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Abstract—Performance of streaming applications are significantly impacted by the deployment decisions made at infrastructure level,

i.e., number and configuration of resources allocated for each functional unit of the application. The current deployment practices are

mostly platform-oriented, meaning that the deployment configuration is tuned to a static resource-set environment and thus is inflexible

to use in cloud with an on-demand resource pool. In this paper, we propose P-Deployer, a deployment framework that enables

streaming applications to run on IaaS clouds with satisfactory performance and minimal resource consumption. It achieves

performance-oriented, cost-efficient and automated deployment by holistically optimizing the decisions of operator parallelization,

resource provisioning, and task mapping. Using a Monitor-Analyze-Plan-Execute (MAPE) architecture, P-Deployer iteratively builds

the connection between performance outcome and resource consumption through task profiling and models the deployment problem

as a bin-packing variant. Extensive experiments using both synthetic and real-world streaming applications have shown the

correctness and scalability of our approach, and demonstrated its superiority compared to platform-oriented methods in terms of

resource cost.

Index Terms—Stream processing, data stream management systems, performance optimization, resource management
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1 INTRODUCTION

DRIVEN by the exponential explosion of unstructured
machine-generated data and the accompanying thirst

for their timely processing, a new paradigm of in-memory
processing—stream processing has emerged, bringing to
market a plethora of streaming applications ranging from
log monitoring to financial transaction analysis. Contrary to
traditional batch paradigm where data are statically pre-
served for the ensuing manipulation, streaming processing
introduces the “process-once-arrival” philosophy: the proc-
essing system dynamically accepts possible endless data
streams as input, and then immediately processes them
using continuous queries that are issued once but run con-
tinuously over the current portion of incoming data. Query
results are constantly updated while the input data gener-
ated from logs, sensors, networks, and connected devices
actively traverses through the processing system.

For better programmability and manageability, stream-
ing applications are developed on top of a specialized mid-
dleware—Data Stream Management System (DSMS) to
exploit the abstraction of processing primitives and simplify
the use of distributed computing resources. The imperative
programming language provided by DSMS hides the low-
level complexity of implementations from applications

developers, allowing them to express the continuous query
as a direct graph of inter-connected operators (called topol-
ogy hereinafter). In this way, the development burden of
complex application logic, e.g., matrix multiplication and
iterative data analytic, is significantly relieved. Moreover,
the unified data stream management model assists develop-
ers with the ability to gracefully partition and route streams
between operators, enabling streaming applications to
scale-out on a large-scale distributed computing environ-
ment in the presence of a higher volume of processing load.

Though the use of DSMS has greatly facilitated the devel-
opment of streaming logic, the deployment of such layered
architecture (streaming logic, DSMS, and underlying hard-
ware) is not transparent to developers. They are responsible
for deciding how the streaming logic is carried out in a
distributed environment to meet the specific processing
requirement, including deciding the number and types of
computing resources required by different stages of the
streaming application.

Such deployment decisions depend on the type of the tar-
get environment. In the past, it was common to run streaming
applications in a cluster where a combination of computing
nodes were pre-configured [1], [2], [3], [4], [5]. As developers
have assumed a static environment and only tune the appli-
cation configuration towards higher utilization of on-premise
resources, the deployment process in such environment is
platform-oriented. With the emergence of cloud computing,
an increasing number of streaming applications are being
migrated to cloud to exploit the merits of virtualization, such
as on-demand self-service, elastic resource pooling and the
“pay-as-you-go” billing scheme. Since the cost of using cloud
is based on the actual resource usage, a performance-oriented
deploymentmodel that customizes the resource provisioning
with regard to the actual demands, i.e., enables the streaming
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application to reach a specific performance1 targetwhilemin-
imizing the resource consumption is long overdue.

The overall performance of a streaming application is
actually determined by the interplay between a variety of
contributing factors, which include the implementation of
streaming logic, characteristics of workload, parameters of
application and DSMS, and the sufficiency of resource pro-
visioning. During the deployment phase, since the logic
implementation is already given and the workload charac-
teristics are not to be controlled by the processing system,
proper mapping of the streaming logic to the underlying
resources is the key for the application to accomplish a pre-
defined performance target. Specifically, there are three
optimization problems involved: (1) operator paralleliza-
tion, which decides the number of running instances (called
tasks hereinafter) for each operator to partition input load
and realise parallel and asynchronous execution (2)
resource provisioning, which estimates the resource usage
and provisions the right scale computing power to consti-
tute the processing system, and (3) task mapping, which
implements the scheduling interface in DSMS, resulting in a
task mapping to machines that distributes the computations
and transformations derived from the operator logic.

Among the three, operator parallelization and task map-
ping have been separately investigated in the existing litera-
ture for various optimization targets [1], [3], [6], [7], [8], but
resource provisioning is largely ignored in the platform-ori-
ented deployment practice. Manually deciding the required
resources makes the deployment plan inefficient nor swift
to be applied in a cloud environment.

We overcome this limitation by proposing an automated,
performance-oriented deployment framework that tackles
these three optimization problems holistically. The deploy-
ment framework, called P-deployer, has the following desir-
able features: (1) based on fine-grained profiling information
at the task level, it provisions right-scale execution platform
on cloud, as well as decides the operator parallelism and
task mapping configurations to guarantee high resource uti-
lization and desired performance outcome; (2) it uses an
automatic and iterative approach to deploy streaming appli-
cation, reducing deployment effort for developers to address
the identified performance bottlenecks; and (3) it is transpar-
ent to application logic, i.e., the existing application code can
be deployedwithout any changes.

Our main contributions are summarized as follows:

� By profiling a real-world streaming application, we
illustrate some important observations from the
experimentation of different deployment plans,
which lay down the foundation for P-deployer.

� We present the design of P-deployer that, to our best
knowledge, is the first system to automatically
deploy a streaming application on cloud with a pre-
defined performance target.

� We model the resource provisioning problem as a
variant of bin-packing problem with tasks being

items and machine being bins, where packing
together two communicating tasks may make them
occupy less volumes than the sum of their individual
size. Our heuristic reduces inter-node traffic while
ensuring no computing nodes are overloaded.

� We implement a prototype on top of Apache Storm,
and conduct a series of deployment experiments
using both synthetic and real-world streaming appli-
cations to validate the resulted performance and the
scalability of our approach. The results confirm that
our framework significantly outperforms the state-
of-the-art approaches in terms of resource cost.

2 BACKGROUND

A streaming application needs to be deployed on a particu-
lar execution environment before it can accept and process
continuous data streams. In this section, we give a brief
introduction to the layered structure of streaming applica-
tions and discuss the optimization problems involved in its
deployment process.

As shown in Fig. 1, there are three tiers in the streaming
application structure. the topology lying in the topmost logi-
cal tier is a directed acyclic graph that defines the streaming
logic to be applied on the input data streams. Each vertex is
an operator that encapsulates the semantic of a specific
operation, such as filtering, join or aggregation; whereas
each edge represents the direction of data transfer between
upstream and downstream operators.

The DSMS tier is a middleware system that manages
distributed resource and organises continuous streams to
support the upper-level streaming logic defined in the
topology. It is the key for the realization of “develop once,
use many” concept. Since that a streaming application may
need to run in different environment to deal with different
volumes of input, DSMS makes the deployment plan adjust-
able, allowing the parallel execution of each operator to be

Fig. 1. Layered structure of an example streaming application.

1. While the context of performance may very under different types
of Quality of Service (QoS), in this paper we refer it as the ability to
steadily handle an input stream of throughput T within an acceptable
processing latency L.
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customized with regard to the specific situation, such as the
workload characteristics, performance target, and the capac-
ity of underlying infrastructure.

