Serv-Drishti: An Interactive Serverless Function
Request Simulation Engine and Visualiser

Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya
Quantum Cloud Computing and Distributed Systems (qCLOUDS) Laboratory
School of Computing and Information Systems
The University of Melbourne, Australia
siddhartha @student.unimelb.edu.au, {maria.read, rbuyya} @unimelb.edu.au

Abstract—The rapid adoption of serverless computing neces-
sitates a deeper understanding of its underlying operational
mechanics, particularly concerning request routing, cold starts,
function scaling, and resource management. This paper proposes
Serv-Drishti, an interactive, open-source simulation tool designed
to demystify these complex behaviours. Serv-Drishti simulates
and visualises the journey of a request through a representative
serverless platform, from the API Gateway and intelligent
Request Dispatcher to dynamic Function Instances on resource-
constrained Compute Nodes. Unlike simple simulators, Serv-
Drishti provides a robust framework for comparative analysis.
It features configurable platform parameters, multiple request
routing and function placement strategies, and a comprehensive
failure simulation module. This allows users to not only observe
but also rigorously analyse system responses under various loads
and fault conditions. The tool generates real-time performance
graphs and provides detailed data exports, establishing it as a
valuable resource for research, education, and the design analysis
of serverless architectures.

Index Terms—serverless simulator, visualiser, interactive tool,
cold start, FaaS, cloud computing

I. INTRODUCTION

Serverless computing has emerged as a transformative
paradigm, abstracting away the complexities of infrastructure
management and enabling developers to focus solely on their
application logic. This model, often referred to as Function-as-
a-Service (FaaS), has seen widespread adoption due to its in-
herent benefits of elastic scalability, cost-effectiveness through
a pay-as-you-go model, and reduced operational overhead [1].
Major cloud providers such as Amazon Web Services (AWS)
[12], Google Cloud [5], and Microsoft Azure [13] have made
serverless computing a fundamental part of modern cloud-
native architecture. However, the very abstraction that makes
serverless attractive also introduces a significant challenge: the
lack of transparency [1]. The internal mechanisms governing
request dispatching, resource provisioning, and dynamic scal-
ing are often treated as a black-box. This leaves developers
to deal with the unexpected delays of a cold start [2], the
complexities of elastic scaling [1] [13], and the nuances of
request routing logic [8]. Understanding these behind-the-
scenes processes is crucial for optimising serverless appli-
cation performance, predicting behaviour under load, and
designing resilient, cost-effective systems.

Existing approaches [6] [7] predominantly focus on per-
formance monitoring, modelling, and deployment, leaving a

significant gap for demonstrative and educational instruments
that visually explain the dynamic lifecycle of a serverless
request. To address this gap, we propose Serv-Drishti, an
interactive, end-to-end serverless workflow simulation engine
and visualiser. By providing a lucid, hands-on experience, our
tool demystifies serverless operations for students, researchers,
and practitioners. This paper details the architecture, simula-
tion logic, and features of Serv-Drishti, including its advanced
failure simulation, performance analysis, and data export
modules, demonstrating its value as a powerful platform for
understanding and analysing serverless architectures.

II. RELATED WORK

The rapid evolution of serverless computing has driven
considerable research into modelling, simulation, and perfor-
mance analysis of FaaS platforms to facilitate deeper under-
standing. Therefore, simulators are crucial for comprehending
scheduling behaviour and resource management decisions in
FaaS environments without incurring cloud costs.

CloudSimSC [8] builds on the CloudSim [3] toolkit for
serverless environments, modelling detailed resource manage-
ment and scheduling policies. It delivers robust trace-driven
experimentation for evaluating concurrent request handling
and scaling strategies, but operates in a non-visual manner.
Its outputs are logs and post-processed metrics, making it less
suitable for immediate interactive demonstration or pedagog-
ical visualisation of request flows.

