
An Adaptive Mechanism for Fair Sharing of Storage Resources

Chao Jin and Rajkumar Buyya
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{chaojin, raj}@csse.unimelb.edu.au

Abstract—To ensure Quality of Service (QoS) for data
centers, it is critical to enforce a fair share of storage resources
between competing users. Interposed schedulers are one of
the most practical methods for performance isolation. Most
fair queuing-based proportional sharing algorithms for existing
interposed scheduler are variants of counterparts designed for
network routers and may result in breaking the fairness of
proportional sharing required by Service Level Agreements
for storage systems. This paper presents a novel algorithm to
address this problem. As an extension of the fair queuing-
based algorithm, it can dynamically adapt to the performance
variation of storage systems and guarantee a fair sharing
of resources as well as satisfying the minimal performance
requirements for different clients. The design and performance
evaluation are presented.

Keywords-Storage; Quality of Service; Fair Sharing;

I. INTRODUCTION

Data centers can not only consolidate large scale of data,
but also provide the benefits of statistical sharing and lower
management costs with better resource efficiency [1]. With
consolidation and resource sharing, it is a challenge to
control the interference between competing users, i.e., isolate
performance perceived by different clients or applications.
Normally, resource reservation with Service Level Agree-
ments (SLA) [2] may specify performance requirements,
in terms of absolute values, for different classes of users.
The storage utility within data centers should statistically
ensure the required QoS defined in the SLA. The goal
of this performance virtualization (PV) is to make each
client experience as if a subset of physical resources were
dedicated to it, as long as enough aggregated resources exist.

This PV can be supported at various levels within the
storage system. One of the most practical methods is inter-
posing a QoS scheduler between clients and storage utilities
[3]. The interposed scheduler treats the storage utility as a
”black box”. This method possesses several advantages: i) it
uses little information about the implementation of storage
service; ii) it can be used for existing storage services which
have no internal QoS supports; iii) it does not interfere with
operations of existing storage services. These advantages
make it applicable to a wide range of storage services.

Interposed schedulers aim to meet the minimal perfor-
mance requirements for each client, and ensure the abso-
lute fairness of spare resources sharing between competing
clients. Many variants of fair queuing-based scheduling

algorithms [4] [5] [6] have been proposed to satisfy both
requirements.

Fair queuing-based proportional sharing algorithms, are
originally designed for network routers to dispatch packets.
They assume that the process time required for dispatching
each packet to the outbound link is uniform and same [7].
The counterpart of dispatching packet in disk-based storage
system corresponds to reading or writing unit data on disks.
Unfortunately, modern disk systems cannot support uniform
access time for each sector and the dynamic seeking latency
of disk head makes the variation of performance more
complicated [8]. This generates a natural unfair access time
for competing clients, and it eventually makes existing fair
queuing-based proportional sharing algorithms hard to meet
the requirements of SLA (Section II-C).

To overcome this problem, we propose a novel algorithm
as an extension of SFQ(D) [5]. Our new algorithm provides
fair resources sharing defined by SLA for competing users
with automatic adaptation to performance variation of disk-
based storage systems. We evaluate the proposed algorithm
both analytically and experimentally on a distributed storage
system. The experimental results confirm that our algorithm
can allocate resources with stringent performance and fair-
ness requirements defined by SLA even under fluctuating
disk performance.

The remainder of this paper is organized as follows.
Section II reviews related work and identifies the problem of
unfairness. Section III presents our new algorithm and de-
scribes its design and implementation in details. Section IV
provides a performance evaluation in real systems. Section V
concludes the paper.

II. OVERVIEW AND RELATED WORK

PV is critical for data centers that share resources to many
users with various requirements. To achieve this target, an in-
terposed scheduler (IS) is always used to isolate performance
perceived by clients. In practice, the IS intercepts requests
from clients and forwards them to storage services, while
the PV is gained by throttling (delaying) requests before
forwarding them.

Façade [3] implements an EDF (Early Deadline First)
algorithm in an IS with proportional feedback to control
the length of disk queue. It aims to meet the real time
requirements of disk IO scheduling. However, it needs a

rudiment model of the storage system. Triage [9] adopts
a control theory to predict the system performance and
correspondingly adjust its system model for performance
isolation and differentiation. Its system model is not sensitive
to the performance dynamics perceived by concurrent clients
due to different physical data position.