The first deployment choice incurred in this tier is (1)
operator parallelization. Specifically, DSMS treats each opera-
tor as a dividable logical entity and parallelizes its execution
using a number of asynchronous tasks. Each task is logically
equivalent as it handles a subset of the operator input and
performs the same type of operation. During the actual exe-
cution, DSMS guarantees the correctness of task coordina-
tion and makes sure that the subdivided inner streams
would follow the pre-defined partition scheme. Therefore,
developers are only required to specify the degree of paral-
lelism for each operator so that it can secure a just enough
number of tasks to keep up with its inbound load. We illus-
trate this process in Fig. 1 using a dash arrow labelled as
“operator parallelization”, which shows that Operator B is
parallelized into two tasks: Task4 and Task5.

The underlying infrastructure tier is the place where the
parallel execution of tasks actually happens. The construc-
tion of this tier involves the other two deployment deci-
sions: (2) resource provisioning—where developers select the
number and types of resources from the elastic resource
pool in the cloud. The streaming application in Fig. 1, as an
example, has a three-node virtual cluster provisioned; (3)
task mapping, which assigns the asynchronous tasks to pro-
visioned machines in an effort to achieve a particular
deployment target or optimization goal, e.g., reaching a pre-
defined throughput target, maximizing distributed resource
utilization, minimizing the overall data processing latency,
and etc. In Fig. 1, Task6 of Operator C is assigned to the
third node as indicated by the dash arrow.

These three deployment decisions are highly correlated
in nature. Our motivation is to iteratively optimize them to
achieve automatic, performance-oriented, and cost-efficient
streaming application deployment.

3 PRELIMINARIES

We performed a series of deployment experiments on an
IaaS cloud to investigate how different deployment deci-
sions affect the performance outcome and resource con-
sumption of a streaming application.

Our proof-of-concepts experiments were conducted on
the Nectar Cloud2 using 4 “m2.medium” instances in the
NCI availability zone (each equipped with 2 VCPUs, 6 GB
RAM and 30 GB root disk). On this virtual cluster, we
deployed a word count streaming application built on top
of the well-known DSMS—Apache Storm3 0.10.0 using vari-
ous deployment plans.

The topology of word count depicted in Fig. 2 consists of
four operators: the first operator, Kestrel Spout, pulls data
from a message queue server and generates a continuous

stream of tweets as its output. The second operator, JSON
Parser, parses the stream and extracts the main message
body. Sentence Splitter divides the main body of text into a
collection of separate words, and finally, Word Counter is
responsible for the final occurrence counting.

In order to evaluate the efficiency of different deploy-
ment plans, we have set up a profiling environment that
feeds the streaming application with a controllable size of
input stream and constantly monitors the application
behaviours under that given pressure. For the sake of result
stability, all the measurements of performance outcomes
and resource usages are averaged using 5 consecutive read-
ings of the corresponding value, which are all collected after
the application is stabilized. The observations and corre-
sponding analysis are summarized as follows.

Observation 1: resource consumption of a task is positively cor-
related with its stream load and the ratio of inter-node communi-
cations. We consider the resource consumption in two
dimensions: memory and CPU. Unlike memory consump-
tion that can be measured in megabytes; the definition of
CPU consumption is puzzlingly vague due to the diversity
of operating systems and CPU architectures. Following the
method used by the resource-aware scheduler in Storm [9],
we adopt a point-based system to describe the amount of
CPU resources available on a node or demanded by a par-
ticular task. Typically, an available CPU core gets 100 points
and a multi-core machine could get num of cores � 100
resources points in total, whereas a task that occupies x%
CPU usages reported by the monitoring system requires x
points accordingly. Besides, we define the stream load of an
operator (or a task) as the amount of stream data that passed
through this component during a unit period of time. Due
to the DAG organization of the topology, the measurement
of stream load can be calculated by summing up the
throughputs of all its incoming streams.

Our first experiment tracks the resource consumption of
a task when it processes different sizes of stream load. We
deployed the word count application using a spread-out
strategy, where each operator has only one task and every
task is mapped to a separate node. The results showed that,
for all the examined tasks, the resource consumption
increases almost linearly with the size of stream load. Partic-
ularly, those CPU-bound tasks reach their maximum proc-
essing capability when they have fully occupied the
available CPU resources on a single core.

The second experiment investigates how the resource
consumption of a task is influenced by the ratio of inter-
node communication. For each examined task, we keep the
stream load unchanged at a fixed rate (500 tuples4/s) and
constantly vary its inter-node communication ratio by paral-
lelizing the upstream and downstream operators and prop-
erly placing the spawned tasks on different machines. For
example, suppose we would like to probe the resource con-
sumption of a Sentence Splitter task TaskS1 with a inter-
node communication ratio set to 50 percent, Fig. 3 illustrates
how we can deploy the word count application to achieve
this goal. Specifically, we parallelize JSON Parser and Word
Counter into two tasks (TaskJ1, TaskJ2), (TaskW1, TaskW2),
but only put TaskJ2 and TaskW1 on the same node of TaskS1

Fig. 2. The topology of word count streaming application, where the solid
arrows represent data streams.

2. https://nectar.org.au/research-cloud/
3. http://storm.apache.org/ 4. Tuple is a single datum in stream that is processed.
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collocating with the examined task. If we assume that the
load is balanced between the sibling tasks that constitute
the same operator, TaskS1 would have half of its data com-
munication transferred through the inter-node network.
Once again, the results have shown a linear increase of
resource consumption along with the increasing inter-node
communication ratio, indicating that minimizing the inter-
node traffic is also quantitatively profitable from the pro-
spective of resource savings.

Observation 2: overly parallelizing an operator on a single
machine greatly hurts its performance. We conducted this
experiment to break the myth that higher operator parallel-
ism would result in better performance, i.e., fine-grained
parallel execution is always encouraged for an operator to
incorporate as many tasks as possible to partition its stream
load. In this experiment, we chose JSON Parser as the exam-
ined operator and tested three parallelization configura-
tions: the first one sets up 2 tasks and puts them on a
separate node to avoid interference from other operators;
analogously, the second one initializes 8 tasks and the third
one creates 16 for comparison. To observe the performance
differences resulted from different configurations, we pro-
vide the streaming application with a sufficiently large
input stream and make sure that other operators will not be
the bottleneck of the topology.

From the results we observe that the first configuration
yields the best performance among the three (35 percent
higher throughput than the second and 69 percent higher
than that of the third setting). This is because spawning two
tasks for JSON Parser is already adequate to make full use
of the two-core machine, while having 8 or even 16 tasks on
this node only imposes additional resource costs of thread
scheduling and context switching, —for the third setting
particularly, half of the CPU time is spent running the ker-
nel rather than user space processes, which greatly impairs
the trafficability of JSON Parser.

3.1 Assumptions

In addition to the observations we made from the experi-
ments, we make the following assumptions to build an
automatic deployment framework:

(1) Tasks of the same operator fairly process the same
amount of workload. In other words, the stream
load of an operator can be equally partitioned to all
its constituent tasks.

(2) The inter-node communication cost for each task is
calculated from its bidirectional bandwidth usages,
which is in line with the literature convention [1],
[6], [9], [10].

(3) The same type of machines are selected on the IaaS
cloud to form a homogeneous infrastructure.

4 P-DEPLOYER OVERVIEW

P-Deployer’s design follows a typical Monitor-Analyze-
Plan-Execute (MAPE) architecture and it works in a profil-
ing environment to find the desirable deployment plan. The
construction of profiling environment serves two major pur-
poses: (1) information collection: it allows P-Deployer to
probe the runtime characteristics of both streaming applica-
tion and underlying cloud platform, thus collecting neces-
sary information to model the performance behaviour as
well as its corresponding resource consumption. (2) deploy-
ment verification: it verifies the proposed deployment plan
against the pre-defined performance target by actual execu-
tion, i.e., examining how the deployed streaming applica-
tion performs under a profiling stream that mimics the
situation of processing the maximum throughput.

