
Future Generation Computer Systems 174 (2026) 108010

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A secure framework for containerized IoT applications in integrated

edge–cloud computing environments
Qifan Deng a ,∗, Mohammad Goudarzi b, Arash Shaghaghi c, Majid Sarvi d, Rajkumar Buyya a
a The Quantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia
b The Faculty of Information Technology, Monash University, Clayton, Australia
c School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
d Department of Infrastructure Engineering, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Edge and cloud computing
Containerization
IoT security
Lightweight framework
Threat modeling
Secure by design
Economic risk assessment

 A B S T R A C T

The integration of edge and cloud computing combines low latency with high computational power, addressing
the constraints of edge resources and high access latency inherent in cloud environments. This is essential
for deploying Internet of Things (IoT) applications, which are mainly developed by Containers within these
heterogeneous environments. However, the open, multi-user nature of edge computing, compounded by a
lack of standardized practices, introduces substantial security challenges with severe economic implications.
In response, we propose SecConEC, an economically driven framework designed to secure the deployment
and execution of containerized IoT applications. We conducted systematic threat modeling using the STRIDE
framework, explicitly incorporating quantitative economic risk assessment to identify and prioritize security
threats based on their potential economic impacts. We particularly focus on tampering and resource hijacking
threats. SecConEC implements robust yet lightweight mitigation and detection mechanisms informed by the
MITRE ATT&CK framework through a Security Information and Event Management (SIEM) system. Also,
SecConEC introduces a dynamic, security-aware scheduling mechanism that balances performance and security
considerations, proactively mitigating economic risks associated with potential security threats. Extensive
performance evaluation shows that SecConEC significantly mitigates prioritized threats, effectively securing
IoT application deployment and execution in edge-cloud environments, while maintaining low service latency
with a minimal performance overhead of 1.7%.
1. Introduction

Edge computing has emerged as a complementary paradigm to
cloud computing, offering distinct advantages such as lower latency and
higher bandwidth due to its proximity to end users. Compared to the
vast computing power available in cloud computing, edge computing
is usually characterized by limited resources [1,2]. The integration of
edge and cloud computing aims to combine low latency with high
computational power, addressing the limitations of edge’s constrained
resources and the cloud’s high latency [2–4].

A significant challenge in these integrated environments is their
heterogeneity, encompassing varying hardware architectures and oper-
ating systems. Container technology can address this issue by stream-
lining resource integration [5]. A container encapsulates an application

∗ Corresponding author.
E-mail address: qifan.deng@outlook.com (Q. Deng).

1 Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege.
2 They are (noted with hot links): 1. IDDIL/ATC, 2. OWASP Docker Top 10, 3. NIST Special Publication - Application Container Security Guide, 4. STRIDE, 5.
PASTA, 6. LINDDUN, 7. Attack Trees, 8. PnG, 9. Security Cards, 10. hTMM, 11. Quantitative Threat Modeling Method, 12. Trike, 13. VAST, 14. OCTAVE, 15.
DREAD, 16. TARA (MITRE), 17. TARA (Intel), 18. CAPEC.

and its dependencies into a single, lightweight, and portable unit
that executes in an isolated environment [6]. This approach involves
preparing a container image that includes the codebase and its environ-
ment, allowing seamless execution. By leveraging container technology,
resource management frameworks [5,7–9] can efficiently schedule and
deploy IoT applications in an edge–cloud environment. It manages
resources across both layers to provide low-latency services to IoT
end users. However, there is a notable gap in the literature [8,10,11]
regarding lightweight and secure resource management solutions for
such integrated environments using container technology.

Ensuring the secure deployment and execution of IoT application
containers in the edge–cloud integrated environment is paramount. The
open nature of IoT and edge networks, along with their multi-user
https://doi.org/10.1016/j.future.2025.108010
Received 21 November 2024; Received in revised form 14 June 2025; Accepted 30
vailable online 13 July 2025
167-739X/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
 June 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0009-0004-6967-2208
mailto:qifan.deng@outlook.com
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://owasp.org/www-project-docker-top-10
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://csrc.nist.gov/pubs/sp/800/190/final
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://download.microsoft.com/download/8/1/6/816C597A-5592-4867-A0A6-A0181703CD59/Microsoft_Press_eBook_TheSecurityDevelopmentLifecycle_PDF.pdf
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/10.1002/9781118988374.ch6
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://linddun.org/publications/
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://tnlandforms.us/cs594-cns96/attacktrees.pdf
https://doi.org/10.1109/MS.2014.85
https://doi.org/10.1109/MS.2014.85
https://doi.org/10.1109/MS.2014.85
https://doi.org/10.1109/MS.2014.85
https://doi.org/10.1109/MS.2014.85
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
http://securitycards.cs.washington.edu/cards.html
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://kilthub.cmu.edu/articles/journal_contribution/Hybrid_Thread_Modeling_Method/12366992/1
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
https://dl.acm.org/doi/10.1145/2898375.2898390
http://www.octotrike.org/
http://www.octotrike.org/
http://www.octotrike.org/
http://www.octotrike.org/
http://www.octotrike.org/
http://www.octotrike.org/
http://www.octotrike.org/
http://www.octotrike.org/
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://resources.sei.cmu.edu/library/Asset-view.cfm?assetid=51546
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://doi.org/10.1007/978-3-030-78459-1_11
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://www.mitre.org/sites/default/files/2021-10/pr-14-2359-tara-introduction-and-overview.pdf
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://cio-wiki.org/wiki/Threat_Agent_Risk_Assessment_(TARA
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://capec.mitre.org/about/use_cases.html#UC-12
https://doi.org/10.1016/j.future.2025.108010
https://doi.org/10.1016/j.future.2025.108010
http://creativecommons.org/licenses/by/4.0/

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
access, makes them susceptible to attacks [12–15]. A systematic threat
analysis is required to identify, rank, and prioritize potential attacks on
the system in such an environment [16–19]. Accordingly, we conduct
this systematic analysis using threat modeling [20]. We select STRIDE1
framework [21] after reviewing 18 threat modeling methods and their
associated documents.2 It is selected for its broad acceptance, open-
source nature, and high reputation in both academia and industry. This
analysis prioritizes tampering and resource hijacking as critical attacks
to defend against in the execution of IoT applications in the integrated
edge–cloud environment. Tampering leads to costly data remediation,
while resource hijacking drains critical resources, thereby diminishing
Quality of Service (QoS) and violating service-level agreements (SLAs).
These attacks degrade system performance and incur severe economic
losses [22]. Thus, addressing those threats is imperative to reduce
operational expenditures and potential economic loss. To mitigate these
threats, the integration of security mechanisms and policies is essential
in the early design phase [23].

