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a b s t r a c t 

In Cloud systems, Virtual Machines (VMs) are scheduled to hosts according to their instant 

resource usage (e.g. to hosts with most available RAM) without considering their overall 

and long-term utilization. Also, in many cases, the scheduling and placement processes 

are computational expensive and affect performance of deployed VMs. In this work, we 

present a Cloud VM scheduling algorithm that takes into account already running VM re- 

source usage over time by analyzing past VM utilization levels in order to schedule VMs 

by optimizing performance. We observe that Cloud management processes, like VM place- 

ment, affect already deployed systems (for example this could involve throughput drop 

in a database cluster), so we aim to minimize such performance degradation. Moreover, 

overloaded VMs tend to steal resources (e.g. CPU) from neighbouring VMs, so our work 

maximizes VMs real CPU utilization. Based on these, we provide an experimental analysis 

to compare our solution with traditional schedulers used in OpenStack by exploring the 

behaviour of different NoSQL (MongoDB, Apache Cassandra and Elasticsearch). The results 

show that our solution refines traditional instant-based physical machine selection as it 

learns the system behaviour as well as it adapts over time. The analysis is prosperous as 

for the selected setting we approximately minimize performance degradation by 19% and 

we maximize CPU real time by 2% when using real world workloads. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

In latest years, Cloud computing has been emerged as one of the most widely used systems for provisioning virtual

resources to everyday Internet users. Many cloud platforms host services (including infrastructure, platform and software)

that are available on a pay as you go and on-demand model. One of the most important process of such systems is the

virtual machine (VM) scheduling that determines the way in which Physical Machine (PM) resources are allocated in order

to launch a VM instance (a process called VM placement) [33] . Simple solutions include VM scheduling to a PM that has

the most available computational resource (for example RAM) and is within an availability zone (location constraints set by

users) so is ranked as the best available host among others. There are various criteria for VM placement such as scheduling

to hosts with fewer running instances or according to filtering with regards to current resource utilization levels. Other
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include multi sub-scheduling layers that allow more refined placement according to network traffic, availability zones and

other criteria. In general, a second level of scheduling could provide flexibility over the regular scheduling decision [12] . 

In this work we propose the concept of VM scheduling according to resource monitoring data extracted from past

resource utilizations (including PMs and VMs). Our solution applies for Cloud and Inter-Cloud systems as described in

[34,37] following the requirements as presented in [2] . Current systems do not support dynamic VM placement, for ex-

ample OpenStack performs a filtering and weighing of PMs in an instant based way, and does not take into consideration

past system behaviour or VMs resource usage. The problem is getting worst when the scale is increased for example in large

scale Cloud and inter-cloud platforms [32] . This means that PMs that host idle VMs could be shown as busy during specific

time instances, however overall are under-utilized. Another important factor is that Cloud systems use an over-commit re-

source sharing method [17] , where PMs provide more cores and memory than the capacity of the physical host can serve.

This is based on the fact that users, have underutilized VMs and do not have the same resource usage pattern over the

day. Finally, Cloud management processes, such as VM placement, affect already deployed systems (for example this could

involve throughput drop in a database cluster) as well as overloaded VMs tend to steal CPU times from neighbouring VMs.

These represent simple cases that demonstrate the need for a more refined VM scheduling that could improve performance.

In this work we focus on the OpenStack platform 

1 , that is an open source software to build private and public clouds.

OpenStack default configuration involves placing VMs by selecting the host with the most available memory until the VMs

number exceeds the limit. Such behaviour overloads powerful PMs in the stack and leaves low RAM PMs under-utilized

[13] . Similarly in [17] , authors suggest that it might be more efficient to launch VMs to idle hosts with powerful CPUs and

less memory, thus bypassing the default OpenStack scheduler could improve cluster performance. Having said that, current

OpenStack scheduling is considered as simple since it sorts and weighs PMs on instantaneously collected resource usage.

It should be mentioned that a more detailed discussion of schedulers is presented in [35] . In this work we suggest real

time resource analytics based on past resource usage by developing a machine learning model that analyzes PMs and VMs

resource usage on-the-fly. The training data set is populated on a regular interval so the solution provides indications and

predictions as vital factors for VM placement. We expect that our solution will provide deeper understanding of parameters

affecting performance of the already deployed system. We present an experimental analysis such issues based on real world

systems (e.g. Apache Cassandra, MongoDB, Elasticsearch) and workload such as Yahoo! Cloud Serving Benchmark (YCSB). 

The primary “contribution” of our paper is a new Cloud VM scheduling algorithm that is dynamic and adaptive based

on historical resource usage of PMs and VMs. We perform pattern extraction according to continuous monitoring and data

analysis using machine learning. Our contribution is on two cases, (a) we minimize performance degradation of already

deployed systems during the VM scheduling process by demonstrating elimination of throughput drops in database sys-

tems and (b) we increase CPU real time of deployed VMs by minimizing CPU steal times caused by overloaded PMs. So, in

Section 2 we present an extensive literature review analysis on algorithms and approaches based on cloud VM placement

and scheduling, in Section 3 we presents the VM scheduling algorithm, in Section 4 we present the performance evaluation

and in Section 5 we discuss the conclusions and future research directions. 

2. Literature review 

This section presents the literature review study for VM placement. We classify accordingly to different areas related

with (a) cloud platform scheduling, (b) energy efficiency and power cost management, (c) resource provisioning and (d)

optimization of resource usage related parameters. 

2.1. Cloud platform scheduling 

Cloud platform scheduling refers to solutions that focus on the resource management layer and resource orchestration of

the VM placement process. 

The work in [25] present an architecture for scheduling strategies based on a broker mechanism. They use different opti-

mization criteria related with performance optimization, user constraints (i.e. VM placement) and environmental conditions 

(i.e. instance prices). However, this work focuses more on multi cloud, it does not consider past service experiences and it

does not utilize machine learning models. In [8] , authors present an application profiling method for VM placement and

they suggest that the scheduling and resource allocation can be improved. They propose a method based on the canonical

correlation analysis to create the relationships between the application performance and resource usage. Furthermore, they

correlate the application performance with a canonical weight vector that represents the level of involvement of system

factors. The experimental analysis show that high predictions can be achieved on high weights. 

