
Deadline-aware Dynamic Resource Management in
Serverless Computing Environments

Anupama Mampage, Shanika Karunasekera and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems
The University of Melbourne, Australia

Email: mampage@student.unimelb.edu.au, {karus, rbuyya}@unimelb.edu.au

Abstract—Serverless computing enables rapid application de-
velopment and deployment by composing loosely coupled mi-
croservices at a scale. This emerging paradigm greatly unburdens
the users of cloud environments, from the need to provision
and manage the underlying cloud resources. With this shift in
responsibility, the cloud provider faces the challenge of providing
acceptable performance to the user without compromising on
reliability, while having minimal knowledge of the application
requirements. Sub-optimal resource allocations, specifically the
CPU resources, could result in the violation of performance
requirements of applications. Further, the fine-grained serverless
billing model only charges for resource usage in terms of function
execution time. At the same time, the provider has to maintain
the underlying infrastructure in always-on mode to facilitate
asynchronous function calls. Thus, achieving optimum utilization
of cloud resources without compromising on application require-
ments is of high importance to the provider. Most of the current
works only focus on minimizing function execution times caused
by delays in infrastructure set up and reducing resource costs
for the end-user. However, in this paper, we focus on both the
provider and user’s perspective and propose a function placement
policy and a dynamic resource management policy for applica-
tions deployed in serverless computing environments. The policies
minimize the resource consumption cost for the service provider
while meeting the user’s application requirement, i.e., deadline.
The proposed solutions are sensitive to deadline and efficiently
increase the resource utilization for the provider, while dynami-
cally managing resources to improve function response times. We
implement and evaluate our approach through simulation using
ContainerCloudSim toolkit. The proposed function placement
policy when compared with baseline scheduling techniques can
reduce resource consumption by up to three times. The dynamic
resource allocation policy when evaluated with a fixed resource
allocation policy and a proportional CPU-shares policy shows
improvements of up to 25% in meeting the required function
deadlines.

Index Terms—serverless computing, function placement, dy-
namic resource management, resource efficiency

I. INTRODUCTION

The many attractions of the serverless computing paradigm
include rapid auto-scaling, strong isolation for applications,
a fine-grained billing mechanism and more importantly, the
access to a service ecosystem, which automatically handles
instance selection, resource management, fault tolerance, mon-
itoring, and security [1].

The core concept behind the serverless execution model is
to shift the complexities of application resource management

from the developer to the cloud provider. The serverless
model requires the provider to autonomously manage resource
allocations to functions in real time, in contrast to a service
placement scenario under a serverful model (e.g. Infrastructure
as a Service), where the user configures the environment
with required resources prior to application execution [1].
Serverless platforms have minimal knowledge on the resource
requirements of different functions, at the time of initial
resource allocation. For instance, AWS Lambda allows the
user to specify the amount of memory available to the function
during execution and allocates the CPU power linearly in
proportion to the configured memory [2]. Google Cloud Func-
tions seems to adopt the same strategy for resource allocations
[3]. Studies show that CPU is often a cause for contention
in serverless environments, specially when compute intensive
applications are involved [4], leading to high application
latencies. Thus, any arbitrary resource allocation policy could
lead to subsequent resource contentions for the applications
during runtime, leading to Service Level Agreement (SLA)
violations to the user. Thus arises the need for dynamic
resource management techniques.

As per the serverless deployment model, the user is charged
only for the resource-time actually consumed by the ap-
plication during its execution. Regardless of this fact, the
cloud provider maintains the underlying Virtual Machine (VM)
resources during its entire active life time. The resource-time
covered by a VM during its life time comprises of its set up
time and its entire active time when one or more functions
are using the VM resources either fully or partially. As the
serverless model is being increasingly experimented for longer
running tasks such as massively parallel task executions as in
[5], [6], such partial resource usages is more prevalent. Hence
its imperative, that the cloud provider maximizes the utilization
of the set of active VMs at any given time, thus reducing the
cost of maintaining too many underutilized VMs. On the other
hand, when an application has a deadline target on execution as
part of the SLA, the placement decision of a function instance
on an available VM needs to consider optimizing the resource
usage of VMs, without compromising on the stated execution
time limitations.

Many existing serverless platforms follow different strate-
gies to manage their underlying infrastructure. Experimenta-

483

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-7281-9586-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CCGrid51090.2021.00058

tion done on AWS Lambda platform indicate that the function
placement decision is currently treated as a bin packing prob-
lem to maximize VM memory utilization [7]. Azure Functions
seems to try not to co-locate concurrent instances of the
same function on the same VM, which indicates a spread
placement approach [7]. IBM OpenWhisk uses a hash-based
first-fit heuristic which aggregates application executions by
function type, aimed at improving instance re-use and cache hit
rate [8]. Docker Swarm employs a spread placement algorithm
which tries to evenly spread tasks across the nodes in a cluster
[9].

While some of the above approaches try to maximize re-
source utilization in function executions, they do not consider
application specific details and hence could result in SLA
violations, while not achieving optimal resource usages. In
the literature, many works exist, which address the problem
of reducing function response time to users and optimizing
resource cost for the end user [10], [11], [12], [13]. How-
ever, the importance of dynamic management of allocated
resources to function instances in the runtime, considering
user requirements, and also the problem space of efficient
resource management on the provider side have not been
studied extensively.

Thus, a major challenge for the service provider under this
model is to choose a suitable compute node for the function
placement and allocate sufficient resources to the containerized
function instance, such that the desired user requirements are
met, and the cost of resources is maintained at an optimum
level.

