IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

1695

Performance and Cost-Efficient Spark Job
Scheduling Based on Deep Reinforcement
Learning in Cloud Computing Environments

Muhammed Tawfiqul Islam™, Member, IEEE,

Shanika Karunasekera, Member, IEEE, and Rajkumar Buyya

, Fellow, IEEE

Abstract—Big data frameworks such as Spark and Hadoop are widely adopted to run analytics jobs in both research and industry. Cloud
offers affordable compute resources which are easier to manage. Hence, many organizations are shifting towards a cloud deployment of
their big data computing clusters. However, job scheduling is a complex problem in the presence of various Service Level Agreement
(SLA) objectives such as monetary cost reduction, and job performance improvement. Most of the existing research does not address
multiple objectives together and fail to capture the inherent cluster and workload characteristics. In this article, we formulate the job
scheduling problem of a cloud-deployed Spark cluster and propose a novel Reinforcement Learning (RL) model to accommodate the SLA
objectives. We develop the RL cluster environment and implement two Deep Reinforce Learning (DRL) based schedulers in TF-Agents
framework. The proposed DRL-based scheduling agents work at a fine-grained level to place the executors of jobs while leveraging the
pricing model of cloud VM instances. In addition, the DRL-based agents can also learn the inherent characteristics of different types of jobs
to find a proper placement to reduce both the total cluster VM usage cost and the average job duration. The results show that the proposed

DRL-based algorithms can reduce the VM usage cost up to 30%.

Index Terms—Cloud computing, cost-efficiency, performance improvement, deep reinforcement learning

1 INTRODUCTION

IG data processing frameworks such as Hadoop [1], Spark

[2], Storm' became extremely popular due to their use in
the data analytics domain in many significant areas such as
science, business, and research. These frameworks can be
deployed in both on-premise physical resources or on the
cloud. However, cloud service providers (CSPs) offer flexible,
scalable, and affordable computing resources on a pay-as-
you-go model. Furthermore, cloud resources are easy to man-
age and deploy than physical resources. Thus, many organi-
zations are moving towards the deployment of big data
analytics clusters on the cloud to avoid the hassle of manag-
ing physical resources. Service Level Agreement (SLA) is an
agreed service terms between consumers and service pro-
viders, which includes various Quality of Service (QoS)
requirements of the users. In the job scheduling problem of a
big data computing cluster, the most important objective is
the performance improvement of the jobs. However, when

1. https:/ /storm.apache.org/

o The authors are with Cloud Computing and Distributed Systems
(CLOUDS) Lab, School of Computing and Information Systems, Univer-
sity of Melbourne, Melbourne, VIC 3010, Australia. E-mail: {tawfiqul.
islam, karus, rbuyyaj@unimelb.edu.au.

Manuscript received 17 Mar. 2021; revised 30 Sept. 2021; accepted 26 Oct. 2021.
Date of publication 2 Nov. 2021; date of current version 15 Nov. 2021.

This work was partially supported by a Project funding from the Australian
Research Council (ARC).

(Corresponding author: Muhammed Tawfiqul Islam.)

Recommended for acceptance by R. Prodan.

Digital Object Identifier no. 10.1109/TPDS.2021.3124670

the cluster is deployed on the cloud, job scheduling becomes
more complicated in the presence of other crucial SLA objec-
tives such as the monetary cost reduction.

In this work, we focus on the SLA-based job scheduling
problem for a cloud-deployed Apache Spark cluster. We
have chosen Apache Spark as it is one of the most prominent
frameworks for big data processing. Spark stores intermedi-
ate results in memory to speed up processing. Moreover, it is
more scalable than other platforms and suitable for running
a variety of complex analytics jobs. Spark programs can be
implemented in many high-level programming languages,
and it also supports different data sources such as HDFS [3],
Hbase [4], Cassandra [5], Amazon S3.2 The data abstraction
of Spark is called Resilient Distributed Dataset (RDD) [6],
which by design is fault-tolerant.

When a Spark cluster is deployed, it can be used to run one
or more jobs. Generally, when a job is submitted for execution,
the framework scheduler is responsible for allocating chunks
of resources (e.g., CPU, memory), which are called executors.
A job can run one or more tasks in parallel with these execu-
tors. The default Spark scheduler can create the executors of a
job in a distributed fashion in the worker nodes. This
approach allows balanced use of the cluster and results in per-
formance improvements to the compute-intensive workloads
as interference between co-located executors are avoided.
Also, the executors of the jobs can be packed in fewer nodes.
Although packed placement puts more stress on the worker
nodes, it can improve the performance of the network-inten-
sive jobs as communication between the executors from the

2. https:/ /aws.amazon.com/s3/

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4922-7807
https://orcid.org/0000-0003-4922-7807
https://orcid.org/0000-0003-4922-7807
https://orcid.org/0000-0003-4922-7807
https://orcid.org/0000-0003-4922-7807
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:tawfiqul.islam@unimelb.edu.au
mailto:tawfiqul.islam@unimelb.edu.au
mailto:karus@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
https://storm.apache.org/
https://aws.amazon.com/s3/

1696

same job becomes intra-node. In the Spark framework sch-
eduler, only a static setting can be chosen where the user has
to select between the two options (spread, or consolidate).
However, for different job types, different placement strate-
gies would be suitable that the default scheduler is unable
support if these jobs run in the cluster at the same time. Fur-
thermore, the framework scheduler is not capable to capture
the inherent knowledge of both the resources and the work-
load characteristics to accommodate the target objectives effi-
ciently. There are lots of existing works [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19] that focused on various
SLA objectives. However, these works do not consider the
implication of executor creations along with the target objec-
tives. Most of the works also assume the cluster setup to be
homogeneous. However, this is not the case for a cloud-
deployed cluster, where the pricing model of different VM
instances can be leveraged to reduce the overall monetary
cost of using the whole cluster. Finally, heuristic-based and
performance model-based solutions often focus on a specific
scenario, and can not be generalized to adapt to a wide range
of objectives while considering the inherent characteristics of
the workloads.

Recently, Reinforcement Learning (RL) based approaches
are used to solve complex real-world problems [20], [21],
[22]. RL based agents can be trained to find a fine balance
between multiple objectives. RL agents can capture various
inherent cluster and workload characteristics, and also adapt
to changes automatically. RL agents do not have any prior
knowledge of the environment. Instead, they interact with
the real environment, explore different situations, and gather
rewards based on actions. These experiences are used by the
agents to build a policy which maximizes the overall reward.
The reward is nothing but a model of the desired objectives.
Due to these benefits mentioned above, in this paper, we pro-
pose an RL model to solve the scheduling problem. Our goal
is to learn the appropriate executor placement strategies for
different jobs with varying cluster and resource constraints
and dynamics, while optimizing one or more objectives.
Thus, we design the RL reward in such a way that it can
reflect the target SLA objectives such as monetary cost and
average job duration reductions. We run different types of
Spark jobs in a real cloud-deployed Apache Mesos [23] clus-
ter and capture the job and cluster statistics. Then we utilize
the real job profiling information to develop a simulation
environment which showcases the similar characteristics as
the real cluster. When an RL-based agent interacts with the
scheduling environment, it gets a reward depending on the
chosen action. The scheduling simulation environment uti-
lizes the real workload results with our RL reward model to
generate rewards. Thus, an agent is independent of reward
generation, and only observes various system states and
rewards solely based on it’s chosen actions. In our proposed
RL model for the scheduling problem, an action is a selection
of a worker node (VM) for the creation of an executor of a
specific job.

We also implement a Q-Learning-based agent (Deep Q-
Learning or DQN), and a policy gradient-based agent
(REINFORCE) in the scheduling environment. These DRL-
based scheduling agents can interact with the simulation
environment to learn about the basics of scheduling, such as
satisfying the resource capacity constraints of the VMs, and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

the resource demand constraints of the jobs. Besides, we
also train the agents to minimize both the monetary cost of
VM usage and the average job duration. Both the schedul-
ing environment and the agents are developed on top of
TensorFlow (TF) Agents.

In summary, the contributions of this work are as follows:

e We provide an RL model of the Spark job scheduling
problem in cloud computing environments. We also
formulate the rewards to train DRL-based agents to
satisfy resource constraints, optimize cost-efficiency,
and reduce average job duration of a cluster.

e We develop a prototype of the RL model in a python
environment and plug it to the TF-Agents frame-
work. The simulation environment showcases simi-
lar characteristics as a real cloud deployed cluster,
and can generate rewards for the DRL-based agent
by utilizing the RL model and real cluster traces.

e We implement two DRL-based agents, DQN and
REINFORCE, and train them as scheduling agents in
the TF-agent framework.

e We conduct extensive experiments with real-world
workload traces to evaluate the performance of the
DRL-based scheduling agents and compare them
with the baseline schedulers.

The rest of the paper is organized as follows. In Section 2,
we discuss the existing works related to this paper. In Sec-
tion 3, we formulate the scheduling problem. In Section 4, we
present the proposed RL model. In Section 5, we describe the
proposed DRL-based scheduling agents. In Section 6, we
exhibit the implemented RL environment. In Section 7, we
provide the experimental setup, baseline algorithms, and the
performance evaluation of the DRL-based agents. In Sec-
tion 7.7, we discuss different strategies learned by the DRL
agents and their limitations. Section 8 concludes the paper
and highlights future work.

2 RELATED WORK

2.1 Scheduling in Cloud VMs and Data Centres

Scheduling tasks in cloud VMs and scheduling VM crea-
tions in Data centres are well-studied problems. PARIS [24]
modelled the performance of various workloads in different
VM types to identify the trade-offs between performance
and cost-saving. Thus, this model can be used to choose the
best VM for both cost and performance to run a particular
workload in cloud hosted VMs. Yuan et al. [25] proposed a
biobjective task scheduling algorithm for distributed green
data centers (DGDC). They formulated a multiobjective
optimization method for DGDCs to maximize the profit of
DGDC providers and minimize the average task loss possi-
bility of all applications by jointly determining the split of
tasks among multiple ISPs and task service rates of each
GDC. Zhu et al. [26] proposed a scheduling method called
matching and multi-round allocation (MMA) to optimize
the makespan and total cost for all submitted tasks subject
to security and reliability constraints. In this paper, we
address the big data cluster scheduling problem which is
different than scheduling tasks in cloud VMs or VM provi-
sioning in Data centres. The variance is due to the nature of
the Spark jobs, and the in-memory architectural paradigm.