In [42] , authors focused on the problem of VM scheduling in OpenStack systems and present a cloud CPU resource man-

agement system for VM hosting. They include a real time hypervisor, VM scheduler (to allow VMs to share hosts without

interfering performance and VM to host mapping strategy. The experimental results show high CPU resource utilization

when co-hosting VMs. In [3] authors presented a high availability property for a VM named as k -resilient. The work sug-

gested a novel algorithm that guarantees resilience meaning that a VM can be relocated to a non failed host without the
1 OpenStack: https://www.openstack.org . 

https://www.openstack.org
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need to relocate other VMs. The experimental solution is based on a simulation, and the results show optimization in load

balancing compared to a standalone host solution. In [36] , we presented a Cloud simulation framework where we included

basic Cloud scheduling features. 

In [26] authors presented V-Man that is a decentralize algorithm for VM consolidation in clouds. The aim of the algo-

rithm is to maximize the number of PMs by iteratively producing more allocations. The PMs exchange messages in order to

maintain an unstructured overlay network in order to exchange VMs so PMs from heave usage nodes to move to low usage

ones. They present a peer to peer simulation study and they demonstrate that an optimal allocation can be achieved in a

five round of message exchanges. Yet, the authors assume that all VMs are identical. 

2.2. Energy efficiency and power cost management 

This section presents approaches focusing on VM placement to achieve objectives for energy efficiency for cloud clusters

and on more effective cost management. 

In [11] the work aims to optimize VM placement and traffic flow routing by presenting it as an optimization problem.

They suggest that 10–20% of the total power consumption is provoked by the network elements, thus they propose the

“VMPlanner” that includes three approximation algorithms that are (a) the VM grouping according to minimized traffic

volume, (b) VM-group to server-rack mapping (for placing VMs into rack more efficiently) and (c) power-aware inter-VM

traffic flow routing for minimizing the number of paths in the network. They use Greedy Bin-Packing algorithm, as presented

[31] , to select the path with the sufficient capacity. 

In [22] authors study load placement policies for cooling and datacenter temperatures. They follow the idea of VM place-

ment and migration according to different electricity prices and temperatures during the time. Authors base their system

on the assumption that estimated of the running time of jobs is given by the users. They use round robin algorithm and a

cost aware static policy for comparing their results. In [1] , authors present an analytical study to explore single VM migra-

tion and consolidation and their respective online deterministic algorithms. They provide adaptive heuristics (VM placement

optimization and power aware best fit decreasing) that analyze historical data of physical machines with regards to re-

source usage for optimizing energy and performance of VMs. They evaluate the algorithms using a large scale experimental

simulation. 

In [39] authors explore the service-oriented VM placement as an optimization problem. They try to solve the problem

using a graph of Tree (to minimize communication between VMs) and Forest algorithm (for balancing traffic load between

VMs). To evaluate the algorithms they present a comparison with the Best Fit algorithm. They claim that the Forest algo-

rithm decreases outbound communication cost by 22% and Tree algorithm by 92%. They authors suggest that dynamic VM

allocation will be further investigated. In [5] present VM placement and consolidation of VMs in cloud datacenters using

min-max. The authors suggest that guided by application utilities could provide better resource allocation, so high utility

applications get most resources. They experiment using synthetic and real datacenter testbed and they conclude that the

PowerExpandMinMax algorithm is the best utility “for power-performance tradeoffs in modern data centers running hetero-

geneous applications”. 

In [41] , authors present a VM placement framework for minimizing energy consumption and maximize profits. They

suggest that these are constraint satisfaction problems and they suggest a utility function that expresses the SLA satisfaction.

From the perspective of the system they provide a VM placement formulation in order to maximize the number of the

machines to be turned off. The experimental analysis is based on the Xen hypervisor and authors demonstrate that different

parameters can affect the operational costs and to balance the QoS. 

In [15] authors present a resource allocation problem that aims to minimize the total energy cost of cloud system, in a

probabilistic way. Their algorithm places VMs to PMs using dynamic programming and convex optimization. Decision epochs

are used in order to estimate resource requirements. The algorithm is evaluated using simulations and results shows a VM

placement that minimizes the power cost. In [16] authors try to solve cloud energy-efficient VM placement by creating

multiple copies of VMs and placed them into PMs using local search. The experimental analysis shows 20% improvement in

energy consumption compared with selected heuristics. 

In [9] authors provide a framework that allows allocation of VMs in a datacenter to achieve energy awareness. They

further decouple constraints from algorithms and they implement 16 frequently used SLA parameters in the form of con-

straints. The experimental analysis shows an 18% improvement in savings of both energy and CO 2 emissions. In [23] , the

work presents the EnaCloud that is an energy aware heuristic algorithm for VM placement in a dynamic way by considering

energy efficiency. Authors present an experimental case for Xen VMM and they claim that their solution saves energy in

cloud platforms by comparing their algorithm with FirstFit and BestFit. Also, they separate their workloads to web/database

server, compute-intensive and common applications. 

2.3. Resource provisioning 

This section summarizes the resource provisioning VM placement approaches. 

In [6] , authors suggest that in cloud computing there are two provisioning plans, the reservation and the on-demand

plan for cloud consumers. However, advance reservation is difficult to be achieved because of the uncertainty of the re-

source usage by the users. To reduce this problem, authors suggest an optimal cloud resource provisioning algorithm based
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on a stochastic programming model. The work is based on an numerical analysis and evaluations is based on simulations

that show minimization of on-demand costs. Also, they suggest that VM outsourcing i.e. private to public cloud could offer

significant advantages. In [7] , authors focused on the VM consolidation problem in OpenStack systems related with features

such as power, CPU and network sharing. They propose a cloud management platform to optimize these features. They con-

clude that VM consolidation among PMs may offer significant benefits however it can also lead to significant performance

side effects. 

In [40] , authors proposed an autonomic resource management component that decouples provisioning of resources from

the dynamic placement of virtual machines. They introduce a utility function that optimizes VM provisioning based on

constraint satisfaction problems. In [38] a cloud brokering mechanism for VM placement in multiple clouds is presented.

The criteria include price, performance, hardware and load balancing. In this work users define their price and their min-

imum performance and the algorithms place VMs accordingly. They evaluate their solution using a high throughput clus-

ter deployments across cloud providers. They suggest that they achieve 20% better load balancing with low performance

degradation. 