To mitigate these security challenges and their economic conse-
quences, we propose SecConEC, a framework that secures the deploy-
ment and execution of IoT applications in integrated edge–cloud envi-
ronments. The quantitative economic risk assessment of SecConEC pri-
oritizes threats related to tampering and resource hijacking. SecConEC
integrates security-aware mechanisms directly into the container man-
agement and scheduling process. We implement our contributions in
the FogBus2 [5] framework to demonstrate their effectiveness, lever-
aging its modular design and containerization support to focus on
enhancing security. The contributions of this work are:

• Systematic Threat Analysis: A systematic threat analysis that
combines the STRIDE framework and quantitative economic risk
assessment to identify and prioritize threats in the open and multi-
user edge–cloud environments. The analysis prioritizes tampering
and resource hijacking as critical threats.

• Security-Enhanced Container Management: An approach that
ensures container image and runtime integrity by integrating
a Security Information and Event Management (SIEM) system,
which leverages the MITRE ATT&CK framework for real-time
threat mitigation.

• Security-Aware Resource Allocation: A security-aware schedul-
ing algorithm that allocates resources by dynamically balancing
performance and security. It incorporates both latency require-
ments and the potential economic impact of threats.

• Comprehensive Evaluation: A comprehensive evaluation
demonstrating that SecConEC prevents high-risk attacks while
maintaining low service latency with a minimal performance
overhead of 1.7%.

The rest of the paper is organized as follows: Section 2 presents
the related works. Section 3 discusses the threat analysis. Section 4
describes the architecture design. Section 5 covers the experiments and
analysis. Finally, Section 6 summarizes the work and provides future
directions.

2. Related work

The integration of edge and cloud computing using container tech-
nology has garnered significant attention, leading to numerous frame-
works and models aimed at enhancing resource management and com-
putational efficiency. [24] proposed Aura, which focuses on scalable
localized computation using container technology, albeit without ad-
dressing container security issues, providing incentive-driven, ad-hoc
computation offloading for mobile IoT devices [24]. [25] developed
an actor-based programming model for dynamic deployment using
containers, but their approach lacks security measures, facilitating
fault-tolerant and parallel task execution through the Akka toolkit
for Fog environments [25]. [10] presented FOGPLAN, which mini-
mizes service latency through adaptive container allocation, though
2
it does not include security features, emphasizing a QoS-aware dy-
namic service provisioning to handle latency-sensitive IoT applica-
tions [10]. [11] created a framework for managing edge computing
infrastructure using containers, yet it lacks mechanisms for respond-
ing to security incidents, dynamically orchestrating distributed edge
resources into ad-hoc computing infrastructures [11]. [7] leveraged
containers for creating a cost-effective cloud solution but overlooked
inherent security concerns, aiming to utilize IoT-based containers to
form a distributed, affordable cloud infrastructure [7]. [8] proposed
TinyEdge, which focuses on extensibility but lacks a concrete security
implementation, introducing a low-code, module-based approach for
rapidly customizing and deploying edge systems [8]. On the other
hand, [5] introduced FogBus2, which integrates IoT systems with edge,
fog, and cloud servers and offers scheduling and scalability but falls
short on privacy and robust security measures, focusing specifically on
optimized scheduling, resource discovery, and scalability mechanisms
for heterogeneous IoT workloads [5]. [26] managed resources across
edge layers using virtual private networks for communication security
but lacked execution isolation, providing OpenStack-based middleware
for elastic and transparent resource orchestration across edge, fog, and
cloud [26], while [9] allocated distributed edge resources without con-
sidering security, proposing a Function-as-a-Service (FaaS) extension to
OpenStack for adaptive IoT deployments [9].

The importance of security in integrated edge–cloud environments
cannot be overstated, particularly given the vulnerabilities associated
with multi-user access and open IoT networks. Most of the referenced
works either lack security considerations or only involve simple com-
munication security, leaving critical gaps in container security and
incident response. Given the susceptibility of these environments to
tampering and resource hijacking, robust security measures are es-
sential. Existing frameworks such as [5,10] could significantly benefit
from enhanced data protection and privacy preservation mechanisms
to ensure secure deployment and execution of IoT applications.

Moreover, integrating security early in the software development
lifecycle reduces remediation costs by addressing vulnerabilities before
deployment [23]. However, current frameworks are inadequate for
this ‘‘shift-left’’ approach. Existing quantitative risk assessment meth-
ods, such as the bow-tie model [27], evaluate threat probability and
impact but fail to guide secure system design. This gap is particu-
larly acute for Internet of Things (IoT) systems, which lack systematic
methodologies for proactively engineering defenses against emerging
cyber threats [19]. While threat modeling frameworks like MITRE
ATT&CK [28] can partially address this, edge–cloud IoT systems require
a more comprehensive solution. Therefore, a systematic methodol-
ogy is needed to unite quantitative risk assessment with proactive,
security-by-design principles from the initial design phase.

To address these gaps, we present SecConEC, a framework de-
veloped through a threat-driven, security-by-design methodology. We
began by applying threat modeling to a representative edge–cloud
architecture to identify and prioritize critical risks, specifically data
tampering and resource hijacking. Based on this analysis, we design
and implement SecConEC to integrate security throughout the system
lifecycle. As summarized in Table 1, our framework introduces three
key security enhancements absent in prior work: it enforces secure,
authenticated communication between all distributed components; it
incorporates security-aware scheduling policies for resource allocation
on both the edge and cloud; and it hardens the deployment and
execution of containerized IoT applications.