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD...

In addition, the executors from a Spark job may not be fitted
into a single VM, and the scheduler should select a mix of
different types of VMs while creating the executors to sat-
isfy resource constraints. In addition, the workload perfor-
mance also varies depending on the placement strategy
(spread, or consolidate), which we aim to train the sched-
uler without providing any prior knowledge on the work-
load and cluster dynamics, and performance models.

2.2 Framework Schedulers

Apache Spark uses the (First in First out) FIFO scheduler by
default, which places the executors of a job in a distributed
manner (spreads out) to reduce overheads on single worker
nodes (or VMs if cloud deployment is considered). Although
this strategy can improve the performance of compute-inten-
sive workloads, due to the increasing network shuffle
operations, network-intensive workloads can suffer from per-
formance overheads. Spark can also consolidate the core
usage to minimize the total nodes used in the cluster. How-
ever, it does not consider the cost of VMs and the runtime of
jobs. Therefore, costly VMs might be used for a longer period,
incurring a higher VM cost. Fair’ and DRF [27] based schedu-
lers improve the fairness among multiple jobs in a cluster.
However, these schedulers do not improve SLA-objectives
such as cost-efficiency in a cloud-deployed cluster. For differ-
ent workload types, various executor placement strategies
would be suitable, which the framework schedulers are
unable to support. This is what we call a fine-grained executor
placement in our work.

2.3 Performance Model and Heuristic-Based
Schedulers
There are a few works which tried to improve different
aspects of scheduling for Spark-based jobs. Most of these
approaches build performance models based on different
workload and resource characteristics. Then the performance
models are used for resource demand prediction, or to design
sophisticated heuristics to achieve one or more objectives.
Sparrow [7] is a decentralized scheduler which uses a
random sampling-based approach to improve the perfor-
mance of the default Spark scheduling. Quasar [8] is a clus-
ter manager that minimizes resource utilization of a cluster
while satisfying user-supplied application performance tar-
gets. It uses collaborative filtering to find the impacts of dif-
ferent resources on an application’s performance. Then this
information is used for efficient resource allocation and
scheduling. Morpheus [9] estimates job performance from
historical traces, then performs a packed placement of con-
tainers to minimize cluster resource usage cost. Moreover,
Morpheus can also re-provision failed jobs dynamically to
increase overall cluster performance. Justice [10] uses dead-
line constraints of each job with historical job execution
traces for admission control and resource allocation. It also
automatically adapts to workload variations to provide suf-
ficient resources to each job so that the deadline is met.
OptEx [11] models the performance of Spark jobs from the
profiling information. Then the performance model is used

3. https:/ /hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/FairScheduler.html

1697

to compose a cost-efficient cluster while deploying each job
only with the minimal set of VMs required to satisfy its
deadline. Furthermore, it is assumed that each job has the
same executor size, which is the total resource capacity of a
VM. Maroulis et al. [12] utilize the DVFS technique to tune
the CPU frequencies for the incoming workloads to
decrease energy consumption. Li et al. [13] also provided an
energy-efficient scheduler where the algorithm assumes
that each job has an equal executor size, which is equivalent
to the total resource capacity of a VM.

The problems with the performance model and heuristic-
based approaches are: (1) the performance models depend
heavily on the past data, which sometimes can be obsolete
due to various changes in the cluster environment (2) it is
difficult to tune or modify heuristic-based approaches to
incorporate workload and cluster changes. Therefore, many
researchers are focusing on RL-based approaches to tackle
the scheduling problem in a more efficient and scalable
manner.

2.4 DRL-Based Schedulers

The application of Deep Reinforcement Learning (DRL) for
job scheduling is relatively new. There are a few works
which tried to address different SLA objectives of schedul-
ing cloud-based applications.

Liu et al. [28] developed a hierarchical framework for
cloud resource allocation while reducing energy consump-
tion and latency degradation. The global tier uses Q-learn-
ing for VM resource allocation. In contrast, the local tier
uses an LSTM-based workload predictor and a model-free
RL based power manager for local servers. Wei et al. [29]
proposed a QoS-aware job scheduling algorithm for appli-
cations in a cloud deployment. They used DQN with tar-
get network and experience replay to improve the stability
of the algorithm. The main objective was to improve the
average job response time while maximizing VM resource
utilization. DeepRM [14] used REINFORCE, a policy gra-
dient DeepRL algorithm for multi-resource packing in
cluster scheduling. The main objective was to minimize
the average job slowdowns. However, as all the cluster
resources are considered as a big chunk of CPU and mem-
ory in the state space, the cluster is assumed to be homoge-
neous. Decima [15] also uses a policy gradient agent and
has a similar objective as DeepRM. Here, both the agent
and the environment was designed to tackle the DAG
scheduling problems within each job in Spark, while con-
sidering interdependent tasks. Li et al. [30] considered an
Actor Critic-based algorithm to deal with the processing of
unbounded streams of continuous data with high scalabil-
ity in Apache Storm. The scheduling problem was to
assign workloads to particular worker nodes, while the
objective was to reduce the average end-to-end tuple proc-
essing time. This work also assumes the cluster setup to be
homogeneous and does not consider cost-efficiency. DSS
[17] is an automated big-data task scheduling approach in
cloud computing environments, which combines DRL and
LSTM to automatically predict the VMs to which each
incoming big data job should be scheduled to improve the
performance of big data analytics while reducing the
resource execution cost. Harmony [31] is a deep learning-
driven ML cluster scheduler that places training jobs in a

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

1698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022
TABLE 1 TABLE 2
Comparison of the Related Works Definition of Symbols
Features Related Work Our Work ~ Symbol Definition
(28] [29] [14] [15] [30] [17] [31] [18] [32] [33] N The total number of VMs in the cluster
Performance A A A A A A A A A v M The total number of jobs in the cluster
Improvement E The current total number of executors running in the cluster
Cost-efficiency X v X X X v/ X v/ / / 4 W The index set of all the jobs, ¥ = 1,2,..., N
Multi-Objective v v X x x v x v v/ / v) The index set of all the VMs, § = 1,2,..., M
?ﬁ::;}’cl:t;]xs X X XX XX x X /X v ® The index set of all the current executors, w = 1,2,..., F
; . ;
Fine-grained X X X X X X X X X x v UMy, CPU capacity ofa VM, i € §
Executor vmy,.,, Memory capacity ofa VM, i € §
vmy,;.. Unit price ofa VM, i € 6
vmiy The total time a VM was used, i € §

way that minimizes interference and maximizes average
job completion time. It uses an Actor Critic-based algo-
rithm and job-aware action space exploration with experi-
ence replay. Besides, it has a reward prediction model,
which is trained using historical samples and used for pro-
ducing reward for unseen placement. Cheng et al. [18]
used a DQN-based algorithm for Spark job scheduling in
Cloud. The main objective of this work is to optimize the
bandwidth resource cost, along with node and link energy
consumption minimization. Spear [32] works to minimize
the makespan of complex DAG-based jobs while consider-
ing both task dependencies and heterogeneous resource
demands at the same time. Spear utilizes Monte Carlo
Tree Search (MCTS) in task scheduling and trains a DRL
model to guide the expansion and roll-out steps in MCTS.
Wu et al. [33] proposed an optimal task allocation scheme
with a virtual network mapping algorithm based on deep
CNN and value-function based Q-learning. Here, tasks are
allocated onto proper physical nodes with the objective
being the long-term revenue maximization while satisfy-
ing the task requirements. Thamsen et al. [19] used a Gra-
dient Bandit method to improve the resource utilization
and job throughput of Spark and Flink jobs, where the RL
model learns the co-location goodness of different types of
jobs on shared resources.

In summary, most of these existing approaches focus
mainly on performance improvement. Furthermore, these
works also assume that each job/task will be assigned to
one VM or worker-node only. Moreover, many works also
assume the cluster nodes to be homogeneous, which may
not be the case when the cluster is deployed on the cloud.
Thus, these works do not consider a fine-grained level of
executor placement in Spark job scheduling. In contrast, our
scheduling agents can place executors from the same job in
different VMs (when needed, to optimize for a specific pol-
icy), and guarantees to launch all of the executors of a job
on the required resources. In addition, our agents can han-
dle different sizes of executors of jobs, and different VM
instance sizes with a pricing model. Furthermore, our agent
can be trained to optimize a single objective such as cost-
efficiency or performance improvement. In addition, our
agents can also be trained to balance between multiple
objectives. Lastly, the proposed scheduling agents can learn
the inherent characteristics of the jobs to find the proper
placement strategy to improve the target objectives, without
any prior information on the jobs or the cluster. A summary
of the comparison between our work and other related
works is shown in Table 1.

k

cpu

CPU demand of an executor, k € w
Memory demand of an executor, k € @

mem

Jjob The completion time of a job, j € ¥

3 PROBLEM FORMULATION

We consider a Spark cluster set up using cloud Virtual
Machines (VM) as the worker nodes. Generally, Cloud Ser-
vice Providers (CSPs) offer different instance types for VMs
where each type varies on resource capacity. For our prob-
lem, we assume that any type or a mix of different types of
VM instances can be used to deploy the cluster.

