
A Prediction-Driven Collaborative Scheduling
Strategy for Distributed Stream Computing Systems

Minghui Wu1, Dawei Sun1∗, Xiaoxian Wang1, Shang Gao2, Rajkumar Buyya3
1School of Artificial Intelligence, China University of Geosciences, Beijing, 100083, China

wuminghui@email.cugb.edu.cn; sundaweicn@cugb.edu.cn; wangxiaoxian@email.cugb.edu.cn
2School of Information Technology, Deakin University, Waurn Ponds, Victoria, 3216, Australia

shang.gao@deakin.edu.au
3Quantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of Computing and Information Systems,

The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
rbuyya@unimelb.edu.au

Abstract—Multi-objective collaborative optimization is essen-
tial for improving performance in stream computing systems.
However, existing approaches often neglect the interdependencies
among communication overhead, load balancing, and energy
consumption, and lack predictive capabilities, resulting in delayed
scheduling decisions that degrade system latency and throughput.
To overcome these limitations, we propose a prediction-driven
collaborative framework, named Pc-Stream, which proactively
identifies overloaded compute nodes and triggers task migrations
in advance. This paper presents this strategy through two key
components: (1) A temperature-driven neighborhood adjustment
method for task topology partitioning. This method dynamically
adjusts the number of migrated tasks based on a predefined
temperature. Tasks with high communication volume are batch-
migrated to nodes with lower utilization rates during the high-
temperature phase, and migrated individually during the low-
temperature phase. (2) A sliding window mechanism that gen-
erates multiple sub-sequences for training multiple predictive
models. These models enable the system to monitor load trends
and proactively migrate tasks from overloaded nodes to those
with sufficient resources, thereby reducing communication costs
and improving load balance. Experimental results demonstrate
that, under dynamic and fluctuating data stream conditions,
Pc-Stream significantly enhances overall system performance:
reducing average system latency by 49.9%, and increasing
average throughput by 16.9%.

Index Terms—Stream computing systems, Task migration,
Topology partitioning, Predictive models.

I. INTRODUCTION

Amidst the ongoing digital transformation, enterprises
are increasingly demanding real-time data analysis and
millisecond-level decision-making capabilities [1], driving the
gradual shift from traditional batch processing models to
streaming processing architectures [2]. These architectures are
capable of continuously processing dynamically generated,
unbounded data streams and delivering analytical results in
near real time [3]. To address the real-time challenges posed by
high-velocity data streams, stream computing systems employ
low-latency processing and high fault-tolerance mechanisms
to unlock the full value of dynamic data streams [4].

Effective scheduling in stream computing systems is crucial
for system latency and throughput [5]. Some researchers [6]–
[8] have attempted to optimize scheduling strategies from

a single-objective perspective, primarily aiming to reduce
cross-node data transmission by co-locating communication-
intensive tasks on the same compute nodes. Although this
can effectively reduce communication overhead, it often leads
to significant workload imbalances across the cluster. Some
nodes with ample resources may remain under-loaded due to
insufficient task allocation, while others become overloaded,
resulting in slower task processing or even downtime [9].

To address this challenge, prior studies [8], [10], [11]
have explored dynamic scheduling algorithms that optimize
resource utilization through task migration. These methods,
however, typically employ a reactive trigger-response mech-
anism [5]. That is, task migrations are only initiated after a
resource bottleneck is detected, for example, when a node’s
utilization exceeds a preset threshold or when a migration re-
duces inter-node communication overhead [12]. Unfortunately,
such reactive strategies often lag behind sudden workload
spikes [13], [14], as task reallocation only occurs after over-
load conditions have materialized. In contrast, if node loads
can be accurately predicted, proactive resource allocation and
task deployment can be implemented in advance to prevent
performance degradation and maintain system stability.

Motivated by these observations, we propose a prediction-
driven collaborative framework, Pc-Stream, which aims to
continuously optimize system performance by anticipating fu-
ture changes in node workloads. Pc-Stream employs proactive
resource prediction techniques to generate task allocation plans
in advance based on load trends observed within varying
time windows. By jointly considering communication over-
head, load balancing, and resource efficiency, it strives to co-
locate communication-intensive tasks while reducing cross-
node communication and promoting balanced and efficient
resource utilization.

To continuously monitor task-level data flow changes in real
time, Pc-Stream adopts a multi-model weighted XGBoost load
prediction model to forecast the load conditions of each node.
Based on these predictions, Pc-Stream proatively adjusts task
deployments to optimize resource utilization and scheduling
responsiveness. Through this prediction-driven collaboration,
Pc-Stream maintains a prolonged online operation and effec-

20
25

 IE
EE

 3
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 S

ys
te

m
s (

IC
PA

DS
) |

 9
79

-8
-3

31
5-

49
01

-5
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

PA
DS

67
05

7.
20

25
.1

13
23

16
7

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

tively handles fluctuating data streams, while supporting high
throughput and fast response time.

The key contributions of this paper are as follows:
(1) We construct a stream application model to identify task-

level communication dependencies, a resource model
to match task demands with available node resources,
and a prediction model to analyze load variations across
compute nodes.

(2) We design a heuristic algorithm that jointly considers
communication overhead, load balancing, and resource
utilization. This algorithm co-locate tasks with intensive
communication on the same nodes, balances workloads
across the cluster, and aligns task demands with avail-
able resources.

(3) We develop a multi-model weighted XGBoost prediction
model to forecast future node load variations. This
model uses multiple time windows to train a set of
XGBoost models, capturing both short-term load fluc-
tuations and long-term load trends. Task deployments
are dynamically adjusted based on these predictions.