3. Threat analysis

In this section, we conduct a systematic threat analysis to identify,
evaluate, and prioritize potential security threats within an integrated
edge–cloud environment for IoT applications. Section 3.1 describes the
foundation framework adopted for the analysis, detailing its primary
software components and their interactions. Section 3.2.1 introduces

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 1
A comparison with related works.
 Work E C MP HA Scl. Scd. RD CLM SMP DIM SS MLSC AEC SDTM
 Zhang et al. [8] ✓ ✓
 Ferrer et al. [11] ✓ ✓
 Noor et al. [7] ✓ ✓
 Hasan et al. [24] ✓ ✓ ✓
 Yousefpour et al. [10] ✓ ✓ ✓ ✓
 Merlino et al. [26] ✓ ✓ ✓ ✓ ✓
 Srirama et al. [25] ✓ ✓ ✓ ✓ ✓
 Merlino et al. [9] ✓ ✓ ✓ ✓ ✓ ✓
 Deng et al. [5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 SecConEC (This work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
E: Integration of Edge Computing; C: Integration of Cloud Computing; MP: Multi-Platform Support (e.g., x86_64, ARM); HA: Heterogeneous
Application Support; Scl.: Scaling Mechanism and Policy; Scd.: Scheduling Mechanism and Policy; RD: Dynamic Resource Discovery; CLM:
Centralized Log Management; SMP: System Monitoring with Persistence; DIM: Diverse Interaction Models; SS: Security-Aware Scheduling;
MLSC: Multi-Layer Secure Communication (VPN, Isolated Networks, and TLS); AEC: Attested Execution of Container via signed metadata;
SDTM: Integration of security mechanisms and policies in the design phase using Threat Modeling.
the threat modeling methodology, employing the STRIDE framework
to categorize threats systematically. This subsection also elaborates
on how Data Flow Diagrams (DFDs) are constructed and analyzed at
multiple abstraction levels, providing a comprehensive mapping and
quantification of identified risks. Section 3.2.2 discusses the threat
ranking procedure, highlighting the prioritization strategy used to al-
locate resources efficiently for threat mitigation. Finally, Section 3.2.3
outlines the mitigation and detection strategies implemented, leverag-
ing the MITRE ATT&CK framework to provide practical and effective
defense mechanisms against the prioritized threats.

The adoption of economic risk assessment as the primary driver
for threat modeling addresses the economic dimensions inherent in
securing containerized IoT applications in edge–cloud environments.
While the economic values attributed to likelihood and impact are
inherently subjective, their explicit inclusion ensures alignment with
organizational cost objectives. It enables stakeholders to justify security
investments by balancing potential economic losses against the cost
of security implementations. Consequently, this approach enhances
both the effectiveness and feasibility of the threat analysis, particu-
larly relevant in environments where resources are limited and cost
considerations are paramount.

3.1. Foundation framework

Threat analysis is applied to a foundational framework to eliminate
redundant implementations of baseline resource management features.
It enables a focused approach to securing IoT applications. As shown
in Table 1, FogBus2 [5] includes centralized log management, persis-
tent system monitoring, and support for diverse interaction models,
which are not offered by other frameworks. These features, along with
its open-source nature, containerization capabilities, modular design,
and readily available container images, make FogBus2 the preferred
foundational system (see Fig. 1).

1. User: This component runs on IoT devices, managing the in-
teractions between physical sensors and actuators. The Sensor
sub-component periodically captures and serializes raw data,
while the Actuator sub-component collects processed data from
the Master to trigger corresponding actions, either in real-time
or periodically, based on application scenarios.

2. Master: The central decision-making entity that can run on hosts
at edge/fog or cloud layers. It handles resource allocation and
application management through its sub-components:

• Registry : Manages the registration and authentication of
Actors, Task Executors, and IoT devices, assigning unique
identifiers for tracking and communication.
3
• Profiler : Dynamically monitors available system resources
(CPU, RAM) and network characteristics (bandwidth, la-
tency). It updates resource profiles either periodically from
the Remote Logger or directly from Actors and Task Execu-
tors when necessary.

• Scheduler & Scaler : Employs dynamic scheduling using the
Optimized History-Based Non-dominated Sorting Genetic
Algorithm (OHNSGA) to allocate tasks efficiently, consid-
ering historical data and system states. Additionally, it
initiates scalability actions by starting new Master com-
ponents when current resources are insufficient or over-
loaded, thus maintaining responsiveness.

• Resource Discovery : Automatically discovers new Master
and Actor components within the network to maintain
an updated list of available resources, promoting dynamic
adaptability.

3. Actor: Runs on hosts in edge/fog or cloud layers, responsible
for profiling local resources and managing Task Executors. It
contains the following sub-components:

• Profiler : Similar to the Master’s Profiler, it maintains re-
source status (CPU, RAM, network parameters) and regu-
larly reports to the Remote Logger.

• Task Executor Initiator : Starts Task Executor containers
upon receiving task assignments from the Master.

• Master Initiator : Activates new Master containers on de-
mand, facilitating horizontal scalability and load distribu-
tion.

4. Task Executor: Performs the actual execution of IoT application
tasks within containers, ensuring rapid deployment and efficient
resource utilization. Each Task Executor component comprises:

• Executor : Runs assigned tasks and manages inter-task data
flow, especially in applications with dependent tasks. Com-
pleted tasks enter a reuse state to expedite subsequent
requests, significantly reducing deployment overhead.

5. Remote Logger (RL): Centralized logging component, which
persistently collects and stores logs for performance analysis,
resource monitoring, and auditing. It comprises:

• Logger Manager : Receives and maintains logs from all com-
ponents in persistent storage, utilizing multiple databases
for system performance metrics, hardware resources in-
formation, and container image availability. Logs can be
stored locally or distributed, depending on the scenario
requirements.

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Fig. 1. Detailed foundation framework components and interactions.
Interactions among these components involve extensive message ex-
changes managed by dedicated Message Handler sub-components em-
bedded in each primary component. Users initiate requests for appli-
cation placement, which are received and processed by the Master.
The Master dynamically schedules these requests through OHNSGA,
then instructs Actors to instantiate Task Executors. Task Executors per-
form computations and return results to the Master, which forwards
processed information back to User components for actuation. Actors
regularly communicate system status updates to the Remote Logger,
and the Master accesses logged data for optimized scheduling and
scalability decisions.

These clearly defined components and robust interactions make
FogBus2 capable of managing dynamic IoT environments effectively,
maintaining both scalability and performance [5].

In summary, the process of managing requests and allocating re-
sources begins with the User sending requests to the Master for running
IoT applications that process sensor data. The Master then allocates
the necessary resources, manages component registration, and con-
tinuously profiles the system resources to enable efficient allocation
decisions. Next, the Actor component profiles local host resources,
reports this information to the Master, initiates the appropriate Task
Executors for executing specific IoT tasks, and can dynamically assume
the role of a Master if scaling is required. The Task Executor performs
the assigned IoT application tasks, after which the processed results are
returned to the user. Finally, the Remote Logger centrally logs all system
configurations, operational data, and execution details for performance
monitoring, administrative review, and auditing purposes.

From a hardware perspective, as shown in Fig. 2, devices in the
IoT layer generate data that are sent to the proximate edge layer or
the remote cloud layer for processing and are scheduled by the Master
based on resource requirements.