The profiling environment, as shown in the bottom half
of Fig. 4, consists of a message generator, a message queue,
and a streaming application to be run in the IaaS cloud envi-
ronment. The message generator is able to produce data
stream with a speed specified by P-Deployer, where all the
data used in this stream is collected from the production
phase to simulate the real workload. The profiling input is
then directed to the message queue, which works as a mes-
sage buffer to avoid overwhelming the streaming applica-
tion in case its processing capability cannot catch up with
the performance requirement. The streaming application
ingests the profiling stream from the message queue with
its layered structure shown in the rightmost frame. Along-
side the streaming application, there are also some platform
dependent modules that connect P-Deployer to the profiling
environment. These include the Metric Reporter, the
Resource Manager and the Application Submitter, that are
respectively responsible for collecting the current perfor-
mance metrics, provisioning/relinquishing cloud resources
and submitting the streaming application to DSMS accord-
ing to the specific deployment plan.

Fig. 3. Partial deployment sketch that shows how to designedly assign
the inter-node communication ratio of TaskS1 to 50 percent. Solid arrows
represent data streams while dash arrows denote the “operator-task”
containment relationship.

Fig. 4. The Monitor-Analyze-Plan-Execute (MAPE) architecture of
P-Deployer and its working environment.
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On top of the profiling environment, P-Deployer has an
iterative working flow to implement the MAPE loop, with
each iteration proposing a concrete deployment plan and
then validating its capability through the profiling of
deployed application. This iterative process continues until
the desirable deployment plan is found, or the cost of
resource provisioning has already exceeded the user bud-
get. Specifically, by retrieving the output of the Metric
reporter, the Monitoring Module measures how the stream-
ing application is performing under the profiling load. The
Performance Analyser conducts some boundary checks on
the set of metrics and determines whether the performance
target has been met or not. If further adjustment is required,
it hands in the collected runtime information to the Deploy-
ment Planer and indicates the possible cause of perfor-
mance issue. Then, the Deployment Planer, as shown in the
grey box, will update the inaccurate model inputs and
make a new deployment plan in an attempt to remedy
the performance bottleneck. The executors of P-Deployer
are embedded within the cloud platform, following the
deployment plan’s instruction to control the speed of data
generation, manage the cloud resources, and re-submit the
streaming application for the next round of evaluation.

The essence of P-Deployer lies in the planning phase of
the MAPE loop, which is to propose a holistic deployment
plan based on the profiled runtime information. We briefly
summarise this phase in three steps:

(1) Building task profile: modelling the characteristics of
each operator by profiling one of its tasks. The task
profile essentially depicts the relationship between
the desired performance behaviour and the esti-
mated resource consumption at task level, which is
the most fine-grained level of DSMS. Note that all
the tasks of a single operator share the same task pro-
file due to their homogeneity.

(2) Operator parallelization: deciding the parallelism
degree for each operator based on its stream load
and the profile of its tasks. The result of this step is a
set of tasks along with their requested resource
consumptions.

(3) Resource estimation and task mapping: formulating the
deployment optimization problem as a bin-packing
variant, the solution to which will estimate the over-
all resource demands and produce the mapping

result at the same time. The goal is to minimize
the number of used machines while satisfying the
resource needs of collocating tasks.

5 DEPLOYMENT PLAN GENERATION

In this section, we discuss in detail how the planning steps
are carried out to holistically decide operator paralleliza-
tion, resource provisioning and task mapping.

5.1 Building Task Profile

As introduced in Section 3, we consider two types of resour-
ces in this work—memory and CPU, which are separately
measured in megabytes and a point-based approach. A
deployment plan is considered feasible only if the aggre-
gated resource demands of collocated tasks in each node
can be satisfied in both dimensions. Therefore, based on the
analysis of collected information, we build a profile for each
task to reflect the relationship between the performance
behaviour and the corresponding resource consumption. It
allows us to estimate how many resources this task would
require to reach a specific performance target, i.e., to process
a certain size of stream load and to send/receive a certain
amount of messages remotely.

The intuition behind task profile is illustrated in Fig. 5.
Performance-oriented deployment has a prerequisite to
properly translate the performance demand of a streaming
application into its predicted resource consumption. How-
ever, there is no theoretical model nor empirical work that
capable of directly achieving this goal, mainly because the
layered application structure has much complicated the
relationship between performance and resource usages.
To fill in the gap, we establish this translation by building
up a profile for each task, leading to a working process as
follows: through operator parallelization, we break down
the operators in topology into a set of tasks, meanwhile the
application-level performance demand is also decomposed
into the performance requirement of each task according to
the stream balancing assumption we have made; as the task
profile has modelled the resource consumption individually
for each task, we estimate the overall resource consumption
of the entire application as a result of task mapping by
aggregating the resource needs of collocated tasks.

Table 1 enumerates the attributes of a task profile. Sojourn
time tsoj is a period of time that a tuple stays within the task
for being processed; since we model each task as a single-
thread entity, the sojourn time of different tuples cannot be
overlapped. The CPU consumption of handling a tuple con-
sists of two parts: the processing cost cp that is spent on

Fig. 5. Translating the performance demand of a streaming application
into the estimated resource consumption through its task profiles.

TABLE 1
The Attributes of a Task Profile

Symbol Description

tsoj Sojourn time of a tuple for being processed
cp CPU consumption of processing a tuple
ct CPU consumption of transmitting a tuple
mpt Memory consumption of processing & transmitting a tuple
ni; no Number of input (output) streams
Sk Size (throughput) of the input stream k; k ¼ 1; . . . ; ni

S
0
k Size (throughput) of the out stream k; k ¼ 1; . . . ; no
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executing the streaming semantic, and the transmission cost
ct that is consumed for network-related activities, such as
serialization/deserialization, message buffering and per-
forming the actual send/receive operation. Note that we
only count the inter-node communication in the calculation
of transmission cost. This is because intra-node communica-
tion normally happens within the shared memory and is
backed up by high-performance thread-messaging libraries
(e.g., LMAX Disruptor), thus incurring negligible overhead
compared to the network-based communication.

On the other hand, mpt denotes the memory footprints of
handling a tuple. It is not necessary to differentiate whether
the memory is consumed by data processing or transmis-
sion, because there is little memory allocated for internal
message buffers in order to avoid high queuing latency.
Only memory-intensive computations, such as large win-
dowed joins or cache-based analytic algorithms, can result
in a considerable amount of memory usages that might
define the machine characteristics of provisioned resources.

5.1.1 Modelling Task Resource Consumption

For task t that has ni input streams with sizes denoted as
fS1; S2; . . . ; Snig and no output streams of sizes in fS01; S

0
2; . . . ;

S
0
no
g, its CPU consumptionCt can bemodelled in

Ct ¼
Xni

k¼1
Skcp þ

X

k2Q
Sk þ

X

k2Q
S
0
k

 !
ct

Ct;min ¼
Xni

k¼1
Skcp

Ct;max ¼
Xni

k¼1
Skcp þ

Xni

k¼1
Sk þ

Xno

k¼1
S
0
k

 !
ct;

(1)

where Q indicates the set of inter-node communication, i.e.,
k 2 Q means that the input stream k is received from (or the
output stream k is sent to) a task that locates in another
node. Depending on the final location of task t, its CPU
consumption varies from the minimum value Ct;min, when
Q is empty, to the maximum value Ct;max, when all its com-
munication happens across network.