DSLab FaaS [11] provides modular, trace-driven FaaS
simulation focusing on reproducibility and extensibility. It
supports custom plugin components (e.g., schedulers, auto-
scalers) and has demonstrated efficient simulations for com-
plex workloads. DSLab FaaS excels at rigorous, repeatable
resource management policy evaluation but, like CloudSimSC,
does not offer real-time visualisations. Additionally, the work-
load traces are identified as the source of simulation data and
may not support generation of simulated data.

faas-sim [10] is a discrete-event, trace-driven framework
built on SimPy, unique for integrating network latency mod-
elling via Ether. faas-sim allows researchers to assess schedul-
ing and autoscaling strategies, especially in distributed or
edge environments, but its use of trace analysis and lack of
animated visualisation limits accessibility for comparative and
pedagogical study.

TABLE I

COMPARISON OF RELATED SERVERLESS SIMULATION FRAMEWORKS

Framework Primary Visualisation Key
Focus / Approach Limitation
Contribu-
tion

CloudSimSC Resource None (Log Lacks
management & metric interactive
& scaling output) demonstra-

tion

DSLab FaaS Reproducibility None No real-time
& (Trace- or visual
extensibility driven feedback

analysis)

faas-sim Network None Limited
latency (Trace- pedagogical
modelling driven accessibility

analysis)

OpenDC Datacenter Static No dynamic
resource (Aggregate request flow
allocation met- animation

rics/topology)

ServlessSimPro Energy None Steep
consumption (Code-based learning
monitoring framework) curve; non-

interactive

Serv-Drishti (Our Work) Pedagogical Live, Simplified
visualisation ~ dynamic model for
& interactive animation of conceptual
”what-if” the full understand-
analysis request ing

lifecycle

OpenDC [9] is a notable simulation platform for modelling
emerging cloud datacenter technologies, including serverless
workloads. It provides a valuable environment for exploring
different resource allocation and scheduling policies. While
OpenDC offers an interactive web interface for model explo-
ration, its visualisations are primarily focused on aggregate
metrics and static topology maps rather than dynamically
animated request flow. This key distinction is crucial for
understanding the impact of scheduling and routing decisions
on individual requests, which is central to analysing system
bottlenecks and cold starts.

ServlessSimPro [4], a comprehensive simulation platform,
addresses many of the shortcomings of prior simulators. It
distinguishes itself by offering a wide range of scheduling
strategies, including container migration and reuse, and pro-
vides a comprehensive set of performance metrics, notably
including the first-ever monitoring of energy consumption.
While ServlessSimPro provides a robust, code-based simu-
lation environment, its core utility remains within a backend
framework. The reliance on code execution to define experi-
ments and visualise results presents a steep learning curve and
limits accessibility for a broad audience of researchers, stu-
dents, and practitioners. The purely code-based interface also
hinders an intuitive, real-time understanding of the temporal
dynamics of a serverless request flow.

Function Request

a - v

API Gateway

!

&

- -

R tD tch

(Sq_uis_ _pr!a_c_ e_r_ _———a Request

, Routing /I y Placement J Processing
=== Layer

/ﬁb Compute

Nodes

)
‘ (Function
Instances)
‘ <> . Executing

Cold Starting

Compute| | Compute| | Computel | @ |gie/Available
QNode 1 \Node 2 / \ Node 3JJ
Fig. 1. Request Flow across Serv-Drishti Components

III. SYSTEM ARCHITECTURE AND SIMULATION MODEL

The visualiser’s architecture abstracts the core components
of a serverless platform into a simplified, yet functionally rep-
resentative, model. The simulation is built around a discrete-
event, request-driven model, where each incoming request is
treated as a unique entity traversing the system and interacting
with various components, triggering state changes and re-
source consumption events. This approach allows for detailed
tracking of individual request latencies and resource usage
across the system.

The core of the Serv-Drishti platform is its simulation
engine, which models the end-to-end request flow through a
serverless environment by abstracting key operational compo-
nents into a layered architecture. Each component is respon-
sible for a distinct phase of the request lifecycle, accurately
reflecting the complexities of real-world FaaS platforms.