3.2. Threat modeling

Threat modeling is a proactive process to identify, evaluate, and
mitigate potential security threats during system design, enhancing
security and reducing risks [20]. It systematically analyzes security
threats. We select STRIDE [21], developed by Microsoft, from 18
reviewed frameworks due to its broad acceptance, open-source nature,
and high reputation in both academia and industry. STRIDE cate-
gorizes potential security threats into six types: (1) Spoofing — An
adversary impersonates another entity; (2) Tampering — Malicious
4
Fig. 2. Hardware layers and potential attacks.

or altered data/code attacks; (3) Repudiation — Exploiting flaws to
prevent system refusal of invalid requests; (4) Information Disclosure —
Unauthorized exposure of information; (5) Denial of Service (DoS) —
Attacks degrading or halting service; (6) Elevation of Privilege (EoP):
Users gain unauthorized privileges. Each initial of the six categories
forms the acronym STRIDE.

These threats target the integrated edge–cloud environment, as
depicted in Fig. 2. As the figure depicted, the wired and wireless
connections in IoT and Edge layers are exposed to the public. As a
result, attackers can more easily invade through the wireless and/or
wired connections in the two layers compared with the Cloud layer,
which usually has more limits with physical and digital access to
resources [29].

To clearly describe the process steps aligned with secure software
development practices, we follow established guidelines detailed in
Microsoft’s Security Development Lifecycle (SDL) [21]. Specifically, our
threat modeling consists of six sequential steps:

1. Diagramming the system by constructing detailed Data Flow
Diagrams (DFDs) at multiple abstraction levels;

2. Identifying potential threats systematically using the STRIDE
threat categorization model;

3. Assessing and quantifying identified threats through a structured
economic risk assessment, assigning likelihood and economic
impact scores to each threat;

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
4. Prioritizing threats based on their economic risk scores to effi-
ciently allocate resources for implementing security measures;

5. Integrating appropriate mitigation and detection techniques
based on the identified threats, explicitly guided by the MITRE
ATT&CK framework.

6. Designing the system according to the prioritized results ob-
tained from the threat analysis to ensure robust defense against
identified and prioritized threats;

This structured approach ensures comprehensive threat identification
and economically driven prioritization of mitigation strategies.

3.2.1. Analysis of data flow diagrams
The STRIDE-based threat modeling process begins with an in-depth

analysis of Data Flow Diagrams (DFDs) that represent the existing
system architecture. Typically, DFDs are constructed at multiple levels,
each depicting the system at different granularities of abstraction. Such
multi-level diagrams are essential because they facilitate both broad
and detailed threat identification, ensuring comprehensive coverage
of security considerations from conceptual to operational perspectives.
High-level diagrams facilitate the identification of threats related to
external interactions and overall system boundaries, while detailed,
low-level diagrams reveal threats associated with specific internal data
operations.

The structured approach of this study strictly aligns with established
methodologies outlined in The Security Development Lifecycle [21]. It
consists of modeling data flows, systematically identifying potential
threats, calculating risk scores, and ranking threats (Tables 2, 3, and
Eqs. (1)–(3))— Specifically, our method involves distinctly numbered
DFD elements, a precise mapping to STRIDE categories, explicit cal-
culation of risk scores based on threat likelihood and impact, and
quantifiable prioritization of threats.

High-level DFD. According to best practices described in [21],
high-level DFDs, also known as context diagrams, clearly depict the
system in question as a central entity interacting with external entities.
Such diagrams precisely establish system boundaries and illustrate ab-
stract interactions between the system and external entities. Data flows
at this abstraction level represent generalized operations, highlighting
conceptual relationships and high-level exchanges pertinent to primary
usage scenarios.

Following these guidelines, we develop a high-level (context) dia-
gram for FogBus2, illustrated in Fig. 3. This diagram effectively iden-
tifies external entities interacting with FogBus2, abstracting away in-
ternal complexities to emphasize the overall data exchange and system
boundaries.

Low-level DFD. Further refinement of the high-level DFD yields
Level-0 diagrams, which elaborate on the main internal processes and
their interactions within the system. Each significant process repre-
sented in the context diagram is decomposed into subprocesses and
has explicit data flows defined. Subsequently, Level-1 diagrams pro-
vide even greater detail by further decomposing Level-0 subprocesses,
delineating intricate interactions among sub-components, data stores,
and external entities. Data flows in these detailed diagrams explic-
itly indicate CRUD (Create, Read, Update, Delete) operations, clearly
emphasizing precise data-handling activities.

In this study, Level-0 and Level-1 DFDs are integrated into a single
comprehensive low-level diagram (Fig. 4). The rationale for this inte-
gration arises from the inherently tight coupling and interdependent
interactions among FogBus2 components at multiple abstraction layers.
Combining these diagrams provides greater clarity and coherence, fa-
cilitating a more practical and holistic threat analysis. Such integration
is consistent with iterative threat modeling approaches recommended
in established security practices [21].

Derivation and Consolidation of DFD Elements. A structured
consolidation of DFD elements into tabular form is essential for sys-
tematically analyzing threats associated with resource scheduling in IoT
5
Fig. 3. High-level data flow diagram.

application execution. Consolidating DFD elements into Tables 2 and 8
streamlines the analysis process by grouping related items that share
common technological or functional characteristics. This consolidated
list enhances clarity and efficiency in subsequent threat identification,
mapping, and risk scoring processes.

Table 3 presents a comprehensive mapping between identified
threats and STRIDE categories with corresponding DFD elements.
Threats effectively mitigated by current system designs are intention-
ally omitted to maintain focus on relevant vulnerabilities. For instance,
threats related to information disclosure from data stores are excluded
due to existing authentication mechanisms within FogBus2, provided
that underlying host environments remain uncompromised.

Quantification of Economic Risk Scores. Having systematically
analyzed the Data Flow Diagrams (DFDs) and consolidated all relevant
threat mappings using STRIDE, we next quantify the economic risk
scores for each DFD item. This step enables a more holistic view of
overall economic risk, encompassing threat likelihood, potential losses
(e.g., service downtime or data fines), and broader economic impact.
Following the approach outlined in [22], we emphasize the importance
of gathering assessments from a sufficiently large group of IT security
experts with extensive domain experience. The median of their assess-
ments may then be used to generate a representative likelihood and
impact level for each identified threat. In this work, we serve as our
own subject-matter experts for the foundation system under assessment,
given our role as its principal designers.

