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SUMMARY

Designing dynamic pricing mechanisms that efficiently price resources in line with a provider’s profit max-
imization goal is a key challenge in cloud computing environments. Despite the large volume of research
published on this topic, there is no publicly available software system implementing dynamic pricing for
Infrastructure as a Service cloud spot markets. This paper presents the implementation of a framework called
Spot instance pricing as a Service (SipaaS) that supports an auction mechanism to price and allocate virtual
machine instances. SipaaS is an open-source project offering a set of web services to price and sell virtual
machine instances in a spot market resembling the Amazon EC2 spot instances. Cloud providers, who aim
at utilizing SipaaS, should install add-ons in their existing platform to make use of the framework. As an
instance, we provide an extension to the Horizon – the OpenStack dashboard project – to employ SipaaS
web services and to add a spot market environment to OpenStack. To validate and evaluate the system, we
conducted an experimental study with a group of 10 users utilizing the provided spot market in a real envi-
ronment. Results show that the system performs reliably in a practical test environment. Copyright © 2015
John Wiley & Sons, Ltd.

Received 23 August 2015; Revised 20 November 2015; Accepted 20 November 2015

KEY WORDS: cloud computing; market; dynamic pricing; auction; spot instances; OpenStack; framework

1. INTRODUCTION

Infrastructure as a Service (IaaS) cloud providers have started offering unused computational
resources in the form of dynamically priced virtual machines (VM instances) [1]. Dynamic pric-
ing is a pricing strategy in which providers set prices for their services based on current market
demands. The fact that demand for cloud services and computational resources is non-uniform
over time motivates the use of dynamic forms of pricing in order to optimize revenue. Hence,
design and implementation of dynamic pricing mechanisms have received considerable attention in
the literature [2–4].

There are various types of dynamic pricing strategies suggested by the literature, for example,
different types of auctions [5, 6], negotiations [7], and yield management techniques [3]. Auction
is among the most popular techniques, which is a common market mechanism with a set of rules
determining prices and resource allocations on basis of bids submitted from the market participants.
Amazon Web Services (AWS)‡ is one of the pioneers who sell spare capacity of data centers using
an auction-like dynamic pricing mechanism. In Amazon terminology, VM instances trading in this
form of pricing is known as spot instances, and the market in which spot instances are traded is
called spot market.

*Correspondence to: Adel Nadjaran Toosi, CLOUDS Lab., Department of Computing and Information Systems, The
University of Melbourne, Australia.

†E-mail: adel.nadjaran@unimelb.edu.au
‡Amazon Web Services (AWS), http://aws.amazon.com.
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Spot market, since introduced by AWS, has been considered as one of the first steps towards a
full-fledged market economy for computational resources [8]. In the spot market, customers com-
municate their bids for an instance-hour to AWS in order to acquire required number of instances.
Subsequently, AWS reports a market-wide spot price at which VM instance usage is charged while
terminating instances that are executing on a bid price lower than the market price (out-of-bid sit-
uation). Prices vary independently for each instance type and available data center (or availability
zone in Amazon terminology).

Amazon Web Services has revealed no detailed information regarding their pricing mechanism
and the computation of the spot price. At present, the design of dynamic forms of pricing for cloud
computing resources is an open research challenge and of great interest to both cloud providers and
researchers. An auction mechanism is truthful, if for each bidder irrespective of any choice of bid by
all other bidders, the dominant strategy is to report his/her true information. We presented a pricing
mechanism called Online Extended Consensus Revenue Estimate (online Ex-CORE) auction that is
truthful with high probability and generates a near optimal profit for the cloud provider in [9].

In this paper, we describe an open source framework called Spot instance pricing as a Service
(SipaaS). SipaaS§ offers a set of web services that can be used by IaaS cloud providers to run a spot
market resembling the AWS spot instances. It provides services to price VM instances using the
internal pricing module that works based on the online Ex-CORE auction mechanism. The extensi-
ble architecture of the SipaaS framework allows for implementation of any new pricing mechanism
without the necessity to modify the design of the web services. The purpose of the SipaaS framework
is twofold: (1) providing a fully operational open-source software that can be used by IaaS cloud
providers to offer a cloud spot market; and (2) providing an extensible software framework for con-
ducting research on dynamic pricing techniques. Using the SipaaS framework, research community
are able to plug their own developed pricing mechanisms into a practical environment and test sce-
narios in a spot market with known pricing module rather than only analysing existing commercial
systems such as AWS spot instances without being aware of its pricing mechanism.

Cloud providers, who aim at utilizing SipaaS, require to extend their platform to make use of
the framework. In this paper, we provide an extension to the OpenStack project¶ as an example
to utilize SipaaS web services. To facilitate research efforts and future advancements in the area
of dynamic pricing for cloud spot markets, this paper outlines an extension to the Horizon – the
OpenStack dashboard project – to make use of SipaaS and create a spot market environment for the
OpenStack platform.

To validate and evaluate the system consisting of the SipaaS framework combined with the exten-
sion to OpenStack, we conducted an experimental study with a group of ten participants utilizing
the provided spot market. Results show that the system is fully operational in a practical test envi-
ronment and confirm the theoretically proven and using simulation shown truthfulness feature of the
Ex-CORE auction.

The remainder of this paper is organized as follows: Section 2 discusses some background and
related work. Section 3 confers the system design and implementation where we describe SipaaS,
extensions to Horizon, and Ex-CORE pricing mechanism in subsections 3.1, 3.2, and 3.3, respec-
tively. Evaluation and validation of the system is conducted in Section 4. And finally, conclusions
are presented in Section 5.