In the deployed cluster, one or more jobs can be submit-
ted by the users; and the users specify the resource
demands for their submitted jobs. The job specification con-
tains the total number of executors required and the size of
all these executors in-terms of CPU and memory. A job can
be of different types and can be submitted at any time.
Therefore, job arrival times are stochastic, and the job sched-
uler in the cluster has no prior knowledge about the arrival
of jobs. The scheduler processes each job on a First Come
First Serve (FCFS) basis, which is the usual way of handling
jobs in a big data cluster. However, the scheduler has to
choose the VMs where the executors of the current job
should be created. The target of the scheduler is to reduce
the overall monetary cost of the whole cluster for all the
jobs. In addition, it has an additional target of reducing job
completion times. The notation of symbols for the problem
formulation can be found in Table 2.

Suppose N is the total number of VMs that were used to
deploy a Spark cluster. These VMs can be of any instance
type/size (which means the resource capacities may vary
in-terms of CPU and memory). M is the total number of
jobs that need to be scheduled during the whole scheduling
process. When a job is submitted to the cluster, the sched-
uler has to create the executors in one or more VMs and has
to follow the resource capacity constraints of the VMs and
the resource demand constraints of the current job. The
users submit the resource demand of an executor in two
dimensions — CPU cores and memory. Therefore, each exec-
utor of a job can be treated as a multi-dimensional box that
needs to be placed to a particular VM (bin) in the scheduling
process. Therefore, the CPU and memory resource demand
and capacity constraints can be defined as follows:

Z(ei’pu X X)) < Umipu Vied (1)
kew

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD...

Z(emcm X IL']“) = vmincm Vi e 87 (2)

kew

where z}; is a binary decision variable which is set to 1 if
the executor k is placed in the VM i; otherwise it is set to 0.

When an executor for a job is created, resources from
only 1 VM should be used and the scheduler should not
allocate a mix of resources from multiple VMs to one execu-
tor. This constraint can be defined as follows:

€8

Vk € w. (3)

After the end of the scheduling process, the cost incurred
by the scheduler for running the jobs can be defined as
follows:

COStmmz - Z(vm;)ricc X vsz) 4)

1€8

Additionally, we can define the average job completion
times for all the jobs as follows:

Avgr = <Z job‘%) /M. (5)

jey

As we want to minimize both the cost of using the cluster
and the average job completion time for the jobs, the optimi-
zation problem is to minimize the following;:

B x Cost + (1 — B) x Avgr, (©)

where $ € [0, 1]. Here, B is a system parameter which can be
set by the user to specify the optimization priority for the
scheduler. Note that, Eqn. (6) can be generalized to address
additional objectives if required.

The above optimization problem is a mixed-integer lin-
ear programming (MILP) [34] and non-convex [35], gener-
ally known as the NP-hard problem [36]. To solve this
problem optimally, an optimal scheduler needs to know the
job completion times before making any scheduling deci-
sions. This makes the scheduler design extremely difficult
as it requires the collection of job profiles and the modeling
of job performance which depends on various system
parameters. Furthermore, if the number of jobs, executors
and the total cluster size increase, solving the problem opti-
mally may not be feasible. Although, heuristics-based algo-
rithms are highly scalable to solve the problem, they do not
generalize over multiple objectives and also do not capture
the inherent characteristics of both the cluster and the work-
load to improve the target goal.

Note that, our work focuses on the cluster level schedul-
ing, where the objective of a scheduler is to provision
resources in appropriate VMSs to minimize the overall usage
cost of the cluster or to minimize the job duration. As we
deal with the cluster-level scheduling decisions, we try to
capture performance issues caused by Spark RDDs, data
dependency, and locality from a higher level by considering
the increase/decrease in job completion times in our model.

1699

Cluster Environment

r—-— - - - — — — /= 1
| Jobs i —
(1) Observation ! m type-1| | | ‘
* | ™ ‘
]]|
Scheduling [(2) Action | MCIuster weez| [|
Agent T anager
| \
, ' T
| ! ——>type-N ‘
(3) Reward ! Reward VMs |
[Generator ‘
| \
Lo J

Fig. 1. The proposed RL model for the job scheduling problem, where a
scheduling agent is interacting with the cluster environment.

4 REINFORCEMENT LEARNING (RL) MODEL

Reinforcement learning (RL) is a general framework where
an agent can be trained to complete a task through interact-
ing with an environment. Generally, in RL, the learning
algorithm is called the agent, whereas the problem to be
solved can be represented as the environment. The agent
can continuously interact with the environment and vice
versa. During each time step, the agent can take an action
on the environment based on its policy (7(a;|s;)). Thus, the
action (a¢;) of an agent depends on the current state (s;) of
the environment. After taking the action, the agent receives
a reward (r;;1) and the next state (s;1) from the environ-
ment. The main objective of the agent is to improve the pol-
icy so that it can maximize the sum of rewards.

In this paper, the learning agent is a job scheduler which
tries to schedule jobs in a Spark cluster while satisfying
resource demand constraints of the jobs, and the resource
capacity constraints of the VMs. The reward it gets from the
environment is directly associated with the key scheduling
objectives such as cost-efficiency, and the reduction of aver-
age job duration. Therefore, by maximizing the reward, the
agent learns the policy which can optimize the target objec-
tives. Fig. 1 shows the proposed RL framework of our job
scheduling problem. We treat all the components as part of
the cluster environment (highlighted with the big dashed
rectangle), except the scheduler. The cluster manager moni-
tors the state of the cluster. It also controls the worker nodes
(or cloud VMs) to place executor(s) for any job. In each
time-step, the scheduling agent gets an observation from
the environment, which includes both the current job’s
resource requirement, and also the current resource avail-
ability of the cluster (exposed by the cluster monitor metrics
from the cluster manager). An action is the selection of a
specific VM to create a job’s executor. When the agent takes
an action, it is carried out in the cluster by the cluster man-
ager. After that, the reward generator calculates a reward
by evaluating the action on the basis of the predefined target
objectives. Note that, in RL environment, the reward given
to agent is always external to the agent. However, the RL
algorithms can have their internal reward (or parameter)
calculations which they continuously update to find a better

policy.

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

1700

We assume the time-steps in our model to be discrete,
and event driven. Therefore, the state-space moves from
one time-step to the next only after an agent takes an action.
The key components of the RL model are specified as
follows:

Agent. The agent acts as the scheduler which is responsi-
ble for scheduling jobs in the cluster. At each time step, it
observes the system state and takes an action. Based on the
action, it receives a reward and the next observable state
from the environment.

Episode. An episode is the time interval from when the
agent sees the first job and the cluster state to when it fin-
ishes scheduling all the jobs. In addition, an episode can be
terminated early if the agent chooses a certain action that
violates any resource/job constraints.

State Space. In our scheduling problem, the state is the
observation an agent gets after taking each action. The
scheduling environment is the deployed cluster where the
agent can observe the cluster state after taking each action.
However, only at the start of the scheduling process or an
episode, the agent receives the initial state without taking
any action. The cluster states have the following parameters:
CPU and memory resource availability of all the VMs in the
cluster, the unit price of using each VM in the cluster, and
the current job specification which needs to be scheduled.
Actions are the decisions or placements the agent (sched-
uler) makes to allocate resources for each of the executors of
a job. Resource allocation for each executor is considered as
one action, and after each action, the environment returns
the next state to the agent. The current state of the environ-
ment can be represented using a 1l-dimensional vector,
where the first part of the vector is the VM specifications:
[vmb,,, vm) .. comb, om)], and the second part of the
vector is the current job’s specification: [jobID, €py, €mem, JE]-
Here, vm! ,...vmY represents the current CPU availability

cpur ** cpu

of all the N VMs of the cluster, whereas vm!, ., ,...omJ .
represents the current memory availability of all the N VMs
of the cluster. jobID represents the current joblD, e, and
emem represents the CPU and memory demand of one execu-
tor of the current job, respectively. As all the executors for
one job have the same resource demand, the only other
required information is the total number of executors that
has to be created for that job, which is represented by jg.
Therefore, the state-space grows larger only with the
increase of the size of the cluster (total number of VMs), and
does not depend on the total number of jobs. Each job’s speci-
fication is only sent to the agent as part of the state after its
arrival if all the previous jobs are already scheduled. After
each successive action, the cluster resource capacity will be
updated due to the executor placement. Therefore, the next
state will reflect the updated cluster state after the most
recent action. Until all the executors of the current job is
placed, the agent will keep receiving the job specification of
the current job, with the only change being the ji parameter
which will be reduced by 1 after each executor placement.
When it becomes 0 (the job is scheduled successfully), only
then the next job specification will be presented along with
the updated cluster parameters as the next state. Note that,
in a real Spark cluster, the user specifies the resource require-
ments for the job by using e _cpu (CPU cores per executor),
e_mem(memory per executor), and j_E (total number of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

executors). The framework then follows this resource specifi-
cation while creating executors for the job. Thus, the initial
job specifications come from the user, whereas the VM speci-
fications are provided by the cluster manager. For an RL
model, both of these specifications can be combined to pro-
vide one observation state of the environment after each cho-
sen action.

Action Space. The action is the selection of the VM where
one executor for the current job will be created. If the cluster
does not have sufficient resources to place one or all the
executors of the current job, the agent can also do nothing
and wait for previously scheduled jobs to be finished. In
addition, to optimize a certain objective (e.g., cost, time), the
agent may decide not to schedule a job right after it arrives.
Therefore, if there are N number of VMs in the cluster, there
are N + 1 number of possible discrete actions. Here, we
define Action 0 to specify that the agent will be waiting and
no executor will be created, where action 1 to N specifies
the index of the VM chosen to create an executor for the cur-
rent job.

Reward. The agent receives an immediate reward when-
ever it takes an action. There can be either a positive or a
negative reward for each action. Positive reward motivates
the agent to take a good action and also to optimize the
overall reward for the whole episode. In contrast, negative
rewards generally train the agent to avoid bad actions. In
RL, when we want to maximize the overall reward at the
end of each episode, an agent has to consider both the
immediate and the discounted future reward to take an
action. The overall goal is to maximize the cumulative
reward over an episode, so sometimes taking an action
which incurs an immediate negative reward might be a
good step towards bigger positive rewards in future steps.
Now, we define both the immediate reward and episodic
reward for an agent.