The API Gateway serves as the initial entry point for
all incoming requests, which originate from user actions
or automated rates. It forwards requests to the Request
Dispatcher, the central intelligence unit of the simulation.
The dispatcher manages an internal FIFO Request Queue for
buffering requests that cannot be immediately routed to an
available function. It applies configurable routing policies,
such as Warm Priority, Round Robin, and Least Connections,
to select the most suitable function instance. When new
capacity is needed, the dispatcher triggers auto-scaling and
uses a Placement Algorithm to provision new functions on an
available Compute Node.

Compute Nodes represent the underlying infrastructure that

hosts one or more Function Instances. They have a config-
urable, finite capacity of CPU and Memory that is pooled and
shared among all the functions they host. Function Instances
are the isolated execution environments for the serverless
code, capable of processing requests concurrently up to a
configurable limit. Each instance consumes a fixed amount
of resources from its host node and transitions between states
like cold-starting, busy, and active based on system events.
This layered architecture allows Serv-Drishti to model the
complete request flow and demonstrate the interplay between
logical components and physical resources.

IV. CORE SIMULATION LOGIC AND FEATURES

The core of our platform’s simulation logic is the interplay
between Request Routing Strategies and Function Placement
Algorithms. Request routing governs how incoming requests
are dispatched to a function, while function placement de-
termines where a function instance is provisioned on the
available virtual nodes. Together, these two mechanisms define
how workloads are managed, impacting performance, cost,
and resource utilisation.

A. Request Routing Strategies

The request dispatcher module implements multiple config-
urable routing strategies to enable users to analyse and com-
pare their effects. The Warm Priority strategy is designed to
minimise latency by prioritising the reuse of active ("warm”)
function instances. A new request is immediately routed to a
warm instance if one is available. If no warm instances exist,
the request is queued until an instance becomes ready. This
approach is common in real-world FaaS platforms to reduce
the overhead of cold starts. The Round Robin algorithm,
in contrast, is a simple, stateless method that sequentially
distributes requests among all currently available instances.
While it evenly spreads the load, it does not prioritise warm
instances, which can lead to more frequent cold starts, par-
ticularly during sudden bursts of traffic. A more intelligent,
state-aware algorithm is Least Connections, which routes a
new request to the function instance with the fewest concur-
rent requests. This dynamic load-balancing approach prevents
any single instance from becoming a bottleneck, aiming to
minimise latency by utilising the least burdened resources.

B. Function Placement Algorithms

When a new function instance needs to be created, the sys-
tem uses a placement algorithm to decide which virtual node
will host it. This decision is crucial for optimising resource
utilisation, cost, and performance. The First-Fit algorithm
places the new instance on the first suitable node found with
enough resources. The Best-Fit algorithm selects the node that
will have the least remaining capacity after placement, aiming
to minimise resource fragmentation. Conversely, the Worst-Fit
algorithm places the new instance on the node with the most
remaining capacity, leaving room for larger future placements.
For balancing the load, the Load-Balanced algorithm places
the instance on the node with the lowest average CPU and

Load Balance Score

[Avg Latency (ms)

Resource Utilization (%)
3,500

3,000

2,500

2,000

1,500

Performance Score

1,000

500

First Fit Worst Fit Best Fit
Algorithms

Fig. 2. Different Placement Algorithm Performance Comparison

memory utilisation. The Affinity strategy prefers to place
the new instance on a node already hosting a function of
the same type to improve resource sharing. Its counterpart,
Anti-Affinity, prefers to place the instance on a node that
does not host a function of the same type, increasing fault
tolerance and isolating workloads. Lastly, the Cost-optimised
algorithm is a more complex strategy that seeks to maximise
resource utilisation while minimising waste, aiming for the
most cost-effective placement decision. A sample comparison
of different placement strategies is shown in Fig. 2.