2. BACKGROUND AND RELATED WORK

Pricing is the process of determining the rate or fee the provider will receive in exchange for offering
services or selling resources. Cloud providers can use a variety of pricing strategies when selling
their services. Among these strategies, dynamic pricing is a time-based and price discrimination
scheme that allows the service provider to vary the price in real-time in response to various factors
such as market demands, the time of service offering, the type of customer, and the type of resources

§SipaaS in Persian language means thank.
¶OpenStack: An open source software for building private and public clouds, http://www.openstack.org/.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
DOI: 10.1002/cpe

http://www.openstack.org/


3674 A. NADJARAN TOOSI, F. KHODADADI, AND R. BUYYA

or services. In general, dynamic pricing can be determined as [10]: a provider revenue maximization
problem in a monopoly market, for example [3, 6, 11, 12], or a social welfare maximization problem
in a competitive market with multiple providers, studies such as [13–16]. In this paper, we study
the former and propose a framework that can be used by IaaS cloud providers to setup a dynamic
pricing-equipped spot market.

There are various types of dynamic pricing strategies suggested by the literature for setting the
price of cloud resources. These dynamic pricing strategies can be categorized into two main groups:
price-discovery and price-posted models [17]. In the former, the provider sets the price based on
the communication with the customers, for example, asking them to report their bid. Auction-based
and negotiation-based [7, 18] techniques fall into this group. The latter, the price-posted model,
does not necessarily require communication with the customers, and the provider posts the pre-
determined price, which dynamically varies during the time based on some external factors such
as demand or time of use [3]. The demand-oriented pricing model [19, 20] and yield management
techniques [3, 21, 22] are categorized in the second group. The spot pricing framework proposed in
this paper is specifically designed for auction-based techniques where customers submit their bid to
acquire resources.

Over the recent years, there has been a massive growth in the research of designing auctions,
largely motivated by the development of the Internet. Auctions can be in assorted shapes and have
different characteristics such as: single-dimensional (e.g., only bid price) or multi-dimensional (e.g.,
bid price plus quantity), single-sided (e.g., only customers submit bids) or double-sided (e.g., both
providers and customers submit bids), open-cry or sealed-bid, single-unit (e.g., a single good or
service) or multi-unit (e.g., multiple units of the goods), single item (e.g., one type of service) or
multi-item (e.g., combinatorial auction). These have been extensively discussed and analyzed in
the economics literature. Interested readers are referred to [23] for a general survey on auction
mechanisms from a computer science perspective. Apart from all the different types of auction
that can be devised, auction designer might have specific goals in designing auction, for example,
truthfulness, revenue maximization, allocative efficiency, and fairness [17]. This work focuses on the
design and implementation of a software system where dynamic pricing algorithms working based
on customers’ bids, can be plugged into it to create a cloud spot market. Here, we use our previously
proposed auction-based pricing mechanism called Ex-CORE [9], aiming at revenue maximization,
truthfulness, and fairness.

There are relevant and similar auction mechanisms in the literature that can be similarly used in
the pricing module of the proposed software system. Wang et al. [6] designed near-optimal dynamic
auctions scheme to determine how many spot instances must be auctioned-off in each auction period
to maximize the seller’s revenue. Same authors in [2] have proposed an optimal recurrent auction
for a spot market based on the seminal work of Myerson [24]. The mechanism was designed in the
context of optimally segmenting the provider’s data center capacity between on-demand and spot
market requests. They adopt a Bayesian approach wherein it is assumed that the customers’ pri-
vate values are drawn from a known distribution. This is not always the case, and pricing heavily
depends on the accuracy of the underlying market analysis. Such analysis also needs to be updated
frequently in order to adapt to changes in the market. In contrast, the online Ex-CORE auction
mechanism used in our pricing framework is based on a competitive auctioning framework pro-
posed by Goldberg and Hartline [25], in which the mechanism computes a uniform price outcome
when the seller knows very little about the bidders’ valuations. Xu and Li [3] proposed an infi-
nite horizon stochastic dynamic program to dynamically price the IaaS cloud provider’s resources
based on stochastic demand arrivals and departures of cloud users. They aim at maximizing revenue
specifically for the spot market. Wang et al. [26] investigated the similar problem of how to set the
spot price to maximize cloud provider’s revenue. They present a demand curve model to capture
the characteristic of spot resources and design efficient online algorithms based on the Lyapunov
optimization technique in this regard. In order to apply their proposed pricing method, providers
need to continuously monitor and analyze the demand arrival and departure rate and to devise
and refine demand functions. Truong-Huu and Tham [27] formulate the competition among cloud
providers as a non-cooperative stochastic game to maximize cloud providers’ revenue. They provide
dynamic resource pricing in which providers propose optimal price policies with regard to the
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current policies of other competitors. Zhang et al. [5] present a truthful online cloud auction mecha-
nism building on their proposed bidding language to price and allocated resources to heterogeneous
demand. The applicability of combinatorial auction mechanisms for allocation and pricing of VM
instances have been also investigated by many researchers [11, 28–30]. However, combinatorial
auctions have been rarely used in practice because of their complexity and difficulty of solving
these problems.

Amazon Web Services has adopted an auction-like approach to expand its pricing plans with spot
instances for the Amazon Elastic Compute Cloud (EC2). In this scheme, consumers communicate
their bids for a VM instance hour to AWS. Subsequently, AWS reports a market-wide spot price
at which VM instance use is charged, while terminating any instances that are executing under a
bid price that is lower than the market price. Attempts for creating auction mechanisms have also
been reported by other companies. Stokely et al. [31] from Google present a practical auction-based
solution to the resource provisioning problem in a set of heterogeneous resource clusters. The auc-
tion determines uniform, fair resource prices that balance supply and demand. Similarly, we present
a prototype of an open-source software system for selling VM machine resources in an auction-
like manner. We focus on technical and architectural design aspects here, while detailed analysis
of the auction mechanism exploited by the proposed framework has been extensively discussed
in [9].

