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Abstract—Service Level Agreements (SLAs) between
grid users and providers have been proposed as mecha-
nisms for ensuring that the users’ Quality of Service (QoS)
requirements are met, and that the provider is able to
realise utility from its infrastructure. This paper presents
a bilateral protocol for SLA negotiation using the Alternate
Offers mechanism wherein a party is able to respond to an
offer by modifying some of its terms to generate a counter
offer. We apply this protocol to the negotiation between a
resource broker and a provider for advance reservation of
compute nodes, and implement and evaluate it on a real
grid system.

I. INTRODUCTION

Grids [1] are evolving from a collection of computing,
data and networking resources to systems of services
that are discovered and invoked by scientific and busi-
ness applications. These services interface with physical
resources and may integrate different functions offered
by these to present unified capabilities required by the
applications. Users may have Quality-of-Service (QoS)
requirements covering metrics such as deadlines, fidelity,
security and budget associated with service invocation.
The user QoS requirements, as well as the rewards and
penalties for achieving and violating them respectively,
are encoded in Service Level Agreements (SLAs) that
are negotiated between the providers and the users [2].
Therefore, SLAs enable guaranteed provisioning of ser-
vice (or resource) capability.

This promise of SLA has motivated research and de-
velopment into formulating, negotiating and establishing
such agreements between providers and users. Many
grid systems have also incorporated SLA specification,
exchange and monitoring capabilities for resource bro-
kering and task scheduling [3], [4], [5], and for resource
provisioning [6], [7]. The Open Grid Forum has also
arrived at a standard for creation and specification of
SLAs called WS-Agreement [8]. WS-Agreement follows

the well-known Contract Net protocol [9] for exchange
of SLAs between the user and the provider.

In this paper, we introduce a protocol for negotiating
SLAs based on Rubinstein’s Alternating Offers proto-
col [10] for bargaining between agents. This protocol
allows either party to modify the proposal or to provide
counter proposals so that both can arrive at a mutually-
acceptable agreement. We illustrate its usage by imple-
menting it to enable a resource consumer to reserve
nodes on a shared computing resource in advance. The
consumer side of the protocol is implemented in the
Gridbus broker [11] and the provider side of the protocol
is implemented within a .NET-based enterprise grid sys-
tem called Aneka [12]. We experimentally evaluate this
system using reservation requests with a range of strict to
relaxed requirements, and present results. Thus, we pro-
pose, implement, and evaluate a software infrastructure
necessary for enabling SLA-based resource allocation
and scheduling in a real grid resource management
system.

The next section presents an overview of the related
work. Then, the negotiation protocol is presented in
the succeeding section. Following that, we detail the
implementation of the advance reservation system on
both the provider and the consumer side. We then present
the results of experimental evaluation of the system and
finally, conclude the paper.

II. RELATED WORK

Negotiation has been employed in real-time systems
to manage tasks that have different levels of priority
and different QoS demands [13]. Negotiation and re-
source reservation have also been used in multimedia
systems [14] for processing media streams with different
levels of criticality and QoS requirements.



Czajkowski, et al. [6] introduced the Service Nego-
tiation and Allocation Protocol (SNAP) for managing
SLAs in distributed systems. In SNAP, task SLAs specify
the resource requirements of the tasks, resource SLAs
specify the amount of resources available for the user
and binding SLAs represent the allocation of resources
to tasks. Dumitrescu and Foster [4] present a distributed
brokering architecture that takes into account SLAs be-
tween resources and Virtual Organisations (VOs) while
selecting the best site to submit a job. Elmroth and
Tordsson [5] also describe a brokering architecture that
is able to make advance resource reservations and create
SLAs using the WS-Agreement standard. These systems
share a common feature – they follow the Contract Net
protocol for negotiating SLAs.