C. Function and Compute Node Management

The lifecycle and state of both function instances and
compute nodes are critical elements visually represented in the
simulation. A function instance dynamically changes colour
to indicate its status. It is Orange when in the cold start
phase, simulating the time required for initialisation, during
which it is unavailable for processing. An instance is Blue
when it is actively processing requests, up to its configurable
concurrency limit, and is Green when it is available or
warm, ready to receive new requests with minimal latency,
Fig. 1. Compute Nodes represent the underlying physical or
virtual machines with a configurable total CPU and memory
capacity. A new node is dynamically provisioned by the
request dispatcher when existing nodes are at capacity or
lack sufficient resources to host new function instances. Each
Function Instance consumes a fixed amount of resources,
which is deducted from the node’s capacity, and the visualiser
updates the resource meters in real-time.

D. Scaling Behaviour

Serv-Drishti vividly demonstrates both the scale-up (provi-
sioning) and scale-down (de-provisioning) aspects of elastic-
ity, Fig. 3. When demand increases, new function instances
are provisioned. If existing compute nodes lack capacity,
new nodes are brought online, a process that respects user-
defined limits on the maximum number of instances and
nodes. To optimise costs, idle function instances and compute
nodes are automatically de-provisioned after a configurable
Inactivity Timeout. This simulates the pay-as-you-go model
by reclaiming idle resources when they are no longer in use.

[Arena A Functions (Warm Priority) Arena B Functions (Round Robin)

Function Count

0

& f & P &
& &EEEE

S BN B B PP S AP S B S P E
FEEE L FE SR

O ¢ v OPRFUIRC RSN 4
TR AV AT AT AT AT RN AR

Time

Fig. 3. Function Scaling Over Simulation

E. Visualisation and Interaction

The platform’s core strength is its interactive virtualisation,
which provides an intuitive understanding of the simulated
environment. The request traversal through the system is ani-
mated, providing a clear visual of their journey and highlight-
ing potential bottlenecks. The request dispatcher also promi-
nently displays a visual queue, offering immediate feedback
on system load and backpressure. A user-friendly, collapsible
UI panel allows for real-time adjustments of key simulation
parameters, enabling what-if scenario analysis and fostering
experimental learning in a risk-free environment.

V. CRITICAL SYSTEM CONSIDERATIONS

The design of Serv-Drishti is based on several key consid-
erations aimed at balancing pedagogical value with a repre-
sentative, yet simplified, simulation of serverless operations.
This section delves into these design philosophies and the
implications of our approach.

A. Abstraction versus Fidelity

A fundamental design decision was to create an abstract
model rather than a high-fidelity replica of a specific cloud
provider’s implementation. Real-world FaaS platforms involve
immense complexity, including multi-tenant scheduling and
intricate networking, which would render the simulator overly
complex and difficult for learners to grasp. Instead, Serv-
Drishti abstracts away the underlying hardware to highlight
the primary logical interactions: request queuing, dispatching,
cold starts, concurrent execution, and dynamic scaling. For
example, compute nodes abstract the physical infrastructure,
while function instances represent the isolated execution envi-
ronment. This simplification is intentional, as it allows users
to focus on fundamental principles of serverless elasticity
and resource management, providing a conceptual under-
standing that is transferable across different FaaS providers.
This approach makes the tool highly valuable for educational
purposes.

B. Configurability and Experimental Design

The extensive configurability of Serv-Drishti is a significant
strength for both education and architectural analysis. By
allowing users to adjust parameters in real-time, the visualiser

Execution Time

[Queue Wait Time

2,500
2,000

1,500

Time (ms)

1,000

S & D D DD DD
S ST ST S S SFS S
4 4
S
< <

Requests

Fig. 4. Impact of Request Queue and Cold Start on Function Request
Performance

becomes a powerful tool for what-if scenario analysis and
hypothesis testing. Users can vary the cold start delay to
understand its impact on latency, especially for different
programming languages. The ability to switch between Warm
Priority, Round Robin, and Least Connections routing strate-
gies allows for direct comparative analysis of their perfor-
mance under different load patterns, Fig. 4. Furthermore,
users can adjust CPU and memory consumption to explore
resource contention and the trade-offs between instance size
and cost efficiency. Modifying the max concurrent requests
per function helps in understanding how this parameter affects
an instance’s utilisation and the system’s scaling behaviour.
This dynamic experimentation empowers learners and allows
architects to rapidly prototype and evaluate design decisions
in a risk-free environment.