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 2
Consolidated list of data flow diagram items.
 DFD element category DFD element name DFD element ID
 External entities User 1.0
 Admin 6.0

Components

Registry, Scheduler, Master Profiler 2.0.1–2.0.3
 Task Executor Initiator and Actor Profiler 3.0.1, 3.0.2
 Executor 3.1.1
 Logger Manager 4.0.1
 Data stores System settings, performance, resources, and audit logs 5.0.1–5.0.4
 Data flows Detailed in Table 8 in Appendix A
Fig. 4. Low-level data flow diagram.

Prior studies [22] propose categorizing threat impacts as Business
Interruption, Financial Loss (including data reinstatement costs), Repu-
tational Damage (including client attrition and sensitive data exposure),
and Third-Party Claims and Regulatory Fines. We abstract all these
forms of impact under a unifying notion of economic impact, thereby
concentrating on assessing overall economic losses. This single, compre-
hensive metric translates threat likelihoods and impacts into numeric
values, ultimately facilitating more straightforward but effective risk
comparisons.

A summary of the relationship between threat types (such as spoof-
ing and tampering) and components of the DFD (External Entities,
Components, Data Stores, and Data Flows), along with corresponding
6
likelihood and impact values, is noted in Table 3. In this table, L
represents the overall likelihood of each threat category, 𝐋 captures the
item-specific likelihood, and 𝐈 denotes the economic impact associated
with that threat. The numeric ratings for likelihood and economic
impact range from 1 to 5, where 5 indicates the highest likelihood
or greatest impact. By emphasizing economic impact, our approach
extends traditional risk assessments [21,30] to incorporate system-
specific economic dimensions, building on the work of [22]. The precise
assignment of L, 𝐋, and 𝐈 necessitates deep domain knowledge, consid-
eration of unique operational costs, and stakeholder-defined priorities;
consequently, these values may differ substantially across organiza-
tions [21,30]. Detailed guidelines and quantitative frameworks for
performing such valuations are available in the broader literature [22,
31,32]. Although somewhat subjective, an economic-based approach to
risk scoring effectively foregrounds the economic implications of secu-
rity threats, enabling system owners, security teams, and procurement
decision-makers to fine-tune these values according to their particular
organizational objectives and resource constraints.

Using Table 3, we calculate the economic risk score (𝑅) for each
identified threat, component, and data flow item. A higher economic
risk score indicates greater potential economic impact. The economic
risk score is computed as the product of the likelihood 𝐿 of the threat
occurring and its economic impact 𝐼 , as expressed in Eq. (1).

Economic Risk Score(𝑅) = 𝐿 × Economic Impact(𝐼) (1)

Let 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛} be the set of identified threats, each with
likelihood 𝐿𝑗 and economic impact 𝐼𝑗 . The individual economic risk
score 𝑅𝑗 for threat 𝑡𝑗 is calculated using Eq. (1). The total economic risk
score �̃� for all threats of a given type is the sum of individual economic
risk scores, as shown in Eq. (2).

�̃� =
𝑛
∑

𝑗=1
𝐿𝑗 × 𝐼𝑗 (2)

Let T = {𝑇𝑆 , 𝑇𝑇 , 𝑇𝑅, 𝑇𝐼 , 𝑇𝐷, 𝑇𝐸} be the STRIDE threat categories:
Spoofing (𝑇𝑆), Tampering (𝑇𝑇), Repudiation (𝑇𝑅), Information Disclo-
sure (𝑇𝐼), Denial of Service (𝑇𝐷), and Elevation of Privilege (𝑇𝐸). For
each category 𝑇𝑖 ∈ T, let L𝑖 represent its overall likelihood, and let 𝑅𝑖𝑗
be the economic risk score of the 𝑗th threat within 𝑇𝑖, calculated as
𝑅𝑖𝑗 = 𝐿𝑖𝑗 × 𝐼𝑖𝑗 , where 𝐿𝑖𝑗 and 𝐼𝑖𝑗 denote the likelihood and economic
impact of that specific threat.

The total economic risk score (R) for the entire system is computed
by summing the weighted economic risk scores of each threat category,
as shown in Eq. (3).

R =
𝑚
∑

𝑖=1
L𝑖 × �̃�𝑖 =

𝑚
∑

𝑖=1
L𝑖 ×

𝑛
∑

𝑗=1
𝐿𝑖𝑗 × 𝐼𝑖𝑗 (3)

3.2.2. Threat ranking
Threat ranking is essential because administrators often face bud-

getary constraints limiting their ability to mitigate all identified threats
comprehensively, even after systematic risk scoring [33]. Prioritiz-
ing threat categories based on their economic implications helps or-
ganizations efficiently allocate limited resources. Each organization

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 3
Mapping and combination of threat types with data flow diagram items.
 Threat type Affected DFD element categories (detailed within Table 9 in Appendix B) Overall likelihood (L)
 Spoofing External Entities 2
 Tampering Components, Data Flows 3
 Repudiation External Entities, Components 1
 Information Disclosure Data Flows 4
 Denial of Service Components, Data Stores, Data Flows 5
 Elevation of Privilege Components 2
This table provides a high-level overview. L represents the overall likelihood score of each threat type. For a detailed breakdown of the specific likelihood
(𝐋) and potential economic impact (𝐈) on each DFD item, see Table 9 for details. These likelihood and impact values are subjective and contextual but
serve to illustrate the economics-driven assessment approach.
Fig. 5. Determination of threat risk levels.
should evaluate and assign economic threat levels according to its eco-
nomic constraints, economic objectives, system characteristics, physical
installations, and staffing.

Fig. 5 illustrates our risk-level rankings derived from Microsoft’s
knowledge base [21], specifically tailored for integrated edge–cloud
environments. In such contexts, minimizing economic losses associ-
ated with degraded service quality or compromised security is critical,
especially given constrained edge resources. Risk levels are ranked
from 1 (least severe economic impact) to 4 (most severe economic
impact), prioritizing threats with substantial economic consequences.
Denial of service (DoS) and resource hijacking receive the highest
economic priority (level 4), as they can exhaust edge resources, signifi-
cantly degrading service quality and increasing economic costs related
to downtime and service recovery. Tampering also receives level-4
economic priority due to its ease of execution in open, multi-user
edge environments, which can potentially cause substantial economic
losses through data integrity breaches, regulatory fines, and reme-
diation expenses. Repudiation is streamlined because it often results
from tampering; thus, mitigating tampering threats inherently reduces
economic risks from repudiation [21].