In this paper, we present a deadline-sensitive heuristic algo-
rithm for selecting a VM for function execution, which tries to
manage the VM resources efficiently in order to minimize the
provider cost of maintaining the cloud infrastructure. Further,
we present an approach to dynamically monitor and manage
the allocated CPU resources to function instances in the run-
time, targeted at meeting the user deadlines, irrespective of the
initial assignment of resources. We implement our proposed
policies in ContainerCloudSim [14] simulation environment
and conduct experiments using real-world and synthetic traces.
The experimental results show that our policies increase the
efficiency of VM resources and also perform better in terms
of meeting the function deadlines, as compared to baseline
techniques.

The key contributions of our work are as follows:
1. An efficient placement algorithm for function requests,

which aims to enhance VM resource efficiency.
2. A fine-grained approach to dynamically manage resource

allocations to functions.
3. Implementation of our proposed policies in a simulation

environment and conducting extensive experiments using both
real-world and synthetic workloads.

4. Evaluation of the efficiency of our proposed solution in
comparison with baseline load balancing algorithms and two
resource allocation policies, namely, a fixed resource allocation
policy and a cpu-shares policy in terms of VM resource usage
and meeting the function deadlines.

The rest of the paper is organized as follows. Section II,
highlights related research. In section III, we show the system
model and formulate the scheduling problem. Section IV,
presents our proposed approach. In section V, we discuss the
experimental set-up and present the performance evaluation
of our proposed method. Section VI concludes the paper and
highlights future research directions.

II. RELATED WORK

Serverless computing as a cloud application deployment
model, is still at an early stage of being widely adopted and
explored in different application domains. As such, research
work referring to efficient resource management in serverless
platforms are still growing and also refer to many diverse
aspects. Here we focus on key research work related to
application resource management in serverless platforms.

HoseinyFarahabady et al. present a QoS-aware resource al-
location controller for serverless platforms [15]. The scheduler
aims to dynamically scale resources by predicting the future
rate of incoming events using a closed-loop model predictive
mechanism. Although the controller tries to maintain a healthy
CPU utilization level at each host, specific focus is not given
to using application level details to minimize provider cost.
Overall this work addresses the challenge of the initial place-
ment of functions, but the handling of sub-optimum resource
allocations is not discussed.

A package-aware scheduler is proposed by Abad et al. [11]
for serverless functions. The objective is to reduce the cold
start latency by assigning functions requiring similar packages
to the same node. The efficiency of this model could be
affected by functions having multiple, large package depen-
dencies. Further, this model ignores workload characteristics
other than the package requirements and does not focus on
optimizing cloud resource usage.

Stein et al. [10] present a non-cooperative resource alloca-
tion heuristic which tries to predict the number of function
instances required to keep the request waiting time below a
chosen threshold. This work considers container re-use and
pre-warming of containers to reduce response times. Meeting
any function specific user requirements has not been focused
on, in the proposed approach.

Mahmoudi et al. [16] present a function placement al-
gorithm which uses a machine learning based approach for
selecting the VM for a new function invocation, so as to
reduce operational cost to the user. They explore a predictive
performance model which tries to predict the normalized
performance for any workload when deployed to a specific
VM. Their approach takes in to account the nature of the
workload such as CPU, disk or memory intensiveness in
making its decision. The model requires a profiling step each
time a new function is deployed in the platform.

A latency-aware function scheduler is presented by Suresh
et al. [4]. Their model is focused on dynamically adjusting
cpu-shares [17] of containers based on the latency degradation
to each application type as a whole. The greedy algorithm
presented for VM scaling results in reduced number of VMs

484

TABLE I
SUMMARY OF LITERATURE STUDY

Work Application Model Deadline Awareness Efficient VM usage Dynamic Re-sizing Dynamic Re-scheduling
Task(Single Function) DAG(Multiple functions)

HoseinyFarahabady et al. (2017) X X X
Abad et al. (2018) X
Stein et al. (2018) X
Mahmoudi et al.(2019) X
Suresh et al. (2019) X X X X
Kaffes et al. (2019) X
Singhvi et al. (2019) X X
Das et al. (2020) X X
Kim et al. (2020) X X X X
Our proposed work X X X X X

being used compared to spread placement approaches, but
there is no specific focus on reducing partial VM usages.
They achieve reduced latency degradation to applications
via adjusting cpu-shares of containers. Since cpu-shares is a
relative allocation of CPU to each container, the application
performance largely depends on the co-located functions in a
VM.

A core-granular scheduler for serverless environments is
introduced by Kaffes et al. [18]. In this model, the sched-
uler assigns functions directly to individual cores aiming
to eliminate overloading of cores and reducing co-located
function interference. Consideration for any workload specific
requirements is not observed in the proposed approach.

Singhvi et al. implement a low-latency serverless platform
for DAG based applications [12]. The design entails a set
of node clusters with semi-global schedulers, which follow
deadline-aware function scheduling. Although a deadline is
considered for initial function placement, the subsequent man-
agement of allocated resources to functions is not discussed.

Das et al. [13] propose a hybrid cloud scheduling framework
for multi-function serverless applications. They suggest a
greedy algorithm to decide the order and placement of each
function in either the private or the public cloud. The objective
is to minimize the cost of public cloud use for the consumer
and to complete the execution of a batch of jobs within a
specified deadline.

Kim et al. [19] propose a technique for CPU resource
management for serverless worker processes based on the
throttled time and the number of unprocessed functions in
the queue of each worker. They try to reduce the function
response time and increase the CPU utilization of the worker
processes. They do not consider application level details or
requirements in their load balancing policy and thus may not
be responsive to specific user execution time limitations and
achieving optimal resource usage levels.