2.4. VM placement for optimizing resource usage 

This section summarizes the VM placement approaches that aim to achieve objective or multi-objective parameters such

as optimization of resource usage for more efficient utilization of the PMs within a cloud cluster. 

In [14] , authors discusses the concept of VM placement from an analytical perspective of VM cloud placement to achieve

power efficiency and resource utilization. They present the VM placement as an ant colony optimization problem in order

to minimize resource wastage and power consumption based on non dominated solutions. They use PM resource usage

statistics for a period of time. In [21] authors focus on the prediction of the effect that could have critical parameters on

the performance of VMs. These are allocation percentages, real-time scheduling and co-placement of VMs in the same PM.

They use linear regression and genetically optimized artificial neural networks for measuring the prediction degradation.

They suggest that an interest aspect of future work is the detection of the workload types for applications that will affect

the predicted value. 

In [28] , authors present an objective method that can be used to compare VM placement algorithm. The response vari-

ables are the user experience, resource utilization, types of VMs and other. Authors present an extensive comparison of 18

algorithms for VM placement and conclude that the choice of the cluster influences more than the selection of nodes. In

[10] , authors present a technology-neutral interfaces for federated cloud systems aiming to VM placement, migration and

monitoring. They base their design in a grid computing monitoring architecture and they provide algorithms to demonstrate

cross VM site management. In [27] , authors focused on optimizing networking scalability by proposing traffic aware VM

placement. They suggest that better placement will can offer im proved communication by limiting the distance between

them. They present an optimization problem and they design a tow tier approximation algorithm that is based on traffic

patterns to achieve better traffic aware VM placement. They provide the cluster-and-cut algorithm (that partitions VMs to

clusters) and the VMMinKcut (partitioning VMs to clusters with minimum inter-cluster traffic). The experimental analysis is

prosperous and the algorithm over-performs by 10% the selected benchmarks. 

In [30] , suggested that VM placement and migration can be executed during unexpected network latencies in a more

sophisticated way that minimizes the data transfer times. They propose an analytical model with algorithms for both cases

that places VMs to PMs by considering the network conditions among PMs and data storage. Also they present a simulation,

where results are prosperous for selected configurations. In [43] , authors presented the VM placement as a multi-objective

optimization problem that aims to minimize the total resource wastage, power consumption and thermal dissipation costs.

They use genetic algorithms to search using conflicting objectives, i.e. for VM placement the objectives are performance, scal-

ability and robustness, and every VM placement has a corresponding chromosome. The results are prosperous and achieve

significant optimization in performance when compared with he bin-packaging algorithm and single-objective approaches. 

In [18] , a structural constraint- aware VM placement is presented that include demand, communication and availability.

They present an optimization problem and they design a hierarchical placement approach using algorithms including a

constraint-aware VM grouping (with minimal communication cost) and VM groups to server rack assignment. They simulate

different VM placement settings and they optimize the communication cost during this action. In [19] authors present a VM

placement problem to minimize the traffic cost. They provide a Markov approximation solution based on an online algorithm

that is dynamic in terms of changing traffic loads that minimizes the number of VMs that need to be relocated. Also, they

provide a performance evaluation by comparing server placement approaches (sequential and random) and routing selection

approaches (shortest path and oblivious) and results are prosperous since their algorithm provides significant improvements

in large and small flows. 

In [4] , authors present the Min Cut Ratio-aware VM Placement algorithm that aims to a placement that satisfies com-

munication and resilience to demand time variations. The experimental analysis show improved datacenter scalability and

reduces the number of dropped packaged by supporting time varying traffic demands. In [24] authors present the least-busy

VM placement algorithm for dynamic scalling performance optimization of service oriented applications hosted in clouds.

They present an experimental analysis comparing their solution with round robin and they observe an a 2% to 3% fewer

VMs that achieve 12% to 16% average improvement for VM placement. 
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Fig. 1. Classification of literature review approached according to CPP, EE, VMP and RP and according to their method (algorithms, optimization, utility 

functions and machine learning). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. OpenStack scheduling 

OpenStack is a open source platform for private and public clouds [29] . It uses the nova-scheduler to decide how VMs

should be placed among the PMs of the OpenStack cluster. Also, it does a systematic search for the best resource by having

an aggregated resource view of all hosts in the cluster [20] . It follows the concept of filtering, meaning that VMs are placed

according to the PMs parameters such as computational resources (CPU, memory etc.), architectural characteristics (hyper-

visors, image properties etc.) and availability properties (i.e. zones). According to [20] these are classified as simple, chance

and zone using a host ranking weight filtering. Moreover, the scheduler stores available hosts into a list and updates it at

intervals configured by the cloud administrator. At the time of the VM scheduling it makes informed decisions based on the

following: 

1. A filtering algorithm for PMs to decide which are capable for hosting the required virtual resources (accepted or rejected).

There are many available filters like the Aggregate Core Filter based on CPU allocation ratios, Aggregate Disk Filter based

on disk allocation ratios, Aggregate Image Properties Isolation for determine images that are matched with aggregation

metadata and many others as presented in [29] . 

2. A weighting algorithm to decide which host from the filtered list is the most dominant for the current request (i.e. by

default is based on RAM weighting). 

OpenStack uses two approached to achieve better resource utilization according to [17] as follows: 

1. Over-commit allows CPU and RAM sharing by VMs meaning that OpenStack commits more resources that could actually

provide by the physical host to an over-commit limit, thus more users could be served by a PM. The idea is based on the

fact that usually users do not simultaneously use their resources at highest levels (an action called resource pegging). 

2. Scheduling improvement allows the OpenStack administrator to configure scheduling algorithms according to the PMs

resource usage. This includes the filtering and weighing of VMS as presented before. 

An interesting configuration in the OpenStack scheduler is the JSON filter that allows simple JSON based grammars for

selecting hosts. This could include a further step of the selection process i.e. after filtering and weighting to allow a more

sophisticated querying combing various metrics to optimize scheduling. In particular schedulers does not only affect the

performance from the perspective on where to place the VM but also influence the performance of the hosts in terms of

over-committing limit. This means that VMs are placed without considering their projected resource usage levels at it is

impossible to forecast such behaviour before the actual deployment. 