C. Virtualisation as a Tool for Insight

The real-time, animated visualisation in Serv-Drishti is a
core functional element designed to enhance comprehension
and intuition. It leverages them by animating request journeys,
seeing requests moving through the system, queuing, and
changing function states. This provides an immediate and
intuitive understanding of the workflow. The instant visual
updates of queue length, function states, and node resource
meters provide real-time feedback that allows users to directly
correlate parameter changes with system behaviour. This feed-
back loop facilitates active learning and reinforces conceptual
understanding. The visual queue and colour-coded instances
immediately draw attention to potential bottlenecks, allowing
users to quickly identify problematic configurations or load
conditions.

VI. FAILURE SIMULATION AND ROBUSTNESS

Understanding system resilience is paramount in distributed
and cloud-native architectures. Serv-Drishti integrates a robust
failure simulation module, enabling users to observe and
analyse the system’s response to various fault conditions,
which provides invaluable insights into designing resilient
serverless applications and understanding the importance of
failure handling mechanisms. The simulation models several
key failure scenarios. Each queued request is assigned a
configurable Time-to-Live (TTL). If it is not processed within
this limit, it is marked as failed and removed from the queue,
which simulates real-world client timeouts and demonstrates

Node-MAIN-485809-010

Functions: 5 | Concurrency: 5

CPU: 250/1000mCPU.

Mem: 640/4096MB

Node-MAIN-486473-011

Functions: 5 | Concurrency: 5
(CPU: 250/1000mCPU

Mem: 640/4096MB

Node-MAIN-487139-012

Functions: 5 | Concurrency: 5
CPU: 250/1000mCPU

Mem: 640/4096MB

[Light Light
n
\omcPy [126M nmlwuuzlw omcru/uw
Light Light Light
o n
w..uumm omce 128M7 omcPu 126M

Light
\ .

Fig. 5. A Failure Simulation through Fail Node

[Arena A (Warm Priority) [ZZZ] Arena B (Round Robin)
2,500

2,000

1,500

1,000

Performance Metrics

500

0 [M e | ,—H—‘

Throughput (re/min)

Avg Latency (ms) Success Rate (%)

Fig. 6.
Strategy)

Battleground Performance Comparison (Routing and Placement

the impact of unfulfilled requests due to system congestion
or delays. Additionally, each Function Instance has a config-
urable maximum execution timeout. If a request exceeds this
duration, all requests on that function are marked as failed, and
the instance may be terminated, which highlights the impor-
tance of setting appropriate timeouts to prevent long-running
executions from consuming excessive resources. Finally, the
visualiser provides a ”Fail Node” button, Fig. 5, allowing users
to manually trigger an immediate infrastructure failure. When
a node fails, all hosted functions and in-flight requests on those
functions are marked as failed, but the system’s robustness is
demonstrated as the request dispatcher’s logic automatically
routes new requests to healthy nodes and provisions new
function instances on them, if capacity allows. Failure events
are clearly marked visually within the simulation and are
accurately reflected in the performance graphs, providing a
clear and compelling demonstration of failure propagation and
the importance of designing for transient failures.

VII. PERFORMANCE ANALYSIS AND DATA EXPORT

Beyond its visual and interactive capabilities, Serv-Drishti
provides quantitative data for a deeper, more rigorous per-
formance analysis, essential for both academic research and
practical architectural design. The platform integrates a robust
metrics and analytics engine that provides real-time data and
comprehensive reports.