Analogously, we model the memory consumption of this
task in

Mt ¼
Xni

k¼1
Sk þ

Xno

k¼1
S
0
k

 !
mpt: (2)

5.2 Operator Parallelization

In light of the observation that over-parallelization hurts the
operator performance (see Section 3), we adopt a minimal
parallelism strategy that each operator only spawns the
least number of tasks to keep up with its performance
requirement. Therefore, the parallelism degree of an opera-
tor is determined by two factors: the stream load of this
operator under the profiling input, which can be seen as a
performance requirement obtained from the monitoring
module; and the maximum processing capacity of its con-
stituent task, which can be calculated using the task profile
established in the previous step.

Specifically, the maximum processing capacity of a task
refers to the largest stream load it can sustain during the
runtime, which is determined by the implementation of the

stream logic as well as the capability of the execution envi-
ronment. Having modelled the resource consumption on a
per tuple basis, the task profile reveals the confining resour-
ces that prohibit the entity from achieving higher through-
put on this particular platform. In this sense, we provide a
classification for different tasks based on the type of confin-
ing resources, and then discuss how to parallelize an opera-
tor op with tasks in one of these categories to achieve the
minimal parallelism objective. The symbols used in this sec-
tion are summarised in Table 2:

� CPU-bound: task of this kind consumes a consider-
able amount of CPU resources to process a single
tuple, such as multiplying small matrices for
machine learning algorithms or performing iterative
calculation for optimization purposes. CPU-bound
task can utilize at most 100 point CPU resources for
covering the processing cost cp due to its single-
thread nature, meaning that the maximum process-
ing capacity is reached once it has fully occupied the
CPU core for processing streams. Therefore, for an
operator op whose tasks are CPU-bound and has a
stream load of Sop, its parallelism degree can be
decided as follows:

PopðCPU-boundÞ ¼ Sop

100=cp

� �
:

� I/O-bound: contrary to CPU-bound, I/O-bound tasks
spend more time on waiting for the I/O operation
rather than performing the actual computation. Its
distinctive identifying characteristic is that ct out-
weighs cp significantly in the task profile. Event log
processing, for example, incorporates typical IO-
bound tasks that ingest a large size of log stream
while only applying filtering or some other trivial
transformations on it. The previous best practice in
platform-oriented deployment has shown that a CPU
core should host several IO-bound tasks to make
efficient use of the network connection,5 therefore,
we model the maximum processing capability for
this kind of tasks by limiting the CPU resources it can
get for data transmission. If the threshold, denoted as
a, is set to 0.1, then at most 10 I/O-bound tasks
are permitted to occupy a CPU core for data

TABLE 2
Symbols Used for Operator Parallelization

Symbol Description

Sop Monitored stream load of operator op

Pop Parallelism degree (number of tasks) of op

cp; ct
mpt; tsoj

� �
Task profile attributes that shared between all

tasks constituting operator op

a Upper limit on the CPU usages for a single I/

O-bound task to perform data transmission

b Upper limit on the memory usages for a single

memory-bound task to occupy

5. http://www.slideshare.net/ptgoetz/scaling-apache-storm-
strata-hadoopworld-2014
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transmission. Accordingly, we calculate the parallel-
ism degree for I/O-bound operators as follows:

PopðI/O-boundÞ ¼ Sop

a=ct

� �
:

� Sojourn time-bound: some tasks need to invoke an
external service to complete a tuple transaction, such
as connecting to a remote database or calling a third-
party API. These operations often require no CPU
and memory consumption but may result in a sub-
stantial sojourn time for each tuple to be processed.
In such case, the maximum processing capacity of
each task is bound by the wall clock time, and thus
the operator parallelization is conducted as follows:

PopðSojourn time-boundÞ ¼ Sop � tsoj
� �

:

� Memory-bound: as the stream load increases, some
tasks may use a significant amount of memory to
maintain a large window cache or store enormous
intermediate results. Similar to the IO-bound task,
we limit the maximum memory usage for a single
task (denoted as b) and in turns deduce that how
many tasks are needed for a memory-bound opera-
tor to sustain a stream load of Sop

PopðMemory-boundÞ ¼ Sop

b=mpt

� �
:

Apart from the decision on the number of tasks, Oper-
ator Parallelization also models the resource consump-
tion of each spawned task by taking into account of its
share of stream load as well as the associated task pro-
file. However, there is only a range estimation in terms
of the CPU usages, as the actual value varies depending
on the task location due to different inter-node commu-
nication costs.

5.3 Resource Estimation and Task Mapping

The problem we are trying to solve is to assign tasks to
machines such that (1) the aggregated resource consump-
tion of collocated tasks is satisfied, and (2) the cost of
resource provisioning is minimized. Specifically, each task
can be considered as an item of multi-dimensional volumes
that are characterised by its resource requirements, while
each machine is a bin of the same size as per Assumption 3
made in Section 3.1. The optimization target of this problem
is to minimize the number of used machines. Therefore, this
is a variant of bin-packing problem that can be formalized
in the linear programming form.

Table 3 summarizes the newly introduced symbols in
this section.

5.3.1 Problem Definition

Given a positive integer number of machines (bins) with
CPU capacity Wc and memory capacity Wm, and a list of n
tasks (items) t1; t2; . . . ; tn with their CPU demands and
memory demands denoted as Cti ;Mti ði 2 1; 2; ::; nÞ, respec-
tively, the problem is formulated as follows:

minimize
XK

k¼1
yk

subject to
XK

k¼1
xi;k ¼ 1; i ¼ 1; . . . ; n;

Xn

i¼1
Ctixi;k �Wcyk; k ¼ 1; . . . ; K;

Xn

i¼1
Mtixi;k �Wmyk; k ¼ 1; . . . ; K;

where K is an upper bound on the number of machines
needed, and the variables yk; xi;k are

yk ¼
1 if machine k is used;

0 otherwise;

�

xi;k ¼
1 if task i is assigned to machine k;

0 otherwise;

�

The uniqueness of this problem lies in the fact that pack-
ing two communicating tasks together on the same machine
will result in less resource consumption than the sum of
their individual demands. This characteristic is reflected in
the calculation of Cti as shown in Eq. (3), which is derived
from Eq. (1) but making use of the monitored stream loads
and the result of operator parallelization to deduce the sizes
of input/output streams for task t

Cti ¼
Xni

k¼1

Sk

Popk � Pop
cp

 
Xni

k¼1

Sk

Popk � Pop
ðPopk �AdjkÞ

þ
Xno

k¼1

S
0
k

P 0opk � Pop
ðP 0opk �Adj

0
kÞ
!
ct:

(3)

The variables used in Eq. (3) are illustrated in Fig. 6: ti is
the examined task affiliated with operator op. According to
the application topology, op has ni upstream operators
fop1; . . . ; opnig and no downstream operators fop01; . . . ; op

0
no
g.

The size of input stream k between operator opk and op is
denoted as Sk, and it can be equally partitioned into commu-
nications between constituent tasks of opk and op based on
the stream balancing assumption. The parallelism degree of
opk is denoted as Popk , and Adjk is the number of spawned
tasks among them that are collocating with ti on the same

TABLE 3
Symbols Used for Resource Estimation and Task Mapping

Symbol Description

Wc CPU capacity of provisioned machine
Wm Memory capacity of provisioned machine
n Number of tasks
ti Tasks to be assigned, i ¼ 1; . . . ; n
K Upper bound on the number of machines used

Symbols used in Eqs. (3), (4) and shown in Fig. 6

opk Upstream operator k of op, (k ¼ 1; ::; ni)
op
0
k Downstream operator k of op, (k ¼ 1; ::; no)

Sk Size of input stream k between opk and op, (k ¼ 1; ::; ni)
S
0
k Size of output stream k between op and opk

0, (k ¼ 1; ::; no)
Adjk Number of tasks of opk collocating with task ti
Adj

0
k Number of tasks of op

0
k collocating with task ti
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node. Similar notations also apply to the downstream opera-
tors for the convenience of presentation.