2.6. Review conclusions 

Fig. 1 presents the approaches for Cloud Platform Scheduling (CPP), Energy Efficiency (EE), Resource Provisioning (RP)

and VM Placement (VMP). We also correlate the approaches to their methodology including algorithms, optimization, utility

functions and machine learning. We can observe that 

We also summarize literature review analysis in Appendix Tables 1 and 2 . Most of the works like [1,3–7,16,17,41] focus on

algorithms and optimization methodologies to achieve better VM placement in cloud systems using either current resource
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Table 1 

Approaches for Cloud Platform Scheduling (CPP) and Energy Efficiency (EE). 

Class Authors Method Method concept Parameter 1 

CPP Do et al. [8] , Algorithms Canonical correlation analysis Scheduling 

CPP Bin et al. [3] Algorithms k-resilient Load balancing 

CPP Xi et al. [42] Algorithms Mapping strategy Resource utilization 

CPP Marzolla et al. [26] Algorithms Message exchanging Resource allocation 

CPP Lucas-Simarro et al. [25] Optimization Constraints satisfaction Resource utilization 

EE Dupont et al. [9] Algorihtms Constraints satisfaction Energy consumption, CO 2 
EE Le et al. [22] Algorihtms Heuristics Electricity price, Temperature 

EE Beloglazov and Buyya [1] Algorihtms Heuristics Resource usage 

EE Li et al. [23] Algorithms Heuristics (FirstFit/BestFit) Energy consumption 

EE Cardosa et al. [5] Algorithms Min-max Power performance 

EE Fang et al. [11] Optimization Greedy Bin-Packing Traffic volume 

EE Goudarzi and Pedram [16] Optimization Local search Energy consumption 

EE Goudarzi et al. [15] Optimization Probabilistic Analysis Resource usage 

EE Tseng et al. [39] Optimization Tree & Forest Communication cost 

EE Van et al. [41] Utility function Constraints satisfaction Energy consumption, profit 

Table 2 

Approaches for Resource Provisioning (RP) and VM Placement (VMP). 

Class Authors Method Method concept Parameter 1 

RP Tordsson et al. [38] Algorihtms Cloud brokering Load balancing 

RP Chaisiri et al. [6] Algorihtms Stochastic programming model On-demand costs 

RP Corradi et al. [7] Optimization Optimize resource usage Resource usage 

RP Van et al. [40] Utility function Constraints satisfaction Resource usage 

VMP Piao and Yan [30] Algorithms Analytical model Network factors 

VMP Elmroth and Larsson [10] Algorithms Cross VM management Resource utilization 

VMP Biran et al. [4] Algorithms Min Cut Ratio-aware Communication cost, Resilience 

VMP Mills et al. [28] Algorithms Objective method Resource utilization VM type 

VMP Lloyd et al. [24] Algorithms Services Scalability 

VMP Kousiouris et al. [21] Machine learning /Algorithms Linear regression/ Genetic algorithms Prediction degradation 

VMP Gao et al. [14] Optimization Ant colony optimization Resource wastage, performance 

VMP Meng et al. [27] Optimization Approximation Communication cost 

VMP Jiang et al. [19] Optimization Approximation (Markov) Traffic cost 

VMP Jayasinghe et al. [18] Optimization Constraints satisfaction Server rack assignment 

VMP Xu and Fortes [43] Optimization Multi-objective Scalability, Robustness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

usage or historical data from cluster PMs. Works like [9,18,25,40] focus on constraints satisfaction objectives following PMs

resource usage. Approaches like [14,23,39] focus on optimizing NP hard VM placement. Approaches like [11,18,19,27] focus

on networking aspects in order to optimize the communication cost function usually related with optimal VM placement in

order VMs to be close to each other. 

The work of [21] is different from aforementioned solutions as approaches the problem from a different perspective as it

includes a machine learning linear regression model for predicting behaviour of unknown applications. However, the authors

define the VM placement as a heuristic optimization problem using genetic algorithms for quantifying and predicting the

performance of the applications. 

Based on this discussion, we conclude that to the best of our knowledge, current works does not consider dynamic VM

placements according to past VM resource utilization. Yet, almost all the approaches focus on the problem of allocating VMs

considering only the PMs resource usage (either real-time, opportunistic or as an optimization problem). Moreover, machine

learning models are hardly used in literature. 

Cloud platforms use simple weighting schedulers based only on PM resource utilization. Authors in [17] suggest that “the

key problem is that the current weighting strategy is weak and leads to inefficient usage of resource”. We are motivated

by this work and from the statement as authors further suggest that static and dynamic system usage statistics are vital

for calculating the VM placement weight. For example default OpenStack scheduler has an aggregated view of resources

and places VMs on large memory systems until the VMs number exceeds the limit, thus leaving low memory systems

under-utilized or idles [13] . This overloads powerful PMs in the stack and leaves low RAM PMs under-utilized. Next section

presents the VM scheduling algorithm based on already VMs resource utilization. 

3. VM scheduling algorithm 

This section presents the VM scheduling algorithm that includes two optimization schemes based on machine learning.

The algorithm enhances the VM selection phase based on real time monitoring data collections and analysis of physical and

virtual resources. Our aim is to strengthen VM scheduling in order to incorporate criteria related to the actual VM utiliza-

tion levels, so VMs can be placed by minimizing the penalization of overall performance levels. The optimization schemes
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Fig. 2. Online VM Scheduler in OpenStack system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

involve analytics to the already deployed VMs to include (a) maximization of utilization levels and (b) minimization of the

performance drops. In Section 3.1 we present the proposed VM scheduler and in Section 3.2 we present the optimization

schemes for classifying resources according to past historical records. 

3.1. Online scheduler 

Our technique is based on the OpenStack VM scheduling process that includes PMs evaluation prior selecting the best

host for VM placement. The assumption is that requests for VMs are submitted to a Cloud service (in OpenStack is the

nova service) that initiates that process. After PMs evaluation, the VM is scheduled to the best ranked host. In our case, we

extend the selection steps to include the online VM scheduling that includes past history records. In detail, we include one

more step that allows selected PMs to be sorted according to the ones that (a) have computational resources and (b) will

have the least affection to the already deployed systems. to achieve (b) we perform prediction on real time according to the

past resource usage. Fig. 2 demonstrates the VM scheduling process. 