[Arena A Cost (Warm Priority) [____] Arena B Cost (Round Robin)
25,000

20,000

15,000

Cost (units)

10,000

5,000

0a 3
IR IR IR IR RIS
& FEELESEE SO

w @ & o o
AR «‘”«"’«"«“«“«“’«“’«“’«“@«Q’*@%

Time

Fig. 7. Cumulative Cost Analysis in Serv-Drishti

Requests

17574706... Light Node-MAIN-625211-017 5857.0ms 1607.0ms 7464.0ms current best-fit

17574706... Light Node-MAIN-625868-018 6364.0ms 726.0ms 7090.0ms current best-fit

17574706... Light Node-MAIN-625868-018 6490.0ms 754.0ms 7244.0ms current best-fit

17574706... Light Node-MAIN-625868-018 5847.0ms 2064.0ms 7911.0ms current best-fit

17574706... Light Node-MAIN-625211-017 5413.0ms 683.0ms 6096.0ms current best-fit

17574706... Light Node-MAIN-625868-018 6172.0ms 1643.0ms 7815.0ms current best-fit

17574706... Light Node-MAIN-625211-017 5597.0ms 1582.0ms 7179.0ms current best-fit

17574706... Light Node-MAIN-625211-017 -ms 983.0ms 983.0ms current best-fit

Node-MAIN-625211-017 -ms 1083.0ms 1083.0ms current best-fit

17574706... Light

Fig. 8. Live Request Metrics Collection

A. Comprehensive Data Collection and Export

The platform offers several features for data observation
and export, providing multiple layers of analytical depth.
Live Metrics, Fig. 8 are continuously captured and presented
in detailed tables that provide a real-time snapshot of the
simulation’s state, including the status and resource usage of
active function instances and compute nodes, as well as a
history of recently completed or failed requests.

For in-depth analysis, the platform generates a variety of
interactive performance charts. A dynamic bar chart, Fig.
4, provides real-time insights into the average Queue Wait
Time and Execution Time for requests processed within the
current observation session, which can be reset for short-term
experiments. A cumulative line graph continuously displays
aggregate performance data over the entire simulation run,
including total successful requests, total failed requests, aver-
age end-to-end latency, and average resource utilisation. A key
aspect of this analysis is the cost model, which Serv-Drishti
calculates for each request using a formula based on execution
time and memory consumption: (executionTimeM s/1000)x
memoryM B, Fig. 7. This accumulated cost is tracked and
provides a direct link between performance and financial
metrics.

For external analysis, the platform offers the capability to
export the complete cumulative dataset in standard formats
such as CSV. This granular data includes timestamps for vari-
ous lifecycle events, component IDs, and performance metrics,
enabling researchers to perform their own statistical analysis,
create custom virtualisations, and validate hypotheses. Charts
can also be exported as PNG images.

R TS

22

23
24
25
26

27
28

Listing 1 A JavaScript code snippet demonstrating different
routing logic strategies.

switch (this.currentRoutingLogic) {
case 'current':
// Prioritizes the first available (which
N usually means the oldest/most stable)
selectedFunction = availableFunctions[0];
break;
case 'round-robin':
// Iterate through available functions
— starting from the last round-robin
— 1index
for (let i = 0; i <
— availableFunctions.length;
const candidatelIndex =
— (this.roundRobinIndex + 1) %
— availableFunctions.length;
const candidate =
— availableFunctions[candidateIndex];

i++) {

if (!candidate.func.isColdStarting &&
— candidate.func.concurrentRequests <
— window.globalConfig.maxConcurrent
Requests) {
selectedFunction = candidate;
this.roundRobinIndex =
. (candidateIndex + 1) %
< availableFunctions.length; //
— Move index to next
break;
}
}
break;
case 'least-connections':
// Sort by concurrent requests
— (ascending) and pick the first
availableFunctions.sort ((a, b) =>
— a.func.concurrentRequests -
— b.func.concurrentRequests) ;
selectedFunction = availableFunctions[0];
break;
default:
// Fallback to current/first available if
— logic is unknown
selectedFunction = availableFunctions[0];

B. Battleground System for Comparative Analysis

The Battleground System is another critical feature that
provides a dedicated environment for comparative analysis.
It runs two independent “arenas” side-by-side, each of which
can be configured with a different routing or placement
algorithm. Synchronised auto-requests allow for direct ob-
servation of the performance trade-offs in a single, cohesive
view. The battleground generates its own set of charts for
direct comparison across key metrics such as average latency,
success rate, and throughput, Fig. 6. It also features time-series
charts that compare queue length, resource utilisation, active
function counts, and cumulative cost between the two arenas.
This powerful feature transforms Serv-Drishti from a mere

demonstration tool into a versatile platform for quantitative
analysis and research, providing verifiable data to back up
visual observations.