The design choice of a fixed immediate reward simplifies
an RL model. In fact, many RL models for real problems are
designed to be this way. For example, for a maze solver
robot, a huge episodic reward is awarded at the end of an
successful episode, and fixed smaller incentives are
awarded for training risk-free moves during the traversal of
the maze. Similarly, in our RL model, the environment
assigns an immediate small positive reward for the place-
ment of each successful executor of the current Spark job.
Furthermore, the environment also assigns an immediate
small negative reward if the agent chooses to wait without
placing any executors (Action 0). These positive/negative
instant rewards are fixed and does not depend on the VM
cost or job performance. Instead, we set these fixed rewards
to help the agents learn on how to satisfy resource capacity
constraints of the VMs, and the resource demand con-
straints of the jobs. After the initial training episodes, the
agents should be able to learn the resource constraints auto-
matically, as failure to satisfy job or VM constraints will ter-
minate the episode and a fixed huge negative reward will
be used as the episodic reward.

Now, we discuss how to calculate the episodic reward,
which will be only awarded for successful completion of an
episode. Suppose, in the worst case, all the VMs are turned
on for the whole duration of the episode, where each job took
its maximum time to complete because of bad placement

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD...

decisions. Thus it gives us the maximum cost that can be
incurred by a scheduler in an episode as

Cost gz = Z _]Obﬂn(m X va;rice . (7)

JEY €8

Therefore, if we find the episodic VM usage Cost;yai
incurred by an agent (as shown in Eqn. (4)), the normalized
episodic cost can be defined as

COStToTal
COStno’r'malizcd == 7 - (8)
Costynas

Depending on the priority of the cost objective, the g
parameter can be used to find the episodic cost as

COStepi = ,8 X (1 - COStnormalized)- 9

In an ideal case where all the jobs” executors are placed
according to the job type (e.g., distributed placement of
executors for CPU-bound jobs, compact placement of net-
work-bound jobs), we can get the minimum average job
completion time for an episode as follows:

Avgmm = <Z-]0anun) /M

jey

(10)

Similarly, if all the jobs” executors are not placed accord-
ing to the job characteristics, we can get the maximum aver-
age job completion time for an episode as follows:

AUngaw = <Z]ObTmaT) /M

jey

an

Therefore, if we find the episodic average job completion
time for an agent (as shown in Eqn. (5)), the normalized epi-
sodic average job completion time can be defined as

Ang - Angmm

. 12
AUnga.r - A’Ungm ()

Anger‘malizcd =

Depending on the priority of the average job duration
objective, the B parameter can be used to find the episodic
average job duration as

Angcpi = (1 - ﬂ) X (1 - AUgTrLo'rmalizcd)- (13)

Let Ryjizcq is a fixed episodic reward which will be scaled
up or down based on how the agent performs in each epi-
sode to maximize the objective function. Thus the final epi-

sodic reward R.,; can be defined as

Repz' = Rﬁwcd X (COStepi + Angepi)~ (14)

Note that, g € [0,1]. In addition, both Cost.,; and Avgre: €
[0,1]. Therefore, the sum of Cost.,; and Avgr.,; can be at most
1, which will lead to a reward of exactly Rj;,.q. For example,
if B is chosen to be 0, it means an agent will be trained to
reduce average job duration only. In the best case scenario, if
an agent can achieve Avgr to be equal to Avgr,, the value
of Avgr.,; will be 1 and the value of Cost,,; will be 0. There-
fore, the value R,,; will be equal to Rj,.q which indicates the

1701

VM Specs Job Specs

..

(a) Failed Episode

VM Specs Job Specs

éiiiiéié

]
-

ﬂﬂﬂﬂ...l

(b) Successful Episode

Fig. 2. Example scenarios for state transitions in the proposed
environment.

agent has learned the most time-optimized policy. Note that,
the R.,; will never be negative and will only be awarded
upon successful completion of an episode. As mentioned
before, a huge negative reward should automatically be
awarded by the environment in case of an early termination
of an episode, which might be caused by a violation of any
constraints.

The fixed episodic reward (R_fized) is scaled based on
the target objectives. In this way, the agents can keep explor-
ing different sequence of executor placements to optimize
the desired objectives. However, this episodic reward is
only awarded upon the completion of a successful episode.
When an episode is not successful (a resource constraint is
violated, which can be either resource availability or the
resource demand constraint), the episode will be ended
right away and a negative reward will be given to the agent.

Example Workout of the State-Action-Reward Space. We show
an example workout of the state, action and reward of the pro-
posed RL model in Fig. 2. In this example scheduling scenar-
ios, the cluster is composed with 2 VMs with specifications:
VM, — {cpu =4, mem = 8}, and VMy — {cpu =8, mem =
16}. In addition, two jobs arrive one after another with specifi-
cations: joby — {jobID =1, ey = 4, €mem = 8, jr = 2}, and
Joby — {jobID =2, eqp, = 6, €pem =10, jp = 1}. Now, Fig. 2a

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

1702

shows a scenario where the agent has chosen VMM, twice to
place both of the executors of job;. After the first placement,
the agent received a positive reward R, = 1 as it was a valid
placement. As VM, did not have any space left to accommo-
date anything, the second action taken by the agent was
invalid, thus the environment did not execute that action.
Instead, the episode was terminated and the agent was given
a high negative reward (-200). In the second scenario shown
in Fig. 2b, the agent successfully placed all the executors for
job_1. Then as there was not sufficient resources to place the
executor of the job_2, the agent has chosen to wait (Action 0)
for resources to be freed. After job_1 is finished, resources are
freed. Then the agent successfully placed the executor for
job_2, ends the episode and gets the episodic reward.

5 DEePRL AGENTS FOR JOB SCHEDULING

To solve the job scheduling problem in the proposed RL envi-
ronment, we use two DRL-based algorithms. The first one is
Deep Q-Learning (DQN), which is a Q-Learning based
approach. The other one is a policy gradient algorithm which
is called REINFORCE. We have chosen these algorithms as
they work with RL environments which have discrete state
and action spaces. Also, the working procedure of these two
algorithms are different, where DQN optimizes state-action
values, but REINFORCE directly updates the policy. From
the Spark job scheduling context, the RL environment will
provide job specifications which is similar to the traces we ran
for the real workloads. In addition, the cluster resources are
also same, so the VM resource availability will also be used
and updated as part of the state space. Each time a DRL agent
takes an action (placement of an executor), an instant reward
will be provided. The next state will also depend on the previ-
ous state as the VM and job specifications will be updated
after each placement. Eventually, the DRL agents should be
able to learn the resource availability and demand constraints,
and complete scheduling all the executors from all the jobs to
complete the episode to receive the episodic reward.

5.1 Deep Q-Learning (DQN) Agent
5.1.1 Q-Learning

Q-Learning works by finding the Quality of a state-action
value, which is called Q-function. Q-function of a policy =,
Q7 (s,a) measures the expected sum of rewards acquired
from state s by taking action « first and then using policy &
at each step after that. The optimal Q-function Q*(s,a) is
defined as the maximum return that can be received by an
optimal policy. The optimal Q-function can be defined as
follows by the Bellman optimality equation:

Q'(s,a) =E|r +ymaxQ"(s',d') . (15)

Here, y is the discount factor which determines the prior-
ity of a future reward. For example, a high value of y helps
the learning agent to achieve more future rewards, while a
low value in y motivates to focus only on the immediate
reward. For the optimal policy, the total sum of rewards can
be received by following the policy until the end of a success-
ful episode. The expectation is measured over the distribu-
tion of immediate rewards of r and the possible next states s'.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

In Q-Learning, the Bellman optimality equation is used
as an iterative update Q;i1(s,a) < E[r+ ymax,Q;(s,d’)],
and it is proved that it converges to the optimal function @*,
ie, Q; — Q*asi — oo [37].

5.1.2 Deep Q-Learning (DQN)

Q-learning can be solved as dynamic programming (DP)
problem, where we can represent the @Q-function as a 2-
dimensional matrix containing values for each combination
of s and a. However, in high-dimensional spaces (the total
number of state and action pairs are huge), the tabular Q-
learning solution is infeasible. Therefore, a neural is gener-
ally trained with parameters 6, to approximate the Q-values,
ie, Q(s,a;0) = Q*(s,a). Here, the following loss at each
step i needs to be minimized

Li (97) = Es,a:r’,s’rwp(.) |:(y1 - Q(S7 a; 97))2] 5 (16)

where y; = r + ymax,Q(s', d;6,_1).

Here, p is the distribution over transitions {s,a,r,s'}
sampled from the environment. y; is called the Temporal
Difference (TD) target, and y; — @ is called the TD error.

Note that the target y; is a changing target. In supervised
learning, we have a fixed target. Therefore, we can train a
neural net to keep moving towards the target at each step
by reducing the loss. However, in RL, as we keep learning
about the environment gradually, the target y; is always
improving, and it seems like a moving target to the network,
thus making it unstable. A target network has fixed network
parameters as it is a sample from the previous iterations.
Thus, the network parameters from the target network are
used to update the current network for stable training.

Furthermore, we want our input data to be independent
and identically distributed (i.i.d.). However, within the same
trajectory (or episode), the iterations are correlated. While in
a training iteration, we update model parameters to move
Q(s, a) closer to the ground truth. These updates will influ-
ence other estimations and will destabilize the network.
Therefore, a circular replay-buffer can be used to hold the pre-
vious transitions (state, action, reward samples) from the
environment. Therefore, a mini-batch of samples from the
replay buffer is used to train the deep neural network so that
the data will be more independent and similar toi.i.d.