(4) We implement Pc-Stream on the Apache Storm plat-
form and evaluate system performance using metrics
such as system latency and throughput. Experimental
results demonstrate Pc-Stream’s superior performance in
optimizing system throughput and reducing latency.

The rest of the paper is organized as follows: Section II
reviews related work on streaming application scheduling and
load prediction. Section III introduces the Pc-Stream system
model, including models for stream application, resources, and
load prediction. Section IV explains Pc-Stream and its core
algorithms. Section V evaluates system performance using
system throughput and latency metrics. Section VI concludes
the paper and outlines future directions.

II. RELATED WORK

Distributed stream computing systems require continuous
data processing and have high demands for resource reliabil-
ity, making the development and implementation of effective
task scheduling algorithms particularly challenging [15]. Task
allocation in such systems is an NP-hard problem [16], which
means that obtaining globally optimal solutions within reason-
able time constraints is computationally infeasible. To address
these challenges, researchers have proposed various schedul-
ing strategies, mainly including topology-aware scheduling,
resource-aware scheduling, and proactive scheduling [17].

Topology-aware scheduling employs graph partitioning
algorithms to allocate tasks in streaming applications by
minimizing cut edges and balancing the load. Tc-Storm [18]
integrates graph partitioning with the characteristics of data
flow within the topology to construct an adaptive resource
allocation model under multiple constraints and generates a
suboptimal deployment solution. However, this method lacks
sufficient responsiveness to dynamic changes in data streams,
which makes its performance degrade under significant load
fluctuations. SP-ant [8] proposes a scheduling strategy based

on the ant colony algorithm, which dynamically allocates re-
sources in heterogeneous clusters by combining global search
and local optimization search. However, the algorithm stops
evolving once it reaches convergence, making it difficult to
handle sudden load surges. Moreover, the cost function does
not fully consider the centralized deployment of adjacent
operators, potentially leading to increased communication
overhead between nodes.

Resource-aware scheduling intelligently deploys tasks to
compute nodes based on the workload of nodes and the re-
source requirements of tasks. R-Storm [6] proposes a resource-
aware scheduler that categorizes resource constraints into soft
and hard constraints and optimizes task allocation based on
resource state vectors and Euclidean distance. However, this
algorithm is not suitable for heterogeneous environments and
neglects the communication overhead between tasks. D-Storm
[7] makes adaptive adjustments based on runtime workload
variations. It employs the First-Fit Decreasing bin-packing
heuristic algorithm, taking into account the communication
between tasks and the load impact on compute nodes to
minimize cross-node data transmission and optimize resource
utilization. However, the overhead of task reallocation is
significant, which can increase scheduling delays in high-load
environments.

Proactive scheduling predicts system states and workload
variations to make task allocation and resource adjustment
decisions in advance. To meet the latency requirement with
the minimal energy cost, Pec [19] proposes a proactive elastic
resource scheduling strategy for computation-intensive and
communication-intensive applications. It uses a collaborative
workload prediction model to accurately forecast the up-
coming workload. An energy-efficient resource pre-allocation
method is designed to adjust the CPU frequency and reconfig-
ure the resource in the cluster. Similarly, to ensure continuous
data processing without interruptions, PRM [13] predicts load
variations and resource scarcity in clusters. It allows for
customizable service-specific metrics, which are used by the
load predictor to anticipate resource consumption peaks and
proactively allocate resources. However, these efforts do not
take into account the load relationships among tasks in stream
applications, limiting their effectiveness in improving overall
system performance.

In summary, proactive workload prediction for optimizing
resource allocation in clusters has been explored. However,
many existing approaches either suffer from low prediction
accuracy, high computational overhead, or focus on single-
objective optimization. To address these limitations, we lever-
age XGBoost [20], a gradient boosting framework known for
its strong capability in nonlinear modeling, high prediction
accuracy, and efficient parallel training, which are essential for
capturing complex patterns in workload behaviors. To address
the short-term load volatility in dynamic cluster environments,
we introduce a sliding window mechanism to enable the model
to focus on recent trends and adapt quickly to changes, thereby
improving workload prediction under fluctuating conditions.

A comparison of four key aspects (Communication-aware,

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RELATED WORK COMPARISON

Related work Aspects
Communication Resource Adaptive Predictive

Tc-Storm [18] ✓ ✓ ✓ ×
SP-ant [8] ✓ ✓ ✓ ×

R-Storm [6] × ✓ ✓ ×
D-Storm [7] ✓ ✓ ✓ ×

I-Scheduler [10] ✓ ✓ ✓ ×
PRM [13] × ✓ ✓ ✓
Our work ✓ ✓ ✓ ✓

Resource-aware, Adaptive, and Predictive) between Pc-Stream
(our work) and relevant research is summarized in Table I.

III. SYSTEM MODEL

Before introducing the Pc-Stream framework and its related
algorithms, we first explain the stream application model,
resource model, and prediction model in distributed stream
computing environments.

A. Stream Application Model

The logical topology of a stream application can be modeled
as a directed acyclic graph (DAG), denoted as G = {V,E}
[21], where the vertex set V = {v1, v2, ..., vk} represents
the operators in the topology and the directed edge set
E = {evi,m,vj,b |vi, vj ∈ V } represents the data transmission
relationships between task vi,m in the operator vi and task
vj,b in the operator vj . Each operator vi has a set of tasks
denoted as vi = {vi,1, vi,2, ..., vi,m, ..., vi,h}, and the number
of tasks defines the parallelism of the operator. These tasks
are executed in parallel across different workers of compute
nodes.