Using the notations illustrated in Fig. 6, we also present
the formulation of memory consumption for task t as
below:

Mti ¼
Xni

k¼1
Sk þ

Xno

k¼1
S
0
k

 !
mpt

Pop
: (4)

In order to minimize Cti , putting successive tasks on the
same node is always encouraged as long as the target node
still has sufficient capacity to accommodate their aggregated
resource demands. Therefore, by modelling the problem
as a special case of two-dimensional vector bin-packing,
we have already considered the common requirement of
task placement—reducing the inter-node communication
whenever possible. The solution to this problem should be a
trade-off between consolidating tasks and preventing
resource contention in each node.

As for the problem complexity, the classical bin-packing
is already NP-Hard as reduced from the PARTITION prob-
lem [11]. However, with overlapping tasks whose resource
consumption depends on the packing result, our task map-
ping problem is a more complicated variant that must rely
on the use of approximation algorithms to make it tractable.

5.3.2 Heuristics for Solving Bin-Packing Problem

We opt for heuristic methods mainly because of efficiency
considerations. The scale of the problem increases along
with the application performance requirement, which may
involve thousands of tasks to be assigned. Having such a
huge solution space, it is computational infeasible to search
for the optimal result by the use of exact algorithms such as
bin completion (BC) [12] and branch-and-price (BCP) [13].
Additionally, packing speed is of crucial importance for the
fast deployment of streaming application. P-Deployer may
need to invoke the bin-packing process multiple times, with
each time the result being verified through profiling as satis-
fying the model constraint does not necessarily guarantee
that it can satisfy the performance requirement. Therefore,
we prioritise execution efficiency in the heuristic design,
and present a lightweight implementation to make it a good
fit for the real-time streaming context.

The proposed solution is analogous to First Fit Decreasing
(FFD), which is one of the most natural heuristics for bin-
packing and is known to be effective in 1-dimensional cases
as it is guaranteed to produce a result using less than
11
9 OPT þ 1 bins (OPT is the optimal solution). FFD is essen-
tially a greedy algorithm that sorts the items in a particular
order (normally by descending sizes) and then sequentially

places them in the first bin that has sufficient capacity. How-
ever, in order to cope with the multi-dimensional and over-
lapping nature of our problem, this process has to be
generalized in three aspects which is shown in Algorithm 1.

As CPU and memory are measured in different metrics,
Algorithm 1 first normalizes the task resource demands Ct

and Mt with regards to machine resource availability Wc

and Wm for the ease of comparison in resource scarcity.
After this step, each machine can be considered as a bin of
unit size and each task is denoted by a 2-d decimal vector.

Second, there are two functions introduced to make dif-
ferent tasks comparable in terms of their packing priority.
These include: (1) a resource saving function sðt;mÞ that
calculates the amount of resource savings if task t is to be
placed on machine m; and (2) a priority function pðt;mÞ
that assigns task t a scalar considering not only the intuition
of putting the “largest” item first, but also the inclination to
maximize the potential resource savings.

Algorithm 1. The Task Mapping and Resource Estima-
tion Algorithm

Input: A task set~t ¼ ft1; t2; . . . ; tng to be assigned
Output: A machine set ~m ¼ fm1;m2; . . . ;mnmg with each

machine hosting a disjoint subset of~t, where nm is
the number of used machines

1: Normalize resource demands for~t;
2: nm  0;
3: while there are tasks remaining in~t to be placed do
4: Start a new machinem;
5: Increase nm by 1;
6: while there are tasks that fit in machinem do
7: foreach t 2~t do
8: Calculate sðt;mÞ (Eq. (5));
9: Calculate pðt;mÞ (Eq. (6));
10: end
11: Place the task with the largest pðt;mÞ into machinem;
12: Remove the task from~t;
13: Update the remaining capacity of machinem;
14: end
15: end
16: return ~m;

Lastly, since the calculation of sðt;mÞ actually depends on
what have already been put into machinem, we adopt a dif-
ferent view to implement this FFD variant. Contrary to the
classical “item-centric” FFD implementations that require all
tasks to be sorted beforehand and then packed strictly in the
pre-calculated order, we implement a different perspective
of FFD, called “bin-centric”, which allows the packing prior-
ity of remaining tasks to be dynamically updated after each
task assignment in order to take the current system status
into consideration. The task with the largest priority at the
moment will be packed next and varied definition of priority
would lead to a different FFD heuristic.

Implemented in this way, there is only one machine
opened at any time and the algorithmkeeps filling itwith suit-
able tasks until there is not enough capacity for any remaining
task. The rest of this section explains in detail how the algo-
rithmdecides the priority order among those “suitable tasks”.

Calculating sðt;mÞ.When task t is to be placed onmachine
m, any previously packed task on this machine that is

Fig. 6. The illustration of variables used in the calculation of resource
consumption for task ti, where tasks in grey indicate that they are collo-
cated on the same machine.
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adjacent to twill benefit from this assignment by increasing 1
to a particular position of its ~Adj list, which causes their CPU
consumption to decrease according to Eq. (3). Note that ~Adj
is initialized to all zeros for every task, implying that all
unpacked tasks are considered to be external by default
when calculating Eq. (3). Analogously, the CPU demand of t
is also reduced due to task allocation. Therefore, sðt;mÞ can
be formulated as follows, where tk 2 }ðmÞ represents the
tasks that have already been packed inmachinem

sðt;mÞ ¼ Ct;max � Ct þ
X

tk2}ðmÞ
ðC ~Adj

tk
� C

~Adjþ1
tk

Þ: (5)

Calculating pðt;mÞ. The task priority function is designed
based on the following considerations:

(1) Resource saving is prioritised as it encourages com-
municating tasks to be packed in a tightly manner.

(2) If resource savings are similar or there is no saving
from the placement of the rest tasks, the heuristic
picks the one that best fills the remaining capacity of
the opened machine.

(3) Each resource dimension is properly weighted to
reflect the relative scarcity, so that when the map-
ping problem is in essence confined by one type of
resource, the heuristic will be dominated by this
dimension and reduced to 1-d FFD when necessary.
This can be achieved by assigning a larger coefficient
to the scarce dimension.

Therefore, pðt;mÞ is formulated as follows:

pðt;mÞ ¼ ar � sðt;mÞ � acðCt � rcpum Þ2 � amðMt � rmem
m Þ2; (6)

rcpum ; rmem
m represent the remaining capacities of machine m,

and ar; ac; am are weight coefficients that adjust the impor-
tance of each term. While ar is chosen as a user parameter,
ac; am can be calculated as the average task demand in each
dimension: ac ¼ 1

n

Pn
k¼1 Ctk ; ac ¼ 1

n

Pn
k¼1 Mtk .

6 IMPLEMENTATION

The setup of the profiling environment has been briefly
introduced in Section 4. More specifically, the Message Gen-
erator in Fig. 4 is a Java program that reads the workload
file on-demand to emit a particular size of profiling stream;
while the Message Queue is a distributed queueing system
implemented on Twitter Kestrel6 that enables controllable
message buffering. The use of Thrift interface of Kestrel
allows P-Deployer to easily retrieve the length of the mes-
sage queue and further determine whether the streaming
application has been overwhelmed by the profiling data.

Following the MAPE working process, Fig. 7 describes
how P-Deployer is integrated with Apache Storm in our
prototype. Apache Storm is selected as our target DSMS not
only because it is widely adopted in both academia and
industry, but also it offers a built-in metric system and Flux
- an external configuration reader that greatly facilitates the
application of versatile deployment schemes.