VIII. EXTENSIBILITY AND USAGE

The design of Serv-Drishti is a key consideration in its
value as a research and educational platform, as its modular
and open-source nature provides significant opportunities for
extensibility and community contribution. It is purely im-
plemented in JavaScript, HTML, and CSS, making the tool
lightweight where it runs directly in the browser, and is highly
accessible. This section outlines how users can leverage the
platform’s design to implement their own custom logic and
details a basic guide for its practical use.

A. Implementation of Custom Logic

The clear separation between the simulation logic and the
visualisation layer ensures that new features can be added
without overloading the entire system and codebase. Serv-
Drishti provides specific interfaces for core behaviours, allow-
ing for the “’plug-and-play” integration of custom algorithms.

To implement a new algorithm, a user can create
a new function within the appropriate module
(e.g., core/placement-algorithms. js or
core/simulation. js), Listing 1. This function must
adhere to the established interface, taking a defined set of
inputs (e.g., a list of nodes, function type) and returning
a specific output (e.g., the best node for placement). The
simplicity of the tech stack means no external libraries or
complex build processes are needed for development.

For example, a researcher can implement a novel pre-
dictive scaling policy that provisions new function in-
stances based on a predefined threshold of the request
rate, which can be derived from the global request logs
(window.allRequestsLog). This allows for a direct
comparative analysis against the default reactive scaling poli-
cies. The core simulation logic will automatically use this new
function once it is implemented at the correct position, and
its performance can be visualised instantly in the platform’s
charts and tables.

B. User Guide

The simplicity of the UI and the browser-based implemen-
tation make Serv-Drishti highly accessible for both learning
and research.

1) Running a Simulation: Users can begin by simply open-
ing the index.html file in a web browser, requiring
no complex setup or dependencies. The user-friendly,
collapsible UI panel allows for real-time adjustments of
key simulation parameters, such as the auto-request rate,
cold start delay, routing strategy and placement strategy.
Users can also select a pre-configured demo scenario
or manually trigger requests to observe the system’s
response in real-time. These scenarios are available from
the welcome tab where appropriate interactive guides
are also provided.

2) Observing Results: As the simulation runs, the real-time,
animated visualisations provide immediate insights into
the request journey, queuing, and function state changes.
For quantitative analysis, the platform’s live metrics
tables and dynamic charts provide a comprehensive view
of performance and resource utilisation.

3) Data Export for Analysis: As discussed earlier, Serv-
Drishti offers the capability to export all simulation data.
A user can download the complete cumulative dataset
in formats such as CSV, which includes granular details
on each request’s lifecycle events, performance metrics,
function instance and compute node information. This
data can then be used to perform custom statistical
analysis and create visualisations beyond the tool’s built-
in capabilities.

IX. CONCLUSIONS AND FUTURE WORK

The Serv-Drishti visualiser is a powerful educational and
analytical tool that provides significant transparency into the
often-abstracted world of serverless computing. It serves as a
visual and interactive guide by animating the request lifecycle,
simulating complex scaling and routing logic, and demonstrat-
ing realistic failure scenarios. The platform empowers users to
gain a practical and intuitive understanding of serverless plat-
form dynamics. Its highly interactive nature and extensively
configurable parameters make it suitable for various learning
and experimental contexts, from a university classroom where
students grasp fundamental cloud concepts to a professional
architecture design session evaluating different deployment
strategies. The project fills a unique and critical gap in the
ecosystem of serverless tools by focusing on interactive, visual
demystification for pedagogical and architectural purposes,
distinguishing itself from purely programmatic simulators or
real-time monitoring solutions.