For a cluster with N compute nodes, data transmission
between nodes can incur significant communication overhead.
We define the communication cost Commcost of node nt
(nt ∈ N) to measure the quality of task deployment, which
can be calculated by Eq. (1).

Commcost(nt) =
∑

vi,m∨vj,b∈Task(nt)

evi,m,vj,b
· xvi,m,vj,b(nt),

(1)
where evi,m,vj,b denotes the data transmission volume between
task vi,m and task vj,b in the topology. Task(nt) represents
the set of tasks that are deployed on compute node nt.
xvi,m,vj,b

(nt) is a binary decision variable used to indicate
whether tasks vi,m and vj,b are assigned to compute node nt.
If the two tasks are assigned to the same node (i.e., nt), then
xvi,m,vj,b

(nt) = 0; otherwise, xvi,m,vj,b
(nt) = 1.

When task vj,b migrates from its current compute node
to the target node nt, the communication overhead between
these two nodes changes. We define candidate nodes as those
that remain non-overloaded after accepting task vj,b. The
communication cost change ∆(vj,b, nt) of each candidate node
nt can be calculated using Eq. (2).

∆(vj,b, nt) = Commcost(nt)− Comm′
cost(nt), (2)

where Commcost(nt) and Comm′
cost(nt) denote the com-

munication cost of compute node nt before and after the
migration, and can be calculated by Eq. (1). If ∆(vj,b, nt) ≤ 0,
migrating task vj,b to node nt increases the communication
cost, and such a migration is therefore not recommended.
If ∆(vj,b, nt) > 0, the migration reduces communication
overhead, indicating that it improves system communication
efficiency. Based on this criterion, we identify the set of tasks
eligible for migration, denoted as CT .

During scheduling, all tasks in the set CT with
planned deployment changes are migrated concurrently. If∑

vj,b∈CT,nt∈N ∆(vj,b, nt) > 0, this scheduling action is ben-
eficial for reducing overall system communication overhead.

To avoid a large span in communication costs between
different nodes, we normalize ∆(vj,b, nt), which can be cal-
culated using Eq. (3).

Commscore(vj,b, nt) =

{
∆(vj,b,nt)−∆min

∆max−∆min
, ∆(vj,b, nt) > 0

0, ∆(vj,b, nt) ≤ 0
(3)

where the communication score Commscore(vj,b, nt) falls
within the interval [0, 1]. ∆max and ∆min represent the min-
imum and maximum values of communication change in all
migrated tasks, respectively.

B. Resource Model
In a distributed stream computing system, task execution

relies on the computational resources of nodes, particularly
CPU and memory [22]. Given Task(nt) represents the set of
tasks deployed on node nt, the CPU requirements Cpu(nt)
and memory requirements Mem(nt) of Task(nt) can be
calculated using Eq. (4).{

Cpu(nt) =
∑

vj,b∈Task(nt)
Cpuvj,b

Mem(nt) =
∑

vj,b∈Task(nt)
Memvj,b

(4)

where Cpuvj,b denotes the CPU consumption of task vj,b in
Task(nt). Memvj,b denotes the memory consumption of task
vj,b in Task(nt). To ensure the execution of tasks on node
nt, the resource requirements of Task(nt) don’t exceed the
node’s available resources, and the resource allocation satisfies
constraint Eq. (5).{

Cpu(nt) ≤ Cpuavail(nt),
Mem(nt) ≤Memavail(nt)

(5)

where Cpuavail(nt) and Memavail(nt) represent the avail-
able CPU and memory resources of compute node nt, respec-
tively.

The scheduler needs to reasonably distribute tasks to dif-
ferent compute nodes based on the information to achieve
efficient resource utilization. After the task assignment is
completed, the remaining CPU Cpurem(nt) and memory
Memrem(nt) resources of compute node nt can be calculated
using Eq. (6).{

Cpurem(nt) = Cpuavail(nt)− Cpu(nt)
Memrem(nt) =Memavail(nt)−Mem(nt)

(6)

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

The remaining resources reflect the degree of resource
utilization of compute node nt under the current task allo-
cation. To more comprehensively evaluate the availability of
node resources, we define the resource score to quantify the
utilization of compute nodes, thus providing a decision-making
basis for task scheduling. It can be calculated using Eq. (7).

Resscore(nt) = α · Memrem(nt)

Memtotal(nt)
+ (1− α) · Cpurem(nt)

Cputotal(nt)
(7)

where Cputotal(nt) and Memtotal(nt) respectively represent
the total CPU resources and total memory resources of com-
pute node nt, and α denotes a user-defined weighting factor,
α ∈ [0, 1].

We use the load balancing degree
Load Balance Degree(nt) to measure the load balance
level of the target compute node nt. If the load of nt
significantly deviates from the system average, it indicates an
imbalance in its load state, suggesting that task migration may
be necessary. The load balancing degree can be calculated
using Eq. (8).

Load Balance Degree(nt) =
|Resscore(nt)− µRes|

µRes
(8)

where µRes denotes the average system load across all com-
pute nodes, and is calculated by Eq. (9).

µRes =
1

N

N∑
i=1

Resscore(ni), (9)

where N denotes the total number of compute nodes in the
cluster.

The load on some nodes may be much higher than the av-
erage level, resulting in significant disparities among different
nodes during the scoring process. Therefore, we normalize
the load balancing degree Load Balance Degree(ni) to
obtain a load balancing score Balancescore(nt), and it can
be calculated using Eq. (10).