Different from the above methods, proportional sharing
algorithms are proposed to enforce fairness between com-
peting users. Proportionally sharing processors and network
resources has been deeply investigated and many implemen-
tations [10] [7] [4] are based on the fair queuing algorithm.
To address the similar problem in the domain of storage,
various adaptations of these algorithms have been proposed.
For example, YFQ [11], SFQ(D) [5] are based on Start-time
Fair Queue (SFQ) [12]; SLEDS [13] and SARC [14] are
adaptations of the leaky bucket algorithm; CVC [15] [4]
adopts VirtualClock [7]. However, directly applying fair
queuing-based algorithm to storage system can introduce
unfairness within a short period of time (Section II-C).

In the remainder of this section, we present the basic
model of IS, review the Start-time Fair Queue algorithm
and analyze its unfairness in storage systems.

A. Interposed Scheduler

Given a shared storage service, requests from clients are
grouped into different classes, called flows, and a service
level objective (SLO) is defined for each flow. According to
the required minimal resource, each flow is assigned with a
weight that represents the proportion of reserved resources.
Without loss of generality, each flow may consist of requests
from multiple clients, and requests from one client/process
may be grouped into multiple flows.

Interposed
Scheduler

Input Requests Throttled Requests Storage

flow f

flow g

Figure 1: Architecture of Interposed Scheduler.

The architecture of IS is illustrated in Figure 1. All
requests of every flow are intercepted by the scheduler before
forwarding them to the storage service. Currently, many
large scale storage services are achieved by a cluster of
disk bricks [16]. The scheduler shares the storage resources
proportionally according to the weight of each flow. This
is achieved by reordering requests of all flows to meet the
minimal required quality of storage service.

Without loss of generality, we use the principle of fair
queue to analyze the model of fair queuing-based IS. Each
flow consists of a sequence of requests: r0f . . . ri

f . . . Each
request is associated with a cost, Cost(ri

f); in particular, the
cost may be the size of required data or the number of I/O

requests per second. The weight of each flow f is denoted
φf . Wf (t1, t2) represents the aggregated cost of requests for
flow f within the time period between t1 and t2. Therefore,
unfairness U(t1, t2) is defined as follows:

U(t1, t2) = max
f,g
|Wf (t1, t2)

φf
− Wg(t1, t2)

φg
| (1)

DEFINITION 1. A service disciple is fair, if U is a small
constant independent of the length of the time interval [17].

B. Start-time Fair Queuing Algorithm

Start-time Fair Queuing (SFQ) is a representative example
of fair queuing-based scheduling algorithm. Compared with
other fair queuing-base algorithms, SFQ enforces a more
stringent fairness between competing flows [12]. Like most
fair queuing algorithms, SFQ assigns tags to each request
when it arrives, and dispatches requests in a non-descending
order of tags while ties are broken arbitrarily.

Given a request ri
f of flow f , SFQ assigns it with two

tags: a start tag, S(ri
f) and a finish tag F (ri

f). These tags
correspond to the time at which the request should start and
finish according to a system maintained virtual time, v(t).

The tags assigned by SFQ are defined as follows:

S(ri
f) = max{v(A(ri

f)), F (ri−1
f)}, (i ≥ 1). (2)

F (ri
f) = S(ri

f) + Cost(ri
f)/φf , (i ≥ 1). (3)

A(ri
f) is the arrival time of request ri

f . Initially, we have
F (0) = 0, v(0) = 0. Within a busy period, v(t) is defined to
be equal to the start tag of the packet in service; at the end
of busy period, v(t) is set to be the maximum of finish tags
assigned to any packets that have been serviced by time t.
SFQ dispatches requests in an increasing order of start tags.

The fairness property of SFQ is presented by Equation
(4). For any time interval [t1, t2] in which flow f and g are
backlogged, the unfairness is up to a predefined limitation.

|Wf (t1, t2)
φf

−Wg(t1, t2)
φg

| ≤
(
Costmax

f

φf
+
Costmax

g

φg

)
(4)

where Costmf ax and Costmg ax are the maximum request
cost for flow f and g respectively.