The process includes 8 steps (starting from receiving the request to placing the VM to the best ranked PM) and are as

follows. 

Step 1. The cloud hosting service (that is the Cloud fabric controller) receives a request for creating a new VM including

resources to be allocated such as number of Cores, memory and hard disk resources. Other information includes

network and VM metadata configurations that are out of the scope of this study. 

Step 2. The cloud hosting service sends a request to the Cloud database service that records all operations. 

Step 3. The cloud hosting service sends a request to a scheduling queue in order to select a PM for scheduling the VM. 

Step 4. The scheduler performs the following two subprocesses. 

(a) First it collects a list with all available PMs in the cluster and performs a filtering by selecting PMs according to

their current available resources. The filter is binary, meaning that a PM is capable or not for hosting a VM. For

example if the VM requests 8GM of RAM, all PMs that have greater or equal available RAM will be selected. 

(b) Secondly, the online scheduling process comes to enhance the filtering and weighting scheduling by including

more refined optimization criteria that are related with the past resource usage over time. This process trig-

gers machine learning classification or regression processes according to the selecting criteria. This process en-

hances the traditional approach as it includes data analytics from a real time resource monitoring engine and a

machine learning algorithm to classify resource usage, instead of based on a simple sorting algorithm. Formula

(1) [29] demonstrates the weighting function, where w is the weigher of a host, wmul the weigher multiplier (that

is a coefficient of the selected parameter i.e. RAM 1 and CPU -1), n is the normalization parameter and ν is the

total number of weighers. 

w = w 1 mul ∗ n (w 1 ) + w 2 mul ∗ n (w 2 ) + . . . + w νmul ∗ n (w ν ) (1)

In our case we replace this process by using the optimization schemes. In other words, weighing is based on real

time data and historical records instead of instantaneous collected PM data. In detail, the algorithm evaluates past
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Fig. 3. VM resource monitoring process for online VM scheduling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resource utilization levels (e.g. last 7 days) and classifies according to the overall resource usage. At the end the

list of candidate hosts is populated and the resources are ranked accordingly. In detail, by using this algorithm PMs

are re-ranked according to the selected optimization scheme and based on their VM usage. For example we use as

data set resource information from 24 h monitoring and as training set a seven day resource usage monitoring. The

analytics are (a) according to utilization levels over time by characterizing it as low, medium and heavy and (b)

according to continues data (e.g. memory percent that increases over time). The algorithm performs a weighting

process for the selected PMs according to different features (e.g. CPU, RAM percentage). 

Step 5. The scheduler sends a request to the database service to record the operation. 

Step 6. The scheduler sends a request to the queue of the cloud hosting service with the selected PM for placement. 

Step 7. The service sends a request to the cloud hosting service of the selected PM. 

Step 8. The selected PM hypervisor launches the VM and the operation is recorded to the database service. 

To achieve real time analytics, we implemented a monitoring engine that allows online resource usage monitoring data

collection from VMs. The engine is capable of collecting system data based on interval and stores it to an online cloud

service that makes it available for data processing. Data is collected every a tiny time interval (e.g. 1 s) and is stored in a

temporary local file. The engine includes a number of monitoring features such as CPU (user, nice, system, idle, percent),

memory (total, available, percent, used, free, active, inactive, wired), swap (total, used, free, percent, sin, sout), disk usage

(total, used, free percent), IO (read count, write count, read bytes, write bytes, read time, write time) according to the psutil

cross-platform library 2 for collecting information on running processes and system utilization. 

3.2. Optimization schemes 

The aim of this optimization schemes is to define the weight of the PM according to the resource usage of the VMs.

This will reveal information about the already deployed VMs status, like indications that a workload is running or not. To

achieve this we provide two optimization schemes. Firstly a classification of the VM status about its current resource usage

according to history records (using SVM and SVR) and secondly a convolution method for comparing signals and find their

similarity. To achieve this we run well known workloads and we tag them accordingly so the monitoring information contain

resource usage and a label about the workload status. Fig. 3 demonstrates this process. 

In detail, the VMs are constantly monitored while workloads are running. Reports that are generated by the system

are stored into an archive for later usage. Further, we perform statistical evaluation using opt1 that involves classification

and regression using SVM and SVR respectively or opt2 that involves convolution in the signal to identify similarities and/or

patterns. For example, binary classification can allow us to classify a VM according to its resource usage (e.g. to low, medium

and high utilization) while the convolution method will allow to find patterns according to workloads stored in an archive.

Thus, we first classify VMs and in case a VM has high CPU usage we try to identify if there is a pattern in the CPU usage.

If this is the case, the VM is tagged as running and we set its weight accordingly. VMs with high CPU usage matched

with workload running are assigned a small weight, while VMs with medium CPU usage matched with running workload

are assigned with a medium value weight. High value weights are assigned to VMs that have low CPU utilization and no

matched workloads. The weight is calculated as w = CPU_utilization_percent-1 . 

We use SVM and SVR methods for binary classification and regression according to resource utilization status. Lets con-

sider the example dataset of CPU (CPU percent, memory percent and disk usage percent) in x,y plane and we represent

feature geometrically by vectors. We first find the linear decision hyperplane that separates the features and has the largest
2 https://pypi.python.org/pypi/psutil . 

https://pypi.python.org/pypi/psutil
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margin and we train SVM by minimizing the error function given by the formula 1 
2 w 

T w + C 

n ∑ 

1 

a i , where C is the capacity

constraint, a the parameters for handling no separable data and n are the training data. In addition, to solve for continues

data we use the SVR that works as follows. SVR finds a function with at most e-deviation from the target y. The problem

can be represented as a convex optimization problem given by the formula min 

1 
2 ‖ w ‖ 2 . 

In our study we consider a scenario of a PM p i , with p i ∈ P where P is the total number of servers, and it hosts a VM v j

with v j ∈ V p i , where V p i defines the VMs per server. Each P, V have a resource R = 

[
c m d 

]
where c is the cpu, m is

the memory, s the swap memory, d disk and io the IO usage. We can define the total cluster size 

( T ) as: p c T = 

P ∑ 

i =1 

p c (i ) , p m T 
= 

P ∑ 

i =1 

p m 

(i ) and p d T = 

P ∑ 

i =1 

p s (i ) . 