There are also studies investigating strategies for customers to (cost-)effectively utilize Amazon
spot instances [1, 32–36]. These studies focus on running applications on spot instances, and they
provide scheduling and bidding strategies to minimize cost for cloud customers, whereas this work
focuses on the design and implementation of a spot market to the benefit of cloud providers and pro-
vides pricing framework to maximize the provider’s revenue. These studies can utilize our proposed
framework to test their techniques against dynamic pricing methods other than AWS spot instance
pricing. Ben-Yehuda et al. [4] examined the price history of the EC2 spot market through a reverse
engineering process and found that the mechanism was not completely driven by demand and sup-
ply. Their analysis suggests that spot prices are usually drawn from a tight, fixed price interval, and
reflect a random non-disclosed reserve price. Javadi et al. [37] have provided a statistical modeling
of spot prices by studying Amazon spot price traces. They performed a comprehensive analysis of
spot instances in four data centers of Amazons EC2 and they proposed a statistical model that fits
well in terms of spot price fluctuation and time between price changes. It seems necessary to men-
tion that the spot instance pricing mechanism used by Amazon underwent couple of changes after
these publications.

3. SYSTEM DESIGN AND IMPLEMENTATION

The aim of SipaaS is to provide an extensible framework for dynamic pricing of VM instances in
a spot market based on a set of Representational state transfer (REST)ful services. By extensibil-
ity, we mean the ability to implement new pricing mechanisms and apply them in the framework
without the necessity to modify the design of the web services. Different implementations of pric-
ing mechanisms can be plugged into the framework by replacing the pricing module, which will be
discussed in the later part of this paper. The implementation of the SipaaS framework encompasses
the proposed auction mechanism in [9] that can be easily replaced by any other dynamic pricing
mechanism. To this end, considering the scope and requirements of our proposed software system,
we decided to use RESTful services for the SipaaS framework [38].

Spot instance pricing as a Service provides services for adding, removing, or updating bidders’
orders (bid price plus quantity) for various types of VMs for each provider (or data center) and
dynamically computes prices for each type. The SipaaS framework considers each type of VM
for each cloud provider as a distinct spot market and computes prices in each market based on
the submitted orders for the corresponding type. The framework is agnostic to the cloud platform
and resource management system used by the cloud provider, and cloud providers are supposed to
implement their own extension to make use of services provided by SipaaS.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
DOI: 10.1002/cpe



3676 A. NADJARAN TOOSI, F. KHODADADI, AND R. BUYYA

Figure 1. System model.

As shown in Figure 1, the system is composed of two main parts:
Spot instance pricing as a Service Framework: a set of RESTful services written in Java

and deployed on a host to provide web services required for running the spot market. Detailed
information about the web services that SipaaS offers are presented in Section 3.1.

Cloud Provider’s Platform Extensions: an add-on software that must be installed as a module on
the cloud provider’s platform to make use of web services provided by SipaaS. Detailed information
on such an extension to OpenStack is presented in Section 3.2.

As shown in Figure 1, add-on software on the provider’s platform calls web services on SipaaS
framework using the REST application programming interfaces (i.e., HTTP requests) and receives
responses in JavaScript Object Notation (JSON) [39] format in case of successful calls or error
messages in case of errors.

3.1. Spot instance pricing as a Service framework

SipaaS stands for Spot instance pricing as a Service. As its name implies, the main goal of SipaaS is
to provide pricing for spot instances in the form of services. Thus, it has been designed based on a
set of web services, by invoking them, the cloud provider is able to price the spot instances. SipaaS
web services are implemented based on Spring Model–view–controller (MVC) framework [40]. As
shown in Figure 2, SipaaS contains three main components:

(1) Pricing Module: This component is the heart of the system and embodies the technique used
for pricing spot instances. The pricing module computes the market-wide single price based on
the submitted orders by customers. The pricing module receives a list of orders with the reserve
price and the available capacity in number of VMs, which have been set by the provider and
computes the spot market price accordingly. Details of auction mechanism employed in SipaaS
are given in Section 3.3.

(2) Database: A relational database is utilized by SipaaS to store information related to each spot
market. Considering the fact that we look for a database management system (DBMS) with
high-speed and reliability [41], we have chosen MySQL as a DBMS, which can be replaced by
any other type of DBMS according to the requirements. The database server can be deployed
either on the same host where SipaaS is installed or on a dedicated host. Figure 3 depicts the
enhanced entity relationship diagram (EERD) of the SipaaS’ database, which contains eight
main tables:

(a) provider: The provider table stores information about providers (or data centers), which
register themselves in SipaaS. Each provider has a unique ID, accesskey, and secretkey.
The provider might have any arbitrary name as well. Providers require their accesskey
and secretkey to invoke web services provided by SipaaS.

(b) vmtype: Providers might have different types of VMs for each of which a distinct spot
market executes. The VM Type table stores information about these types for every

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
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Figure 2. Spot instance pricing as a Service framework components.

Figure 3. Enhanced entity relationship diagram of the database.

provider. The information contains: a unique ID (id), provider’s id (provider), and the
type name (type).