A summary of the reviewed related works is presented in
Table I, comparing them in terms of the focus on efficient VM
resource usage, application deadline awareness, dynamic re-
source re-sizing and re-scheduling, and the application model.
Although a few works discuss increasing the VM resource
utilization levels in general, they are not specifically focused
on reducing provider cost by making use of application level
details and requirements.

In our work we present a comprehensive function placement
algorithm which aims to manage VM resources efficiently and
thereby reduce the underutilization of VMs by considering
the function deadlines, in making the placement decision. We
also propose an algorithm for the dynamic management of
resource allocations to functions instances, in order to meet
the application deadlines.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We present the serverless system model used in our work
and formulate the problem of scheduling functions in VMs.

A. System Model

We follow a similar approach to Apache OpenWhisk server-
less platform [20] while designing the system model for
evaluating our proposed approach to address the challenges
mentioned above. Figure 1 illustrates the high-level system
components involved in our model.

Function invocation requests created from user initiated
events are received at the system controller. The controller
contains the function placement logic which handles the load
balancing responsibility in choosing a compute node for func-
tion execution. The VM monitor module constantly updates
and retains meta data on the expected remaining VM runtimes

Fig. 1. System Model

485

and the functions in execution in each VM. This information
is used by the load balancer in its decision making. Once a
suitable node is selected, the requests are dispatched to the
destination nodes.

A compute node represents an active VM available for task
execution. An active VM would contain multiple concurrent
functions in execution inside containers. A container with the
required resource configurations is spawned for a new request
execution. The VM loads the required runtime and the asso-
ciated application code from the application repository, on to
the launched container. As per our proposed approach, the Dy-
namic Resource Manager (DRM) module which is deployed
on each VM, is responsible for monitoring the functions in
runtime and handling dynamic resource re-provisioning to
containers as applications approach their deadlines. It causes a
dynamic update to a container’s CPU resource limits until the
task completes its execution. This module also enables eviction
and re-scheduling of low priority task executions to avoid
performance degradation in VMs due to resource contentions.
Functions which were evicted are re-scheduled on a different
node, by sending a new function invocation request to the
controller where the function placement logic is called again
to find a suitable compute node.

B. Problem Formulation

Based on the system model, we now formulate the function
scheduling problem to minimize the provider cost of VM
resources usage, and to meet execution deadlines of the func-
tions. For the scope of this work we consider an application
to be composed of a single function and hence the terms
”function” and ”application” are used interchangeably. Table II
summarizes the important notations and descriptions presented
in this paper.

Given an instance of a serverless platform, let V =
{v1, v2,, vN} be the set of VMs or compute nodes available
for function execution, where N is the total number of VMs
and vj , 1 ≤ j ≤ N is the jth VM. Each VM has available
resource capacities defined by a two-dimensional vector: CPU
and memory, represented as vcj and vmj respectively. Hence
we have, vj =< vcj , v

m
j >. The total CPU capacity in a

VM is determined as the product of the number of cores
and the processing power of each core, denoted in Million
Instructions Per Second (MIPS). The available free CPU and
memory resources in VM, vj at time t is denoted by, vacj (t)
and vamj (t) respectively.

Let R = {r1, r2,, rM} be the sequence of function
invocation requests received at the scheduler where M is
the total number of requests and ri, 1 ≤ i ≤ M is the
ith request. Each request carries five attributes, i.e., ri =<
rtypei , rpriorityi , rtai , r

d
i , r

m
i > where rtypei represents the appli-

cation ID of the function to be invoked, rpriorityi denotes the
user requested priority level for the request i, and rtai , rdi and
rmi are the time of arrival, specified deadline and the memory
requirement of request i respectively. We assume the initial
CPU allocation rci , to the containerized function instance, to
be done in proportion to the requested memory, adopting AWS

TABLE II
DEFINITION OF SYMBOLS

Symbol Definition
v A VM or compute node available for function execution
N The total number of available VMs
δ The index set of all the available VMs, δ = {1, 2, 3, ..., N}
M The total number of function invocation requests
r Function invocation request

rtypei Type of the function to be invoked by ithrequest, ri
rpriorityi Requested priority level for the execution of ithrequest, ri
rtai Time of arrival of ithrequest, ri
rdi Deadline for ithrequest, ri
rmi Memory requirement for ithrequest, ri
rci Initial CPU allocation for ithrequest, ri

ruci (t) The CPU allocation for ithrequest, ri at time t
rwi The waiting time for scheduling ithrequest, ri
rpi Total processing time of ithrequest, ri
vmj Total memory capacity of jth VM, vj
vcj Total CPU capacity of jth VM, vj

vamj (t) Available free memory in jth VM, vj at time t
vacj (t) Available free CPU capacity in jth VM, vj at time t

Lambda’s initial resource allocation policy [2] (i.e. if rmi is
the requested memory and vmj and vcj are the total memory
and CPU capacities of the VM, the allocated CPU capacity is
(rmi /v

m
j)∗vcj). Since we dynamically update CPU allocations

to the function instances in the runtime, we use the notation
ruci (t) to denote the updated CPU allocation to request ri
subsequently in time t.

Now the challenge at hand is to decide the mapping of a
request execution to an available VM where the application
would start its execution inside a container with access to
assigned resources, and to manage resource allocations to its
containerized instance throughout the life time.

Schedule = {ri −→ vj} (1)

Function scheduling and resource allocation would be sub-
ject to the following constraints.