Similarly, v c T = 

V ∑ 

i =1 

v p c (i ) , v m T 
= 

V ∑ 

i =1 

v p m (i ) and v d T = 

V ∑ 

i =1 

v p s (i ) are defined as the total VM size per server ( p ). 

For each VM placement request, v ν with Rν = [ cν mν dν] the algorithm follows the next steps. For each p i ∈ P it

collects the R data and if p c T < v ν c T and p m T 
< v νm T 

and p d T < v νd T 
it creates an 

M = 

( 

c m d 

p 1 c 1 m 1 d 1 
. . . . . . . . . . . . 

p q c q m q d q 

) 

where q is the maximum number of candidate nodes to host. We define a coefficient coef as a constraint for sorting the M

matrix. If coef is set to 1 we sort the matrix according to the cpu size thus the PM p m 

with the higher cpu will be the first

at the list. It should be mentioned that the default sorting parameter for OpenStack is the memory. 

For each p i , with p i ∈ P we follow an optimization scheme to model the selection of PMs. The algorithm can perform

predictions on selected criteria based on two properties (a) classification where the output variable takes class labels e.g.

for CPU utilization levels (idle, medium and high) and (b) regression where the output variable takes continuous values e.g.

for CPU, memory percentages etc. 

To do this we use a model, where we have a given dataset D = (x 1 , y 1 ) , (x 2 , 

y 2 ) , . . . , (x w 

, y w 

) where x i = (x i 1 , x i 2 , . . . , x iν ) with x is the input vector and x = ⊆ � 

ν and y is the label need to classify and

y i ∈ 1 , −1 . We build the linear function as follows f (x ) = 

ν∑ 

i =1 

(w i × x i ) + β where w is the weight vector w = (w 1 , w 2 , . . . , w r )

and β is bian If f ( x i ) ≥ 0 then the vector x i ≥ 0 and y i 

y i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 

ν∑ 

i =1 

(w i × x i ) + β ≥ 0 

−1 

ν∑ 

i =1 

(w i × x i ) + β < 0 

SVR uses the same principles as the SVM for classification, by including a margin of tolerance (epsilon) that is set in

approximation to the SVM. The algorithm calculates the model accuracies according to the incoming data per interval cl i nt

that is measured in seconds. The output of the algorithm predicts resource usage (e.g. utilization levels) for the selected

features (i.e. cpu percent and memory percentages. We set the algorithm to the following configurations. Having define the

SVM and SVR models that are responsible for classifying signals we correlate incoming signals to already classified ones for

pattern recognition. For signal comparisons we use cross-correlation. This is defined by scaling a basis function P(Xi), shifted

by an offset X, to fit a set of data Di with associated errors σ i measured at positions Xi as given by the following formula

(2) . 

C C F = 

ν∑ 

i =1 

P (X i − X ) D i /σ
2 
i 

ν∑ 

i =1 

P 2 (X i − X ) D i /σ
2 
i 

(2)

To find the similarity between the two signals, we use convolution neural networks. In convolutional neural networks

every network layer acts as a detection filter for the presence of specific features or patterns present in the original data.

The first layers detect (large) features that can be recognized and interpreted relatively easy. Later layers detect increasingly

features that are more abstract (and are usually present in many of the larger features detected by earlier layers). The last

layer is able to make an ultra-specific classification by combining all the specific features detected by the previous layers in

the input data. In our work, we use convolution neural networks to compare signals and identify their similarity. We extract
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Fig. 4. OpenStack VM placement influence to the Apache Cassandra throughput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the similarity by empirically identity local maxima in the convolution signal. In particular, we set distance thresholds for

identifying maxima and compare between them. 

4. Evaluation 

This section presents the performance evaluation of the proposed system. This work focuses on the VM scheduling pro-

cess in Cloud systems. A key problem that Cloud-based schedulers has to address is the dynamic physical host selection that

is based not only in static criteria but in a more complete knowledge on what has been executed in the system over time.

As discussed before, the hosts weighting strategy is based instant based evaluations, such as current available memory, yet,

understanding data to enhance scheduling could be in particular useful and this refers to learning from “both static and

dynamic usage statistics”[17] . The motivation of this work is based on two experimental cases, in which we observed per-

formance degradation in the deployed VMs while we schedule and place new VMs in OpenStack as described in 4.1 and in

4.2 . The experiments executed in an OpenStack cluster of three PMs in which the controller node has 32GB or RAM and the

two compute nodes have 16GB of RAM (rest setup for all nodes includes 16 Cores and 100GB disk). The OpenStack scheduler

is the filtering and weighting according to the highest available RAM. 

4.1. OpenStack influence in VMs 

Firstly, we deploy an Apache Cassandra node in OpenStack and we execute the YCSB workload (100 thousand reads and

updates). During the reading phase, we execute a VM scheduling process that places a VM in the controller host (since it has

the most available memory at that time) and we observe the resource utilization levels and Cassandra throughput metrics.

Fig. 4 demonstrates the variation of the Cassandra throughput and the workload expected completion time while we create

a new VM. We run the experiment 10 times and we measure the average for each timestamp (the sampling rate is 10 s). In

particular, between timestamps 7 and 13 we create a small size VM of a typical Cirros image and between timestamps 30

and 65 we create a medium size Ubuntu image (2 CPUs, 4GB RAM and 40GB HD) with preinstalled Cassandra. It should be

mentioned that the VMs are placed in the controller node that already hosts the Cassandra VM. We can observe that during

these two OpenStack processes, the Cassandra throughput drops while the expected estimation time increases. Especially in

the second case (of the medium size image) the VM placement penalizes the deployed system performance. 

The example shows that in our case a more refined VM placement could be able to enhance the VM scheduling process

by “understanding” current VM behaviour (e.g. that placement in this node will drop throughput). An alternative solution

would be to select an available PM that will not influence the performance of the already deployed system. 

To demonstrate the effectiveness of our solution (called VMA), we run an example case in an OpenStack cluster of 3

PMs (1 controller (32GB RAM) and 2 compute nodes (16GB RAM)). We first run the default OpenStack scheduler in order

to place 3 VMs of a pre-installed Cassandra cluster that are placed in PM 1 , PM 2 and PM 3 respectively. Then we execute a

YCSB workload to PM 1 while PM 2 and PM 3 are in idle state and we execute one more VM placement. We observed that the

default VM scheduler forces the VM to be placed in PM 1 (which at that time instance has the most available RAM), however

our scheduler selects PM 2 due to the fact that recognizes the increased resource usage of PM 1 . 