Balancescore(nt) =
1

1 + Load Balance Degree(nt)
(10)

A larger Balancescore(nt) indicates a higher degree of load
balance for the node.

C. Prediction Model

The load of a compute node is influenced by multiple
factors, such as task load, node processing capability, and
data transmission rate. These factors interact in complex ways,
making it difficult to predict using data from a single time
point [19]. To address this, we segment the data using a
sliding window and perform time series modeling within each
window. This enables the prediction model to accurately learn
the historical load variation patterns.

Our objective is to learn a prediction function f that maps
the historical data X within the time range [0, T] to the future
value X(T + 1).

[X (1) , X (2) , ...X(k), ..., X (T)]
T f−→ X (T + 1) , (11)

where X(k) is a feature vector, defined as X(k) = [xk1, xk2],
and xk1 and xk2 denote CPU utilization and memory utiliza-
tion, respectively.

IV. PC-STREAM: ARCHITECTURE AND ALGORITHMS

Based on the models constructed above, we propose Pc-
Stream, a prediction-driven collaborative scheduling frame-
work. This section introduces its architecture and the algo-
rithms for subgraph partitioning and proactive scheduling.

A. System Architecture

Built on the Apache Storm platform, Pc-Stream consists of
three core components: Nimbus, ZooKeeper, and Supervisor.
As shown in Fig. 1, Nimbus receives topology tasks submitted
by users and assigns the tasks to compute nodes in the cluster
via its scheduler. ZooKeeper serves as the coordination and
state management component, which maintains communica-
tion between Nimbus and worker nodes, ensuring coordination
and consistency among different components in the system.
Supervisor manages the workers on each compute node,
ensuring that each worker can stably execute computational
tasks.

Fig. 1. Architecture of Pc-Stream.

Pc-Stream extends Apache Storm by introducing four addi-
tional modules: a Monitor module, a Graph Partition module,
a Load Prediction module, and a Task Migration module.

The Monitor module collects real-time CPU and memory
usage data of each node and stores it in the database for
subsequent optimized scheduling.

The Graph Partition module divides the topology graph
into subgraphs during system runtime. By analyzing task-
level communication and resource utilization, it optimizes task

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

allocation by co-locating frequently communicating tasks and
balancing the computational load across nodes.

The Load Prediction module forecasts the future load of
compute nodes using historical resource data collected by
the Monitor module. It proactively identifies compute nodes
that are likely to become overloaded in the future, thereby
triggering task migration in advance.

Based on the predicted resource load information, the Task
Migration module proactively adjusts task deployment. It
ranks these nodes based on their predicted load levels and
prioritizes the most urgent cases. It then selects tasks from
the most heavily loaded node using a communication cost
score. Finally, the selected task is migrated to the node with
the lowest current load to achieve the most efficient load
balancing.

Through the collaborative operation of these modules, Pc-
Stream effectively enhances system adaptability to dynamic
workloads and reduces scheduling overhead. Prediction-based
task migration reduces the need to frequently re-execute the
costly graph partitioning module. However, repeated local
migrations may gradually increase cross-node communication.
Once the communication metric exceeds a user-defined thresh-
old, the graph partitioning module is invoked again to globally
re-optimize task placement. In this cooperative workflow,
the graph partitioning module establishes a communication-
efficient baseline, predictive scheduling performs lightweight,
prediction-driven adjustments, and repartitioning is only re-
triggered when the accumulated adjustments degrade commu-
nication beyond the acceptable limit.

B. Subgraph Partitioning Algorithm

We employ a simulated annealing algorithm in the Graph
Partition module that adjusts the neighborhood size based
on temperature to perform subgraph partitioning for stream
applications in a heterogeneous cluster environment.

During the annealing process, the neighborhood size
Nbrmigrate is adjusted dynamically according to the current
temperature Temp, and can be calculated by Eq. (12).

Nbrmigrate = ⌊Nbrmin+

(
Temp

Temp0

)
· (Nbrmax−Nbrmin)⌋,

(12)
where Nbrmin and Nbrmax represent the minimum and
maximum neighborhood sizes at low and high temperatures,
respectively. Temp0 denotes the user-set initial temperature.
In the high-temperature phase, a larger neighborhood enables
batch migrations for global exploration, while in the low-
temperature phase, a smaller neighborhood focuses on local
fine-tuning.

An initial random deployment plan is generated as the
starting solution, which is iteratively refined to search for the
optimal solution using an objective function Z. This objec-

tive function comprehensively considers both communication
overhead and resource load, and is calculated using Eq. (13).

Z = β ·
∑

vj,b∈V,nt∈N

Commscore(vj,b, nt)

+ (1− β) ·
∑
nt∈N

Balancescore(nt)
(13)

where N denotes the set of compute nodes in the cluster,
and β ∈ [0, 1] is a user-defined weighting factor that balances
the importance between communication overhead and load
balancing.

Algorithm 1 outlines the process of dividing the DAG into
subgraphs, with the aim of minimizing system communication
delay while maintaining a relatively balanced workload across
nodes.

The input of Algorithm 1 includes the given task graph
G = (V,E), initial temperature Temp0, minimum tempera-
ture Tempmin, cooling coefficient η ∈ (0, 1), neighborhood
range [Nbrmin, Nbrmax], temperature-stage threshold δ, con-
vergence threshold ε, and weighting factor β. The output is
the optimal task assignment Pbest.