Contract Net [9] is a popular protocol for agent
communication that has been employed for negotiating
SLAs for utility computing [15] and for grid resource
management. Contract Net also forms the basis for
the communication between the entities in the OGF
WS-Agreement Standard. In Contract Net, agents that
are contractors evaluate task announcements from other
agents acting as managers and bid for executing the
tasks that they are interested in. The bidding process
has only two outcomes: the bid is accepted or rejected
in its entirety. Therefore, Contract Net is suitable for
implementing multilateral processes such as auctions.
However, there is no feedback mechanism that allows
the SLA proposer or receiver to modify the terms of
the proposed SLA in order to converge to an agreement
acceptable to both parties. Therefore, the protocol is not
suitable for implementing a bilateral process such as one
presented in this paper. Recently, a concurrent bilateral
negotiation model, similar to the one followed in this
paper, was evaluated through simulation for grid resource
management by Li and Yahyapour [16]. They conclude
that this model is feasible for use in grids and enables
the user to obtain guaranteed QoS from grid resources.

The advent of grid computing introduced the need
for advance reservation mechanisms in order to co-
ordinate resource sharing between autonomous partners.
One of the first works in this regard was the Globus
Advance Reservation Architecture (GARA) [17], [18].
GARA provided a user with the capability to reserve
resources such as bandwidth and compute nodes in
advance. However, there was no negotiation capability
within this system. Also, in GARA, reservation was
separated from resource allocation and was enforced
only by a late binding of successful reservations to
resource objects. Another notable advance reservation
architecture is that of SHARP (Secure Highly Available

Fig. 1. Alternate Offers Protocol.

Resource Peering) [19] wherein cryptographically secure
tickets – representing the right to access the resource at
a specified future time – are generated by the resource
management system. These can be further subleased
to other consumers and are bound to actual resources
only when they are claimed. However, while the tickets
themselves can be bartered, it is not possible to directly
negotiate with the system for a lease at a particular time.

In contrast to these architectures, our system provides
the ability to conduct bilateral negotiations in order to
gain guaranteed reservations of resources in advance.
The resource management system has the ability to
generate alternate offers to consumers in case their
original request cannot be fulfilled. The broker, acting
as the resource consumer, has the ability to generate its
own counter proposals as well. To our knowledge, no
other real grid resource management system has these
capabilities in its implementation.

III. THE NEGOTIATION PROTOCOL

Figure 1 shows the alternating offers-based protocol
for SLA negotiation. It is a bilateral protocol consist-
ing of the proposer who initiates the process and the
responder who replies to the proposal. The proposer
starts the negotiation process by sending the INITIATE
message to which the responder replies with a unique
negotiation identifier (negotiationID). The initiate call
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may be accompanied by an exchange of credentials
so that both parties are able to verify each other’s
identity. The proposer then presents a proposal using the
submitProposal message. The responder can accept
or reject the offer in its entirety by sending an ACCEPT
or a REJECT message as a reply. The responder can also
reply with a counter-offer by using the COUNTER reply
accompanied by the counter proposal. In this case, the
proposer has the same options and therefore can reply
with a counter proposal of its own. In case either party is
satisfied with the current iteration of the proposal, it can
send an ACCEPT message to the other. Either party can
signal its dissatisfaction and abort the negotiation session
by sending a REJECT message. To seal the agreement,
the other party has to send a CONFIRM message and
receive a CONFIRM-ACCEPTANCE message in reply.

The protocol, as presented here, is generic and is
isolated from the proposal which enumerates the require-
ments of the proposer. There are no time limits imposed
on the negotiation process as such constraints can pro-
vide undue advantage to one of the parties [20]. There is
no central co-ordinator to manage the negotiations, and
either of the parties can leave the process at any time.
Therefore, the protocol satisfies the desired attributes of
simplicity, distribution and symmetry, for a negotiation
mechanism [21].

IV. NEGOTIATION AND ADVANCE RESERVATION

An advance reservation is a commitment made by a
resource provider to provide a guaranteed share of a
computing resource to a resource consumer at a definite
time in the future [17]. An advance reservation mecha-
nism therefore, allows a consumer to provision enough
resources to meet requirements such as deadlines, in
environments such as grids where availability of shared
resources varies from time to time. Since an advance
reservation is also a commitment by the provider, it
may be made in lieu of a reward or payment to the
provider. Failure to meet this commitment may result
in the provider having to pay a penalty. Therefore, a
reservation represents an instantiation of an SLA.