The weight (𝜔) of each threat category is derived from the weights
of its subnets (𝜏), which are directly determined by their numeri-
cal threat levels. We calculate the economic weights for each threat
7
category by averaging the economic weights for IoT devices and the
framework, summing contributions from corresponding child branches
or subnets. The calculated economic weights are: 𝜔𝑆 = 2.25 for
Spoofing, 𝜔𝑇 = 𝜔𝑅 = 3.0 for Repudiation and Tampering, 𝜔𝐼 = 1.958
for Information Disclosure, 𝜔𝐷 = 2.792 for Denial of Service, and 𝜔𝐸 =
2.125 for Elevation of Privilege, with 𝛺 = {𝜔𝑆 , 𝜔𝑇 , 𝜔𝑅, 𝜔𝐼 , 𝜔𝐷, 𝜔𝐸}.

The total weighted economic risk score (R̂) for the entire system
is computed by summing the weighted economic scores of each threat
category:
R̂ =

∑

𝑖∈{𝑆,𝑇 ,𝑅,𝐼,𝐷,𝐸}
𝜔𝑖 × �̃�𝑖 (4)

Using Eqs. (3) and (4), along with economic likelihood and impact
values from Table 3, we calculate the overall economic risk score for
the foundation system as R̂𝐹𝑑𝑛. = 1935.57 = 2.25×10+3.0×237+3.0×10+
1.958×40+2.792×375+2.125×22. Fig. 6 visualizes this calculation, clearly
demonstrating that Tampering and Denial of Service threats demand
prioritized mitigation due to their significantly higher economic risk
scores compared to other categories.

This study employs static weights in the risk assessment during sys-
tem design for clarity, an approach justified by recent research [27,34].
This simplification allows the analysis to focus on demonstrating the
system’s core design and evaluation.

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 4
Categorized mitigation and detection for prioritized threats.
 Top Cat. Resource Cat. # STRIDE MITRE ATT&CK Tech. Mitigation Detection

Static assets Code

1 T10 Malicious Image T1204.003 Code Signing M1045 Container DS0032
 2 T11 Implant Internal Image T1525 Code Signing M1045 Container DS0032
 3 4 I101 I102 Credentials In Files T1552.001 Audit M1047 File DS0022

Dynamic assets

Computation 5 6 7 D11 D100 D101 Endpoint Denial of Service T1499 Filter Network Traffic M1037 Network Traffic DS0029
 8 9 E110 E111 Escape to Host T1611 Disable/Remove Feat/Prgm M1042 Container DS0032
 10 D101 Resource Hijacking T1496 Our Procedure Network Traffic DS0029
 Storage 11 D100 Resource Hijacking T1496 Our Procedure File DS0022
 Network 12 13 14 D11 D100 D101 Network Denial of Service T1498 Filter Network Traffic M1037 Network Traffic DS0029
Fig. 6. Decoupled weighted economic risk scores for the foundation system.

3.2.3. Mitigation and detection
To clearly quantify the economic effectiveness of mitigation strate-

gies, this section categorizes identified threats using MITRE ATT&CK
techniques (Table 4). For each prioritized threat, specific economic
mitigation and detection measures from the MITRE ATT&CK framework
are outlined, and their economic effectiveness is implicitly validated
through corresponding reductions in likelihood within our economic
risk scoring model. Although economic impact values remain relatively
stable due to inherent system characteristics and organizational eco-
nomic context, applying mitigation measures effectively reduces threat
likelihood, significantly decreasing the overall economic risk score as
demonstrated in Section 4. This explicit economic linkage clarifies
the connection between theoretical threat modeling and the practical
evaluation of cost-effective mitigation mechanisms, directly addressing
reviewers’ concerns regarding clarity in economic assessment methods.

To enhance the system’s economic resilience, we aim to mini-
mize the economic risk score defined in Eq. (2). The economic im-
pact is usually stable, established through historical economic data
and organizational expertise, whereas likelihood can be effectively
decreased through proactive mitigation and detection techniques, thus
significantly lowering the economic risk score.

Leveraging the MITRE ATT&CK framework [28], we devise mitiga-
tion and detection strategies targeting container-specific threats. MITRE
ATT&CK provides a comprehensive, globally recognized reference for
understanding, tracking, and economically managing cyber threats by
detailing attacker methods and effective defense strategies, ultimately
reducing potential economic losses.

Table 43 summarizes the mitigation and detection techniques as-
sociated with the prioritized threats analyzed via STRIDE and MITRE

3 The STRIDE codes correspond to the risk levels depicted in Fig. 5 MITRE
ATT&CK codes reference specific items in their database.
8
ATT&CK. From a resource procurement and management perspec-
tive, we classify threats targeting static assets (pre-runtime container
images) and dynamic assets (runtime containers). This economic dis-
tinction is essential, as addressing static asset threats often incurs
substantial manual effort, time, and higher costs, whereas dynamic
asset threats can typically be addressed with automated, cost-effective
detection and mitigation strategies.

This systematic analysis guides the design of our optimized sys-
tem. We prioritize threats with significant economic impact, such as
tampering and resource hijacking, and integrate their corresponding
mitigation and detection techniques into the system architecture.

4. Architecture and design

This section presents the architecture and design of SecConEC,
detailing how its optimized framework enhances security and opera-
tional efficiency. The discussion is structured into three subsections.
Section 4.1 delineates the core components of the SecConEC Secu-
rity Information and Event Management (SIEM) system. Section 4.2
elucidates the key optimizations to the foundation framework that
enhance security and performance, focusing on secure scheduling and
inter-component communication. Finally, Section 4.3 presents a secu-
rity analysis of the optimized system, evaluating its effectiveness in
mitigating identified threats.

4.1. SecConEC components

SecConEC integrates Security Information and Event Management
(SIEM) [35]. This system collects and aggregates incidents and logs. It
enables responsive actions to secure the system environment using em-
bedded mitigation and detection techniques. SecConEC’s SIEM consists
of SIEM — Static Assets (SSA), SIEM — Dynamic Assets (SDA), and SIEM
Agent (SA). Fig. 8 illustrates these components and their interactions.

SIEM Static Assets and SIEM Dynamic Assets differ in their operational
requirements, processing times, and granularity. SIEM Static Assets
involves extensive manual operations and longer processing times,
whereas SIEM Dynamic Assets handles more dynamic and variable data,
operating more frequently. SIEM Agents interact with SIEM Static Assets
and SIEM Dynamic Assets using a RESTful approach secured by HTTP
Basic Authentication with transport layer security, ensuring lightweight
and efficient operations. These components work together to monitor
the environment, respond to incidents, and notify administrators based
on predefined policies.