Steps 2-4 initialize the temperature and randomly generate
the initial solution. Step 5 initializes ∆avg value. To ensure
the algorithm enters the body of the While loop on its first
execution, ∆avg must be greater than ε. Steps 7-11 generate
a new solution P ′ based on the current solution P and the
neighborhood size. If ∆avg > δ, the neighborhood size is set
to Nbrmax to enable broad exploration of the solution space;
otherwise, it is set to Nbrmin for fine-grained search. Step 12
calculates the objective function of the new solution P ′.

In steps 13-21, if the objective function value Z ′ of the
new solution P ′ improves upon that of the current solution P ,
the new solution is accepted directly as the current solution;
otherwise, acceptance of the inferior solution is determined
probabilistically.

Step 22 calculates the average change ∆avg in the objective
function values, while Step 23 updates the temperature Temp
according to the cooling schedule before proceeding to the
next iteration.

C. Proactive Scheduling

Due to its static modeling mechanism, the traditional single
XGBoost model [20] struggles to fully analyze and utilize the
dynamic information within time-series data. When confronted
with highly dynamic load data, it fails to effectively grasp the
overall trend of the data. To enhance the model’s adaptability
to temporal load changes and improve its prediction robust-
ness, we construct a prediction model in the Load Prediction
module based on multi-model ensemble.

As shown in Fig. 2, for each time window, an independent
XGBoost sub-model is trained, thereby building a set of sub-
models with the capability to perceive temporal differences.
To synthesize the predictive information contained in different
time windows, we design a window-weighting mechanism.
This mechanism dynamically adjusts the weights of each sub-
model in the final prediction according to strategies such as

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Graph Partition
Input: Task graph G = (V,E); initial temperature

Temp0; minimum temperature Tempmin;
cooling coefficient η ∈ (0, 1); neighborhood
range [Nbrmin, Nbrmax]; temperature-stage
threshold δ; convergence threshold ε; weighting
factor β

Output: Optimal task assignment Pbest
1 Initialization:
2 Generate an initial solution P randomly;
3 Z ←− Compute objective function using Eq. (13);
4 Temp← Temp0, Pbest ← P , Zbest ← Z, count = 0;
5 ∆avg = 10; /* Initial value of ∆avg is

greater than ε. */
6 while Temp > Tempmin and ∆avg > ε do
7 if ∆avg > δ then

/* GenerateNewSolution function
controls the extent of change
in the new solution P ′ based
on the current solution P */

8 Generate new solution
P ′ ← GenerateNewSolution(P,Nbrmax);

9 else
10 Generate new solution

P ′ ← GenerateNewSolution(P,Nbrmin);
11 end
12 Z ′ ←−Compute objective function of P ′ using Eq.

(13);
13 if Z ′ < Z then
14 Z ← Z ′;
15 Pbest ← P ′;
16 else

/* Probability of accepting P ′

*/
17 Random r, r ∈ [0, 1];

18 if r < e
Z′−Z
Temp then

19 Pbest ← P ′;
20 end
21 end
22 count++; ∆avg = 1

counter

∑counter
i |Z ′ − Z|;

23 Temp← η · Temp;
24 end
25 return Pbest

window position, model performance, or time-decay factors,
aiming to achieve the optimal fusion of multi-model prediction
results. Through this approach, the model can more accurately
respond to load changes at different time scales and enhance
its ability to perceive sudden load fluctuations and long-term
trends.

Before training the model, we define the load impact
coefficient LIC to measure the dynamic correlation between

Fig. 2. Multi-model weighted XGBoost prediction model.

features and the load. It can be calculated using Eq. (14).

LICX,Resscore(nt) =

∑T
k=1

e−λ(T−k)·∆X(k)·∆Resscore(nt,k)
max (∆X)·max (∆Resscore(nt,k))∑T

k=1 e
−λ(T−k)

(14)
where ∆X(k) denotes the rate of change in feature value
at time k relative to the previous time point k − 1, i.e.,
∆X(k) = X(k)−X(k−1). ∆X(k) is used to measure feature
fluctuations over time and capture the load variation trend.
∆Resscore(nt, k) represents the rate of change in resource
load of compute node nt at time k, i.e., ∆Resscore(nt, k) =
Resscore(nt, k)−Resscore(nt, k− 1), where Resscore(nt, k)
denotes the resource load Resscore(nt) of node nt at time k.
λ is the decay coefficient, which controls the rate at which the
weights decay.

Algorithm 2 outlines the process of predicting future loads
on compute nodes for proactive scheduling. It enables dynamic
migration and optimized allocation of tasks before system
resources approach the bottleneck.

The input of Algorithm 2 is the feature data collected by
the Monitor module and load impact threshold. The output is
the load prediction value for the future time.

Step 2 initializes the feature set and the predicted load.
Steps 3-8 calculate the load impact coefficient for each feature,
assessing its importance for load prediction. Step 9 divides
the time-series data into d subsets. In each time window,
the training data size is determined by the ratio of the total
number of elements in dataset X to the number of windows.
Steps 10-13 independently train each XGBoost model on its
corresponding subset. Steps 14-16 calculate the exponential
decay weights for each XGBoost model. Step 17 normalizes
the weights. Step 18 integrates the prediction results from
all XGBoost models by feeding the weighted outputs into
a feedforward neural network, which learns context-aware,
non-linear interactions among the predictors and dynamically

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Multi-model weighted XGBoost Predic-
tion

Input: Feature data X collected by the Monitor
module; Load impact threshold ψ

Output: Predicted load at future time T+1: X(T + 1)
1 Initialization:
2 X ← ∅;Weights← ∅;X(T + 1)← 0;
3 for each X(k) in X do
4 LIC ← Compute load-impact coefficient using Eq.