Future enhancements for Serv-Drishti will build on this
foundation to explore several promising directions. We plan
to investigate and implement new request dispatcher strategies
that leverage predictive scaling models, such as those based on
machine learning, to anticipate future load and provision re-
sources preemptively. This will allow for a direct comparative
analysis against reactive scaling policies. Additionally, we will
enhance the simulation model to include and visualise network
latency between the API gateway, request dispatcher, compute
nodes, and external services, providing a more complete
picture of end-to-end latency.

To further enrich the simulation, we will expand the failure
module to include more granular and complex error condi-
tions, such as simulating specific runtime exceptions within
functions and demonstrating retry mechanisms with exponen-
tial back-off or the use of dead-letter queues. We also aim to
integrate a more detailed cost model to visualise the financial
implications of different scaling strategies and function config-
urations, helping users understand how architectural decisions
translate into operational costs. Finally, we will evolve the
simulator to support stateful function simulation and multi-
function workflows (represented as directed acyclic graphs or

DAGs). This will enable the visualisation and analysis of more
complex, real-world serverless workflows and their associated
orchestration overheads, moving beyond the current focus on
stateless functions.

Software Availability: The source code of Serv-
Drishti simulation engine and visualiser is accessible on
https://github.com/Cloudslab/Serv-Drishti as an open-source
tool under the Apache 2.0 license.

REFERENCES

[1] Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. A
deep recurrent-reinforcement learning method for intelligent autoscaling
of serverless functions. IEEE Transactions on Services Computing,
17(5):1899-1910, 2024.

[2] Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. On-
demand cold start frequency reduction with off-policy reinforcement
learning in serverless computing. In Proceedings of the Computational
Intelligence and Data Analytics, pages 1-24, Singapore, 2025. Springer
Nature Singapore.

[3] Remo Andreoli, Jie Zhao, Tommaso Cucinotta, and Rajkumar Buyya.
Cloudsim 7g: An integrated toolkit for modeling and simulation of
future generation cloud computing environments. Software: Practice
and Experience, 55(6):1041-1058, 2025.

[4] Han Cao, Jinquan Zhang, Long Chen, Siyuan Li, and Guang Shi. Serv-
lesssimpro: A comprehensive serverless simulation platform. Future
Generation Computer Systems, 163:107558, 2025.

[5] Google. Cloud run functions, 2024.

[6] Nima Mahmoudi and Hamzeh Khazaei. Performance modeling of
serverless computing platforms. IEEE Transactions on Cloud Com-
puting, 10(4):2834-2847, 2022.

[7] Nima Mahmoudi and Hamzeh Khazaei. Performance modeling of
metric-based serverless computing platforms. [IEEE Transactions on
Cloud Computing, 11(2):1899-1910, 2023.

[8] Anupama Mampage and Rajkumar Buyya. Cloudsimsc: A toolkit
for modeling and simulation of serverless computing environments.
In Proceedings of the International Conference on High Performance
Computing and Communications, pages 550-557, 2023.

[9] Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen
Lai, Jacob Burley, Jaro Bosch, Erwin van Eyk, Laurens Versluis, Vincent
van Beek, and Alexandru Iosup. Opendc 2.0: Convenient modeling
and simulation of emerging technologies in cloud datacenters. In
Proceedings of the 21st International Symposium on Cluster, Cloud and
Internet Computing, pages 455-464, 2021.

[10] Philipp Raith, Thomas Rausch, Alireza Furutanpey, and Schahram Dust-
dar. faas-sim: A trace-driven simulation framework for serverless edge
computing platforms. Software: Practice and experience, 53(12):2327—
2361, 2023.

[11] Yu Semenov and Oleg Sukhoroslov. Dslab faas: Fast and accurate
simulation of faas clouds. Physics of Particles and Nuclei, 55(3):485—
488, 2024.

[12] Amazon Web Services. Aws lambda - run code without thinking about
servers or clusters, 2024.

[13] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Archi-
tectural implications of function-as-a-service computing. In Proceed-
ings of the 52nd International Symposium on Microarchitecture, page
1063-1075, New York, NY, USA, 2019.