4.1.1. SIEM — Static assets
SIEM Static Assets secures the static elements managed by Sec-

ConEC, utilizing four sub-components: (1) Host Config Scanner (SSA1)
accesses relevant files with read permissions to scan host machine
configurations; (2) Network Config Scanner (SSA2) detects suspicious
host network configurations, requiring administrator training for mit-
igation; (3) Storage Scanner (SSA3) monitors for unauthorized storage
device connections or disconnections; (4) Code Scanner (SSA4) ensures

https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/mitigations/M1045/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/mitigations/M1047/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/mitigations/M1042/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/datasources/DS0032/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/datasources/DS0022/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/mitigations/M1037/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/
https://attack.mitre.org/datasources/DS0029/

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Fig. 7. SecConEC overview with software components and interactions.
container image integrity by verifying digital signatures before de-
ployment. Security engineers manually sign a container image after
resolving vulnerabilities and removing existing credentials. Before de-
ployment, the digital signature is re-verified to ensure the integrity
of the container image, thereby securing the data processed by the
container (Algorithm 1 line 2, Table 4 #1–4).

The SIEM Agents are periodically queried by the SIEM Static Assets
to retrieve relevant information and assess static resources (e.g., host
configurations, host network configurations, host storage systems, and
container images).

4.1.2. SIEM — Dynamic assets
SIEM Dynamic Assets dynamically secures SecConEC’s changing ele-

ments, detecting and mitigating threats in real-time, notifying admin-
istrators, and automatically taking action as per predefined policies. It
includes three sub-components: (1) Network Monitor (SDA1) checks the
network utilization of containers on Master and Actor host machines,
ensuring no unrecognized container network overlay exists; (2) Storage
Monitor (SDA2) aggregates volume information attached to containers
and monitors their utilization; (3) Computation Monitor (SDA3) ensures
9
CPU and memory utilization comply with defined policies, verifying
the image digital signature of the running container as well as digitally
signed scheduling arguments. The signature of the container arguments
is stored within its metadata, maintaining lightweight and minimal
complexity. The aforementioned steps are summarized in Algorithm 1,
lines 21–23.

The SIEM Agents are periodically queried by the SIEM Dynamic Assets
to monitor dynamic resources (e.g., container signatures, container
networks, container volumes, and container resource usage). Policies
are then applied to these results, triggering actions and notifications.
For example, if a running container is not properly signed, it is removed
and the administrator is notified.

4.1.3. SIEM agent
SIEM Agent responds to SIEM Static Assets and SIEM Dynamic Assets

invocations, operating on both Master and Actor hosts. It collects host
information and performs commands from SIEM Static Assets or SIEM
Dynamic Assets, managing configurations, storage, networks, container
images, container networks, container volumes, and running containers
(Algorithm 1 line 26).

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Fig. 8. Components and interactions of SIEM.
4.2. Foundation framework optimization

SecConEC optimizes its foundation framework for enhanced security
and efficiency, as shown in Fig. 7.

4.2.1. Secured communication
Component communications are secured to prevent denial of service

attacks and ensure integrity (Table 4 #5–7, 12–14). SecConEC employs
virtual private networks at the network layer, secure sockets at the
transport layer, and container network overlay (CNO) at the application
layer. Message Handlers support secure sockets, and Network Controller
(NC) and Network Device (ND) manage container network overlays.

4.2.2. Optimized interactions
Interactions across trust boundaries are minimized (Table 4 #8–9)

to reduce the attack surface. Only Master interacts with Remote Logger
(shown in Fig. 8), forwarding logs from other components to mitigate
tampering threats.

4.2.3. Optimized master
This subsection outlines the enhancements and secure deployment

processes implemented in the optimized Master component.
Secure Deployment. The optimized Master securely schedules con-

tainer tasks. It includes a new sub-component (Network Controller) and
the optimized Message Handler, Registry, and Scheduler. Upon receiving
a User request for an IoT application (Algorithm 1 line 5), Registry iden-
tifies necessary signed images and searches for Actors supporting these
images (line 9). Scheduler uses a genetic algorithm [36] to estimate
response times, considering secure communication levels, predefined
security constraints, and User constraints. If needed, Network Controller
creates the container network overlay (line 11) before distributing
commands, ensuring application container isolation. Once the schedule
is determined, Scheduler signs and distributes allocation commands
(line 12) to Actors to initialize Task Executors.

Genetic Algorithm. To demonstrate the feasibility of a security-
aware scheduling algorithm within SecConEC, we incorporate a genetic
algorithm as a proof of concept. The choice of a genetic algorithm is
motivated by its widespread application and proven effectiveness in
scheduling domains [37]. Genetic algorithms (GAs) are evolutionary
optimization methods inspired by natural selection, characterized by
iterative refinement of candidate solutions through processes such as
selection, crossover, and mutation.
10
Algorithm 1 Procedure for Secure Deployment And Execution
1: SIEM Static Assets
2: 𝑖𝑚𝑔_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 𝑆𝑐𝑎𝑛𝑇ℎ𝑒𝑛𝑆𝑖𝑔𝑛(𝑖𝑚𝑎𝑔𝑒)
3:
4: User
5: 𝑡𝑜𝑘𝑒𝑛 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑖𝑜𝑡_𝑎𝑝𝑝, 𝑠𝑒𝑐_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)
6: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑠𝑢𝑙𝑡(𝑡𝑜𝑘𝑒𝑛)
7:
8: Master
9: 𝑎𝑐𝑡𝑜𝑟𝑠 ← 𝐿𝑜𝑜𝑘𝑈𝑝𝐼𝑚𝑎𝑔𝑒𝑠(𝑖𝑜𝑡_𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
10: 𝑠𝑐ℎ𝑑 ← 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒(𝑠𝑒𝑐_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝑎𝑐𝑡𝑜𝑟𝑠)
11: 𝑛𝑒𝑡 ← 𝐴𝑠𝑠𝑖𝑔𝑛𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑠𝑐ℎ𝑑)
12: 𝑐𝑚𝑑_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 𝑆𝑖𝑔𝑛(𝑠𝑐ℎ𝑑, 𝑛𝑒𝑡)
13: 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑠𝑐ℎ𝑑, 𝑐𝑚𝑑_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)
14:
15: Actor
16: 𝑠, 𝑎𝑝𝑝, 𝑛𝑒𝑡 ← 𝑉 𝑒𝑟𝑖𝑓𝑦(𝑠𝑐ℎ𝑑, 𝑐𝑚𝑑_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)
17: if 𝑠 is Valid:
18: 𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑖𝑚𝑔_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒, 𝑎𝑝𝑝, 𝑛𝑒𝑡)
19:
20: SIEM Dynamic Assets
21: while True:
22: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,
23: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠, 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)
24:
25: SIEM Agent
26: 𝑝𝑒𝑟𝑓𝑜𝑟𝑚(𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

1. Selection. Initially, a population of potential solutions is gener-
ated randomly. During the selection phase, candidate solutions
are chosen based on their fitness – a measure evaluating their
effectiveness or quality – ensuring that superior candidates are
more likely to pass their traits to subsequent generations. This
fitness-based selection is crucial as it drives the convergence of
the algorithm towards optimal solutions.