(c) order: The order table stores information about orders by customers for each VM type
and each provider. The information contains: a unique ID (id), provider’s ID (provider),
VM type ID (type), the requested number of VMs (qty), bid price (bid), and a unique
reference ID (bidref), which must be generated by the cloud provider and is used for
any future reference to this order.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
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(d) price: The price table stores information about spot market price generated by the
pricing module. Each price contains id, provider, vmtype, time, and price. The time
attribute records the timestamp for a given date and time of day the price is computed.

(e) available: The available table stores data on available capacity of the provider for each
spot market. The table contains: id, provider, vmtype, amount, and time. The amount
and time attributes are used to store the total number of available VMs for the corre-
sponding VM type and timestamp of setting the available capacity, respectively. If the
available capacity is not set by the provider, SipaaS assumes infinite availability.

It is worth noting that, as demand for each type of VMs can fluctuate over time,
providers are supposed to dynamically adjust the capacity allocated to each spot market
to match the demand in order to maximize total revenue. In the current implementation
of the SipaaS framework, the provider is responsible for adjusting the spot market
capacity and continuously updating the availability if demand surpasses supply. One
possible future extension can be adding components to handle the dynamic capacity
control for each spot market. Work similar to that of Zhang et al. [8] would be useful
in this regard.

(f) reserveprice: The reserveprice table, similar to available table, stores data on the
reserve price for each spot market. Reserve price is the lowest bid price that the
provider accepts for the VM instance time slot usage (e.g., instance-hour). This table
contains: id, provider, vmtype, price, and time. If the reserve price is not set by the
provider, the minimum value of zero is assumed.

(g) maxprice: The maxprice table stores the maximum bid price acceptable by the pricing
module. This table contains: id, provider, vmtype, price, and time. No maximum bid
price suggests no limit on the bid price.

(h) maxqty: The maxqty table stores maximum number of VMs that can be requested by a
customer (i.e., an order). This table contains: id, provider, vmtype, quantity, and time.

(3) Web Services: SipaaS provides a set of web services that facilitate the execution of spot markets
by cloud providers. Table I shows the list of main web services available in SipaaS. All services
are RESTful web services designed to produce responses in the JSON format. SipaaS utilizes
RESTful web services as they are easy to implement and require minimal middleware, that
is, only HTTP support is required. JSON is also a highly portable data transfer format that
can be easily recognized by client applications. The cloud provider aiming at utilizing SipaaS
framework services requires a clear understanding of the context as well as the content that
must be passed through each web service invocation. The following parameters are mostly
common among different web services:

(a) accesskey: This is an alphanumeric text string that is uniquely assigned to the provider
and identifies its owner. This parameter is used to differentiate cloud providers from
each other.

Table I. Spot instance pricing as a Service framework web services.

Web service name Input parameter(s) Output

Register name credentials
Unregister accesskey,secretkey status
Regvmtype accesskey,secretkey,type status
Unregvmtype accesskey,secretkey,type status
Setavailables accesskey,secretkey,vmtype,quantity price
Setmaxqty accesskey,secretkey,vmtype,quantity status
Setreserveprice accesskey,secretkey,vmtype,value price
Setmaxprice accesskey,secretkey,vmtype,value status
Addorder accesskey,secretkey,vmtype,quantity,bid,ref price
Updateorder accesskey,secretkey,quantity,ref price
Removeorder accesskey,secretkey,ref price
Pricehistory accesskey,secretkey,vmtype,fromdate,todate price(s)

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
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(b) secretkey: It plays the role of a password for the provider. A secretkey with accesskey
form a secure information set that confirms the provider’s identity.

(c) vmtype: It determines the type of VM or equally a specific spot market. The vmtype
is a string containing the VM type name and is used to relate each request to the
corresponding spot market.

The main web services provided by the framework are:

(a) Register: This service allows the provider to register itself with framework. It receives
one string parameter called name as an input, representing the provider’s name. In
response to successful registration, the web service generates as output a pair of
accesskey and secrectkey in JSON format.

(b) Unregister: The provider is able to unregister from SipaaS by invoking this web
service.

(c) Regvmtype: Using this web service, the cloud provider is able to register different types
of VMs in the system. In addition to accesskey and secretkey, another input parameter
called type must be provided. The type parameter is a string value representing the
VM type name. As stated earlier, each VM type together with a provider stands for a
distinct spot market.

(d) Unregvmtype: As its name implies, it removes a VM type.
(e) Setavailables: This web service receives vmtype and quantity as inputs to specify

the maximum available capacity in number of VMs for the specific spot market. The
Setavailables web service can be called any time and multiple times throughout the
spot market lifetime. The output of this web service is a spot market price computed
according to the updated capacity.

(f) Setmaxqty: It performs similarly to Setavailables, whereas it specifies the maximum
number of VMs user can request in one order.

(g) Setreserveprice: This web service performs similar to Setavailables and specifies the
reserve price. It is important to mention that invoking Setreserveprice and Setavailables
might not result in a new spot market price, in that case, the JSON response includes
the same spot price as the latest one. This web service provides an option for the
cloud provider to take its costs for delivering a VM instance into account. Using Setre-
Serveprice service, the cloud provider can dynamically set the lowest price accepted
for one slot usage of a VM instance during that time. The pricing module must ignore
orders with bid price below the current reserve price.

(h) Setmaxprice: It specifies the maximum bid price allowed in an order. By using Setmax-
price and Setreserveprice, a provider is able to limit the range of bid prices submitted
by spot market users.

(i) Addorder: The Addorder web service allows providers to insert a new order (bid price
plus quantity) to the system. The ref parameter is a unique value provided for each
order and is used for future references to this order. The output of the service is the
spot market price.