Fig. 5 demonstrates the throughput in both cases. In particular the grey line demonstrates the throughput in the default

case (where the VM is placed in the same host) while the black line is based on our scheduler. We can observe that our

solution does not affect the throughput (that in the default case drops almost to 0 between timestamps 17 and 19). For this

specific scenario (of 10 0.0 0 0 YCSB reads and updates) our solution optimizes throughput averagely by 19%. 
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Fig. 5. Prediction of MongoDB CPU percent when running YCSB. 

Fig. 6. Prediction of Elasticsearch VM memory percent when running YCSB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second case, we execute a similar experiment for the MongoDB system. As before, we deploy 3 MongoDB instances

in OpenStack and we run a YCSB workload (of 10 0.0 0 0 YCSB reads and updates) in the PM 1 while PM 2 and PM 3 are in idle

state. Fig. 6 demonstrates the throughput comparison between our solution and the default OpenStack scheduler. After, we

create a new VM and the default OpenStack scheduler places it in the PM 1 , thus affecting the performance of the running

workload. We can observe that even if the signal is not so stable (as in the Cassandra case), in average the OpenStack

placement process affects the throughput (represented by the black line). We calculated that averagely our solution offers

26% performance optimization over the default scheduler. 

Finally, Fig. 7 demonstrates the Elasticsearch performance measurements that include (a) total runtime calculation and

(b) total throughput. 

Similarly to the two previous experiments we run 3 instances over OpenStack and we compare default versus VMA solu-

tion. In detail, VMA solution offers 13% optimization over the default scheduler. To conclude, these experiments demonstrate

that default OpenStack scheduling affects already deployed systems performance. Our solution refines scheduling by evalu-

ating VM resource usage, thus VM placements are happening accordingly (for example in PMs that contain under-utilized

VMs). 

4.2. VMs CPU steal time 

In this experiment we observe the CPU steal time (that reflects the time that a hypervisor services another virtual pro-

cessor) in two Cassandra nodes. Fig. 8 demonstrates the CPU steal time between a single VM and two VMs that are executed

concurrently in an OpenStack cloud system. We used the real world workload of YCSB and we executed 10 thousand reads

and updates respectively in both Cassandra nodes. We executed the same workload for both VMs and we ran 10 experi-

ments and we calculated the average of the overall tests. We conclude to the following observations. When we increase the

VMs from one to two the CPU steal time is increasing. For example for a single VM the CPU steal time is around 6% while
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Fig. 7. Prediction of Elasticsearch CPU percent when running YCSB. 

Fig. 8. Steal time percentage for YCSB Apache Cassandra workload execution in small size VM for 10.0 0 0 “inserts” and “updates” in an OpenStack system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when we launch a second VM in the same PM, the CPU steal time is increased to 10%. Based on this simple experiment we

can conclude that by increasing the number of VMs the percentage of the CPU steal time is also increased and this affects

VM utilization. 

To calculate the actual resource usage, we introduce the factor of the “real” CPU utilization that is related to the amount

of CPU that subtracts the amount that has been “stolen” (or in our case has not be offered by the hypervisor to the running

VM). Fig. 9 demonstrates the average value of the “real” CPU utilization rates for the YCSB read and update phases from 10

runs. We observe (for the YCSB updating phase between the timestamps 220 and 365) that while the system CPU utilization

is 81%, when we launch the seconds VM this value drops to 73%, so resource utilization in reality it is dropped by 8%. 

Another experimental case involves execution of the YCSB Apache Cassandra workload in a medium size VM that has

been deployed in Amazon EC2. In particular, we run 50.0 0 0 inserts and 50.0 0 0 updates and we observe the CPU steal

time. The time series in “x” axis represent the time, while in “y” axis the CPU steal time over the workload execution (its

time point represent the measurement of the steal time in relation to the previous point, for example from 6.88 to 6.89

represents CPU steal time of 1%). Fig. 10 demonstrates that during 10 min, the CPU steal time percentage was overall 10%

(increased from 6.88 to 6.98). Based on this discussion we conclude that CPU steal time is an important factor to take in

mind during VM scheduling as it can significantly affects VMs CPU utilization levels. A more refined VM scheduling can

be based on predicting the CPU steal time according to the real time resource usage in order to perform scheduling that

minimizes the CPU steal time. 

To demonstrate our solution we run a CPU steal case in an OpenStack cluster of 2 PMs ( PM 1 and PM 2 ). In our case, PM 1 

has 32GB or RAM while PM 2 has 16GB of RAM. After, we place one VM to PM 1 and we run the YCSB workload respectively.

Fig. 11 shows the statistical CPU steal time distribution in an x,y plane. We can observe that the CPU steal time (default) is

higher than our solution (that minimizes the overall steal time). 

We run a similar experiment in a MongoDB system using again two PMs. As previous case, the default OpenStack sched-

uler selects places the new VM to PM that has already the MongoDB system. Fig. 12 demonstrates the comparison of the
1 
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Fig. 9. “Real” CPU utilization percentage for YCSB Apache Cassandra workload execution in small size VM for 10.0 0 0 “inserts” and 10.0 0 0 “updates” records 

in OpenStack. 

Fig. 10. “CPU steal time” for YCSB Apache Cassandra workload execution in medium size VM for 50.0 0 0 “inserts” and 50.0 0 0 “updates” records in an 

Amazon EC2 instance. 

Fig. 11. Comparison of default OpenStack scheduler versus VMA for CPU steal time when running YCSB in Cassandra node. 
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Fig. 12. Comparison of default OpenStack scheduler versus VMA for CPU steal time in MongoDB. 

Fig. 13. Comparison of default OpenStack scheduler versus VMA for CPU steal time in Elasticsearch node. 

Fig. 14. Prediction of Cassandra VM memory percent when running YCSB. 
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Fig. 15. Prediction of MongoDB CPU percent when running YCSB. 

Fig. 16. Real time data transfer rates. 

Fig. 17. Prediction of Cassandra CPU percent when running YCSB. 
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Fig. 18. Prediction of MongoDB VM memory percent when running YCSB. 

Fig. 19. Prediction of MongoDB CPU percent when running YCSB. 