DON is an off-policy algorithm that it uses a different
policy while collecting data from the environment. The rea-
son is if the ongoing improved policy is used all the time,
the algorithm may diverge to a sub-optimal policy due to
the insufficient coverage of the state-action space. Therefore,
an e-greedy policy is used that selects the greedy action with
probability 1 — € and a random action with probability € so
that it can observe any unexplored states, which ensures
that the algorithm does not get stuck in local maxima. The
DON [38] algorithm we use with replay buffer and target
network is summarized in Algorithm 1.

5.2 REINFORCE Agent

DQN optimizes for the state-action values, and by doing so, it
indirectly optimizes for the policy. However, the policy gradi-
ent methods operate on modelling and optimizing the policy
directly. The policy is usually modelled with a parameterized

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD...

function with respect to 0, written as . Accordingly, m(a|s:)
is the probability of choosing the action a; given a state s; at
time step ¢t. The amount of the reward an agent can get
depends on this policy.

Algorithm 1. DQN Algorithm

1 foreach iteration 1... N do

2 Collect some samples from the environment by using the
collect policy (e-greedy), and store the samples in the
replay buffer;

3 Sample a batch of data from the replay buffer;

4 Update the agent’s network parameter 6 (Using Eqn. (16));

5 end

1703

computing the reward after executing a whole episode).
After the collection step (line 2), the algorithm updates the
underlying network using the updated policy gradient with
a learning parameter o (line 4). Note that, while sampling a
trajectory, the e-greedy policy is used.

Algorithm 2. REINFORCE Algorithm

1 foreach iteration 1... N do

2 Sample t; from my(a;|s;) by following the current policy in
the environment;

3 Find the policy gradient v,.J(0) (Using Eqn. (19));

4 60— 0+avyJ(9);

5 end

In a conventional policy gradient algorithm, a batch of
samples is collected in each iteration, then the update
shown in Eqn. (17) is applied to the policy using the collected
samples

T
VGEJTQ |:Z ytrt:| =]Eﬂg

t=0

T
Z vologmy(at|st) Re

t=0

. amn

Here, y is the discount factor, whereas s;, a;, and r; are
used to represent the state, action, and reward at time ¢,
respectively. T is the length of any single episode. R; is the
discounted cumulative return, which can be computed as
shown in Eqn. (18)

T
Ro=>y'"r. (18)
t'=t

Here, ¢’ starts from the current time step ¢, which means that
if the current action is taken, we will get an immediate
reward of r;, which also influences on how much reward
we can accumulate up to the end of the episode.

The expected return is shown in Eqn. (17) uses the maxi-
mum log-likelihood, which measures the likelihood of an
observed data. In RL context, it means how likely we can
expect the current trajectory under the current policy. When
the likelihood is multiplied with the reward, the likelihood of
a policy is increased if it generates a positive reward. On the
other hand, the likelihood of the policy is decreased if it gives
a less or a negative reward. In summary, the model tries to
keep the policy which worked better and tends to throw
away policies which did not work well. However, as the for-
mula is shown as an expectation, it cannot be used directly.
Therefore, a sampling-based estimator is used instead, which
is shown in Eqn. (19)

1 &
voJ(0) = Z(

=l

T T
Z V05097T0(6L¢,t|8u)) (Z 7’(8i,t, ai,t)) .
=1 t=1

(19

Here, v J(6) is the policy gradient of the target objective
J, parameterized with 6. We also assume that in each itera-
tion, N trajectories are sampled (7y, ..., Tx), where each tra-
jectory t; is a list of states, actions, and rewards: t; = si, a’, 7"
for time-steps ¢ = 0 to ¢ = T;. In this work, we use the REIN-
FORCE [39] algorithm, as shown in Algorithm 2. This algo-
rithm works by utilizing Monte Carlo roll-outs (learning by

6 RL ENVIRONMENT DESIGN AND
IMPLEMENTATION

We have developed a simulation environment in Python to
represent a cloud-deployed Spark cluster. The environment
holds the state of the cluster, and an agent can interact with
it by observing states, and taking any action. Whenever an
action is taken, the immediate reward can be observed, but
the episodic reward can only be observed after the comple-
tion of an episode. The episodic reward may be positive or
negative depending on whether an episode was completed
successfully or terminated early following a bad action
taken by the agent. The features of our developed environ-
ment are summarized as follows:

1) The environment exposes the state (comprised of the
latest cluster resource statistics and the next job), to
the agent in each time step.

2) After an action is taken by an agent, the environment
can detect valid /invalid placements and assign posi-
tive/negative rewards accordingly.

3) Based on the agent’s performance in an episode, the
environment can award the episodic reward (the
environment acts as a reward generator). Therefore,
for a simulated cluster with a workload trace, the
environment can derive the cost and time values
which are required to find the episodic reward.

4) The environment considers the impact of the job exe-
cution time on placing executors on different VMs
due to locality and contention in the public cloud, as
the job duration used by the simulation environment
is collected from job profiles by running real jobs in
an experimental cluster.

5) The environment can also vary the job duration from
the goodness of an agent’s executor placement, and
assigns the rewards to agents accordingly.

As mentioned before, instead of representing fixed inter-
vals of real-time; the time-steps refer to arbitrary progres-
sive stages of decision-making and acting. We have
incorporated TF-agents API calls to return the transition or
termination signals after each time step. Fig. 3 shows the
workflow of the environment during the agent training pro-
cess. The red and green circles indicate the events which
trigger negative and positive rewards, respectively, from
the environment. A summary of the ‘action leading to the
event and reward’ is summarized in Table 3. In this table, the

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

1704

Job Parameters +
Cluster States

Scheduling
Agent

Action {1...N}

No i Executor
placed?

Action 0
No

1st executor?

Update
Cluster
Staes

Fetch New
Job

Episode
ended?

End
Episode

Fig. 3. The workflow of the proposed environment in response to different
agent actions. The red and green circles indicate the events which trigger
negative and positive rewards, respectively, from the environment.

serial No. of each reward corresponds to the red/green circle
shown in Fig. 3. The implemented environment can be used
with TF-agents to train one or more DRL agents. Specifically,
the agents can be trained to achieve one or more target objec-
tives such as cost-efficiency, performance improvement. As
discussed before, we have designed the reward signals to
achieve both cost-efficiency and average job duration reduc-
tion. The implemented environment can be extended or
modified to incorporate one or more rewards/obijectives,
continuous states, and train additional DRL agents. We call
the implemented environment RM_DeepRL, which is an
open-source RL-based cluster scheduling environment®* with
TensorFlow-Agents as the backend.

7 PERFORMANCE EVALUATION

In this section, we first discuss the experimental settings
which include the cluster resource details, workload genera-
tion, and baseline schedulers. Then, we present the evalua-
tion and comparison of the DRL agents with the baseline
scheduling algorithms.

7.1 Experimental Settings

Cluster Resources. We have chosen different VM instance types
with various pricing models so that we can train and evaluate
an agent to optimize cost while the cluster is deployed on pub-
lic cloud. The cluster resource details are summarized in
Table 4. Note that, the pricing model of the VM instances is
similar to the AWS EC2 instance pricing (in Australia).

4. https:/ / github.com/tawfiqul-islam/RM_DeepRL

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

Workload. We have used the BigDataBench [40] bench-
mark suite and took 3 different applications from it as jobs
in the cluster which are: WordCount (CPU-intensive), Pag-
eRank (Network or IO intensive) and Sort (memory-inten-
sive). We have used uniform distribution to generate the job
requirements within a range of 1-6 (for CPU cores), 1-10 (for
memory in GB), and 1-8 (for total executors).

Job Arrival Times. Job arrival rates of 24 hours is extracted
from the Facebook Hadoop Workload Trace’ to be used as
the job arrival times in the simulation. We have chosen job
arrival patterns: normal (50 jobs arriving in a 1-hour time
period), and burst (100 jobs arriving in only 10 minutes).

Job Profiles. We ran real jobs in an experimental cluster of
Virtual Machines (VM) in the Nectar Research Cloud.® These
VMs were controlled by the Apache Mesos cluster manager.
We used our chosen workload applications with the gener-
ated job requirements and the job arrival patterns from the
Facebook trace to collect the job profiles. Then the real job
profiling information was used with the simulation environ-
ment built in Python to calculate the Avgziin, and Avgrine,. In
addition, Avgr and Cost,,,, were calculated dynamically
according to the chosen actions from the agents. Note that, in
the real cluster, the maximum and minimum execution times
should be artificially set to be very high (to represent the
maximum runtime of the largest job), and very low (to pres-
ent the minimum runtime of the shortest job), respectively as
these values cannot be calculated beforehand without any
prior knowledge or job profiling information. To simulate
the latency and locality issues due to bad placement deci-
sions, the simulation environment increases the job duration
by 30% automatically if an agent does not utilize the proper
executor placement strategy (e.g., spread or consolidate) for
a particular job type. Note that, the real experimental cluster
also has the same cluster resources as the simulation envi-
ronment, as shown in Table 4.

TensorFlow Cluster Details. We have used 4 VMs (each
with 16 CPU cores and 64GB of memory) from the Nectar
Research Cloud to train the DRL agents. The TensorFlow
version 2.0, and TF-Agent version 0.5.0 were installed along
with python 3.7 in each of the VMs.