(j) Updateorder: The Updateorder web service allows providers to update a previously
submitted order to the system. This web service is called when a customer terminates
part of requested running instances under the specific order.

(k) Removeorder: The Removeorder web service allows provider to remove a previously
submitted order. This web service is called whenever all VM instances of the accepted
order are terminated.

(l) Getpricehistory: This web service receives the input parameters fromdate and todate,
and in response provides the pricing history of a certain spot market.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
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Figure 4. OpenStack components.

3.2. Extensions for Horizon – the OpenStack dashboard

Cloud providers utilizing the SipaaS framework need to setup their own customized extension soft-
ware capable of interacting with SipaaS web services. In this section, we discuss about how such an
extension is designed and implemented for the OpenStack platform.

OpenStack is an open-source cloud management platform, developed to control pools of com-
pute, storage, and networking resources in a data center. OpenStack has been designed as a series
of loosely coupled components that are easy to integrate with a variety of solutions and hardware
platforms. One of these components is Horizon, which provides users and administrators with man-
agement capabilities via a web interface. As schematically shown in Figure 4, Horizon provides a
dashboard interface for accessing OpenStack services provided through its main components. The
main components of OpenStack platform are briefly described below:

� OpenStack Dashboard (Horizon): It provides a web based user interface to other services such
as Nova, Swift, and Keystone. Management actions enabled by this component include VM
image management, VM instance life cycle management, and storage management;
� OpenStack Compute (Nova): It manages the VM instance life cycle from scheduling and

resource provisioning to live migration;
� OpenStack Storage (Swift): Swift is a scalable redundant storage system responsible for

enabling data replication and ensuring integrity;
� Block Storage (Cinder): The block storage system allows users to create block-level storage

devices that can be attached to or detached from VM instances;
� OpenStack Networking (Neutron): Neutron is a system for managing networks and IP

addresses. The system allows users to create their own networks and assign IP addresses to VM
instances;
� OpenStack Identity (Keystone): Keystone is an account management service that acts as an

authentication and access control system;
� OpenStack Image (Glance): It supplies a range of VM image management capabilities from

discovery and registration to delivery of services for disk and server images.

To add spot market facilities to OpenStack, we extended Horizon to make it capable of using the
services provided by SipaaS. Horizon’s main panel includes two different sections, one for members
with system administration role and another section for other standard users. Because the admin
section is only visible to users with administrator privileges, we added a new panel to this section
through which system administrators are capable of enabling spot market support and can define
global settings such as maximum and minimum amount of bid price for users, number of available
VMs for allocation, and the maximum number of VMs a user can request. These parameters are
passed to SipaaS by calling corresponding services defined in SipaaS and discussed in earlier parts
of this section.

We also added another panel to the section visible to standard OpenStack users, labeled as Spot
Instances. As it can be seen in Figure 5, this panel allows users to submit their bids and the number of
required spot instances (i.e., orders) to the system. At the backend, when a user submits his request
for using spot instances, a unique reference number is created for each order and this reference
number with corresponding bid price and number of requested instances are sent to Sipaas by calling
its Addorder service and are stored in a database table named order. According to the computed and
returned price by SipaaS, if user’s bid amount is greater than the price, which means the request can
be fulfilled, requested instances are created and two local database tables named order and instance
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Figure 5. Screenshot of requesting spot instances web page.

Figure 6. Enhanced entity relationship diagram of the database used for Horizon extensions.

are updated. Figure 6 shows an enhanced entity relationship diagram of the local database including
order and instance tables created in the OpenStack platform.

In the instance table, order reference created at the previous step and instance IDs created after
launching VMs are stored. Later, if a user terminates any of the spot instances, the table is updated
accordingly, and the Updateorder service of SipaaS is invoked to calculate the new price. If a user
terminates all the instances belonging to a single order, then Removeorder is called and after both
mentioned operations, the instances of other users, which belong to an order with bid price lower
than the current market price, are terminated automatically (out-of-bid orders termination). Figure 7
shows the sequence diagram of the process of handling an order submission by a user.

There is another added panel labeled Spot Pricing History, in which users are able to view the
history of spot price fluctuations. By supplying the desired duration, users can see the plotted result
from the invoked Pricehistory service of Sipaas. A sample screenshot of the spot pricing history
panel is depicted in Figure 8.
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Figure 7. Sequence diagram of an order submission handling.

Figure 8. Screenshot of spot pricing history web page.

3.3. Pricing mechanism

This section discusses the implemented algorithm in the pricing module of SipaaS. The pricing
mechanism plugged into the SipaaS framework works based on the online Ex-CORE auction algo-
rithm proposed in [9]. Here, we discuss the general concepts of online Ex-CORE auction while
details of the proposed auction can be found in [9].

The Ex-CORE algorithm generates a market-wide single price for each auction round accord-
ing to the current available orders in the market. The main aim of the Ex-CORE algorithm is to
maximize the provider’s revenue while it is strategy-proof (truthful). An auction mechanism is
strategy-proof – also called truthful or incentive-compatible – if the dominant bidding strategy for
every bidder is to always report their true valuation irrespective of the behavior of the other bidders.
It is shown that the Ex-CORE auction has a high probability of being truthful, and generates a near
optimal profit for the provider in each round of auction [9].
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To maximize revenue, the random component of the auction mechanism must generate the price in
a way that the gained revenue is a good estimate of the revenue generated by the optimal single-price
auction. The optimal single-price auction, F , is defined as follows:

Definition 1
Let d be an order vector. An order, di , is a pair of .ri ; bi /, where ri represents the number of
required VMs and bi the bid price. Without loss of generality, suppose the components of d are
sorted in descending order by bid prices. We denote by �k.d/ the sum of the number of requested
VM instances in the sorted vector of orders from the first order to kth order

�
�k.d/ D

Pk
iD1 ri

�
.