A provider with a profit motive would aim to max-
imise his revenue while minimising the risk of penal-
ties [22]. Likewise, a consumer would like to gain the
maximum guarantee for meeting his QoS requirements
but at the lowest cost possible. A number of strategies
can be adopted by both the provider and the consumer
depending on their individual needs and situations. As a
result of these, a consumer’s plan for resource usage may
not be favored by a provider. However, the provider can
indicate its expectations by changing the relevant parts
of the proposal and returning it to the consumer. In this

manner, proposals can be exchanged back and forth until
both parties reach an agreement or decide to part ways.

In the following section, we describe the implementa-
tion of negotiation for advance reservation of resources
using Aneka and the Gridbus Grid resource broker.
Aneka is a .NET-based resource management system
for enterprise grids composed of computers running Mi-
crosoft Windows operating system. Therefore, it acts as
the resource provider in this implementation. For a given
user application, the Gridbus broker discovers appropri-
ate resources for executing the application, schedules
user jobs on the resources, monitors their execution and
retrieves results once the jobs are completed. Negotiation
for advance reservations is, therefore, performed by the
Gridbus broker as a resource consumer on behalf of the
user.

A. Gridbus Broker

The Gridbus broker has been used to realise economy-
based scheduling of computational and data-intensive
applications on grid resources [23]. Advance reservations
enable the broker to provide guarantees for meeting the
user’s QoS requirements for the execution, such as dead-
line and budget. The required abilities for negotiation
within the broker are brought about by a negotiation-
aware scheduler and a negotiation client.

The negotiation client is the interface to the corre-
sponding service on the remote side. It is not specific to
Aneka however, and can support any other middleware
that implements the protocol. The scheduler is aware of
the negotiation client only as a medium for submitting
proposals and receiving feedback from the remote side.
However, separate schedulers may be required for differ-
ent SLA negotiation protocols, as certain features (e.g.,
presence or absence of a counter-proposal method) may
impact negotiation and scheduling strategies.

A broker is associated with a single distributed bag-
of-tasks application. The deadline and budget is provided
for each application as a whole by the user. The deadline
value is used by the broker to determine the number
of nodes to be reserved, and the budget value puts a
ceiling on the maximum expense for the execution. The
strategy currently used by the broker to negotiate with
the provider is listed in Figure 2.

The expression in Line 2 calculates the number of
nodes that are required for executing the distributed
application within the deadline. The estimated time for
completing a job is provided by the user. The broker
adds to this an additional estimate for staging the jobs
on to the remote machine, invoking it and collecting the
results for the job. The total estimated time for each
job is added up to obtain the maximum time required to
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Get user’s QoS and application requirements1.

Nodes←
∑

Est(j)

f×(deadline−start time)2.
Create proposal for Nodes3.
Choose a provider based on attributes such as cost4.
repeat5.

Submit proposal to the provider6.
repeat7.

if (state is COUNTERED) then8.
if (counter proposal is within deadline)9.
then

send(ACCEPT)10.

else if (f < 1) then11.
Increase f12.
Recalculate Nodes13.
Create new proposal for Nodes14.
send(COUNTER,proposal)15.

else16.
send(REJECT)17.

end18.
if (state is ACCEPTED) then19.

send(CONFIRM)20.

end21.

until (a final state is reached)22.
//Final state is REJECTED or CONFIRMED or

FAILED
if (previous state was REJECTED or FAILED)23.
then

Find another provider to repeat the process24.

until (enough nodes are obtained OR there are no25.
more providers)
if Reservation was successful then26.

Wait until reservation start time27.

else28.
Inform the user and exit the application29.

Fig. 2: The broker’s negotiation strategy

execute the application (i.e. its sequential execution time
on a single remote processor). This is the numerator in
the expression in Line 2.

The denominator is the wallclock time available to
execute the application. This is time difference between
the deadline and the starting time for the reservation.
The starting time is estimated as the time when the
negotiations would have likely concluded and the job
scheduling can commence. Since the broker’s utility lies
in executing the users’ job as quickly as possible, the
time available is further reduced by multiplying against
an aggression factor, denoted by f , where 0 < f ≤ 1.
However, the smaller the time available, the larger is the
number of nodes required.