VM resource capacity constraints: A VM is chosen for
function execution only if the requested memory and the initial
CPU allocation requirements for a function execution do not
exceed the available free memory and CPU capacities of the
VM at time t, i.e.,

rmi ≤ vamj (t) (2)

rci ≤ vacj (t) (3)

We identify the VM’s available memory and CPU resource
levels as follows:

vamj (t) = vmj −
M∑
i=1

uij(t)r
m
i (t) (4)

vacj (t) = vcj −
M∑
i=1

uij(t)r
uc
i (t) (5)

486

where we define a binary variable uij to indicate whether
request i is currently placed in vj or not, i.e., ∀j ∈ δ, we have;

uij(t) =

{
1, if request i is being executed in vj at time t
0, otherwise

(6)
The time t in the above expressions: (2), (3), (4), (5) and

(6) refers to the request arrival time i.e., rtai .
Overall, the primary focus of this study is to minimize

the provider expenses of running serverless applications by
efficiently utilizing resources in VMs, while also minimizing
the violation of user requirements of function execution.

In our work, we assume all the compute nodes to be
homogeneous, and thereby the combined uptimes of all the
VMs is representative of the provider’s opportunity cost of
utilizing the same resources for revenue generation from other
services. Thus, we formulate the optimization problem for
resource-efficient function scheduling as follows:

Minimize : T =
N∑
j=1

tj

s.t. : (2), (3)

(7)

where tj is the sum of the active periods of jth VM over
the course of the experiment and T is the summation of the
active periods of all the VMs used in the experiment. A VM is
considered to be active when at least one container is running
in it. We assume that VMs are available on-demand without
additional start-up delays. Primarily, our proposed function
placement logic contributes towards realizing this objective.

We also formulate the objective of minimizing user deadline
violations as follows:

Minimize : Z =
M∑
i=1

xi

s.t. : (2), (3)

(8)

where we define a binary variable xi to indicate whether
request ri violates its deadline or not, i.e., ∀i ∈M , we have;

xi =

{
1, if rwi + rpi > rdi
0, otherwise

(9)

where rwi is the waiting time for function scheduling, rpi
is the processing time, rdi is the user specified deadline and
Z is the total number of deadline violations. The deadline
for a function indicates the expected maximum time to finish
execution from the request arrival time. Our approach of
dynamic resource management mainly contributes towards
meeting the objective of deadline satisfaction.

IV. PROPOSED ALGORITHMS

We propose a heuristic algorithm for the resource efficient
placement of functions, and a dynamic resource alteration
algorithm to solve resource contentions in VMs in the runtime
and to meet user specified deadline constraints.

A. Function Placement Algorithm

The proposed heuristic function placement algorithm (Al-
gorithm 1) follows a deadline sensitive function aggregation
policy. The algorithm aims to align the runtimes of functions
executing in a particular VM, such that the underutilization
of VM resources is minimized, allowing the instance to be
released after experiencing high utilization during its active
life time.

We maintain a list of the existing active VMs (VMList)
in the ascending order of the remaining time each of them
are expected to run, depending on the functions already in
execution and their stated deadlines. The remaining time to
deadline r∆t

i (t), for request ri at time t is expressed as follows:

r∆t
i (t) = rtai + rdi − t (10)

Algorithm 1 Deadline Based Function Placement (DBP)
Algorithm

Input: The function invocation request ri,
ri =< rtypei , rpriorityi , rtai , r

d
i , r

m
i >

Input: The list of active VMs sorted in the ascending order
of the expected remaining runtimes, VMList
Output: VM selected for function execution, vs

1: procedure PROCESSVMSELECTION(ri)
2: r∆t

i (t)← Time to deadline for ri
3: CPUmax ← 0
4: for each VM vj in VMList do
5: if ri is a request for re-scheduling then
6: if vj = ri.GetOldV m then
7: continue
8: v∆t

j (t)← vj .GetRemainingRunTime
9: vutilj (t)← vj .GetCPUUtilization

10: if Placement of ri in vj satisfies resource
capacity constraint and vutilj (t) < vutilT then

11: vtemp ← vj
12: if v∆t

j (t) ≥ r∆t
i (t) then

13: if rpriorityi = Low then
14: vs ← vj
15: break
16: else
17: if vacj (t) > CPUmax then
18: CPUmax ← vacj
19: vs ← vj

20: if vs = null then
21: if vtemp! = null then
22: vs ← vtemp

23: return vs
24: else
25: Add a new VM, vmNew to the active pool
26: vs ← vmNew
27: return vs
28: else
29: return vs

487

where rtai is the arrival time and rdi is the deadline, of
request ri respectively. We assume, that the longest of the
remaining times to deadlines of the current functions running
in a VM to be an approximation of its expected remaining
runtime. The VMList is updated whenever a new request is
allocated to a VM or a function completes its execution.

When a new function invocation request (ri) arrives at the
controller, its time to deadline is calculated (line 2). Next
the algorithm starts its iteration over the sorted list of active
VMs. While we aim to maintain high VM utilization levels
with the provider, for the set of active VMs at all times, we
also try to avoid potential performance degradation caused by
CPU contentions arising with resource overloading. Therefore,
apart from the availability of sufficient free resources, a VM,
vj is considered for function placement only if its current
CPU utilization, vutilj (t) is below a defined CPU utilization
threshold vutilT (line 10). If these requirements are met, this
VM is chosen for execution if the expected remaining time
of the VM is greater than the time to deadline of the request
and the request bears a low level of priority (line 12-15). In
case ri is a high priority request, we choose the VM with
the highest free CPU resources out of the VMs having higher
remaining runtime than the time to deadline for ri (line 17-
19). We assume each request to be accompanied with either a
high or low priority level and the high priority requests to have
a tighter deadline than requests with low priority. Assigning a
high priority request to a relatively less congested VM gives
a better opportunity to dynamically monitor and increment
the allocated CPU resources to the request in the runtime, if
needed. It could be that none of the active VMs with sufficient
free resources have the required remaining active time. In that
case we choose the VM with the highest remaining active time.
This ensures that the increase to the expected runtime of the
chosen VM by the new function execution will be minimum
(line 21-23). In case ri is a request for re-scheduling, we avoid
assigning the request to the same node it was previously being
executed in (line 5-7). If none of the active VMs have sufficient
free capacity for the function execution, a new free VM is
added to the pool (line 25-27).