 

 

 

 

CPU steal time for both cases. We can observe that our solution outperforms the default one. In detail, the average CPU steal

time for the default scheduling case is 4% while for the VMA scheduler we reduce this value to 2%. 

Finally, we run an experiment by deploying an Elasticsearch system as shown in Fig. 13 . 

Our experiment demonstrates the comparison of default OpenStack scheduler versus VMA for CPU steal time when run-

ning YCSB in Elasticsearch node. Similarly to previous experiments VMA outperforms default scheduler. 

4.3. Analysis of the tools 

This section presents the analysis of the tools and their performance. We include (a) the results related with the accuracy

of the prediction models (that use SVR), (b) the results related with the signal similarity comparison and (c) performance

measures of the real time resource monitoring system. 
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Fig. 20. Prediction of Elasticsearch VM memory percent when running YCSB. 

Fig. 21. Prediction of Elasticsearch CPU percent when running YCSB. 

 

 

 

 

 

 

 

 

4.3.1. Analysis of the predictions 

To demonstrate the accuracy of the prediction model we train our model with data from 24 h by running YCSB workloads.

Then we select a window of real time data collected by the system and the actual prediction. To demonstrate the patterns

in a more clear manner we increase the prediction rates by 5%. Fig. 14 demonstrates the Cassandra VM memory usage

by running a typical YCSB workload (that includes 100 thousands reads and writes). Rest figures in Appendix show the

prediction analysis for the rest of the deployed systems (including MongoDB and Elasticsearch). 

In particular, Fig. 17 (page 37)demonstrates the CPU utilization levels and the prediction during two different timeframes.

Figs. 18 (page 38) and 19 (page 38) demonstrate the accuracy of our algorithm for predicting the memory and CPU resource

usage of the MongoDB system respectively. Finally, Figs. 20 and 21 (page 39) demonstrate the accuracy of our algorithm for

predicting the memory and CPU resource usage of the Elasticsearch system respectively. For all cases, it is apparent that the

prediction is similar to the real usage pattern. 
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Fig. 22. Prediction of Elasticsearch VM memory percent when running YCSB. 

Fig. 23. Prediction of Elasticsearch CPU percent when running YCSB. 

 

 

 

 

 

 

 

 

 

Based on this analysis, we can conclude that for both CPU and memory, the workload executions demonstrate a repeating

pattern. Thus, in our case we evaluate the workload executions (e.g. the last hour) by feeding this records to the model, and

we identify if a VM is in the middle of a workload execution or not by comparing sequences of signals. In case of signal

matching we classify the VM as “running” or not. 

4.3.2. Analysis of signal similarity using convolution 

In this section we present the analysis of the signal similarity algorithm. 

We used the convolution method in order to compare the signals and we set a comparison coefficiency that is related

with the similarity of the convolution comparison. Fig. 15 demonstrates the signal similarity and the pattern extraction

between the test signal and the real time signal. It should be mentioned that test signals are stored into the archive, so the

more the samples, higher the accuracy of our model. We present the similarity comparison and the convolution signal in

the Appendix section (MongoDB signal is in page 40 and Elasticsearch in page 40). We can observe that when there are 4

repetitions between the signals meaning that a workload is running. In the specific signal, we can observe that the local

maximum points demonstrate the peaks of the pattern matching. 
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4.3.3. Real time monitoring engine benchmark analysis 

In this section we present the analysis of the real time monitoring engine that is preinstalled and configured to each We

set the data collection interval to 1 s and we aim to explore what is the timeframe in which data should be recorded and

forwarded to the cloud. The machine learning engine connects to a cloud service and parses the data in an iteratively mode.

It executes a series of machine learning models in order to calculate the best accuracy score, thus to conclude with the best

model for VM placement. The data is stores in csv format and are the input to the machine learning model. Fig. 16 demon-

strates the transfer delay versus the rate (that is given by the equation rate = 

rows −count 
rows where rows are the uploaded rows

per iteration and count is the total rows stored in an array). 

We observe that the transfer delay is increased significantly after the timestamp 50 where each timestamp is a window

of 1 s. We can also notice that the transfer rate keeps a steady trend line at that time window. Based on these facts we set

the transfer point in 50 s, and we perform the iterations after every successful completion of a machine learning round. It

should be mentioned that each learning round includes the measurement of accuracies for selected models. 

Since data are uploaded dynamically, to achieve up to modelling of real time data we force the engine to load data

for each iteration. This means that the system will spend a significant amount of time to load the data, thus the actual

modelling is happening based on this delay. For example data upload rate is 3,37 MB per second meaning that in this

example case a file size of 2.84 MB will be uploaded in 9.56 s. Thus the machine learning model refers to data collected

before that time. 

5. Conclusions 

Cloud systems use different virtual machine (VM) placement algorithms to schedule instances by selecting physical ma-

chines (PMs) according to real time system information (i.e usage of CPU, memory, hard disk, network and other). In this

work we stress the problem of instantaneously collected system data that in many cases does not reflect the big picture (i.e.

average resource utilization levels). The current VM placement does not consider real time VM resource utilization levels. In

this work we propose a new VM placement algorithm based on past VM usage experiences. We monitor the VM usage in

real time and we train different machine learning models to calculate the prediction of the VM resource usage per server,

thus to place VMs accordingly. We present an algorithm that allows self managed VM placement according to PM and VM

utilization levels. Usually, traditional systems (i.e. OpenStack) use a filtering (which PMs can host the VM thus having re-

sources) and weighing method (which PM has the higher RAM) to select PMs based on the specific time instance , without

considering the actual VMs’ resource usage of the selected PMs. We introduce the concept of analyzing past VM resource

usage according to historical records based on computational learning to optimize the PM selection phase. 

Also, we proposed a self managed VM placement algorithm based on real time virtual resource monitoring that utilizes

machine learning models to train and learn from past virtual resources usage. Thus, we developed a monitoring engine that

collects resource usage data on real time. The VMA collects data and applies different models for class labels (classification)

and/or continues values (regression). The proposed algorithm allows data processing based on a timeframe window to define

the actual behaviour of the PMs or VMs. The experimental analysis is prosperous and results highlight major improvements

in the VM placement process. The future steps of our research include further experimental analysis and experimentation

related to different machine learning models. 
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