The broker creates a proposal and choses one out of
a list of resource providers – based on factors such as
resource price or capability – to initiate a negotiation
session and submit the proposal. If the proposal is

accepted straightaway, then a confirmation message is
returned to the provider. If a counter proposal is received,
then it is evaluated to see whether the counter reservation
is still within the deadline. If so, then it is accepted by
the broker. If not, then the aggression factor is increased
to reduce the number of nodes required. This is done
on the assumption that requests for smaller number of
nodes have better chances to be accepted or found more
acceptable (earlier) counter time slots. This continues
until the aggression factor is increased upto 1 which is
the maximum latitude available to broker. If the counter
proposal from the resource provider does not satisfy the
deadline requirements, the proposal is rejected and the
session closed.

Fig. 3. Negotiation state machine.

The broker keeps track of the negotiation process
through a state machine detailed in Figure 3 and im-
plemented using the State software design pattern. The
actions are encoded in the State objects which prevents
the broker from performing invalid actions in certain
states, say for example, replying to a REJECT message
with a CONFIRM message. The transition between the
states is guided by the broker’s strategy and the responses
from the provider.

B. Aneka

In Aneka, the capabilities of each node in the sys-
tem are determined by the functionality offered by the
services hosted in a service container that provides
common security, message handling and communication
functions. For example, hosting a task executor service
in the container enables a node to execute independent
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Fig. 4. The Aneka resource reservation architecture.

tasks. Any number of such services may be hosted
thereby, potentially allowing the same node to execute
applications implemented using different programming
models. A node functions as a scheduler for an applica-
tion if it hosts the scheduler service corresponding to the
application’s programming model (e.g., task scheduler
for the task farming model). Executors in a Aneka grid
register with or are discovered by a specific scheduler
service which then allocates work units across them.

Figure 4 shows the architecture for resource reser-
vation in Aneka. The advance reservation capability in
Aneka is enabled by two components, the Allocation
Manager at the executor end and the Reservation Man-
ager at the scheduler end. The Allocation Manager un-
derlies all the executor services on a node. It determines
which of the executors are allowed to run, and the share
of the node that is allowed for each. The Allocation
Manager therefore takes care of allocating and enforcing
reservations on a single node. The Allocation Manager
is associated with a policy object that encodes the utility
function of the node. For example, this may specify a
maximum duration that can be specified for a reservation
request at the node level.

The Reservation Manager is co-located with a sched-
uler and is able to perform reservations across the nodes
whose executors are registered with the scheduler. The
Reservation Manager determines which of the reser-
vation requests coming from users are to be accepted
based on factors such as feasibility, profitability or im-
provement in utilisation. For this reason, it is associated
with a QoS Policy object that represents the reservation
policy at the level of the entire system. For example, this
object may specify a minimum reward for considering a
reservation request. External applications interface with
Aneka’s resource reservation system through Negotiation
Service, hosted as a web service. The latter implements

the negotiation protocol presented in Section III and
interfaces with the Reservation Manager for forwarding
reservation requests that arrive from external entities.
The web service implementation enables non-.NET pro-
grams, such as the Gridbus broker, to interface with the
Aneka system.

At the Reservation Manager
for each incoming reservation request do1.

if (QoS Policy is violated) then2.
send(REJECT)3.

Get available nodes from Information Service4.
Filter the nodes as per requirements5.
if ( available nodes < requested nodes) then6.

send(REJECT)7.

Broadcast requested timeslot to all available8.
nodes
Wait for response9.
if (agreed nodes ≥ required nodes) then10.

send(ACCEPT)11.

else12.
Search for a timeslot which is commonly13.
free for at least required number of nodes
if (timeslot is found) then14.

send(COUNTER,new_timeslot)15.

else16.
send(REJECT)17.

end18.

end19.
At the Allocation Manager
for each incoming request do20.

if (reservation policy is violated) then21.
send(REJECT)22.

else23.
if (timeslot is available) then24.

send(ACCEPT)25.

else26.
send(COUNTER,new_timeslot)27.

end28.