Once a VM is selected, the request ri is forwarded to
the selected compute node vs for execution, where a new
container with the requested resources is created and the
function execution is initiated. Assuming the total number of
VMs to be n, the worst case time complexity of Algorithm 1
for selecting a worker node, is O(n).

B. Dynamic Resource Alteration (DRA) Algorithm

The proposed Dynamic Resource Alteration (DRA) algo-
rithm (Algorithm 2) aims to alter the resource allocations to
function instances approaching the deadline during runtime.
The algorithm also efficiently manages resource contentions
in the VMs by evicting suitable recently started tasks from
constrained nodes to nodes with sufficient free resources.

The algorithm is executed by the VMs each time a task
reaches a certain percentage of the task’s time to deadline
from the arrival time, denoted by dcheck. We decide this

Algorithm 2 Dynamic Resource Alteration (DRA) Algorithm
Input: The function invocation request ri
Input: Current VM, vj and current container, cij of ri
Input: The list of requests in execution in vj sorted by

time to deadline in descending order, rlist
1: procedure PROCESSRESOURCEALTERATION(ri)
2: vutilj (t)← vj .GetCPUUtilization
3: if vutilj (t) ≥ vutilT or cij has reached its max CPU

allocation then
4: return Failure
5: else
6: cij .UpdateResources (CPU)
7: vutilj ← vj .GetUpdatedUtilization

8: if vutilj ≥ vutilTj then
9: for each request r in rlist do

10: if r satisfies re-scheduling criteria
(12) then

11: cr ← r.container
12: Re-schedule request r
13: Destroy cr
14: vutilj ← vj .GetUpdatedUtilization
15: if vutilj < vutilT then
16: break

checkpoint based on the level of priority requested by each
request on arrival (for example, a high priority request would
have a better opportunity of meeting the deadline from a lower
dcheck value). At this point, if the function is still in execution,
the initially allocated upper limit of CPU processing power
to the container is incremented, provided that the underlying
VM’s CPU utilization level is below vutilT and the container
has not reached its maximum CPU allocation (line 3-6). We
assume the maximum CPU power allocated to a container
to be equal to that of one full vCPU core. Here we use
the concept of cpu-quota and cpu-period enabled in Linux
Kernel’s Completely Fair Scheduler (CFS) [21], in setting
and updating the CPU upper limits of the container. The
cpu-quota value sets the number of microseconds per cpu-
period that the container’s access to CPU resources is limited
to, before it is throttled [17]. Thus this acts as an effective
ceiling and a hard limit for CPU resources allocated to a
container. This is in contrast to the concept of cpu-shares used
in [4], which adjusts the relative weight of CPU resources
accessible to a container when co-located with other containers
[17]. Container orchestration technologies allow updating the
container resource configurations in the runtime [22]. During
the evaluation of this approach, we conduct experiments while
varying the dcheck value and the cpu-quota increment values
with the request priority levels.

After each resource update, the VM is checked for resource
overloading (line 8). In the presence of resource overloading
and performance interference as a result, the algorithm pro-
ceeds to efficiently evict some of the most recently scheduled
tasks, scheduling them on another suitable node with sufficient
free resources (line 9-12). Task eviction is undertaken only if

488

the re-scheduling cost satisfies criteria (12) below. The re-
scheduling cost rcosti at time t for the ith request is defined
by the time spent from arrival of ri and the waiting time for
function re-scheduling rwi , i.e.,

rcosti (t) = t− rtai + rwi (11)

rcosti (t) ≤ rdi × revictT (12)

where rdi is the task deadline and revictT is a defined
threshold for function eviction. This eviction policy ensures
that the task execution loss is minimized and the evicted task
has sufficient re-scheduling time until its deadline. Once a
task is chosen for eviction, its running container is destroyed,
freeing up resources in the constrained node. Re-scheduling
of a task follows the function placement algorithm (Algorithm
1), by sending a function placement request to the controller.
A node continuously monitors each function and employs the
DRA algorithm, each time the time to deadline approaches the
defined checkpoint. The process continues until the function
finishes its execution or its container occupies a full vCPU
core, which is assumed to be the maximum allocated CPU
capacity for a function instance.

If vj , the current VM of ri, has r number of requests already
in execution, under the worst case scenario, Algorithm 2 has
a linear time complexity of O(r).

V. PERFORMANCE EVALUATION

To evaluate the performance of our algorithms, we simulate
a serverless computing environment using ContainerCloudSim
[14] simulator. It is a simulation toolkit developed for model-
ing containerized cloud infrastructures. ContainerCloudSim is
built on top of CloudSim [23] simulator which is widely used
in evaluating resource management and scheduling techniques
in cloud environments. We extended the simulator by imple-
menting the Dynamic Resource Manager and VM Monitor
modules as described in section III, to include our scheduling
and dynamic resource management policies.

A. Baselines

We compare our function placement policy with the follow-
ing baseline scheduling policies:
Round Robin (RR): This method tries to equally balance the
load among the VMs by sending successive function requests
to different VMs in a cyclic manner
Random Placement (RP): Function requests are randomly
distributed among the VMs
Bin packing First-Fit (BPFF): Each request is directed to
the first VM which satisfies the resource requirements of the
request out of the active VMs, similar to AWS Lambda’s
function placement policy [7], packing the requests within a
fewer VMs as possible.