The auction F on input d determines the value k such that bk�k.d/ is maximized. All bidders with
bi > bk win at price bk and all remaining bidders lose. Thus, the revenue of F on input d is

F.d/ D max
i

bi�i .d/ : (1)

The optimal single-price auction sets the sale price for a set of orders as follows:

Definition 2
Denote opt.d/ the optimal single sale price for d that maximizes the revenue for the auctioneer,
that is,

opt.d/ D argmaxbi bi�i .d/ : (2)

All bidders with bi > opt.d/ win the auction and pay opt.d/ and all remaining bidders lose and
pay 0. Even though, the optimal single-price maximizes revenue for the provider, it is not truthful
and allows for the increase in the cloud user’s utility by misreporting the true valuation of the service.
Therefore, we propose Ex-CORE auction, which generates a near optimal profit for the provider
while is truthful with high probability.

Algorithm 1 outlines the online version of Ex-CORE that attempts to maximize the revenue in a
greedy manner given a newly arriving order and the existing orders. The online Ex-CORE records
the optimal sale price computed by opt.d/ in the previous round of algorithm and updates the sale
price using the Ex-CORE algorithm only when the optimal sale price calculated in the current round
differs from the one in the previous round of the auction. Lines 1–4 of the algorithm enforce this
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rule. Lines 5 and 6 compute r , the maximum number of requested units in the order list, and m,
the maximum number of units sold by optimal single-price. The Ex-CORE mechanism is designed
to work for mass-market scenarios that requires m to be larger than r (m � r). In the rare event
when this condition would not hold, the algorithm returns the price computed by optimal single-
price. In line 10, � is computed, followed by the computation of the optimal value for c in line 11.
Subsequently, c is used to generate an estimation of F.:/ (lines 12–14). Finally, the estimated value
is converted to the market clearing price through the revenue extraction mechanism. We omit further
details and proofs regarding the online Ex-CORE auction in this paper, and the interested readers
are referred to [9] for complementary details.

To retrieve price, web services in SipaaS call the auction algorithm in the pricing module, which
is the online Ex-CORE in the current study. For example, each time Addorder, Updateorder, and
Removeorder web services are invoked, the auction algorithm is called to generate the current price
based on the newly updated order vector. The online Ex-CORE records the optimal sale price com-
puted by optimal single-price auction in each round and updates the sale price only when the optimal
sale price calculated in the current round differs from the one in the previous round of the auction,
that is, pricing module does not update the sale price by receiving every order requests. This pre-
vents the market from being exposed to high price fluctuations because of a random component in
the Ex-CORE algorithm, which calculates the sale price [9].

4. PERFORMANCE EVALUATION

Our evaluation of the proposed framework is twofold. In the first, an experimental study is con-
ducted to validate and test the framework. We also analyze behavior of participants in the study. The
second part evaluates the scalability of the framework under high service loads. Even though our
experiments inevitably leads to performance evaluation of the Ex-CORE auction mechanism as the
heart of the system, our aim here is to show that our proposed architecture can operate in real envi-
ronment settings. Detailed performance evaluation of the utilized auction mechanism can be found
in [9].

4.1. Validation and truthful analysis

In this section, we evaluate our proposed framework by conducting an experimental study in a
real environment. The goals are twofold: (i) to demonstrate that the extension to the OpenStack
combined with the SipaaS framework can operate in a practical environment to provide spot mar-
ket facilities and (ii) to evaluate the system’s behavior and our auction pricing model in a test
experiment.

4.1.1. Experimental testbed. The testbed used for the evaluation of the system consists of two main
hosts, both running Ubuntu 14.04 as operating system. One was used for running SipaaS and the
other one was used for running all the OpenStack services. The DevStack OpenStack,|| which is
suitable for development and operational testing, is used in the experiment. Hosts used in the exper-
iment are m1.small and m3.2xlarge VM instances running on Amazon EC2 in Asia Pacific -

Sydney region. Resource configuration of VM instance types used in the experiment can be seen in
Table II.

The m1.small machine was chosen to deploy SipaaS web services on Apache Tomcat 6 web
server** and MySQL as a DBMS to host and manage the database. The m3.2xlarge machine was
used to host all the OpenStack services including Horizon and its extension, deployed on Apache
HTTP server version 2. MySQL was also installed in this machine to host the database for storing
all the required data for the extension software.

In the experimental study, users can use their own desktop or laptop PC with a web browser
(preferably Google Chrome) to connect to the dashboard and use the spot market services.

||Deploying OpenStack for Developers, http://devstack.org/.
**Apache Tomcat, http://tomcat.apache.org/.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:3672–3690
DOI: 10.1002/cpe

http://devstack.org/
http://tomcat.apache.org/


SIPAAS FRAMEWORK AND ITS IMPLEMENTATION IN OPENSTACK 3685

Table II. Types of virtual machine instances and their specifications used to
host system components in the experiment.

Instance type Cores CPU (ECU* ) Memory (GB) Storage (GB)

m1.small 1 1 1.7 160
m3.2xlarge 8 26 30 160

One ECU (EC2 compute unit) is equivalent to CPU capacity of a 1.0–1.2 GHz
2007 Opteron or 2007 Xeon processor.

Table III. True private values of experi-
ment participants.