Fig. 5: Handling resource reservation in Aneka.

The current algorithm for handling resource reser-
vation requests in the Reservation Manager is shown
in Figure 5. A timeslot is the period for which the
reservation is required. Lines 2-3 control the admission
of requests as per the policy specified in the QoS Policy
object. Once the request is approved, the request is
broadcast to all the available nodes in the grid. At the
node, the Allocation Manager checks if its reservation
policy is violated. If not, and the node is free for
the requested timeslot, then the Allocation Manager
indicates it is available. If the node is not free, then an
alternate time slot is provided to the Reservation Man-
ager (Lines 20-25). The Reservation Manager checks if
the required number of nodes have indicated that they
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are their available during the requested timeslot. If so, an
ACCEPT reply is sent. If not, the Reservation Manager
uses the alternate timeslots provided by the nodes to
find a common alternative timeslot for the same duration
as requested, when the required number of nodes are
available. This timeslot is then sent as a counter proposal
to the consumer. If such a timeslot cannot be found, then
a REJECT reply is sent (Lines 10-18).

C. Control Flow during Negotiation

<xml-fragment
xmlns:ws="http://www.gridbus.org/negotiation/">

<ws:Reward>1000.0</ws:Reward>
<ws:Penalty>0.0</ws:Penalty>
<ws:Requirements>
<ws:ReservationRecordType>

<ws:ReservationStartTime>
2008-04-01T18:22:00.437+11:00

</ws:ReservationStartTime>
<ws:Duration>750000.0</ws:Duration>
<ws:NodeRequirement>

<ws:Count>4</ws:Count>
</ws:NodeRequirement>
<ws:CpuRequirement>

<ws:Measure>Ghz</ws:Measure>
<ws:Speed>2.5</ws:Speed>

</ws:CpuRequirement>
</ws:ReservationRecordType>

</ws:Requirements>
</xml-fragment>

Fig. 6. The proposal document.

As per the protocol presented in Section III, when
the broker sends an initiate message, the Aneka Ne-
gotiation Service returns a 16 byte globally unique
identifier (GUID) for the session. The GUID is generated
according to the proposed IETF Universally Unique
Identifier standard [24]. The broker then submits a
proposal to the Negotiation Service in the XML for-
mat shown in Figure 6. The ws:Reward field in the
proposal in Figure 6 indicates the provider’s gain if
the proposal were accepted and the requirements met.
The ws:Penalty field denotes the penalty to be paid
if the provider accepted the proposal but did not sup-
ply the required resources. The ws:Requirements
section consists of one or more reservation records
(ws:ReservationRecordType) that detail the re-
source configuration required in terms of number of
nodes, their capability (e.g. CPU speed) and the time
period for which they are required. For example, the
proposal in Figure 6 asks for 4 nodes with a minimum
CPU speed of 2.5 GHz each for duration of 750 seconds
starting from 6:22 p.m. on 1st of April 2008 with a
reward of 200 currency units and penalty of 50 currency

units. The proposal is parsed and converted to a reser-
vation requirement object that is sent to the Reservation
Manager.

When a proposal is finally accepted, the Reservation
Manager executes a two phase commit to finalise the
reservation . In the initial phase, it requests the respective
Allocation Managers to “soft” lock the time slot for that
particular request. A soft lock in this case is an entry
for the time-slot in the Allocation Manager database
which is removed if a confirmation is not received within
a certain time-interval. Once all the nodes successfully
acknowledge that this operation has been performed, the
reservation manager then sends an ACCEPT message
to the broker. If the broker then sends a CONFIRM
message, the Reservation Manager asks the respective
Allocation Managers to commit the reservation. On
receiving their acknowledgement, a CONFIRM ACCEP-
TANCE message is returned to the broker. The negoti-
ation session identifier is then used as a reference for
the resource reservation (reservation ID) by subsequent
tasks. This process is shown in Figure 7.