Further, we compare our Dynamic Resource Alteration
(DRA) technique with the following techniques:
Fixed Resource Allocation (FRA): The cpu-quota allocation
to each container is done in proportion to the requested
container memory and this CPU upper limit is maintained

throughout the application lifetime, similar to the policy used
in AWS Lambda serverless platform [7], [2].
OpenWhisk Resource Allocation (OW): OpenWhisk [20]
sets the cpu-shares for each container proportional to the
requested memory for each function, as mentioned in [4].
Cpu-shares indicates the relative weight given to a container
in terms of the proportion of CPU time it is given access to
when CPU resources are limited [17].

B. Experimental Set-up

We simulate a serverless computing environment with a
cluster of VMs, each with four vCPU cores and 3 GB of
memory. We follow the CPU configuration of Intel E5-2666
(2.9 GHZ), identified as one of the machine configurations
seen in AWS Lambda infrastructure [7]. Since Container-
CloudSim identifies processor capacity in terms of MIPS (Mil-
lion Instructions Per Second), we refer to CISCO’s industry
benchmark [24] in converting GHz values to MIPS (2.9 GHz
−→ 11600 MIPS). We design experiments using cluster sizes of
12, 25 and 40 VMs each for three load levels of 4x, 8x and 16x
requests per second, respectively. We use fixed time durations
of 500 ms and 20 ms respectively as the container set-up delay
and function scheduling delay in all the simulations. Variations
and the impact of container start-up delay is not considered a
part of this study. The VM CPU utilization threshold (vutilT)
is kept at 85% referring [25] and the threshold for function
eviction (revictT) is maintained at 20% in our experiments.
Experimental Workloads: We employ a number of synthetic
and real-world traces to evaluate our proposed algorithms. The
synthetic workloads enable us to observe the behavior of the
system, while maintaining a constant request arrival rate at
a time, and varying the rates across workloads. Under both
the real and synthetic workloads, a request received at the
controller consists of the id of the application to be invoked,
the level of priority requested for the application execution, the
requested container memory size and a user specified deadline
parameter associated with each priority level. The deadline
is the incremental value derived by increasing the average
execution time of each application by a certain percentage. We
use two levels of priority as high and low in our experiments,
where the high priority requests are associated with a tighter
deadline and the low priority requests with a more relaxed
deadline.

We create a workload with real-world arrival patterns using
trace snippets from Wikipedia [26] and Azure function traces
[27]. We extract the set of single function applications from the
Azure data set, and refer to the attributes of average container
memory size and average execution times (we only consider
applications with execution times exceeding 1 second in this
study), coupled with the fluctuation of request arrival patterns
from Wikipedia traces. We used the arrival patterns from
Wikipedia traces since the Azure data set does not contain
details of request arrival times. These traces drive the load for
140 application types with a peak load of 16x requests per
second, and we run the experiments spanning for a period of
one hour, using a cluster of 25 VMs.

489

Each synthetic workload consists of four synthetic traces
which are created with requests arriving for four application
types and run in parallel. Average application execution times
and requested container memory sizes are generated randomly
to be in the range of 1-50 seconds and between 128 - 512
MB in 64 MB increments, respectively. We conduct a series
of experiments with multiple synthetic workloads created by
varying the request deadline percentages for each priority
level, and the arrival rates. In each workload, the inter arrival
time of the function invocation requests is modeled using
Poisson distribution as in [12], adjusting the Poisson mean
to demonstrate different application load levels. A set of
experiments are carried out for each workload, adjusting the
different system parameters of the task deadline checkpoints
(dcheck) and cpu-quota increment values. At each experiment,
we run the workload for a period of approximately 5 minutes
in the simulation environment described above.
Performance Metrics: In all the experiments, we observe the
performance metrics mentioned below.

1. Total VM uptime during the simulation time. Since we
are considering a homogeneous resource environment in our
experiments, VM uptime is used as a proxy for the function
execution cost efficiency to the provider - we measure the
intermittent VM uptimes and add them for all the VMs in the
cluster.

2. Percentage of requests meeting the deadline - The number
of requests finishing on or before the specified deadline as a
percentage of the total number of requests.

C. Results and Analysis

We carry out performance evaluation in two steps for each
of the experimental scenarios.

1. We run the experiments with our DBP algorithm (Algo-
rithm 1) for the initial placement of functions and the DRA
algorithm (Algorithm 2) for dynamically managing CPU re-
source allocations. The results are compared with the baseline
schedulers: RR, RP and BPFF for load balancing, also coupled
with the DRA algorithm for dynamic resource management.

2. The performance of our DBP algorithm for load bal-
ancing accompanied with the fine-grained DRA policy is
evaluated with a Fixed Resource Allocation (FRA) policy and
a cpu-shares policy similar to that adopted by OpenWhisk
(OW).