Monitor. The Metric Reporter in Fig. 4 is actually imple-
mented by two components that collect system level and
application level metrics, respectively. The collected

information is then stored in MongoDB7 and processed in
order to determine the task profile attributes listed in Table 1.
The Low Level Metric Reporter running in each Worker
Node consists of an external statistics collection daemon—
collectd8 and several extended Storm modules. Specifically,
collectd runs alongside the Supervisor daemon to probe the
CPU and memory utilization of the Worker Process with a
resolution of 10 seconds. In the storm-core, we implement
the Task Wrapper that encapsulates the task execution
with the logic of sampling and reporting resource consump-
tion at the task level: the CPU consumption of operators’ exe-
cute method (cp) is probed using the ThreadMXBean class,
while the memory consumption (mpt) is obtained through
retrieving the size of the operator state. Recalling the fact
that we classify the overall CPU consumption obtained at the
process level into processing cost and transmission cost, the
CPU consumption of tuple transmission (ct) is a derivedmet-
ric that requires the comparison between the task level statis-
tics and the process level statistics. To avoid excessive
profiling overhead, P-Deployer sets the default sampling
rate to 0.05, i.e., selecting 1 out of 20 tuples to collect and
report metrics. Also, we provide the Topology Adapter in
storm-core that seamlessly hides the adaptation effort on the
application level to leverage this profiling framework.

The High Level Metric Reporter, on the other hands, col-
lects metrics on the application performance. Some of them
are directly obtained from the UI daemon onNimbus, such as
the stream load between different operators (Sk; S

0
k), the

sojourn time of task profile (tsoj), and the application complete
latency (average time taken for a tuple and all its offspring to
be completely processed by the topology). Some metrics,
however, need specific post-processing. For example, there
is no default definition for throughput, therefore, the reporter
calculates the overall throughput of a streaming application
based on its monitoring interval as well as the observations
on the accumulative number of acknowledgements or emit-
ted data, depending on whether the application adopts reli-
ablemessage processing or not.

Analyse and Plan. P-Deployer, implemented as a single
Java program, comprises both the analytical and planning

Fig. 7. The integration of P-deployer into apache storm.

6. https://github.com/twitter-archive/kestrel
7. https://www.mongodb.com/
8. https://collectd.org/
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functionalities. It queries the MongoDB for the latest metrics
and applies a set of boundary check rules to define the
current application state and update the task profile accord-
ingly. The newly updated task profile will trigger the plan-
ning phase to be performed again, resulting in a deployment
plan that specifies the number of machines used and the
assignment location of each task.

Execute. Changes to the virtual infrastructure are made
possible by using Apache jclouds,9 where any new provi-
sioned machine is initialized from a image that already has
Storm pre-configured. For actual application deployment,
P-Deployer uses an external YAML file to specify the paral-
lelism degrees of operators and submit the streaming appli-
cation to Nimbus by invoking the Storm CLI. The extended
Meta-based scheduler guarantees that each task is assigned
to its designated Supervisor and Work Node.

7 PERFORMANCE EVALUATION

To validate the correctness and efficiency of the proposed pro-
totype,we have conducted three different sets of experiments:

(1) The applicability evaluation validates whether P-
Deployer is capable of deploying a variety of stream-
ing applications towards their pre-defined perfor-
mance targets. The test applications incorporate
different topology structures in order to verify the
applicability and robustness of P-Deployer.

(2) The scalability evaluation shows the runtime behav-
iour of P-Deployer using relative large test cases,
where the application to be deployed has a more
complicated topology structure or a higher perfor-
mance target. The runtime overhead of P-Deployer
is also assessed in this experiment.

(3) The cost efficiency evaluation compares P-Deployer
with the state-of-the-art platform-oriented method in
terms of resource usages, as they endeavour to
achieve the same performance target in deployment.

7.1 Experiment Setup

The experiment environment is set up on a private cloud
supported by OpenStack, which is located in CLOUDS lab
at the University of Melbourne. The environment consists
of three IBM X3500 M4 machines, and each machine
is equipped with 2 x Intel Xeon E5-2620 Processor
(6 core@2.0 GHz), 64 GB RAM and 2.1 TB HDD. The virtual
cluster deployed on the physical environment is composed
of a Nimbus Node, a ZooKeeper Node and several on-
demand Worker Nodes. All machines are provisioned from
the same “m1.medium” template (2 VCPU and 4 GB RAM).

The used streaming applications (a.k.a topologies) and
the evaluation methodology are discussed below.

7.1.1 Testing Topologies

There are five testing topologies—three synthetic and two
drawn from the real-world streaming scenarios.

Micro-Benchmark. The synthetic topologies, collectively
called micro-benchmark, evaluate how P-Deployer general-
izes to different topology structures. As shown in Fig. 8,
micro-benchmark includes three common structures: Linear,
Diamond, and Star, covering the cases where an operator has
(1) one-input-one-output, (2) multiple-outputs or multiple-
inputs, and (3)multiple-inputs-multiple-outputs, respectively.

The execute method of each operator is implemented in
one of the four patterns in order to reflect different operator
types. Specifically, CPU bound operators invoke a random
number generation method Math.random() 30000 times to
generate a significant amount of CPU consumption, while
I/O bound operators only apply a JSON parse operation on
the incoming tuple for fast processing; Sojourn time-bound
operators sleep for 10 milliseconds upon any tuple receipt,
and Memory-bound operators temporarily store any mes-
sage received, maintaining a sliding window with 300 sec-
onds length and 60 seconds sliding interval.

To satisfy the stream balancing assumption, all operators
are connected through shuffle-grouping—a stream routing
mechanism that evenly partitions internal streams across the
receiving tasks. Besides, to generate a relative large internal
stream for I/O bound operators to mimic saturated network
usages, each operator has a function implemented to adjust
its operator selectivity10 using an external configuration file.

Word Count. Please see Section 3 for its description.
Twitter Sentiment Analysis. This topology, as shown in

Fig. 9, is adapted from a mature open-source project hosted
on Github.11 It has 11 operators constituting a tree style
topology that has eight stages in depth. In terms of process-
ing logic, once a new tweet is pulled into the system
(through Op1, a Kestrel Spout), it is first preserved by a file
writer (Op2) and examined by a language detector (Op3) to
identify which language it uses. If it is written in English,
there is a sentiment analysis operator (Op4) that splits the
sentence and calculates the sentimental score for the whole
content using AFINN,12 which contains a list of words with
their pre-computed sentiment valence from minus five
(negative) to plus five (positive). There are also several oper-
ators to count the average sentiment result (Op5, Op6) and to
rank the most frequent hashtags occurring over a specific
time window (Op7 � Op11).

Note that all the above-mentioned topologies process the
same type of workload, as the profiling stream is generated

Fig. 8. The synthetic Micro-benchmark topologies, the structures of
which are referenced from R-Storm [9].

Fig. 9. The Twitter sentiment analysis topology.

9. http://jclouds.apache.org/

10. Selectivity is an operator property that denotes the number of
stream data produced per data consumed.

11. https://github.com/kantega/storm-twitter-workshop
12. http://www2.imm.dtu.dk/pubdb/views/publication_details.

php?id=6010
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from the same workload file containing 159,620 tweets in
JSON format that collected from 24/03/2014 to 14/04/2014.
Topologies are also configured with acknowledgements
enabled so as to track the complete latency during the runtime.

7.1.2 Evaluation Methodology

For quantitative comparison of different deployment plans,
we introduce the metrics considered as well as the measure-
ment method in our experiments.

Deployment Metrics. Throughput and complete latency
are the two performance metrics that evaluate the quality of
deployment. We deem a deployment plan to be perfor-
mance satisfactory, as long as it results in a higher through-
put than the pre-defined target whilst meeting the latency
constraint.