SFQ have been proved to provide a statistical fair service
even when service rate fluctuates frequently due to random
effects, such as variability in capacity of links and CPU
process rate.

However, in storage systems, the fluctuation of the service
rate is not restricted to random causes. More importantly,
locations of data assign natural unfairness to each flow. This
type of non-random fluctuation of service rate is not covered
by SFQ.

C. Unfairness of SFQ for Storage System

Although SFQ ensures a fair sharing of storage in a
long term, it may cause unfairness in a short term. This
is not accepted by storage-bound applications [4]. The
latency of many such applications is around several hundred
milliseconds [2]. This section presents the reason of short
term unfairness of SFQ by using examples with dynamic
bandwidth.

Outer tracks

Inner tracks

Storage System

Interposed
Scheduler

Requests

f

g

n

n

Output

t0 tf tg

Time

n

n

Figure 2: Unfairness of SFQ(D) for Storage Systems.

During the life cycle of a data center, it incrementally
equipped with different types of disks, which provide het-
erogeneous performance. Even for the same type of disks,
outer tracks can provide a much higher access rate than
inner tracks. The performance variability in disk-based stor-
age systems is mainly caused by the bandwidth difference
between inner and outer tracks of disks. For modern disk
devices, the increases in areal densities of magnetic disks
have led to a bandwidth difference of 60% or more between
inner and outer tracks [18]. This gap is expected to grow
continuously in the future [19]. Moreover, caches at various
levels of the file systems and disks cannot totally mask this
difference. According to an IO report of Microsoft [20]
about the performance perceived at the application level
in Windows system, the outer sectors are more than 30%
faster than inner sectors even with disk cache enabled. As
a consequence, given a flow, the track position of its data
has an overwhelming impact on its performance perceived
by clients. This type of performance variance bound with
flows is not fully covered by SFQ.

SFQ cannot be applied directly to the storage system. An
extension of SFQ, called SFQ(D) [5], maintains a queue for
servicing up to D concurrent requests. With this extension,
during a busy period, the virtual time is set to be the
maximum start tag of requests in service. The unfairness of
SFQ(D) algorithm for disk systems is illustrated in Figure 2
with a simple example.

Assume that two continuously backlogged flow f and g
have same weights and the depth of schedule queue is long
enough. Both f and g send n requests with same cost to the
IS nearly at the same time t0, and the cost of each request
is L. The data requested by f and g are located on different
disks. Furthermore, the data requested by f are on located in
the outer track and the data requested by g are on the inner
track. (Without loss of generality, both disks can be attached

to the same machine or different machines connected by
high speed networks.) Without comprising the correctness of
analysis, we assume that the overhead of SFQ(D) algorithm
can be ignored with comparison to the time required by
disk I/O access. Therefore, it is reasonable to expect that the
requests of f can be finished before g, because access rate
on outer tracks is faster than that on inner tracks. Assume
f is finished at tf and g is finished at tg , tf < tg , while
the service rates of inner and outer tracks are Bi and Bo

respectively. The unfairness between f and g is as follows:

|Wf (t1, t2)
φf

− Wg(t1, t2)
φg

| = C ∗ (tf − t0) (5)

where C = (Bo −Bi)/L.
From equation (5), the unfairness between f and g def-

initely depends on the time interval. Therefore, it conflicts
with the fairness requirement of resource sharing according
to Definition 1. Although the above analysis is based on
the unfairness caused by dynamic disk bandwidth, it is also
applicable to the case of unfairness that is caused by the
dynamic seeking latency of disk heads.

III. DESIGN OF ADAPTIVE SFQ

This section describes an adaptive method to address the
unfairness problem of applying SFQ algorithm to propor-
tionally share the resources of disk-based storage system.
For a data center that is built from a number of small storage
servers/bricks, a SLA planner [1] is assumed to take the
responsibility to specify SLO contracts with different users
and then allocate storage resources (including storage space
and bandwidth) across distributed machines/disks according
to the requirements. Our algorithm focuses on enforcing fair
sharing of bandwidth resources on each machine or disk. To
enforce fair sharing of resources across multiple distributed
resources is out of the scope of this paper.