(14);
5 if LIC > ψ then
6 X(k)← X(k) ∪ {LIC};
7 end
8 end
9 Divide X into d data subsets based on the time series;

10 for q = 1 to d do
11 Train XGBq on X[q] ;
12 Store XGBq in model set;
13 end
14 for q = 1 to d do

/* Calculate the fusion weight Wq

for each model. */
15 Wq ← exp

(
−λ(d− q)

)
;

16 end
17 Normalize Wq so that

∑d
q=1Wq = 1;

18 Input the weighted model outputs into a feedforward
neural network;

19 The feedforward neural network outputs the prediction
results X(T + 1);

20 return X(T + 1);

emphasizes the most reliable model under varying workload
conditions. Step 19 outputs the prediction result X(T + 1).

The prediction model forecasts the load of compute nodes
based on this historical data and sends the prediction results
to the Task Migration module. Upon receiving the data,
the Task Migration module analyzes the load information
of compute nodes. If the load of certain nodes exceeds
a predefined threshold ϑ, it is added to an overload set
Noverload = {n1, n2, ..., nk}, and the overload values of
these compute nodes are sorted in descending order (from
highest to lowest). The sorted list of overloaded nodes ensures
that compute nodes with the highest loads are prioritized for
task migration. Meanwhile, it is necessary to further select
which tasks need to be migrated from overloaded nodes. The
communication score for each task can be calculated using Eq.
(3), which represents the volume of data exchanged between
each task in the overloaded node and other tasks. Finally,
the task with the highest score is migrated to the node with
the lowest resource utilization. We adopt a stop-and-restart
migration mechanism: the task is terminated on the source
node and then re-instantiated on the target node. The dominant
migration overhead is the restart latency, which we measured
to be approximately 10 seconds per migration, from task

termination on the source to activation on the target.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Pc-Stream.
The experimental setup is first discussed, followed by an anal-
ysis of system performance and prediction model accuracy.

A. Experimental Setup

Pc-Stream is deployed on the CentOS 7 operating system
using Apache Storm 2.4.0. The cluster consists of 12 compute
nodes, with 11 nodes configured as Supervisors, and the
remaining nodes hosting Nimbus and Zookeeper services. To
establish a heterogeneous computing environment, nodes are
configured with varying CPU and memory capacities: five
nodes are equipped with 1-core CPUs and 1GB of memory,
while the other six nodes have 2-core CPUs and 2GB of
memory.

Fig. 3. Instance topology of TopN.

We use the Taobao user behavior dataset [23] provided by
Alibaba Cloud, which contains 100 million records, to test
system performance. A TopN streaming application is devel-
oped to identify best-selling products from this dataset. The
topology of TopN is illustrated in Fig. 3. In the experiments,
we compare the performance of Pc-Stream with two state-of-
the-art schedulers: EvenScheduler and Tc-Storm [18]. Even-
Scheduler allocates tasks to compute nodes in a round-robin
manner, while Tc-Storm co-locates communication-intensive
tasks on the least-loaded compute nodes. Both are widely used
as benchmark baselines for performance comparison.

B. System Performance

We evaluate the overall performance of Pc-Stream using
two key metrics: system latency and system throughput. To
simulate varying load conditions, we use different data stream
rates: 5000 tuples/s, 1000 tuples/s, and 4000 tuples/s. We
configure the predictor to produce a sequence of five forecasts
at 60-second steps. This provides sufficient lead time for task
migration before any node reaches its overload threshold.

Given a high input rate of 5000 tuples/s, Pc-Stream sig-
nificantly outperforms both EvenScheduler and Tc-Storm.
The Prediction module of Pc-Stream is capable of detecting
overloaded nodes in advance and triggering proactive task

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. System latency of TopN under high input rate (5000 tuples/s).

Fig. 5. Average throughput of TopN under low input rate (1000 tuples/s).

migrations. As shown in Fig. 4, at around 660 seconds, the
system experiences a temporary increase in latency due to
the triggered task rescheduling. During this process, tasks are
paused while incoming data is buffered. When restarted, the
tasks must process this backlog of data simultaneously, creat-
ing a workload burst that briefly spikes latency. However, once
migration is completed, the latency rapidly drops and stabilizes
at a low level of 9.8 ms. In contrast, EvenScheduler and Tc-
Storm are unable to adjust their scheduling strategies promptly
in response to the rising input rate, leading to escalating system
load. The latency of EvenScheduler increases to 30.2 ms, while
the latency of Tc-Storm rises from 11.3 ms to 18.1 ms.

Given a stable input rate of 1000 tuples/s, Pc-Stream
achieves higher system throughput compared to EvenSched-
uler and Tc-Storm. As shown in Fig. 5, after the system
stabilizes, EvenScheduler attains an average throughput of 538
tuples/s, and Tc-Storm reaches 657 tuples/s. In contrast, Pc-
Stream achieves 741 tuples/s, representing a 12.8% improve-
ment over Tc-Storm.

Similarly, given a higher input rate of 4000 tuples/s, Pc-
Stream consistently outperforms the baselines. As shown in
Fig. 6, after the system stabilizes, EvenScheduler achieves an
average throughput of 2264 tuples/s, while Tc-Storm achieves
2762 tuples/s. Pc-Stream demonstrates the highest throughput
of 3345 tuples/s, yielding a 21.1% improvement over Tc-Storm
and a 47.7% improvement over EvenScheduler.