The number of used machines is the only metric that
evaluates the cost-efficiency of the proposed deployment
plan. In this platform, the user budget of deployment is set
to 16 Worker Nodes, which is the maximum capacity of our
private cloud if we make sure that each VCPU corresponds
to a physical core.

Measurement Method. The application is first deployed on
the Storm cluster according to its designated plan. During
this process, the number of tasks is set to be same as the
number of executers and each Worker Node has only one
Worker Process, which conforms to the recommendation
settings provided by the Storm community.13 The deployed
topology will execute for 15 minutes to sufficiently stabilize
before any measurements are taken. To obtain an average
performance result, performance data are collected every
30 seconds for consecutively 5 minutes. Therefore, each
iteration of the MAPE loop has a timespan of 20 minutes.

The performance metric needs to report the maximum
throughput sustained by the deployed application. To this
end, the profiling environment feeds the application with
enough size of inputs, lifting the performance to the highest
stable point before comparing it with the desired target.

For clarity, the settings of model parameters used in the
deployment plan generation are summarised in Table 4.

7.2 Applicability Evaluation

In this evaluation, we use P-Deployer to deploy all the five
topologies towards a designated performance target—a
throughput of 2,000 tweets/second and a maximum com-
plete latency of 500 ms.

To better examine the applicability of P-Deployer, we
have configured the micro-benchmark topology with differ-
ent time and resource complexities. In particular, the Linear
topology includes only CPU-bound operators so that the
whole topology is bound by computation; the Star topology,
on the contrary, is bound by communication for being made

of I/O bound operators with comparatively large internal
streams; while the Diamond topology incorporates all types
of operators in the middle so as to simulate a hybrid case.

Fig. 10 demonstrates that P-Deployer has been able to
steadily improve the topology throughputs and finally real-
ize the pre-defined performance target. The evaluated topol-
ogies, despite their different topology structures and
resource complexities, have shown a similar scaling pattern
during the deployment process: in the first iteration, the
micro-benchmark topologies respectively achieve 78, 68, and
75 percent of the performance target; while the Twitter Senti-
ment Analysis delivers a average throughput of 1237
tweets/second that only accounts for 62 percent of the
requirement. The followingMAPE iterations essentially lead
to a horizontal scaling up process. P-Deployer gradually
exaggerates the unit resource consumption reflected in tasks
profiles, resulting in a higher operator parallelism and more
Worker Nodes to be added into the Storm cluster. The bin-
packing nature of the task mapping algorithm guarantees
that only a necessary amount of machines would be intro-
duced and efficiently utilized in the next MAPE iteration.
Taking the Linear topology as an example, it initially has a
parallelism degree of (1,1,1,1)14 running on 3 Worker Nodes,
but at the end of the scaling process, it spreads over
6 machines with a parallelism degree of (1,2,2,2), and P-
Deploy took care not to collocate CPU-bound tasks to fulfil
its performance requirement. We also observe that platform
scaling is the major source of performance improvement. In
case of the Star topology, the performance boost in the third
iteration is significantly larger (10.3 x) than the previous one,
as it involves a new machine to be added rather than merely
adjusting the operator parallelism and task allocation.

There are two reasons why the task profiles tend to be
underestimated in the first place. (1) The overhead of DSMS
and operating system to run the streaming application has
not been explicitly considered in our resource consumption
model due to the complexity of formulation and measure-
ment. Therefore, as the throughput grows, the increasing
overheads of acknowledgement and thread scheduling
need to be amortized onto the unit resource consumption.
(2) Some operators, especially those performing batch proc-
essing or window slide at set intervals, demonstrate a
periodical spiky pattern of resource usages even when proc-
essing a steady size of stream. Though we should allocate
resources to satisfy the peak need of the operator, the spiky
period is very short and thus hard to be captured accu-
rately. As a compromise, we enlarge the average value in
task profiles so as to ensure the smooth flow of execution.

Another finding from these experiments is that the com-
plete latency consistently grows as the throughput increases.
In our measurement, the average complete latency of the
Linear topology is 89 ms in the first iteration, but it raises to
159 ms after the deployment process is finalized. We under-
stand the result in the sense that the complete latency is
strongly correlated to the number of unacknowledged tuples
that are allowed in the system. As there is no latency viola-
tion identified in these experiments, P-Deployer currently
does not have the ability to throttle the data source.

TABLE 4
Parameter Settings Used in the Deployment Planning Model

Parameter Value

a (Upper limit on CPU usages for I/O bound task) 0.1
b (Upper limit on memory usages for Mem-bound task) 512 (MB)
ar (Coefficient in Eq. (6)) 1

13. http://storm.apache.org/releases/current/FAQ.html
14. From left to right, each number corresponds to the number of

tasks for each operator in the Linear topology.
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However, such function can be readily implemented using
the built-in rate-limitingmechanism.15

7.3 Scalability Evaluation

Two separate experiments have been conducted to evaluate
the scalability of P-Deployer. In the first experiment, the
application to be deployed is the Linear topology that con-
sists of various operator types. We further extend the depth
of the topology to 5 and 10 so as to generate more compli-
cated topology structures, but the performance target of
deployment remains the same as the applicability evaluation.

In the second experiment, we attempt to deploy the Twit-
ter Sentiment Analysis towards higher throughput targets of
3000 tweets/second and 6000 tweets/second, respectively.

Fig. 11 shows that the increasing depths of the Linear
topology have little impact on the convergence speed of the
P-Deployer, which is the number of iterations required to
achieve the desired performance. P-Deployer consistently
improves the throughput performance by gradually scaling
out the task distribution and solving any bottlenecks caused
by resource contention.

However, it takes more efforts for the Twitter Sentiment
Analysis to realize a higher performance target and the
number of used machines does not linearly scale with it
(reaching 3000 tweets/seconds requires 5 nodes while real-
ising 6000 tweets/seconds requires 14 nodes). We also
observe a throughput oscillation at the iteration 6 when tar-
geting at the higher throughput. This result is not beyond
our expectation due to the fact that P-Deployer works on a
best-effort basis and thus cannot guarantee the performance
bottleneck to be necessarily solved by the adjustment of
deployment. Some DSMS concurrency settings, such as the
size of the thread pool and the number of the acker tasks,
are also influencing the topology behaviour [14], but they
have not been considered in P-Deployer due to the hardness
of generalization. Despite this, P-Deployer is still qualified
to be a practical deployment tool in the situation where the
default settings of DSMS suffice for the performance goal.

During the deployment process inwhich the Twitter Senti-
ment Analysis reaches the 6000 tweets/second target, we
assessed P-Deployer’s runtime overhead, including the pro-
filing cost (the percentage decrease in average throughput
after enabling the profilingmechanism) and the running time
of the task mapping and resource estimation algorithm. The
result is shown in Table 5,which demonstrates that our profil-
ingmechanism is low-overhead and the FFDheuristic is suffi-
ciently fast for solving the overlapping bin-packing problem.

7.4 Cost Efficiency Evaluation

7.4.1 Comparable Method

We choose a state-of-the-art platform-oriented approach—
Metis scheduler as our comparable method, which outper-
forms the greedy scheduler [1] in major metrics such as
throughput and resource utilization [7]. In general, the Metis
scheduler uses the number of machines in the platform as the
parallelism degree of each operator; it then builds the task
communication graph based on the monitoring of internal
streams and translates the taskmapping problem into a graph
partitioning problem. Metis16 is used as an external service
that solves the partitioning problemwith a goal to balance the
CPUusage and bandwidth consumption across the platform.

7.4.2 Result and Analysis

In order to make the result comparable, we control the per-
formance target of deployment and compare P-Deployer
and the Metis scheduler against the minimal number of
machines required to achieve the same target. The test appli-
cations include the Word Count topology and the Micro-
benchmark topologywith different types of operators.