The unfairness caused by SFQ in disk-based storage
systems is due to the fixed forwarding speed of requests
for each flow, which is determined only by their weights.
We propose an adaptive method to address the unfairness
problem of applying SFQ algorithm to proportionally share
the resources of disk-based storage system. Different from
SFQ, ASFQ (Adaptive SFQ) takes into account both the
weights and the real time performance perceived by each
flow to decide the forwarding speed for their requests. In
particular, a performance monitor is used to observe the real
time performance perceived by each flow and a feedback
mechanism is deployed to dynamically adjust the forwarding
speed of requests according to the status of each flow
observed by the monitor.

Our algorithm aims to meet the QoS requirements defined
in SLA. AFSQ reserves a minimal capacity share for each
flow proportional to its weight; surplus resources are shared
between flows with outstanding requests also in proportion
to their weights.

 Storage Input Requests

flow f

flow g

Output Adaptive SFQ

Throttled Requests

Request
Selector

Performance
Monitor

Rate Reducer Feedback Schedule Rate Controller

Figure 3: Principle of ASFQ.

A. Principle Architecture of ASFQ

Our adaptive method is achieved by the cooperation
between a performance monitor (PM) and a request selector
(RS), as illustrated in Figure 3. Specially, the PM collects the
most recent statistics of resources consumed by each flow.
RS is responsible to choose the next proper request from
all the flows with pending requests. The request selected
to be the next forwarding request depends on the rate
controller of each flow. For each flow, its rate controller
is defined to be the combination of the start tag of the head
request and the negative compensation of its rate reducer.
Normally the rate reducer is inactive. In case any unfairness
is found by the PM, the rate reducer is triggered to slow the
forwarding rate of flows that consume more resources than
what they deserve. It is designed to make the forwarding
speed slow down to a level which does not conflict with
the fairness while still meeting the requirements of SLO.
Essentially, the PM and the rate reducer forms a feedback
mechanism to adjust the forwarding rate with adaptation
to the variance of performance. If no unfairness is found,
the rate reducer remains inactive and therefore the ASFQ
behaves as a normal SFQ(D) algorithm.

B. Feedback Mechanism of ASFQ

Performing an efficient and effective feedback is critical
for ASFQ. The feedback is determined by two issues: the
accuracy of monitored performance and a negative compen-
sation used in the rate reducer.

The PM collects consumed resources for each flow pe-
riodically. Assume that the collection period of PM is Tm

and T p
m represents p-th period (p=0, 1, 2, . . .). Wf (T p

m)
stands for the aggregated cost for flow f within T p

m, i.e.,
the aggregated resources consumed by flow f . The maximal
unfairness permitted in SLA is ε. That means if U(T p

m)
is larger than ε, the feedback mechanism should start to
adjust the forwarding rate for the flows which receive more
resources than what they deserve. We call this type of flows
CMTD (Consume More Than Deserve). On the contrary,
those flows that consume less than what they deserve are
called CLTD (Consume Less Than Deserve).

To adjust the forwarding rate for CMTD flows, we calcu-
late a negative compensation factor, ∆. It is used to decrease
the priority of head request of CMTD flows. Given T p

m and

two flows, f and g, if Uf,g(T p
m) is larger than ε, ASFQ aims

to ensure in the next period, a compensation should be paid
to CLTD flows by delaying requests of CMTD flows. This
means that we have to enforce Uf,g(T p+1

m) to be less than
ε. Assume that f is a CMTD flow and g is a CLTD flow.
Therefore, to limit the unfairness in T p+1

m in an ideal case,
we have the following objective:

|Wf (T p+1
m)

φf
− Wg(T p+1

m)
φg

| = 0 (6)

We already know that, in the last collection period:

|Wf (T p+1
m)

φf
− Wg(T p+1

m)
φg

| = U(T p
m) (7)

Since we aim to limit the short term unfairness, it is
reasonable to expect that the pending costs of g in T p+1

m

are nearly the same as in T p
m. Therefore, as a combination

of equation (6) and (7), we have the following:

∆p+1 = Wf (T p+1
m)−Wf (T p

m) = U(T p
m) ∗ φf (8)

The result of equation (8), ∆, is the negative compen-
sation for flow f . It is used to decrease the priority of
head request in flow f for the next collection period. If no
unfairness is found to exceed the predefined limitation ε, ∆
is set to be equal to 0. Thus we have the following:

∆p+1 =

 U(T p
m) ∗ φf if U(T p

m) > ε
0 if (U(T p

m) ≤ ε) ∧ (∆p = 0)
∆p if (U(T p

m) ≤ ε) ∧ (∆p > 0)

Finally, the priority used in the rate controller of flow f
is defined as follows:

P (f) = S(ri
f) + ∆p+1 (9)

The above analysis is based on two flows. In case there
are more than two flows, we first need to find out the flow
with the most unfairness, and then apply relative unfairness
analysis for each of the rest flows. In addition, the negative
compensation can be calculated for each flow.