User Price value ($) Quantity

T1, C1 0.0691 2
T2, C2 0.0092 1
T3, C3 0.0475 1
T4, C4 0.0232 2
T5, C5 0.0184 1

4.1.2. Experimental design and setup. We conducted a 20-min experiment with 10 participants
(i.e., spot market users). Participants were divided into two groups of five: (i) Group T or truthful
bidders and (ii) Group C or counterpart bidders who have the freedom to misreport their true private
values to maximize their utility. Participants of the latter are selected from a group of professional
cloud users who have satisfactory level of knowledge about the spot market. Each participant was
provided with a user-name and password to access the OpenStack dashboard. We provided partic-
ipants of the experiment with a pair of uniformly random generated quantity and price values that
must be considered as their true private values.

Considering the scale of the experiment, we limited the maximum number of simultaneous VM
instances each user can run in the system to 2. Accordingly, we chose uniformly random true quan-
tity values from {1, 2}. For price values, we adopted the pricing details of Amazon EC2 m3.medium

in the Asia Pacific-Sydney region at the time of the experiment, while we replaced per hour
charging period with 30 s in our experiment. True price values in dollars are drawn from a uni-
form distribution of the interval [0.0081, 0.0700], where $0.0081 and $0.0700 are the minimum
spot instance (reserve price) and the on-demand price per hour for m3.medium instances in Amazon,
respectively. The maximum possible bid price is also derived from the maximum allowed bid price
in Amazon EC2 for the same type of spot instances, that is, $0.4520/h.

Assuming that the provider offers on-demand pricing concurrently and Quality of Service (QoS)
for spot instances are lower than equivalent on-demand ones, true values higher than on-demand
price seems unreasonable. Therefore, we distributed true private price values between the minimum
spot price and on-demand price for m3.medium instances. However, experiment participants are
allowed to submit orders with a bid price higher than the on-demand price. Table III shows true
private price and quantity values for participants of each group.

Similar to Amazon, spot instances are not charged for their partial 30 s upon their termination by
the provider, while a partial 30 s of usage is counted as a full 30 s upon termination by the user.
Each full time slot usage (i.e., 30 s) is charged based on the spot market price at the beginning of
the time slot.

Participants of the experiment are provided with the details of the online Ex-CORE auction
algorithm and their utility function for one time slot instance usage, formulated as follows:

u.r; b/ D

²
.qv � rp/x ; if b > p and r > qI
0 ; otherwise.

(3)

where r , b, q, v, p, and x are the requested number of instances, bid price value, true private quantity
value, true private price value, spot market price at the time of order submission, and a Boolean
value describing whether the order is accepted or not, respectively.
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Participants are asked to acquire VM instances of type m1.nano as long as they can, according
to their true private values using the OpenStack dashboard. Participants of group T are obliged
to submit their true values to acquire instances through the whole experiment regardless of the
market price fluctuation. Participants of group C are asked to try to maximize their utility based
on rules of the experiment and given pricing information. Therefore, if it is deemed beneficial,
a participant of group C might strategically misreport her/his bid price or the quantity, that is,
b ¤ v or r ¤ q. To provide enough incentives for participant of group C to act rationally in the
experiment, we considered a prize for the winner of the experiment. The winner of the experiment is
the one who can achieve the highest positive difference of the utility value with his/her counterpart
truthful bidders.

All participants are taught the goal, rules, and details of the experiment. The experiment was
conducted in the real environment where participants have been able to run instances according to
their order submissions. The results of the experiment are discussed in the following section.

4.1.3. Results and analysis. The main goal of the conducted experiment is to show that the sys-
tem works flawlessly in a practical test environment. All the participants experienced valid system
behavior in the experiment. They were able to submit their orders to the system and boot up their
instances whenever their bid was higher than the market price. As soon as market price went above
of the submitted bid price, acquired instances were terminated by the system immediately without
any prior notice.

Figure 9 depicts the market price fluctuation during the experiment. As shown in the figure, the
price reaches the maximum bid price in multiple cases. This happened because of the reason that
some low value participants, for example C4 and C2, who were starving in the market, tried to
terminate other participants’ instances by submitting very high bid price and terminating instances
of others immediately to submit their new orders. This, however, affected their utility value because
they were charged multiple times higher than their true values.

In [9], it is theoretically proved that Ex-CORE auction mechanism is truthful with high prob-
ability. Therefore, as we expected, excluding T 3, all truthful users (i.e., participants of group
T ) achieved higher utility value than their counterpart users who misreported their true values.
Table IV shows the total cost and achieved utility values by all users based on the utility function
in Equation (3).

In order to investigate how user C3 could achieve the highest positive difference in comparison
with his/her paired truthful participant, we analyzed the submitted orders by all users. The result
of our analysis shows that C3 is the most truthful user among the participants of group C , who
continuously submitted the true quantity value and bid price values significantly close to his/her
true value. The only reason C3 achieved highest difference is that she/he was quicker in submitting
orders and could obtain two additional full time slots of instance usage. The truthful user T 3 was
also able to do the same if he/she would submit his/her true values fast enough at the same time.

As it can be seen in Table IV, T 2 and T 5 could not acquire instances for a full time slot at all,
because the market price was often higher than their true price values. T 4 similarly ends up running
instances for only one time slot. Comparatively, paired users from group C acquired instances for
higher number of time slots. However, their overall utility values are negative as they ended up
paying more than their true values.

Results of the experiment reported in Table IV support the theoretically proven supposition that
Ex-CORE algorithm is truthful with high probability. This confirms the fact that rational users’
dominant strategy in a truthful auction mechanism is to report their true private values. Moreover,
our investigation on the historical price data of spot instances in Amazon EC2 shows that price
spikes similar to what happened in our experiment are occurring in Amazon’s spot market as well.
This might happen either because of the same experience we had in our experiment where some
users submit very high bids or possibly sudden spikes in demand. Intuitively, without knowing how
the spot market mechanism works, no user has the incentive to strategize over its bid. This has been
suggested by other studies as well [2, 4].
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Figure 9. Spot market price fluctuation during the experiment.