Fig. 12 demonstrates that, in most cases, P-Deployer
occupies less resources than the Metis scheduler does.
As seen in the deployment of the Word Count topology,
P-Deployer is able to use 1 less Worker Nodes than that of
Metis scheduler to reach the 6000 tweets/second target.

Fig. 10. The monitored throughputs of topologies in the applicability evaluation. Each MAPE iteration corresponds to a plotted box that contains 10
readings of throughputs. P-Deployer finalizes the deployment once the performance target denoted by the horizontal line is reached.

Fig. 11. The monitored throughputs of topologies in the scalability evaluation. Each MAPE iteration corresponds to a plotted box that contains 10
readings of throughputs. P-Deployer finalizes the deployment once the performance target denoted by the horizontal line is reached.

15. In Apache Storm, we refer tomax.spout.pending option for details. 16. http://glaros.dtc.umn.edu/gkhome/views/metis
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When the Metis scheduler is applied, we observed that the
capacities17 of the last three operators reached up to 0.808,
0.494, and 0.505, respectively, but the CPU utilization of
each Worker Node barely exceeded 35 percent. This leads
to a conclusion that the operator parallelism is underesti-
mated using the number of available machines, and the
insufficient operator parallelization would in turn impede
the high utilization of the underlying platform.

On the other hand, disregarding the operator type in task
mapping also caused significant performance degradation.
Wehave compensated the insufficient parallelism (multiplied
by 5) for Sojourn time-bound operators when using the Metis
schedule to deploy the synthetic topologies, yet still the cost
of processing is noticeably higher than that of P-Deployer,
with 2 � 3 more machines required in each case to reach the
highest target. The performance disparity is attributed to load
imbalance that resulted from the inaccurate workloadmodel-
ling. The Metis scheduler only approximates the Worker
Node load by counting the number of tuples being transmit-
ted, as compared to our approach that first models the
resource consumption on the fine-grained task level, and
then deduces the workload of each machine by additively
accruing the resource consumption of collocating tasks.

8 RELATED WORK

There is a rich body of literature on the deployment of
streaming applications, each associated with different opti-
mization targets.

Some papers aim to improve the throughput and resource
utilization. Fisher et al. employed Bayesian optimization to
tune the operator parallelization and other configurations
for achieving higher throughputs [14]. However, treating the
streaming application as a blackbox function does not prop-
erly take advantage of the domain knowledge, and it results
in a comparatively long convergence time. The Metis sched-
uler, proposed by the same group, avoids the convergence
problem by building up a task communication graph and
solving it with full-fledged partitioning software [7]. Never-
theless, as shown in our experiments, the resource utilization
and workload balancing could still suffer without consider-
ing the operator type and parallelism holistically. There is
also a resource-aware scheduler that allows users to specify
the resource demand for each task in order to optimizework-
load distribution and inter-node communication [9]. How-
ever, our experience has suggested that the resource
demand of a task strongly correlates to its stream load and
communication pattern, which can only be obtained at run-
time through application profiling.

Some works, on the other hand, investigated adaptive
deployment to build elastic streaming applications. To
maintain high resource utilization, Vanderveen et al. [15]

employed MAPE loops to elastically scale the streaming
application along with the workload changes. But the
adopted threshold method much resembles the auto-scaling
policy in Amazon Web Services (AWS) and is inadequate to
model the particularity of target applications. To honour the
latency constraint during scaling, Fu et al. [8] proposed a
dynamic resource scheduler that tailors the deployment
plan to the fluctuating workload. The performance model is
a rigorous queueing network that ignores network trans-
mission costs, which makes it only applicable to computa-
tionally intensive streaming applications.

Workload estimation and latency modelling has also been
discussed in the literature to make the adaptation process
more pro-active, yet still the issue of cost-efficient scaling
remains without optimizing the deployment holistically.
Zacheilas et al. [16] predicted the workload characteristics in
order to choose the appropriate transitions on parallelism, but
they did not consider the operator communication pattern to
reduce network overhead. Li et al. [4] presented a predictive
scheduling framework, utilizing Support Vector Regression
to predict the complete latency under certain deployment
arrangement. But they left out operator parallelization, and
the proposed scheduling algorithm is essentially an exhaus-
tive search to traverse all feasible solutions. Nevertheless, the
established optimization techniques can be integrated with P-
Deployer to choose the right time of scaling andminimize the
negative impacts of dynamic workload adaptation. With the
knowledge of predicted workload distribution, Mayer
et al. [17] investigated dynamic stream partitioning using
queueing theory models and time series analysis. Their work
can be integrated with our operator parallelization model to
dynamically adjust the operator parallelism, providing proba-
bilistic guarantees on the buffering limit. By modelling the
latency spike created by operator movements, Heinze
et al. [18] proposed an elastic placement algorithm that
reduces the number of latency violations. This work can be
used in tandemwith P-Deployer, replacing the proposed bin-
packing model that solely commits to reducing the resource
cost. Cardellini et al. [19] investigated the optimal operator
placement as an Integer Linear Programming problem. The
computed result can be used to evaluate the quality of our

TABLE 5
The Profiling Cost (Pc) and the Running Time of Algorithm 1 (Rt)

When Deploying the Twitter Sentiment Analysis Topology

Iteration 1 2 3 4 5 6 7

PcPc 2.68% 3.14% 3.48% 4.11% 3.72% 2.95% 3.3%
RtRt 0.213 0.245 0.312 0.338 0.331 0.351 0.359

Fig. 12. Comparison of P-Deployer and the Metis scheduler against the
resource costs required to reach the same performance target.

17. Capacity represents the percentage of the time in the observation
time window that the operator spent executing inputs.

58 IEEE TRANSACTIONS ON BIG DATA, VOL. 5, NO. 1, JANUARY-MARCH 2019



heuristic solution. Also, to speed up the process of finding
optimal solutions to resource allocation/placement problems,
evolutionary algorithms [20], [21] andmachine learning based
frameworks [4], [22] have been investigated in the literature.

There are also several papers on reducing inter-node
communication [1], [6], [10], [19] and improving system
manageability and energy-efficiency [2], [23]. However, all
the above-mentioned efforts fall short when the deployment
of streaming application has been commissioned with a spe-
cific performance target, the case of which is commonly
seen in the cloud computing context.

9 CONCLUSIONS AND FUTURE WORK

In this work, we proposed P-Deploy - an automated, cost-
efficient and performance-oriented deployment framework
for running streaming applications on cloud. Inspired
by the observations that drawn from real experiments,
P-Deployer adopts a Monitor-Analyze-Plan-Execute archi-
tecture working in a profiling environment that gradually
scales the streaming application to approach its perfor-
mance target. In each iteration, P-Deployer builds the rela-
tionship between performance behaviour and resource
consumption at the fine-grained task level, decides the oper-
ator parallelism based on its profile and performance
demand, and then solves the task mapping and resource
estimation problem as a variant of bin-packing. The evalua-
tions demonstrated that P-Deployer is able to deploy a vari-
ety of streaming applications towards their performance
target, and it outperforms the state-of-the-art platform-ori-
ented approach in terms of cloud resource usages. Since the
cloud environment benefits from the emerging architecture
used in data centres, it is of crucial importance to make the
deployment process aware of the hardware heterogeneity
and allow customized resource provisioning that considers
application characteristics and requirements. P-Deployer is
our first attempt to advance the research of this topic.

In the future, we plan to extend P-Deployer with the abil-
ity to dynamically adapt streaming applications to the
workload fluctuations, which includes autonomously add-
ing/releasing resources according to the varying perfor-
mance requirement, and taking advantage of heterogeneous
resources to exhibit full auto-scaling characteristics.
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