We now discuss the results, primarily in terms of the
efficiency in consuming the cloud resources and the level
of satisfying the SLA requirements (meeting the function
deadlines in this case) of the user.
Evaluation of resource efficiency: The efficient use of cloud
resources is evaluated in terms of the total uptime of all the
VMs used in each of the scenarios with different load levels
of the incoming requests. The total time a cloud provider
dedicates its resources for serverless function scheduling could
be directly related to the cost incurred by the provider as
means of the revenue lost during the same period by rendering
other services using those resources. Figure 2 and Figure 3
present results of the resource efficiency study done using the

(a) (b)

Fig. 2. VM uptime comparison for the different load balancing algorithms
when requests have tighter deadlines at both priority levels (a) dcheck at 65%
and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55% and 75%,
cpu-quota increment at 40% and 60%

(a) (b)

Fig. 3. VM uptime comparison for the different load balancing algorithms
when requests have relaxed deadlines at both priority levels (a) dcheck at
65% and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55%
and 75%, cpu-quota increment at 40% and 60%

synthetic workloads. Here we compare the VM uptimes using
the DBP algorithm with the baseline schedulers under different
scenarios, with dynamic provisioning of CPU resources and
re-scheduling. Figure 2 depicts results under different load
conditions when the incoming function execution requests
have tighter deadlines (an increment of 5% and 15% over
the average execution time for high and low priority requests
respectively), while Figure 3 shows results for the same
workload with relatively relaxed deadlines (an increment of
10% and 20% over the average execution time for high and low
priority requests respectively). The results show that the DBP
method is able to achieve a high resource efficiency similar
to the BPFF heuristic, while the RP and RR schedulers show
significantly higher resource usage levels and hence, lesser
efficiency. We do experiments varying the time point of CPU
re-provisioning (dcheck) for the high and low priority requests,
from 65% and 85% of remaining time to deadline (Figure 2(a)
) to 55% and 75% (Figure 2(b)). We also incorporate two
levels of CPU re-provisioning, changing the incremental cpu-
quota/cpu-period value for each of the priority levels from
20% and 40% to 40% and 60% of CPU time of a vCPU
core, for the same two scenarios. Results show that as we vary
these system parameters to identify resource contentions faster
and resort to better resource alterations (earlier checks for
CPU re-provisioning and higher CPU quota increments), the
overall VM uptimes decrease slightly, yielding better results.
It is noticeable that the longer a varying load level prevails,
the higher the distinction of resource efficiency between a
random or a spread placement method, as compared to an

490

(a) (b)

Fig. 4. VM uptime comparison for the different load balancing algorithms
using real-world traces (a) dcheck at 65% and 85%, cpu-quota increment at
20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40%
and 60%

efficient bin-packing method. This is further emphasized by
the experimental results from real-world traces, shown in
Figure 4, where the VM uptimes recorded when using RR
and RP algorithms are approximately 3 times that from DBP
and BPFF algorithms.
Evaluation of deadline requirements: Evaluation of applica-
tion/user SLA requirements is done by taking the percentage
of functions meeting the set deadline. The results discussed
here are from the same set of experiments described in the
above section, for both the synthetic and real-world traces.
As shown in Figure 5 and Figure 6, in all the scenarios
with dynamic resource provisioning and re-scheduling, it is
evident that the RP and RR load balancing algorithms are able
to show higher levels of meeting deadlines. This is because
they have a better opportunity of dynamically provisioning
CPU resources to functions approaching their deadlines as
required, since the initial function placement tends to happen
in VMs with more free resources. Despite having relatively
lower deadline met percentages, the DBP method is able to
maintain a low level of deadline violations while also reducing
the provider cost by the efficient use of cloud resources as
discussed in the previous section. This is because the DBP
algorithm considers the deadline priority level of the request
in choosing a VM with either higher or lower free CPU quota
levels. In general, the BPFF heuristic shows poor performance
with higher deadline violations since it always tries to pack
the function executions to a minimum number of VMs and
hence show lesser flexibility in the ability to face resource
contentions in the runtime. When compared with BPFF, DBP

(a) (b)

Fig. 5. Comparison of the percentage of requests meeting the deadline for
the different load balancing algorithms when requests have tighter deadlines
at both priority levels (a) dcheck at 65% and 85%, cpu-quota increment at
20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40%
and 60%

(a) (b)

Fig. 6. Comparison of the percentage of requests meeting the deadline for
the different load balancing algorithms when requests have relaxed deadlines
at both priority levels (a) dcheck at 65% and 85%, cpu-quota increment at
20% and 40% (b) dcheck at 55% and 75%, cpu-quota increment at 40%
and 60%

(a) (b)

Fig. 7. Comparison of the percentage of requests meeting the deadline for
the different load balancing algorithms using real-world traces (a) dcheck at
65% and 85%, cpu-quota increment at 20% and 40% (b) dcheck at 55%
and 75%, cpu-quota increment at 40% and 60%

Fig. 8. Comparison of the percentage of requests meeting the deadline under
different resource management methods

performs better, when function deadlines are tighter as well.
As the load level increases to 16 requests/second, a slight
increase in deadline violations is seen in all the scenarios. The
results also show that dynamic resource provisioning and re-
scheduling is better able to improve SLA violations when the
VM CPU contentions are addressed early and with higher CPU
quota increments (Figure 5(a) Vs. 5(b) and Figure 6(a) Vs.
6(b)). Figure 7 shows results from the workload created from
real-world traces. The ability of DBP algorithm to maintain
a higher level of deadline satisfaction compared to the BPFF
algorithm, when the load level varies, is clearly observed here.

Figure 8 shows the performance of our load balancing
approach of DBP with dynamic resource alteration (DRA),
compared with a fixed CPU allocation policy (FRA) and
a proportional cpu-shares policy (OW), both using BPFF
as the load balancing method. It is seen that sub-optimal
initial resource allocations and CPU performance variations
in the runtime result in higher deadline violations under the
fixed CPU allocation method. Under the cpu-shares policy,

491

the cpu-shares determine the relative weight of CPU power
available to each function instance in the presence of CPU
contentions [17]. Hence the functions co-located in a VM
would largely affect each other’s performance and the presence
of a function instance with a larger cpu-share could cause a
function instance with a relatively smaller share to perform
poorly. In comparison, our policy of SLA-aware dynamic
handling of the CPU time available to each function, is able
to result in better performance under all the load levels.