Table II presents an ablation study on the performance
contribution of Pc-Stream’s key components. The average

Fig. 6. Average throughput of TopN under high input rate (4000 tuples/s).

latency and throughput are evaluated under input rates of
5000 tuples/s and 1000 tuples/s, respectively. Pc-Stream inte-
grates two core mechanisms: thermal-driven partitioning and
predictive scheduling. The results show that thermal-driven
partitioning alone already outperforms the baselines, reducing
latency to 17.9 ms and increasing throughput to 655 tuples/s.
The predictive scheduling component provides a further sig-
nificant boost. When both components are combined, Pc-
Stream achieves the best performance, reducing latency to
9.2 ms and increasing throughput to 741 tuples/s. These
results demonstrate that while each mechanism individually
contributes to performance, their integration yields the most
significant overall gain.

TABLE II
CONTRIBUTION OF EACH COMPONENT TO SYSTEM PERFORMANCE

Components Average latency Average throughput
EvenScheduler 29.1 ms 538 tuples/s
Tc-Stream 18.3 ms 643 tuples/s
Thermal-driven partitioning 17.9 ms 655 tuples/s
Predictive scheduling 13.2 ms 701 tuples/s
Pc-Stream 9.2 ms 741 tuples/s

These experimental results demonstrate that Pc-Stream of-
fers stronger scheduling responsiveness and resource adapta-
tion efficiency, particularly under high-intensity data stream
conditions.

C. Resource utilization

We measure resource utilization via the average CPU and
memory consumption within the cluster, which indicates the
algorithm’s efficiency in managing resources. We evaluate
energy consumption by the number of compute nodes required
for the streaming application. The number of active nodes
is closely correlated with the total energy consumption. A
lower number of active nodes means lower overall energy
consumption.

Given a high input rate of 5000 tuples/s, Pc-Stream is more
resource efficient than both EvenScheduler and Tc-Storm. As
shown in Fig. 7, Pc-Stream distributes the entire workload into
8 of the 10 nodes (Nodes 2-9). It uses these active nodes at
a consistently high resource utilization of around 59%, while
the other two nodes (10 and 11) remain completely idle (0%

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

usage). In comparison, Tc-Storm uses all 10 nodes but at
a lower average resource utilization of 44%. EvenSchedule
performs poorly, showing a major load imbalance where some
nodes are overloaded at 70% while others are nearly unused
at just 6%.

Fig. 7. Average resource utilization of compute node (5000 tuples/s)

Instead of distributing tasks across all machines, Pc-Stream
puts streaming applications onto the smallest number of nodes
required. This ensures that the active nodes are used to their
full potential, avoiding the waste seen in the other methods.
This approach has a clear benefit for energy consumption.
Because Pc-Stream leaves some nodes completely idle, these
machines can be put into a low-power sleep mode.

D. Prediction Accuracy

We select the data aggregation node that deploys the highest
number of spout3 instances in Fig. 3 as the test subject, as
its resource usage directly affects system performance. The
experiment predicts the node’s load under an increasing data
input rate, comparing the predicted loads with the actual
observed load values.

As illustrated in Fig. 8, the predicted values closely follow
the actual values in terms of their overall trend. As the input
rate increases, both the predicted and actual loads exhibit
linear growth, indicating that the Pc-Stream prediction model
effectively reflects the dynamic characteristics of load changes
in response to varying data pressures. In the low-to-medium
load range (2000-8000 tuples/s), the model accurately captures
node load variations, with small prediction errors and relatively
stable fluctuations. Even in the medium-to-high load range
(above 8000 tuples/s), the model still maintains good pre-
diction accuracy and stability, without significant deviations.
This demonstrates its strong adaptability in modeling highly
dynamic workloads.

Fig. 9 presents the prediction error analysis, using the Mean
Absolute Percentage Error (MAPE) as the evaluation metric.
The results indicate that the prediction error remains below
5% in most cases, with an average of 3.81%. These findings
confirm the high prediction accuracy of the model and its
ability to effectively track compute node load variations.

The model remains robust even under fluctuating input
rates, as resource utilization is mainly influenced by the

Fig. 8. Comparison between predicted and actual values.

Fig. 9. MAPE between predicted and actual values.

instantaneous input rate rather than its long-term trend. The
system responds to input changes smoothly, allowing the
model to track variations effectively. Additionally, the training
data includes a diverse range of input rates, which enhances
the model’s generalization capability.

VI. CONCLUSIONS AND FUTURE WORK

To address the trade-off between communication overhead
and load balancing in distributed stream computing systems,
we proposed a multi-objective collaborative scheduling strat-
egy. By optimizing task allocation and enabling dynamic
adjustments, this strategy reduces inter-task communication
overhead while balancing resource utilization across compute
nodes. By integrating load prediction into the scheduling
process, the strategy can proactively identify potential com-
putational bottlenecks and adjust task allocations in advance,
allowing the system to better adapt to the dynamic nature of
data streams.

As part of future work, we will explore the following two
directions:

(1) Extending our implementation to other distributed
stream computing platforms to further demonstrate the
generality of Pc-Stream.

(2) Developing an efficient and reliable state management
approach to further enhance the stability and adaptability
of the scheduler in complex scenarios.

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No. 62372419 and
62025203; and the Fundamental Research Funds for the Cen-
tral Universities under Grant No. 265QZ2021001.