C. ASFQ Algorithm

Based on the above principle of ASFQ, this section
describes the ASFQ algorithm. Each flow f has a pending
queue, Qf , used to buffer arriving requests for f . Moreover,
a variable, ∆f , stands for the negative compensation for f at
the current time. To maximize the system utilization, ASFQ
sends up to D concurrent requests to the storage utility.
These requests are maintained by a throttling queue, TQ.
Whenever a request is selected for forwarding, it is added to
the tail of TQ; when any request is finished by the storage
service, it is removed from TQ. Count is the number of
requests under service in the throttling queue; D stands for
the maximal depth of TQ.

Algorithm 1 and 2 illustrate the ASFQ algorithm,
including the process to add a new request into the pending

queues and the main loop for dispatching pending requests
to the storage utility whenever the service is available.

/* When a new quest of flow f , ri
f , arrives, append it

to the pending queue of f . */
Enqueue(ri

f)
begin

if TQ.Count > 0 then
vct = v.S;

end
if TQ.Count = 0 then

vct = v.F ;
end
Qf .Enqueue(ri

f ,vct);
end

Algorithm 1: Algorithm of Adaptive SFQ — Enqueue.

/* When the throttling queue is not full and there are
pending requests in the system, select proper requests
and send them to storage service.*/
Dequeue()
begin

while TQ.Count < D do
/*select the proper request from pending
queues*/
r = SelectNextRequest();
/*send the selected request to the throttling
queue for accessing storage service*/
TQ.Add(r);
/*Update virtual clock*/
if v.S < r.S then

v.S = r.S;
end
if v.F < r.F then

v.F = r.F ;
end

end
end

Algorithm 2: Algorithm of Adaptive SFQ — Dequeue.

The virtual clock, v, is maintained as a global variable. It
consists of two properties: v.S and v.F , which represent the
maximum start tag and finish tag of all requests sent to the
throttling queue. Whenever a new request, ri

f , is arriving, we
use Equation (2) and (3) to calculate its start and finish tag.
This is accomplished by Qf .Enqueue(ri

f , cvt), where cvt is
the current virtual time. The current virtual time depends on
the status of throttling queue. When TQ is not empty, that
means the storage service is busy and the virtual clock is
set to be equal to the maximum start tag of all requests that
have sent to TQ. On the contrary, if TQ is empty, the storage

utility is idle and the virtual clock should be equal to the
maximum finish tag of all request sent to TQ.

To select proper requests for service, we use Equation
(9) to calculate the priority for head request of each of the
flows. This is accomplished by SelectNextRequest() in the
algorithm.

IV. PERFORMANCE EVALUATION

The ASFQ algorithm aims to ensure a fair share of the
server capacity for competing flows to meet their minimal
performance required even in case that the performance
variance is bound to a subset of flows. In this section,
we evaluate ASFQ in an object-based distributed storage
system, called WinDFS, which is designed to support a
.NET-based MapReduce programming model [21]. The
evaluation system consists of one index server with one
object server and several clients. Server machines manage
objects (files) on disks. Each machine has a single Pentium
4 processor, 1GB of memory, 160GB IDE disk (10GB is
dedicated to WinDFS), 1 Gbps Ethernet network and runs
Windows XP. To simplify the performance comparison, the
file buffer of Windows was turned off during reading or
writing files. The ASFQ algorithm was implemented on the
object servers.

During experiments, several workload generators on client
machines kept sending I/O requests to server machines. Each
workload generator was assigned with a workload object, the
size of which is 1GB. In addition, each workload consisted
of a number of threads and each thread sent independent
request to access its workload object. To evaluate the per-
formance, we collected the aggregated throughput (MB/sec)
perceived by all threads of each workload generators. In the
remainder of this section, each generator is also called a
client. The cost for each request is defined to be its size.

