Figures 7(d) and 8(d) show the chan
cost with the variation job count. HUNTER gives up t
less cost as compared to CRUZE and SDAE-MMQ. T
marily due to the optimal performance to load manag
the HUNTER scheduler. Figures 7(e) and 8(e) show
tribution of the scheduling time with the job count.
a sharp increase in PADQN model as DQN scales po
time [14]. HUNTER has a higher scheduling time c
to the heuristic based baselines: CRUZE and MITE
ever, compared to the best baselines in terms of energy
ature and cost, i.e., SDAE-MMQ and HDIC, HUNTE
to 56.12% lower scheduling times.

5.2. Comparison between Simulated and Physical Se

We now compare the QoS metrics for the HUNTER
for the simulated (CloudSim) and physical setups (
(see Figure 9). Clearly, all QoS parameters increase
rise of the number of jobs. Figures 9(a), 9(b), 9(c),
9(e) show a performance comparison of simulated and
setup for energy consumption, host temperature, SLA
rate, cost and scheduling time. Naturally, we get high
consumption, SLA violation rates and scheduling tim
simulated setup as there are five times the number o
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Figure 9: Comparison of QoS metrics using the HUNTER scheduler on simulated and physical platforms.
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Figure 10: Coefficient of Variance for various metrics on the simulated platform.

rison of training and inference times (in seconds) between
seline methods on simulated setup with 50 hosts.

Training Time Inference Time

R 908 ± 12 0.88 ± 0.13
1193 ± 68 1.12 ± 0.28

MMQ 2058 ± 102 1.17 ± 0.05
102 ± 4 0.20 ± 0.01

- 0.19 ± 0.03
- 0.01 ± 0.01

340 ± 81 0.23 ± 0.02

sical setup. COSCO allows us to conduct more
iments which give us less noisy fine-tuning as the
to volatile workloads. This describes why the av-
he temperature with the number of jobs is lower
al setup. Moreover, due to the imprecise compu-
source utilization metrics for the tasks and hosts,
ts of CloudSim simulator gives results that have
from the ones conducted on the physical plat-

lity wise we are able to show that HUNTER is
ell when the number of workloads or host ma-

.

of Model Training and Inference Times
ares the training and inference times of the
roach with the baseline methods. CRUZE and

MITEC do not have any training overheads as they
line without training any AI model or neural netw
also test the training time for the GGCN model. C
to various other prior works which rely on deep reinf
learning (HDIC, SDAE-MMQ, ANN and PADQN)
up to 2058 ± 102 seconds, HUNTER takes only 908
onds to train its model, giving a training overhead
of 55.87% compared to SDAE-MMQ and 23.88% com
HDIC. This is negligible compare to the discrete tim
of 300 seconds used in our orchestration controllers a
it is feasible to adopt the HUNTER approach in dyn
changing environments.

When comparing the inference times, the best
(HDIC and SDAE-MMQ) have a relatively high infere
of up to 1.17 seconds. HUNTER gives a schedulin
0.88 seconds, 24.78% lower than these baselines.

5.4. Statistical Analysis

The Coefficient of Variation (CoV) is used to analyse
significance of the experiments as it measures the distr
the QoS metrics around the mean-value. Moreover, C
an overall analysis of HUNTER’s robustness to env
volatility. Figures 10(a), 10(b), 10(c), 10(d) and 10(e)
CoV of energy consumption, temperature, SLA viola
execution cost and scheduling time with the increase i
of jobs. The range of CoV is (0.2–0.89%) for energy c
tion, (0.42–1.1%) for SLA violation rate, (1.5–2.1%)
(0.5–3.1%) for scheduling time and (1–6%) for tem
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on Analysis of different model components of HUNTER for the simulated setup with 50 hosts. The bar graphs show absolute value
erformance relative to HUNTER.

comparatively low CoV indicates that the model
le dynamic workloads well and is robust enough
ronment non-stationarity [6].

Analysis

relative importance of each component of the
lude every major one and observe how it affects
ce of the scheduler. An overview of this ablation
en in Figure 11. First, we consider the HUNTER
out the top-K heuristic and check all task-to-host
/o Heuristic model). Clearly, this gives a much
ling time (Fig. 11(f)) and has worse effect on
metrics due to its high overheads. Second, we

del without the thermal-aware attention, i.e., we
N part of the deep surrogate model (w/o Attn
we see that the average temperature increases

lso impacting energy and cost. The other model
replacing the GGCN network with a completely

one (w/o GGCN model). Here we see a signifi-
in the MSE prediction error (Fig. 11(a)) leading
perature, cost, SLA violations and energy con-

s and Future Work

we have proposed a Gated Graph Convolu-
(GGCN) based holistic resource management
hnique called HUNTER. Our scheduler enables
t utilization of cloud servers and reduces ther-
HUNTER achieves this by adding cooling spe-

nd temperature models, unseen in previous ap-
ther, using a GGCN based deep surrogate model
ER to quickly generate QoS estimates, avoid-
t costs in testing various scheduling decisions.
s performance with load as a heuristic to effec-
the load on cloud hosts, giving maximum com-

hile reducing energy consumption. This heuris-
s HUNTER to quickly explore the scheduling
nd quickly converge to a decision. Extensive ex-
both physical and simulated testbeds show that
performs baselines in most QoS metrics. Further-
ll values of the coefficient of variation of energy
re indicate that HUNTER is efficient in resource

management while handling dynamic workloads. H
optimizes five key performance parameters, viz, tem
energy consumption, cost, SLA violation and time.
periments demonstrate that the HUNTER performs b
existing AI based (HDIC, SDAE-MMQ, ANN and
and heuristic algorithm (CRUZE and MITEC) based
schedulers.

This work can be extended by factoring in paramete
late to scalability, security and reliability and their ene
ifications. Future work may also consider how cool
agement can be further enhanced by capturing dom
cific tactics for cooling; IoT and Fog/Edge computin
domains such as agriculture, healthcare and smart h
among the candidate application domains to consid
rently, HUNTER only decides the appropriate place
cisions for tasks; however it can be extended to also d
AC or fan settings in the cases of deadline constrained
workloads. Finally, HUNTER can use the concept of s
edge computing to effectively scale applications.

Software Availability

The code is available at https://gith

imperial-qore/COSCO/tree/ggcn. The
images used in the experiments are avai
https://hub.docker.com/u/shreshthtuli.
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