Table IV. Total cost, the number of full time slots usage, and utility
values of experiment participants.

User Total cost ($) Number of full time slots Utility value ($)

T1 1.2964 16 0.9148
C1 1.8216 17 0.5278

T2 0.0000 0 0.0000
C2 10.0227 18 �9.8571

T3 0.1896 6 0.0954
C3 0.2280 8 0.1520

T4 0.0436 1 0.0030
C4 3.6810 5 �3.4490

T5 0.0000 0 0.0000
C5 0.0738 2 �0.0370

4.2. Performance analysis

In this section, first we discuss the scalability of the framework, and then we conduct an experiment
to evaluate it. As we mentioned earlier, SipaaS provides a set of web services for cloud providers
to run spot markets. Similar to other web applications, SipaaS performance depends on the perfor-
mance of the hosting web server and used database management system on which the framework is
installed; they are Apache Tomcat and MySQL, respectively. SipaaS follows the three-tier architec-
ture and can use load balancers, multiple application servers, and multiple databases. Our aim here
is not to represent and discuss the design and architecture of such systems. Interested readers are
referred to works addressing this topic [42–44].

Response time is the main performance metric taken into account in the design and implementa-
tion of service-oriented systems such as SipaaS. Thus, we evaluate the scalability of the system in
terms of response when demand (i.e., number of orders) grows. The pricing module of the SipaaS
framework that embodies the technique used for dynamic pricing is the most compute-intensive part
of the system. Therefore, the computation taking place in the pricing module is considered as the
main factor for determination of the response time, apart from other factors such as network delay
and delay between the web server and database server. We conduct an experiment to evaluate how
the system performs in terms of response time when number of orders increases.

4.3. Experimental setup and evaluation

To evaluate the responsiveness of the framework, we developed a web robot (bot) application that
generates order requests and submits them to the framework. It generates RESTful requests based
on application programming interfaces of SipaaS and measures the response time delay for each
request. To generate order requests, we adopt the following probability distributions:
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– Bid prices: bid prices are drawn from a uniform distribution bounded by .0; $0:4500/. The
upper bound value is derived from the maximum allowed bid price for m3.medium in Amazon
EC2 at the time of writing the paper.

– Quantity: the value for the requested number of instances in each order is drawn from a uniform
distribution bounded by [1, 20], where 20 is the same limit applied to spot instances by Amazon
EC2.

– Arrival time: the arrival time of the order requests is generated independently following a Pois-
son process with parameter � set at the total number of requests divided by the number of hour
in the simulation.

– Holding time: when a user acquires instances, the time a VM instance remains active in the
system (holding time) if the bid is valid is modeled by Pareto distributed random variables,
with shape parameter 1 and location parameter 1.

The testbed used to deploy SipaaS web services for performance evaluation consisted of an HP
EliteDesk 800 machine with following the hardware specifications:

– Intel(R) Core(TM) i7 Processors @ 3.6 GHz.
– 16 GB, 1600 MHz DDR3 SDRAM.
– Seagate ST500LM000 HPDA WU 500 GB.

All required application components, including Tomcat7, MySQL, and the Bot software, were
installed on this machine to minimize the effect of factors such as network delay. The number of
order requests submitted by bot software is increased from 10 to 100,000 by multiplies of 10 for a
period of 2 h. The response time is measured by measuring the time frame between an order request
submission and the reception of the market price as a response. Figure 10 plots the impact of number
of submitted orders on the response time of SipaaS framework on the testbed.

As it can be seen, for 1000 requests per 2 h and below, the response time remains almost con-
stant at around 10 ms. However, by increasing the number of requests above 1000, the response
time of the system increases until on average it reaches 62 ms at 100 thousands requests, which
is negligible compared with the provisioning time of a VM instance. The experiment shows that
the pricing module scales reasonably when demand grows. One needs to be careful about the
computational complexity of pricing algorithms plugged into the framework. Otherwise, the sim-
ple architecture of the SipaaS framework imposes negligible overhead to the responsiveness of
the system.

Figure 10. The mean and 95% confidence interval of the response time by the SipaaS framework against the
number of submitted orders. Individual standard deviations are used to calculate the 95% confidence interval

intervals. The x-axis is in log scale.
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5. CONCLUSIONS

In this paper, we introduced an open source SipaaS framework that provides a set of web services to
facilitate running a spot market. We also presented our extension to Horizon – OpenStack dashboard
project – that makes use of the SipaaS framework to run a spot market in the OpenStack platform.
In order to evaluate and validate our proposed system, we conducted an experimental study with a
group of 10 participants. The results of the experimental study support the validity of the proposed
system and demonstrates the behavior of the system. In addition, our study experimentally confirms
the truthfulness of the auction pricing mechanism used in the SipaaS framework. As a summary,
those IaaS cloud providers interested to run spot market resembling the Amazon EC2 spot instances
could consider our proposed SipaaS framework using the Ex-CORE auction algorithm as a relevant
replacement. The provider would expect the same user behavior using either Amazon EC2 spot
instance pricing or our method, as users do not know how the spot price reacts according to their
orders in both cases.

6. SOFTWARE AVAILABILITY

Spot instance pricing as a Service is an open source project, and its source is available at Bitbucket
(https://bitbucket.org/farzadkh/sipaas).
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