Hyperparameters. Hyperparameter settings for both DQN
and REINFORCE agents, along with other environment
parameters are listed in Table 5. The valid action reward will
be provided to the agent if it makes a successful executor
placement (+1 reward), or decides to wait (-1 reward). In
both of these cases, no constraints are violated so the agent
can proceed further. As a 0 or a positive reward while wait-
ing (action 0) might cause the agent to wait infinitely to accu-
mulate positive rewards, we have assigned a fixed negative
reward of -1 to motivate the agent to start placing executors
when enough cluster resources are available. To keep the
invalid action reward to be negative, we need to make sure
that even if most of the executors are placed properly, a huge
negative episodic reward is awarded (-200 reward) for a sin-
gle mistake along with the episode termination. Thus, the
addition of the negative reward and the accumulated sum of
rewards for all the successfully placed of executors should

5. https:/ / github.com /SWIMProjectUCB/SWIM /wiki/Workloads-
repository
6. https:/ /ardc.edu.au/services/nectar-research-cloud /

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tawfiqul-islam/RM_DeepRL
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://ardc.edu.au/services/nectar-research-cloud/

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD... 1705
TABLE 3
The Action-Event-Reward Mapping of the Proposed RL Environment

No. Action Event Reward

1 0 Previously placed 1 or more executors of the current job, but now -200
waiting to place any remaining executor (s)

2 0 No placement -1

3 1..N Proper placement of one executor of the current job +1

4 1..N Improper placement of an executor: resource capacity or resource -200
demand constraints violation

5 1..N All jobs are scheduled, a successful completion of an episode R, (Eqn. (14))

be negative. The fixed episodic reward Rj;,.q was chosen to
be very high (10000). Thus, even if a small performance
improvement or cost reduction is seen from a policy, the epi-
sodic reward will be high to motivate the agent to find a bet-
ter policy and optimize the desired objectives further.

Baseline Schedulers. We have used five different schedul-
ing algorithms as baselines to compare with the proposed
DRL-based algorithms. These are:

1) Round Robin (RR): The default approach of the Spark
Scheduler to distributively place the executors in
VMs.

2) Round Robin Consolidate (RRC): Another round-robin
approach of the Spark scheduler to minimize the
total number of VMs used. Note that it works by
packing executors on the already running VMs to
avoid launching unused VMs.

3) First Fit (FF): We develop this baseline to place as
many executors as possible to the first available VM
to reduce cost.

4) Integer Linear Programming (ILP): This algorithm uses a
Mixed ILP solver to find optimal placement of all the
executors of the current job. During each decision
making step, the whole optimization problem is
dynamically generated by using the current cluster
state and the job specification. In addition, to improve
the performance we have used job profile information
to include the estimated job completion time within
the model so that the problem can be solved optimally.

5) Adaptive Executor Placement (AEP): This algorithm uses
prior job profiling information to change between cen-
tral versus decentral executor placement approach.
Thus, during the scheduling process, it can freely
choose between spread or consolidate placement
approach for a particular job. During the scheduling
process, we supply the job-type and also the preferred
executor placement strategy for that particular job.
The algorithm then uses the preferred placement strat-
egy while creating the executors for that job.

Note that, all the baseline schedulers, and our pro-
posed scheduling agents make dynamic decisions

TABLE 4
Cluster Resource Details

Instance Type CPU Cores Memory (GB) Quantity Price

m1.large 4 16 4 $0.24/h
ml.xlarge 8 32 4 $0.48/h
m2.xlarge 12 48 4 $0.72/h

from the current view of the cluster, and do not have a
global view of the whole problem.

7.2 Convergence of the DRL Agents

Figs. 4 and 5 represent the convergence of the DQN and
REINFORCE algorithms, respectively. We have trained the
DRL-agents with varying g parameter values to showcase
the effects of single or multiple reward maximization. The
evaluation of the algorithms is done after every 1000 itera-
tions, where we calculate the average rewards from the 10
test runs of the trained policy. For the normal job arrival
pattern, we have trained the agents for 10000 iterations, and
for the burst job arrival pattern, we have trained the agents
for 20000 iterations.

A higher value of g indicates that the agent is rewarded
more for optimizing VM usage cost. In contrast, a lower
value of g indicates the agent is optimized more for the
reduction of average job duration. We have varied the val-
ues of B from 0 to 1, where value 1 indicates that the agent is
optimized for cost only. Thus the reward for optimizing
average job duration is ignored in the episodic reward. In
contrast, a value of 0 of g indicates that the agent is opti-
mized for reducing average job duration only. Any value of
B excluding 0 and 1 indicates a mix-mode of operation,
where an agent tries to optimize both rewards with different
priorities (for values 0.25 and 0.75) or with the same priority
(for the value of 0.50). Note that, the episodic rewards can
vary and are calculated based on the cluster resource state,
job specifications and arrival rates. Additionally, the final
episodic reward varies between different optimization tar-
gets, so various training settings result in distinctive maxi-
mal rewards for an episode.

Figs. 4a and 4b represent average rewards accumulated
by the DQON agent in training for the normal and burst job
arrival patterns, respectively. Similarly, Figs. 5a and 5b rep-
resent average reward accumulation in training iterations by
the REINFORCE agent. Note that, the average rewards are
made up with both fixed rewards received for each succes-
sive executor placement and the final episodic reward, and is
not the same as the actual VM usage cost or average job dura-
tion values. However, accumulating higher total reward
implies the agent has learned a better policy which can opti-
mize the actual objectives. Initially, both agents receive nega-
tive rewards and gradually start receiving more rewards
after exploring the state-space over multiple iterations. Due
to the randomness induced by the e-greedy, sometimes the
rewards drop for both algorithms. However, the training of
REINFORCE agent is more stable than the DQN agent. Both
agents required more time to converge with the workload

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

1706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022
TABLE 5
Hyper-Parameters for DRL-Agents and the Environment Parameters
Parameter Value Parameter Value
Ryized 10000 Optimization Priority () [0.0,0.25,0.50,0.75,1.00]
Batch Size 64 No. of Fully Connected Layers for 200
Q-Network
No. of Evaluation Episodes 10 Policy Evaluation Interval 1000
Epsilon (e) 0.001 Training Iteration 10000 (Normal) 20000 (Burst)
Learning Rate («) 0.001 Optimizer AdamOptimizer
Discount Factor (y) 0.9 Job duration increase for a bad 30%
placement
Collect Steps per Iteration (DQN) 1010 Avgpmin, AVGDmas Profiled from real runs of the
Collect Episodes per Iteration (RE) corresponding job
Replay Buffer Size 10000 Avgr, Costas Dynamically calculated
Valid Action Reward -1or+1 Invalid Action Reward -200
8000 8000
7000+ 7000+
6000 6000
%) %)
© ©
S 5000 S 5000
5 5
o 4000 o 4000
() ()
& 30001 & 30001
(] (9]
Z 2000 B=075 Z 2000
—o— B=0.50
10001 e B=025 10001
01) —— B=0.0 01
2000 4000 6000 8000 10000 5000 10000 15000 20000
Iterations Iterations
(a) Normal Job Arrival (b) Burst Job Arrival
Fig. 4. Convergence of the DQN algorithm.
7000 1 10000
6000
8000
§ 5000 K
2 4000 £ 6000
(V) (V)
=4 o
[0}
g3000 o % 40001
o =1]
£ 2000 —— =075 g
1000 —— B=0.50 20001
—s— B=0.25
01 —— B=0.0 ol
2000 4000 6000 8000 10000 5000 10000 15000 20000
Iterations Iterations

(a) Normal Job Arrival
Fig. 5. Convergence of the REINFORCE algorithm.

with burst job arrival pattern as there are more jobs, and the
agents have to learn to wait (action 0) when the cluster does
not have sufficient resources to accommodate the resource
requirements of a burst of jobs.

7.3 Learning Resource Constraints

It can be also observed from both Figs. 4 and 5 that the train-
ing environment works properly to train the agent to avoid
bad actions such as violating resource capacity and demand
constraints with the use of huge negative rewards. Therefore,

(b) Burst Job Arrival

at the start of the training process, both the algorithms incur
huge negative rewards. However, after taking some good
actions (executor placements while satisfying the con-
straints), the environment awards small immediate rewards,
which motivates the agents to eventually complete the epi-
sode by scheduling all the jobs successfully. After the agents
learn to schedule properly without violating the resource
constraints, it can start learning to optimize the target objec-
tives as it can observe different episodic reward depending
on all the actions taken over a whole episode.

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD...

AEP
ILP

REINFORCE (8 =1.0)
REINFORCE (8 =0.75)
FF

REINFORCE (8 =0.50)
DQN (B=1.0)

RRC

DQN (8=0.75)

RR

DQN (8=0.50)
REINFORCE (8 =0.25)
DQN (8=0.25)
REINFORCE (8=0.0)
DQN (8=0.0)

00 02 04 06 08 10 1.2 14 16
Cost (A$)

(a) Normal Job Arrival

1707

REINFORCE (8 =0.75)
REINFORCE (8 =1.0)
REINFORCE (8 =0.50)
AEP

ILP

RR

FF

DQN (B=1.0)
REINFORCE (8=0.0)
RRC

DQN (8=0.75)

DQN (8=0.50)

DQN (8=0.0)
REINFORCE (8 =0.25)
DQN (8=0.25)

00 02 04 06 08 10 1.2 14 16
Cost (A$)

(b) Burst Job Arrival

Fig. 6. Comparison of the total VM usage cost incurred by different scheduling algorithms in a scheduling episode.

7.4 Evaluation of Cost-Efficiency

We evaluate the proposed DRL-based agents and the base-
line scheduling algorithms regarding VM usage cost over a
whole scheduling episode. In particular, we calculate the
total usage time of each VM in the cluster and find the total
cost of using the cluster. Fig. 6a exhibits the comparison of
the scheduling algorithm while minimizing the VM usage
cost with a normal job arrival pattern. As the job arrivals are
sparse, the algorithms will incur a higher VM usage cost
due to spread placements of executors. Therefore, tight
packing on fewer VMs results in lower VM usage cost. The
AEP algorithm outperforms all the other algorithms and
incurs the lowest VM usage cost (0.789), as it utilizes the job
profile information to choose the proper executor placement
strategy for a particular job. Note that, even though the AEP
algorithm chooses spread placements for CPU and memory
intensive jobs, it still incurs lower VM usage cost because it
does not suffer from job duration increase due to bad execu-
tor placements. As the ILP algorithm also uses job runtime
estimates while placing the executors, it also incurs a lower
cost (0.83%). Both REINFORCE (B=1.0, cost-optimized), and
REINFORCE (B=0.75) performs closely to the AEP and ILP
algorithms, and incur 0.91$and 0.953, respectively. There-
fore, these agents have an increased cost as compared to the
AEP algorithm, which is 14% and 16%, respectively. How-
ever, the DRL algorithm performs close to the best baselines
for normal job arrival without any prior knowledge on job
characteristics and job runtime estimates.