REFERENCES

[1] Z. Zhang, T. Liu, Y. Shu, S. Chen, and X. Liu, “Dynamic adaptive
checkpoint mechanism for streaming applications based on reinforce-
ment learning,” in 2022 IEEE 28th International Conference on Parallel
and Distributed Systems (ICPADS), 2023, pp. 538–545.

[2] S. Chaturvedi, S. Tyagi, and Y. Simmhan, “Cost-effective sharing of
streaming dataflows for iot applications,” IEEE Transactions on Cloud
Computing, vol. 9, no. 4, pp. 1391–1407, 2021.

[3] Q. Wang, D. Zuo, Z. Zhang, S. Chen, and T. Liu, “Sepjoin: A distributed
stream join system with low latency and high throughput,” in 2022
IEEE 28th International Conference on Parallel and Distributed Systems
(ICPADS), 2023, pp. 633–640.

[4] J. Tan, Z. Tang, W. Cai, W. J. Tan, X. Xiao, J. Zhang, Y. Gao, and
K. Li, “A cost-aware operator migration approach for distributed stream
processing system,” IEEE Transactions on Cloud Computing, vol. 13,
no. 1, pp. 441–454, 2025.

[5] Z. Li, J. Cui, H. Song et al., “Research on weighted adaptive particle
swarm optimization algorithm based on flink stream processing frame-
work,” in 2024 3rd International Conference on Big Data, Information
and Computer Network, 2024, pp. 48–52.

[6] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th Annual
Middleware Conference, 2015, p. 149–161.

[7] X. Liu and R. Buyya, “D-storm: Dynamic resource-efficient scheduling
of stream processing applications,” in 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems, 2017, pp. 485–492.

[8] M. Farrokh, H. Hadian, M. Sharifi, and A. Jafari, “Sp-ant: An ant
colony optimization based operator scheduler for high performance
distributed stream processing on heterogeneous clusters,” Expert Systems
with Applications, vol. 191, pp. 1–11, 2022.

[9] X. Liu and R. Buyya, “Resource management and scheduling in dis-
tributed stream processing systems: A taxonomy, review, and future
directions,” ACM Computing Surveys, vol. 53, no. 3, pp. 1–40, 2020.

[10] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “I-scheduler: Iterative
scheduling for distributed stream processing systems,” Future Genera-
tion Computer Systems, vol. 117, pp. 219–233, 2021.

[11] M. Barika, S. Garg, A. Chan, and R. N. Calheiros, “Scheduling
algorithms for efficient execution of stream workflow applications in
multicloud environments,” IEEE Transactions on Services Computing,
vol. 15, no. 2, pp. 860–875, 2022.

[12] H. Röger and R. Mayer, “A comprehensive survey on parallelization
and elasticity in stream processing,” ACM Computing Surveys, vol. 52,
no. 2, 2019.

[13] G. Marques, C. Senna, S. Sargento, L. Carvalho, L. Pereira, and
R. Matos, “Proactive resource management for cloud of services envi-
ronments,” Future Generation Computer Systems, vol. 150, pp. 90–102,
2024.

[14] S. M. Attallah, M. B. Fayek, S. M. Nassar, and E. E. Hemayed,
“Proactive load balancing fault tolerance algorithm in cloud computing,”
Concurrency and Computation: Practice and Experience, vol. 33, no. 10,
p. e6172, 2021.

[15] H. Peng, Y. Bai, G. Kang, Y. Li, and T. Chen, “Optimizing big data
analytics architecture for edge computing using container technology,”
in 2024 IEEE 30th International Conference on Parallel and Distributed
Systems (ICPADS), 2024, pp. 254–261.

[16] M. Wu, D. Sun, Y. Cui, S. Gao, X. Liu, and R. Buyya, “A state lossless
scheduling strategy in distributed stream computing systems,” Journal
of Network and Computer Applications, vol. 206, p. 103462, 2022.

[17] Y. Guo, H. Shan, S. Huang, K. Hwang, J. Fan, and Z. Yu, “Gml: Effi-
ciently auto-tuning flink’s configurations via guided machine learning,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 12,
pp. 2921–2935, 2021.

[18] J. Zhang, C. Li, L. Zhu et al., “The real-time scheduling strategy based
on traffic and load balancing in storm,” in 2016 IEEE 18th International
Conference on High Performance Computing and Communications,
2016, pp. 372–379.

[19] X. Wei, L. Li, X. Li, X. Wang, S. Gao, and H. Li, “Pec: Proactive
elastic collaborative resource scheduling in data stream processing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 7,
pp. 1628–1642, 2019.

[20] P. Mishra, A. Al Khatib, S. Yadav et al., “Modeling and forecasting
rainfall patterns in india: a time series analysis with xgboost algorithm,”
Environmental Earth Sciences, vol. 83, p. 163, 2024.

[21] H. Li, J. Xia, W. Luo, and H. Fang, “Cost-efficient scheduling of
streaming applications in apache flink on cloud,” IEEE Transactions
on Big Data, vol. 9, no. 4, pp. 1086–1101, 2023.

[22] A. Muhammad, M. Aleem, and M. A. Islam, “Top-storm: A topology-
based resource-aware scheduler for stream processing engine,” Cluster
Computing, vol. 24, pp. 417–431, 2021.

[23] “Tianchi,” https://tianchi.aliyun.com/dataset/649?t=1679727494514,
2018.

Authorized licensed use limited to: University of Melbourne. Downloaded on January 27,2026 at 12:14:07 UTC from IEEE Xplore. Restrictions apply.