The task submission is also mediated by the resource
reservation architecture. If a task arrives with a reserva-
tion ID, the Reservation Manager first checks if the ID
is valid, and then locates the nodes that are associated
with that ID. The task is then dispatched to one of these
nodes, in a round robin fashion.

V. EXPERIMENTAL EVALUATION

The negotiation architecture described previously was
evaluated using a grid testbed constructed by installing
Aneka on 13 desktop computers running Microsoft
Windows XP in a local area network. One instance of
Reservation Manager service was installed on the node
acting as the scheduler and the others ran the Allocation
Manager service. This means that upto 12 nodes could be
reserved by brokers by interacting with the sole Reser-
vation Manager using the negotiation protocol described
in previous sections.

In order to emulate multiple clients with different
applications that have different deadlines, a set of brokers
was created with different deadlines generated using a
uniform random distribution. The deadlines were chosen
so as to reflect different levels of urgency - from a
strict deadline for a high-urgency application to a relaxed
deadline for a low-urgency application. The urgency was
calculated from the following ratio

r =
deadline− start time

max execution time

where start time is the estimated start time for the
reservation and max execution time is the maximum
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Fig. 7. Control flow for a successful resource reservation.

time estimated for executing the complete application. In
this evaluation, the sequential execution time is consid-
ered as the maximum execution time for the application.
The deadline is considered very strict when r < 0.25,
moderately strict when 0.25 < r < 0.5, relaxed when
0.5 < r < 0.75, and very relaxed when r > 0.75.
The maximum execution time was same for all the
applications in this evaluation.

According to the algorithm in Figure 5, when the
broker makes a request and Aneka is not able to provide
the required number of nodes at the requested start time,
the latter finds an alternative start time when the nodes
can be provided. The difference between the alternative
start time and the one requested originally is termed as
the slack. The slack allowed for reservation start time is
a function of the urgency of the deadline, and indicates
the relaxation allowed in the broker’s requirements.

The brokers were launched at closely-spaced intervals
from two computers that were part of the same local area
network but separate from the grid nodes. This created
the effect of different requests with different deadlines
arriving simultaneously at the Reservation Manager. The
objectives of this exercise are to measure the impact of
deadlines on the responses adopted by both the broker
and the Reservation Manager.

Figures 8-10 show the results of an evaluation that
involved 138 advance reservation requests arriving at the
Aneka Reservation Manager in the space of 4 hours.
The numbers in parantheses against a point on the x-
axis show the total number of requests corresponding
to that data point. Nearly 17% of the total requests
were decided in the first round itself (i.e., a straightaway
accept or reject decision from Aneka) while the rest were
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decided after multiple rounds of negotiation between the
broker and the Manager. In all, 35% of the requests were
accepted while 65% of the requests were rejected. Since
the evaluation covered a scenario where the demand for
computing nodes would exceed their supply, it is only
to be expected that a majority of the requests will be
rejected. However, the system was still able to generate
alternatives for 83% of the requests.

Figure 8 shows the distribution of the accepted and
rejected requests against the urgency of application dead-
lines. It can be seen that the proportion of accepted
requests increases when the deadlines progress from
very strict to very relaxed. When normalised against the
number of requests for each data point, the percentage of
accepted requests increases from 8% for strict deadlines
to 74% in the case of very relaxed deadlines. This is
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because the broker is more willing to accept a delayed
reservation when the deadlines allow more slack. Also,
due to the strategy adopted by the broker (Figure 2),
applications with urgent deadlines require more nodes
for a shorter duration than those with relaxed deadlines.
Aneka was therefore able to generate better counter
offers for requests involving lesser number of nodes,
even if their duration is longer.

 0

 20

 40

 60

 80

 100

 120

<20% 20%-40% 40%-60% 60%-80% 80%+

D
ec

is
io

ns

Slack as a percentage of time available

Accepts(%)
Rejects(%)

Fig. 9. Distribution of decisions according to delay in reservation
start time.