For the burst job arrival pattern, often there are not enough
cluster resources to schedule all the jobs, so the scheduling
algorithms have to wait until resources are freed up by the
already running jobs. In addition, as the job arrival is dense,
there can be a lot of job duration increase due to the bad place-
ments for a particular type of job. For example, if a network-
bound job is scheduled across multiple VMs, the job run-time
will increase, which might lead to an increasing VM usage
cost. Although both the AEP and ILP algorithm utilize job
completion time estimates, they still suffer from job duration
increase if the job placement cannot be matched with the job
characteristics due to the overloaded cluster, which is
reflected in Fig. 6b. The REINFORCE agents achieve a signifi-
cant cost-benefit, where three REINFORCE agents (8 values
of 0.75, 1.00 and 0.50) incur only 0.783, 0.81$, and 0.838,
respectively. In comparison, the best baselines AEP and ILP
incurs 1.07%and 1.123, respectively, which are 25-30% more

than the best REINFORCE agent (8 = 0.75). Although surpris-
ing, the REINFORCE agent with g = 0.75 optimizes VM costs
better than the g = 1.0 version, because for a burst job arrival,
taking both objectives into consideration trains a better policy
which in the long-run can optimize cost more effectively. The
RR algorithm does not perform well because it cares only
about distributing the executors, which results in higher VM
usage cost. Although both FF and RRC algorithms try to mini-
mize VM usages, for network-bound jobs, restricting to use
only a few VMs can instead increase the cost due to the job
duration increase. The DQN agents show a mediocre perfor-
mance while minimizing VM usage cost, as the trained policy
is not as good as the REINFORCE to learn the underlying job
characteristics to minimize VM usage time.

7.5 Evaluation of Average Job Duration

We calculate the average job duration for all the jobs sched-
uled in an episode to compare the performance of the sched-
uling algorithms. Fig. 7a shows the comparison between the
scheduling algorithms while reducing the average job dura-
tion. For the normal job arrival pattern, the RR algorithm per-
forms the best as it cares only about distributing the jobs
among multiple VMs. As there are more memory-bound and
CPU-bound jobs combined than the network-bound jobs, the
RR algorithm does not acquire significant job duration penal-
ties due to distributed placement of network-bound jobs. RR
algorithm is closely followed by the AEP, and the time-opti-
mized versions of both the DQN (8=0.0 and B=0.25) and the
REINFORCE (B=0.0 and p=0.25) agents, respectively. The
DQN (8=0.0) only increases the average job duration by 1%,
whereas the REINFORCE (8=0.25) increases the average job
duration by 4% when compared with the RR algorithm.

For the burst job arrival pattern, jobs often have to wait
before more resources are available. In addition, if the job
placement is not matched with the job characteristics, the
completion time of the jobs will increase, which results in a
higher average job duration. In this scenario, our proposed
REINFORCE and DQN agents can capture the underlying
relationship between job duration and job placement good-
ness and incorporates this information as a strategy to reduce
job duration in the trained policy. As shown in Fig. 7b, REIN-
FORCE ($=0.0) outperforms the best among the baseline
algorithms RR and reduces the average job duration by 2%.

The underlying job characteristics reflect the ideal place-
ment for a particular type of job. In addition, it impacts both

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

1708

RR
DQN (B=0.0)

AEP

DQN (8=0.25)
REINFORCE (8=0.0)
REINFORCE (8 =0.25)
DQN (8=0.50)

DQN (8=0.75)

DQN (B=1.0)

FF

REINFORCE (8 =0.50)
ILP

RRC

REINFORCE (8 =0.75)
REINFORCE (8 =1.0)

50 52 54 56 58 60 62 64
Time (seconds)

(a) Normal Job Arrival

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

REINFORCE (8=0.0)
DQN (8=0.0)
REINFORCE (8 =0.25)
REINFORCE (8 =0.75)
DQN (8=0.25)

RR

AEP

DQN (8=0.50)
REINFORCE (8 =0.50)
DQN (8=0.75)

FF

RRC

REINFORCE (8=1.0)
DQN (B=1.0)

ILP

56 58 60 62 64 66 68
Time (seconds)

(b) Burst Job Arrival

Fig. 7. Comparison between the scheduling algorithms regarding the average job duration in a scheduling episode.

=O= RR =/v= RRC == FF == ILP -0- DQN =€3= REINFORCE -O= AEP
50
w0 O
E 40‘ \
Q am—]
g 30 N>c——
O
o
o 20+
2 —=
8 101
oL , , | |
0.00 0.25 0.50 0.75 1.00
B

(a) Normal Job Arrival

~O- RR =/ RRC == FF =~ ILP =C= DQN =3~ REINFORCE =O= AEP

100
()]
+J 80<
o 601
(®)
)
T 40 N
©
3
S 20{° 5 5 5 5
0L | | | |
0.00 0.25 0.50 0.75 1.00
B

(b) Burst Job Arrival

Fig. 8. Comparison of good placement decisions made by each scheduling algorithm in a scheduling episode.

the cost-minimization and job duration reduction objectives.
Therefore, we also measured the number of good place-
ments by each algorithm. Figs. 8a and 8b represents the
good placement decisions made by all the algorithms in
normal and burst job arrival patterns, respectively. As the
baseline scheduling algorithms operate on a fixed objective
and can not capture workload characteristics, the number of
good placement decisions are fixed for each of the baseline
algorithms. Therefore, the g parameter does not affect these
algorithms, so the results from these algorithms appear as
horizontal lines. However, both DQN and REINFORCE
agents can be tuned to be cost-optimized, time-optimized or
a mix of both. There is a decreasing trend in the number of
good placements seen for both agents while the § parameter
is increased (while moving towards cost-optimized from
time-optimized version). The performance of DON and
REINFORCE discussed for average job duration reduction
can be explained from these graphs. It can be observed that
the DQN agent makes more good placements than the
REINFORCE agent for the normal job arrival pattern, which
results in lower average job duration for the DQN agents. In
contrast, the REINFORCE agent makes more good place-
ment decisions for the burst job arrival pattern, thus reduc-
ing the average job duration better than the DQN agent.

7.6 Evaluation of Multiple Reward Maximization
Figs. 9a and 9b exhibits the effects of the § parameter while
optimizing multiple rewards. The solid lines represent the

normal job arrival pattern, whereas the dashed lines repre-
sent the burst job arrival pattern. In addition, if a line is in
blue colour, it represents the effect on time, whereas a red
line reflects the effect on cost. It can be observed that both
DON and REINFORCE agents show stable results while
maximizing one or more objectives. With the increase of
value, the agents are trained more towards optimizing the
cost instead of the time reduction. While multiple rewards
need to be optimized, the p parameter can be tuned to train
the agents to learn a balanced policy which prioritizes both
objectives. For example, in Fig. 9a, the solid blue and red
lines at B=0.50 represents a DQN agent which provides a
balanced outcome while optimizing both cost and time.

7.7 Learned Strategies
Here, we summarize the different strategies learned by the
agents:

1) The DRL agents learn the VM capacity and job
demand constraints through the negative reward
from the environment when taking bad actions such
as constraint violation or partial executor placements.

2) The DRL agents learn to optimize cost by packing
executors in fewer VMs. However, depending on the
job characteristics, they also learn to spread out exec-
utors to avoid job duration increase, which in turn
results in better cost and time rewards (as showcased
in the placement goodness evaluation graphs).

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

ISLAM ET AL.: PERFORMANCE AND COST-EFFICIENT SPARK JOB SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING IN CLOUD...

—o— Normal -0= Burst —o— Normal -v- Burst

64

(e}
N

Time (seconds)
()]
=)

58
56
0.00 0.25 0.50 0.75 1.00
B
(a) DON Agent

1709

—o— Normal -o= Burst —o— Normal -v¥- Burst
64 1.4
1.3
1%}
T 62 12—
o
@ 117
260 ’ ‘g
9]
£ oe
|_

28 0.9
56 7 0.8
0.00 0.25 0.50 0.75 1.00
B
(b) REINFORCE Agent

Fig. 9. The effects of the g parameter while using a multi-objective episodic reward in the RL environment. f=0.0 means time optimized only. =1.0
means cost optimized only. Rest of the values represent a mix mode where both rewards have shared priority.

3) The agents can learn to handle both normal or burst
job arrival patterns. When the cluster is fully loaded
with many jobs, the cluster may not have enough
resources to place any executor. In these situations,
when an agent tries to place any executor, the resource
capacity constraints of the VMs will be violated and
the agent will receive a huge negative reward with an
early episode termination. Thus, the scheduling agents
learn to wait by continuously choosing Action 0 in
these situations. Eventually, when one or more jobs
finish execution, cluster resources become free and the
agents can choose non-zero actions to continue execu-
tor placements. Note that, Action 0 is awarded with a
slight negative reward which is better than episode
termination, so the agent decides to wait instead of
violating any constraints. In our experimental study,
we have found that a positive or 0 reward cause an
infinite wait as the agent wants to keep getting positive
rewards by waiting forever. Thus, a slight negative
reward encourages the agent to place executors when
resources are free, and avoids ambiguity in the trained
policies.

4) The agents can also learn a stable policy which bal-
ances multiple rewards (as shown from the § param-
eter tuning graphs).