A. SLA Compliance

The key capability of ASFQ is to meet the minimal
performance defined by SLA for each flow with a fair
manner. With sequential disk IO experiments, the maximal
throughput of each server is around 12∼14MB/s. Assume
two clients share this resource and with a reasonable re-
source reservation, the minimal throughput required by each
client was set to be 5MB/s. The maximal unfairness was
set to be 1MB/s. The size of each request was 512KB.
Correspondingly, the weight ratio of the clients was 1:1.
Each client consisted of 10 threads. All threads of the two
clients started to work at nearly the same time. Experiments
run with ASFQ enabled and disabled respectively.

Both clients finished within about 180 seconds and the
throughput perceived by each client was sampled per second.
Figure 4 illustrates the number of SLA violation (i.e. the
perceived performance is less than 5MB/s.) In particular,
each cross or circle in the figure represents the performance
perceived by clients which is less than 5MB/s. With ASFQ

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

Time (second)

B
an

dw
id

th
 (M

B
yt

es
/s

ec
on

d)
SLA Violation

No ASFQ
With ASFQ

Figure 4: SLA Violation.

enabled, the number of violations is decreased up to 50%
in comparison with the case without ASFQ. Moreover, the
deviation of violated performance from SLA in the case with
ASFQ is almost within 3MB/s and 5MB/s, which is not as
worse as the case without ASFQ.

B. Performance Isolation vs. Efficiency

ASFQ trades system efficiency for fairness. However, the
performance should not be degraded to an unacceptable
level. The configuration of clients in this section is the
same as Section IV-A. Figure 5 illustrates the performance
collected at server side with ASFQ disabled and enabled.
With ASFQ enabled, the size of requests was set to be
128KB and 512KB respectively. With ASFQ disabled, the
size of each request was set to be 512K. The difference in
efficiency at the server side is not significant. Specifically,
with each configuration, each client finished its job in about
180 seconds. The reason is the maximum block size used
by NTFS (the file system of Windows XP) to access disk is
64KB. It is reasonable to expect that any block size larger
than 64K can efficiently utilize the system bandwidth.

0 20 40 60 80 100 120 140 160
4

6

8

10

12

14

16

18

Time (second)

Ba
nd

wi
dt

h
(M

By
te

s/
se

co
nd

)

System Throughput

No ASFQ
ASFQ 128KB
ASFQ 512KB

Figure 5: Throughput of server.

However, the difference in fairness perceived by clients is
quit significant. Figure 6 shows the performance difference
perceived by both clients with each configuration. Without
ASFQ, the performance difference perceived by both clients
can be as large as nearly 11MB/s. With ASFQ enabled, it

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

Time (second)

B
an

dw
id

th
 (M

B
yt

es
/s

ec
on

d)

Fairness of Performance Virtualization

No ASFQ
ASFQ 128KB
ASFQ 512KB

Figure 6: Performance difference between clients.

is definitely under control and 128KB configuration allows
a finer difference (about 1MB/s) than 512KB.

C. Fairness of ASFQ

In this section, we evaluate the fairness property of ASFQ
by comparing it with SFQ(D) in case service rates perceived
by clients are different. The experiment was conducted two
times: respectively for ASFQ and SFQ(D). The depth of
the throttling queue for both ASFQ and SFQ(D) was set to
be 10. Two clients kept writing their objects to server. The
configuration of clients is the same as Section IV-A.

Currently, the Windows operating systems do not expose
methods to control the position of files on disks. To simulate
different access rates, a delay was added to each of the
requests of client 1. As a consequence, after each of the
requests of client 1 is finished by the storage system, it
does not return back immediately. On the contrary, it is
sent back to the client after dms of delay. To determine a
proper value of d, we conducted an experiment to measure
the average cost for accessing 512KB data on disk. It
shows the average cost is about 150 ms. To simulate 30%
performance difference at application level between outer
and inner tracks, the value of delay is up to 45 ms. In
experiments, a random value between 0 and 45 ms was
selected as the delay for each of the requests of client 1.

Figure 7: Unfairness Comparison.