VI. CONCLUSIONS AND FUTURE WORK

Cloud service providers have an increased responsibility in
serverless computing environments, in scheduling and pro-
visioning resources for function executions. An increased
level of abstraction in specifying resource requirements by
the developers encourages a serverless platform to infer re-
source requirements on its own. Setting fine-grained limits
on container CPU usage, dynamic monitoring and updating
of resource allocations to containerized function instances is
a promising approach in this regard, with many benefits. As
evidenced by our experiments, such a mechanism allows for
finer-grained control of CPU usage, reduces CPU contentions
among containers fighting for the same set of resources in
a VM and thereby enables higher opportunities for meeting
SLA requirements of the cloud user. Further, the increased
granularity in billing under the serverless scenario raises
the requirement for the provider to be more considerate on
their resource costs and our proposed algorithm for packing
requests on VMs is able to maximize resource efficiency, while
satisfying application specific SLA requirements.

In future work, we plan to explore following research
directions; extend our dynamic resource management policy
to include more precise resource usage predictions by pro-
filing workloads, explore provider resource efficiency under
heterogeneous cloud environments, enable greater flexibility
and Quality of Service (QoS) offerings to users in terms of
latency, address data dependency challenges in DAG based
serverless application scheduling, and demonstrate the prac-
tical applicability of our proposed resource scheduling and
provisioning strategy on Apache Openwhisk, an open source
serverless platform.

REFERENCES

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[2] “Aws lambda - developer guide,” https://docs.aws.amazon.com/lambda/
latest/dg/lambda-dg.pdf, (Accessed on 08/31/2020).

[3] “Quotas — cloud functions documentation — google cloud,” https:
//cloud.google.com/functions/quotas, (Accessed on 08/31/2020).

[4] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
and A. Gandhi, “Ensure: Efficient scheduling and autonomous resource
management in serverless environments,” in Proceedings of the 2020
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE, 2020, pp. 1–10.

[5] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica,
B. Recht, and J. Ragan-Kelley, “Numpywren: Serverless linear algebra,”
arXiv preprint arXiv:1810.09679, 2018.

[6] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 445–451.

[7] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the Annual
Technical Conference, 2018.

[8] M. Stein, “Adaptive event dispatching in serverless computing infras-
tructures,” Ph.D. dissertation, Brunel University London, 2018.

[9] “Deploy services to a swarm — docker documentation,” https://docs.
docker.com/engine/swarm/services/, (Accessed on 08/31/2020).

[10] M. Stein, “The serverless scheduling problem and noah,” arXiv, pp.
arXiv–1809, 2018.

[11] G. Aumala, E. Boza, L. Ortiz-Avilés, G. Totoy, and C. Abad, “Beyond
load balancing: Package-aware scheduling for serverless platforms,” in
Proceedings of the 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2019, pp. 282–
291.

[12] A. Singhvi, K. Houck, A. Balasubramanian, M. D. Shaikh, S. Venkatara-
man, and A. Akella, “Archipelago: A scalable low-latency serverless
platform,” arXiv preprint arXiv:1911.09849, 2019.

[13] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid cloud
scheduling for cost-efficient execution of serverless applications,” in
Proceedings of the 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). IEEE, 2020, pp. 609–618.

[14] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Contain-
ercloudsim: An environment for modeling and simulation of containers
in cloud data centers,” Software: Practice and Experience, vol. 47, no. 4,
pp. 505–521, 2017.

[15] M. HoseinyFarahabady, Y. C. Lee, A. Y. Zomaya, and Z. Tari, “A qos-
aware resource allocation controller for function as a service (faas)
platform,” in Proceedings of the International Conference on Service-
Oriented Computing. Springer, 2017, pp. 241–255.

[16] N. Mahmoudi, C. Lin, H. Khazaei, and M. Litoiu, “Optimizing serverless
computing: introducing an adaptive function placement algorithm,” in
Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, 2019, pp. 203–213.

[17] “Runtime options with memory, cpus, and gpus — docker documen-
tation,” https://docs.docker.com/config/containers/resource constraints/,
(Accessed on 10/16/2020).

[18] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized core-
granular scheduling for serverless functions,” in Proceedings of the ACM
Symposium on Cloud Computing, 2019, pp. 158–164.

[19] Y. K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya,
“Automated fine-grained cpu cap control in serverless computing plat-
form,” IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 10, pp. 2289–2301, 2020.

[20] “Apache openwhisk is a serverless, open source cloud platform,” https:
//openwhisk.apache.org/, (Accessed on 11/23/2020).

[21] P. Turner, B. B. Rao, and N. Rao, “Cpu bandwidth control for cfs,” in
Proceedings of the Linux Symposium. Citeseer, 2010, p. 245.

[22] “docker update — docker documentation,” https://docs.docker.com/
engine/reference/commandline/update/, (Accessed on 09/03/2020).

[23] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[24] “vbootcamp performance benchmark.pdf,” https://www.cisco.com/c/
dam/global/da dk/assets/docs/presentations/vBootcamp Performance
Benchmark.pdf, (Accessed on 10/01/2020).

[25] Z. Zhong, J. He, M. A. Rodriguez, S. Erfani, R. Kotagiri, and R. Buyya,
“Heterogeneous task co-location in containerized cloud computing
environments,” in Proceedings of the 2020 IEEE 23rd International
Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2020,
pp. 79–88.

[26] “Wikipedia access traces — wikibench,” http://www.wikibench.eu/
?page id=60, (Accessed on 12/02/2020).

[27] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at
a large cloud provider,” in Proceedings of the 2020 USENIX Annual
Technical Conference (ATC 2020), 2020, pp. 205–218.

492