8 CoNcCLUSIONS AND FUTURE WORK

Job scheduling for big data applications in the cloud envi-
ronment is a challenging problem due to the many inherent
VM and workload characteristics. Traditional framework
schedulers, LP-based optimization, and heuristic-based
approaches mainly focus on a particular objective and can
not be generalized to optimize multiple objectives while
capturing or learning the underlying resource or workload
characteristics. In this paper, we have introduced an RL
model for the problem of Spark job scheduling in the cloud
environment. We have developed a prototype RL environ-
ment in TF-agents which can be utilized to train DRL-based
agents to optimize one or multiple objectives. In addition,
we have used our prototype RL environment to train two
DRL-based agents, namely DON and REINFORCE. We
have designed sophisticated reward signals which help the
DRL agents to learn resource constraints, job performance
variability, and cluster VM usage cost. The agents can learn

to optimize the target objectives without any prior informa-
tion about the jobs or the cluster, but only from observing
the immediate and episodic rewards while interacting with
the cluster environment. We have shown that our proposed
agents outperform the baseline algorithms while optimizing
both cost and time objectives, and also showcase a balanced
performance while optimizing both targets. We have also
discussed some key strategies discovered by the DRL agents
for effective reward maximization.

In our future work, we will explore how co-location
goodness of different jobs affect the job duration. We will
also investigate sophisticated reward models which can
accommodate cost and job duration with the immediate
reward. In this way, the agents will perform more effi-
ciently, and long running batch jobs can also be supported.
We also plan to extract the trained policies to be used in a
real large-scale cluster to train the agents further. This will
simplify the training process and the agents will not start
from the scratch when they are deployed in the actual clus-
ter. This allows us to investigate whether the RL agents are
able to learn any new changes or characteristics of the clus-
ter dynamics to optimize the objectives more efficiently.

REFERENCES

[11 V. K. Vavilapalli et al., “Apache Hadoop YARN: Yet another
resource negotiator,” in Proc. 4th ACM Annu. Symp. Cloud Comput.,
2013, pp. 1-6.

[2] M. Zaharia et al., “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, no. 11, pp. 56-65, 2016.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. 26th IEEE Symp. Mass Storage
Syst. Technol., 2010, pp. 1-10.

[4] L. George, HBase: The Definitive Guide: Random Access to Your
Planet-Size Data. Newton, MA, USA: O’'Reilly Media, Inc., 2011.

[5] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, no.
2, pp. 3540, 2010.

[6] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. 9th USE-
NIX Conf. Netw. Syst. Des. Implementation, 2012, Art. no. 2.

[7] K. Ousterhout, P. Wendell, M. Zaharia, and 1. Stoica, “Sparrow,”
in Proc. 24th ACM Symp. Oper. Syst. Principles, New York, NY,
USA, 2013, pp. 69-84.

[8] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” in Proc. 19th Int. Conf. Archit.
Support for Program. Lang. Oper. Syst., 2014, pp. 127-144.

[91 S. A.]Jyothi et al., “Morpheus: Towards automated slos for enter-
prise clusters,” in Proc. 12th USENIX Conf. Operating Syst. Des.
Implementation, 2016, pp. 117-134.

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

1710

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

S. Dimopoulos, C. Krintz, and R. Wolski, “Justice: A deadline-aware,
fair-share resource allocator for implementing multi-analytics,” in
Proc. IEEE Int. Conf. Cluster Comput., 2017, pp. 233-244.

S. Sidhanta, W. Golab, and S. Mukhopadhyay, “OptEx: A dead-
line-aware cost optimization model for spark,” in Proc. 16th IEEE/
ACM Int. Symp. Cluster, Cloud Grid Comput., 2016, pp. 193-202.

S. Maroulis, N. Zacheilas, and V. Kalogeraki, “A framework for
efficient energy scheduling of spark workloads,” in Proc. Int. Conf.
Distrib. Comput. Syst., 2017, pp. 2614-2615.

H. Li, H. Wang, S. Fang, Y. Zou, and W. Tian, “An energy-aware
scheduling algorithm for big data applications in Spark,” Cluster
Comput. J., vol. 23, pp. 593-609, 2020.

H. Mao, M. Alizadeh, 1. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACM Workshop Hot Top. Netw., 2016, pp. 50-56.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” SIGCOMM Proc. Conf. ACM Special Interest Group Data
Commun., 2019, pp. 270-288.

M. Assuncao, A. Costanzo, and R. Buyya, “A cost-benefit analysis
of using cloud computing to extend the capacity of clusters,” Clus-
ter Comput., vol. 13, pp. 335-347, 2010.

G. Rjoub, J. Bentahar, O. Abdel Wahab, and A. Bataineh, “Deep
smart scheduling: A deep learning approach for automated big
data scheduling over the cloud,” Proc. Int. Conf. Future Internet
Things Cloud, 2019, pp. 189-196.

Y. Cheng and G. Xu, “A novel task provisioning approach fus-
ing reinforcement learning for big data,” IEEE Access, vol. 7,
pp. 143699-143709, 2019.

L. Thamsen, J. Beilharz, V. T. Tran, S. Nedelkoski, and O. Kao,
“Mary, Hugo, and Hugo*: Learning to schedule distributed data-
parallel processing jobs on shared clusters,” Concurrency Comput.,
vol. 33, no. 18, pp. 1-12, 2020.

D. Silver et al., “Mastering the game of go without human knowl-
edge,” Nature, vol. 550, pp. 354-359, 2017.

Z.Cao, C. Lin, M. Zhou, and R. Huang, “Scheduling semiconductor
testing facility by using cuckoo search algorithm with reinforcement
learning and surrogate modeling,” IEEE Trans. Automat. Sci. Eng.,
vol. 16, no. 2, pp. 825-837, Apr. 2019.

L. Jiang, H. Huang, and Z. Ding, “Path planning for intelligent
robots based on deep Q-learning with experience replay and heu-
ristic knowledge,” IEEE/CAA]. Automatica Sinica, vol. 7, no. 4,
pp. 1179-1189, Jul. 2020.

B. Hindman ef al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. 8th USENIX Conf. Netw. Syst.
Des. Implementation, 2011, pp. 295-308.

N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H.
Katz, “Selecting the best VM across multiple public clouds: A
data-driven performance modeling approach,” in Proc. Cloud
Comput., New York, NY, USA, 2017, pp. 452—465.

H. Yuan, J. Bi, M. Zhou, Q. Liu, and A. C. Ammari, “Biobjective
task scheduling for distributed green data centers,” IEEE Trans.
Automat. Sci. Eng., vol. 18, no. 2, pp. 731-742, Apr. 2021.

H. Yuan, M. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained
resource provisioning and task scheduling for heterogeneous
applications in distributed green clouds,” IEEE/CAA]. Automatica
Sinica, vol. 7, no. 5, pp. 1380-1393, Sep. 2020.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 323-336.

N. Liu et al., “A hierarchical framework of cloud resource allocation
and power management using deep reinforcement learning,” in
Proc. 37th IEEE Int. Conf. Distrib. Comput. Syst., 2017, pp. 372-382.

Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, “DRL-Scheduling: An
intelligent QoS-aware job scheduling framework for applications
in clouds,” IEEE Access, vol. 6, pp. 55112-55125, 2018.

T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distrib-
uted stream data processing using deep reinforcement learning,”
Proc. VLDB Endowment, vol. 11, no. 6, pp. 705-718, Feb. 2018.

Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement
in distributed machine learning clusters,” Proc. IEEE INFOCOM
Conf. Comput. Commun., 2019, pp. 505-513.

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

Z.Hu,]. Tu, and B. Li, “Spear: Optimized dependency-aware task
scheduling with deep reinforcement learning,” Proc. Int. Conf. Dis-
trib. Comput. Syst., 2019, pp. 2037-2046.

C. Wu, G. Xu, Y. Ding, and J. Zhao, “Explore deep neural network
and reinforcement learning to large-scale tasks processing in big
data,” Int.]. Pattern Recognit. Artif. Intell., vol. 33, no. 13, pp. 1-29,
2019.

A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Optimized placement of scalable IoT services in edge computing,”
in Proc. IFIP/IEEE Symp. Integr. Netw. Serv. Manage., 2019, pp. 189-197.
S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlin-
ear programming: A survey,” Surv. Oper. Res. Manage. Sci., vol. 17,
no. 2, pp. 97-106, 2012.

X. Wang, J. Wang, X. Wang, and X. Chen, “Energy and delay
tradeoff for application offloading in mobile cloud computing,”
IEEE Syst. ., vol. 11, no. 2, pp. 858-867, Jun. 2017.

V. Mnih et al., “Playing atari with deep reinforcement learning,”
2013, arXiv:1312.5602v1.

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Mach. Learn., vol. 8, no.
3-4, pp. 229-256, May 1992.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “BigDataBench: A big data benchmark
suite from internet services,” in Proc. 20th IEEE Int. Symp. High
Perform. Comput. Archit., 2014, pp. 488-499.

Muhammed Tawfiqul Islam (Member, IEEE)
received the BS and MS degrees in computer sci-
ence from the University of Dhaka in 2010 and
2012, respectively, and the PhD degree from the
School of Computing and Information Systems
(CIS), University of Melbourne Australia, in 2021.
He is currently a research fellow with the CIS,
University of Melbourne Australia. His research
interests include resource management, cloud
computing, and big data.

Shanika Karunasekera (Member, IEEE) received
the BSc degree in electronics and telecommunica-
tions engineering from the University of Moratuwa,
Moratuwa, Sri Lanka, in 1990 and the PhD degree
in electrical engineering from the University of
Cambridge, Cambridge, U.K., in 1995. She is cur-
rently a professor with the School of Computing
and Information Systems, University of Melbourne,
Australia. Her research interests include distributed
computing, mobile computing, and social media
analytics.

Rajkumar Buyya (Fellow, IEEE) is currently a
Redmond Barry distinguished professor and the
director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, University of Mel-
bourne, Australia. He has authored more than 725
publications and seven text books including Mas-
tering Cloud Computing published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for
Indian, Chinese, and international markets respec-
tively. Software technologies for grid and cloud
computing developed under his leadership have

gained rapid acceptance and are in use at several academic institutions
and commercial enterprises in 50 countries around the world.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Melbourne. Downloaded on November 25,2021 at 02:53:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