To measure the fairness, accumulated unfairness (AU)
was collected for both clients. AU stands for the sum

of unfairness within the short term. In particular, each of
the clients collected its consumed resources every 100 ms;
the difference between the consumed resources by the two
clients is the unfairness within short term because weights
for both clients are same. The sum of these values collected
during the time of conducting experiment is AU, since all
the threads started to work nearly at the same time.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

Time (second)

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

SLA Violation

ASFQ
SFQ(D)

Figure 8: SLA Violations with ASFQ and SFQ(D).

The sampling period of the PM in ASFQ is selected to
meet the latency requirements of practical storage-bound
applications [2]. In our experiment, it was set to100ms.
The condition to start rate controllers is:

|Wf (T p
m)−Wg(T p

m)| > ε (10)

The results are illustrated in Figure 7 Under the same
configuration, unfairness limited by ASFQ is more stringent
than SFQ(D). Through the whole experiment, unfairness
accumulated by ASFQ is nearly half of SFQ(D). This means
ASFQ can provide more stringent fairness than SFQ(D) in
case that performance variance by each client is different.

Next, we compare ASFQ with SFQ(D) on satisfying the
minimal performance required by SLA. The delay configu-
ration is the same as above. The number of SLA violations
is collected for cases respectively with ASFQ and SFQ(D),
as illustrate in Figure 8. The number of SLA violations with
ASFQ is 30% less than the case with SFQ(D). Furthermore,
the deviation of performance violation with ASFQ is within
better control than SFQ(D). The reason is the feedback
mechanism works effectively to balance the performance
differences caused by physical positions for both clients.

With experiments, ASFQ is shown to be more effective
on satisfying the minimal performance requirements than
SFQ(D).

D. Impacts of Depth of Throttling Queue

In this section, we evaluate ASFQ under different depths
of TQ. Two clients reserved bandwidth of 3MB/s and 6MB/s
respectively. The maximal unfairness was set to be 1MB/s.
The size of request was set to be 128KB. The depth of TQ
was set to be 5, 10 and 15. The performance collected at
server and clients are illustrated in Figure 9 and Figure 10
respectively.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

Time (second)

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

System Throughput

Depth=5
Depth=10
Depth=15

Figure 9: System Efficiency.

A larger depth of throttling queue results in a weakened
fairness between competing clients and introduces more
SLA violations. The reason is that the disk driver of Win-
dows XP is more likely to reorder the requests when it
receives a larger number of requests at the same time. As
a consequence, the throttling control of ASFQ is weakened.
However, the system utilization is not increased significantly.
This is because the implementation of the throttling queue is
achieved by an asynchronous model. Specifically, whenever
there are pending requests in the TQ, they can be forwarded
to the storage service almost immediately. This keeps the
storage system always busy when there are waiting requests.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

Time (second)

Ba
nd

wi
dt

h
(M

By
te

s/
se

co
nd

)

Performance Isolation (Depth=5)

Client 1
Client 2

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

Time (second)

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Performance Isolation (Depth=10)

Client 1
Client 2

Figure 10: Performance Isolation

V. CONCLUSION

In this paper, we presented an Adaptive Start-time Fair
Queue algorithm to meet the requirements of performance
virtualization for shared storage systems. It can accommo-
date several workloads accessing the storage utility while
meeting their individual Service Level Objectives. At the
same time, it ensures the short term fairness enforcement
between competing clients, even in case when the variance
performance of disks is bound to a subset of clients.

ASFQ achieves its objectives by using a feedback mech-
anism. A monitor is used to observe the performance dif-
ference in a real time manner and to collect information
that is used by ASFQ for balancing performance perceived
by different flows according to the defined SLA. We imple-
mented this algorithm and evaluated it on a real distributed
storage system. The fairness of algorithm is presented with
experimental results. The result of experiments shows the ef-
fectiveness of ASFQ to meet SLA requirements. In addition,
various impacts from different request sizes and the depth of
throttling queue were evaluated. These results demonstrate
that our algorithm can isolate performance for competing
users with stringent performance and fairness requirements.

ACKNOWLEDGMENT

This work is partially supported by research grants from
the Australian Research Council (ARC) and Australian
Department of Industry, Innovation, Science and Research
(DIISR). We would like to thank Christian Vecchiola and
Saurabh Garg for their comments on improving the quality
of the paper.