This inference is supported by the graphs in Figure 9
which show the percentage of accept and reject decisions
according to the slack allowed in the reservation start
time. The slack is indicated as a percentage of the time
available (i.e. deadline minus original start time) for
the broker to execute the application. It can be seen
here that the broker is willing to accept counter-offers
with up to 60% slack in reservation start time. Indeed,
90% of the counter-offers with up to 40% slack are
accepted by the broker. However, counter-offers with
more than 60% slack are unacceptable. A significant
amount of proposals are rejected by the Reservation
Manager without counter-offers (zero slack time) as they
require more nodes than what is available. These are
included in the data point corresponding to offers with
<20% slack at the far left of Figure 9.

A request-response pair between the broker and the
Aneka Reservation Manager is termed as a round of
negotiation. Figure 10 shows the average number of ne-
gotiation rounds taken to obtain a result for requests with
different deadlines. For this evaluation, the aggression
factor was set to 0.5 and then increased by 0.25 for every
round. Therefore, including the submission request, a
maximum of 4 rounds (3 offers each and a final decision)
was possible for this evaluation. For very strict deadlines,
many of the offers were rejected or accepted in the first
round itself. Therefore, the average number of rounds is
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Fig. 10. Number of rounds against urgency of deadlines.

the least in this case. For more relaxed deadlines, the
broker is willing to negotiate for the maximum number
of rounds before the request is rejected.

A. Discussion

The important result here is that the broker was able
to fulfil its QoS requirement without having to reveal
its deadline preference to the provider by choosing an
acceptable counter proposal whenever possible. There-
fore, by modifying the proposal suitably, both parties
were able to convey feedback without revealing their
preferences. This prevents providers from taking undue
advantage or playing consumers against each other in
scenarios where different brokers may be competing for
access to the same set of resources.

VI. CONCLUSION AND FUTURE WORK

This paper presented a bilateral negotiation mecha-
nism based on the Alternate Offers Protocol in which
each party has the opportunity to submit a counter
proposal so that a mutually acceptable agreement can be
arrived at. The protocol was used to enable the advance
reservation of nodes in an enterprise grid system called
Aneka, by the Gridbus grid resource broker. The results
of the evaluation show that brokers with relaxed require-
ments benefited from the counter proposals as they were
able to accommodate delays in starting reservations.
Thus, this shows the potential of the system to facilitate
the implementation of SLA-based resource allocation
and scheduling strategies.

The implementation involved tackling some signifi-
cant challenges. In the first iteration, synchronous web
service calls were used between the broker and Aneka.
However, this was replaced with asynchronous calls to
increase the request handling ability of Aneka Negoti-
ation Service. Another significant problem encountered
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was the clock skew between Aneka nodes. This acutely
affected the performance of the reservation system which
was based on the assumption of a globally synchronised
clock mechanism to guarantee a particular timeslot.
While the current solution is to ensure that the nodes
are synchronised through Network Time Protocol, it is
still a challenge to detect clock skew.

The system currently supports only the negotiation
for timeslots and number of resources. Therefore, more
sophisticated strategies that take into account other at-
tributes such as rewards and penalties are planned in
the future for both the broker and Aneka Reservation
Manager. In addition, we would also like to explore
malleable reservations wherein both the timeslots and
the number of nodes are changed simultaneously. In
this respect, we would like to realise some of the ideas
that have been explored in this space in the recent
past [25], [26]. Also, at present, the broker depends on
user estimates of application execution times to compute
the number of nodes required. It is well-known that such
estimates are inherently inaccurate [27]. In the future,
we would like to explore scheduling strategies that can
hedge against errors in estimates by overprovisioning
nodes or by continually re-evaluating the requirement for
computing nodes as the application execution proceeds.

From an economic perspective, the strategies pre-
sented in this paper are simplistic and oriented towards
an environment with co-operative and trusted entities.
In the future, we would like to explore negotiation
and resource allocation strategies for a market-oriented
environment wherein the entities are competing against
each other for limited resources and/or for the most
lucrative applications [28]. However for such a system
to succeed, there should also be a non-repudiable system
for verification of agreement enforcement or violation,
that can arbitrate the payments for rewards or penalties.
Such verification mechanisms are the subject of ongoing
research, and as in the real world, may form part of the
negotiation terms.
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