REFERENCES

[1] J. Wilkes, “Traveling to Rome: QoS specifications for auto-
mated storage system management,” Lecture Notes in Com-
puter Science, vol. 2092, pp. 75–92, 2001.

[2] G. DeCandia, D. Hastorun, M. Jampani, et al, “Dynamo:
Amazon’s Highly Available Key-Value Store,” in Proc. of
the 21st ACM Symposium on Operating Systems Principles
(SOSP), 2007.

[3] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Façade:
Virtual Storage Devices with Performance Guarantees,” in
Proc. of the 5th USENIX conference on File and Storage
Technologies, 2002.

[4] P. Gang and T. Chiueh, “Availability and Fairness Support
for Storage QoS Guarantee,” Proc. of the 28th International
Conference on Distributed Computing Systems, 2008.

[5] W. Jin, J. S Chase, and J. Kaur, “Interposed proportional
sharing for a storage service utility,” Proc. of the 2004 ACM
Sigmetrics Conference on Measurement and Modeling of
Computer System.

[6] Y. Wang, and A. Merchant, “Proportional-share scheduling
for distributed storage systems,” Proc. of the 5th USENIX
conference on File and Storage Technologies, 2007.

[7] L. Zhang, “Virtual clock: a new traffic control algorithm
for packet switching networks,” ACM SIGCOMM Computer
Communication Review, vol. 20, no. 4, pp. 19–29, 1990.

[8] G. R. Ganger, “Blurring the Line Between OSes and Storage
Devices,” in CMU-CS-01-166, White Paper of Parallel Data
Lab, Carnegie Mellon University, 2001.

[9] M. Karlsson, C. Karamanolis and X. Zhu, “Triage: per-
formance differentiation for storage systems using adaptive
control,” ACM Transactions on Storage,, vol. 1, no. 4, pp.
458–480, 2005.

[10] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus
fair scheduling: A proportional-share CPU scheduling algo-
rithm for symmetric multiprocessors,” in Proc. of the 4th

Symposium on Operating System Design and Implementation
(OSDI), 2000.

[11] J. Bruno, J. Brustoloni, E. Gabber, et al, “Disk scheduling
with quality of service guarantees,” Proc. of the IEEE Inter-
national Conference on Multimedia Computing and Systems,
1999.

[12] P. Goyal, H. M. Vin, H. Cheng, “Start-time Fair Queuing: A
Scheduling Algorithm for Integrated Services Packet Switch-
ing Networks,” Proc. of ACM SIGCOMM, 1996.

[13] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu, R.
Menon, and T. P. Lee, “Performance Virtualization for Large-
Scale Storage Systems,” in Proc. of the 22nd International
Symposium on Reliable Distributed Systems (SRDS), 2003.

[14] J. Zhang, A. Sivasubramaniam, Q. Wang, E. Riedel, and A.
Riska, “An interposed 2-Level I/O scheduling framework for
performance virtualization,” Proc. of the 2005 ACM Sigmet-
rics Conference on Measurement and Modeling of Computer
System.

[15] L. Huang, G. Peng, and T. Chiueh. , “Multidimensional
storage virtualization.” Proc. of the International Conference
on Measurement and Modeling of Computer Systems, 2004.

[16] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence,
“Fab: Building distributed enterprise disk arrays from com-
modity components,” Proc. of the 11th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2004.

[17] S. J. Golestani, “A Self-Clocked Fair Queuing Scheme for
High Speed Applications,” Proc. of IEEE INFOCOM’94,
1994.

[18] Hitachi Global Storage Technologies, “Hard Disk Drive Spec-
ification: Hitachi Travelstar 5K80 2.5 inch ATA/IDE hard disk
drive,” 2003.

[19] E. Papathanasiou and M. L. Scott, “Aggressive Prefetching:
An Idea Whose Time Has Come,” in Proc. of the 10th HotOS,
2005.

[20] E. Riedel, C. Ingen, J. Gray, “Sequential I/O on Windows
NTTM 4.0 - Achieving Top Performance,” in Technical
Report of Microsoft Research, 2000.

[21] C. Jin, R. Buyya, “MapReduce Programming Model for
.NET-based Cloud Computing,” in Proc. of Euro-Par 2009.