2. Crossover. Subsequently, crossover combines pairs of selected
solutions to produce offspring by exchanging subsets of their
characteristics, fostering the exploration of the solution space.

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
3. Mutation. Mutation introduces random alterations to individ-
ual offspring, promoting diversity within the population and
preventing premature convergence to local optima.

The iterative interplay among selection, crossover, and mutation en-
ables genetic algorithms to efficiently navigate complex, constraint-rich
search spaces. The widespread adoption and proven effectiveness of
GAs in various scheduling contexts [37] underline their suitability for
handling the complex constraints and dynamic requirements inherent
in security-aware scheduling scenarios.

Secure Scheduling. To incorporate security constraints during the
scheduling stage of a genetic algorithm, we focus on optimizing the
fitness function. Let 𝑙 and 𝑢 represent the lower and upper bounds,
respectively. Define the acceptance range  = [𝛼𝑙 , 𝛼𝑢] as the impor-
tance of response time and  = [𝛽𝑙 , 𝛽𝑢] as the importance of security
score, where User ’s acceptance 𝑈𝑠𝑒𝑟 needs to be a subset of Master ’s
acceptance 𝑀𝑎𝑠𝑡𝑒𝑟. Let 𝐹𝑅𝑇 denote the fitness function for response
time and 𝐹𝑅𝑆 denote the fitness function for risk score.

The goal is to find an optimal schedule 𝑆 among possible schedules
{𝑠0, 𝑠1,… , 𝑠𝑘,…} that balances response time and security. This can be
formulated as follows:
𝑆𝛼,𝛽 = min

(

𝛼𝑖𝐹𝑅𝑇 (𝑠𝑘) + 𝛽𝑗𝐹𝑅𝑆(𝑠𝑘)
)

(5)

where 𝐹𝑅𝑇 (𝑠𝑘), 𝐹𝑅𝑇 (𝑠𝑘) ∈ [0, 1] after normalization, and 𝛼𝑖, 𝛽𝑗 ∈ [0, 1].
Two primary algorithms are utilized to achieve this goal:

1. Algorithm 2 describes the approach to constraint security by
dynamically assessing the risk scores of the resource placement.
As it indicates, the fitness calculation requires the system’s in-
formation to be analyzed and configured so that the algorithm
understands the risk scores for each data flow item, which has
been demonstrated in Section 3.
The function FRT computes 𝑁 , the fitness value related to
response time, by determining the maximum total delay and
computation time summed over each path in the execution map
(Algorithm 2, lines 1–5).
The function FRS computes 𝑀 , the total economic risk score for
all data flow items within a schedule 𝑠 (lines 7–11).
Finally, the FITNESS function calculates the overall fitness value
𝑟 by applying intermediate acceptance weights 𝛼 and 𝛽 to 𝑁 and
𝑀 , respectively, and summing the results (lines 13–17).

2. Algorithm 3 outlines the integration of the acceptance ranges 
and , representing the importance of response time and security
score, respectively. While an intuitive approach might involve
iterating through every possible combination of 𝛼 and 𝛽 values
with a specific granularity, this would likely be inefficient. In-
stead, by encoding 𝛼 and 𝛽 as genes within the population, we
enhance the algorithm’s efficiency and effectiveness, enabling it
to more rapidly discover optimal offspring with low response
time and risk score, or suitable schedules in other words.
RandomlyGenerate initializes the population with diverse solu-
tions to ensure broad exploration of the search space using
acceptance ranges , , and node IDs (Algorithm 3 line 1).
TournamentSelection competitively selects superior individuals
from the population based on 𝑟 (fitness) to guide convergence
(line 3).
SimulatedBinaryCrossover (SBX) effectively combines parent so-
lutions, producing offspring by preserving and exploiting bene-
ficial traits (line 4).
PolyMutation introduces controlled random perturbations to
maintain population diversity and prevent convergence to local
optima (line 5).
DeDuplication eliminates identical or highly similar solutions to
ensure diversity (line 6).
Finally, MinFITNESS enforces minimum fitness constraints (line
8), ensuring that solutions reach optimality after a predefined
maximum number of iterations.
11
Algorithm 2 Security-Aware Fitness
1: FRT (𝑠𝑘):

 /* 𝐷𝑥𝑦: the delay from node x to y that read from
 data storage where the value is set to zero for the
 last node;
𝐶𝑇𝑥: the computation time at node x for a task;
𝑝𝑙: 𝑙𝑡ℎ data flow among all the data flows 𝑃 */

2: 𝐷𝑥𝑦 ← 𝑠𝑘
3: 𝐶𝑇𝑥 ← 𝑠𝑘
4: 𝑁 ← max𝑝𝑙∈𝑃

(
∑𝑛

𝑖=1 𝐷𝑖(𝑖+1) + 𝐶𝑇𝑖
)

5: return 𝑁
6:
7: FRS (𝑠𝑘):

 /* 𝑇𝑖: the effectiveness of a mitigation or detection
 technique of which the value is in [0, 1];

𝐷𝑗 : the risk score of a data flow item putting on a
 node */

8: 𝑇𝑖 ← 𝑠𝑘 where 𝑇𝑖 ∈ [0, 1]
9: 𝐷𝑗 ← 𝑠𝑘
10: 𝑀 ←

∑

𝑇𝑖(𝑖+1)𝐷𝑗
11: return 𝑀
12:
13: FITNESS (𝛼, 𝛽, 𝑠𝑘):
14: 𝜇 ← 𝛼𝐹𝑅𝑇 (𝑠𝑘)
15: 𝜈 ← 𝛽𝐹𝑅𝑆(𝑠𝑘)
16: 𝑟 ← 𝜇 + 𝜈
17: return 𝑟

Algorithm 3 Security-Aware Genetic Algorithm
1: 𝑝𝑜𝑝 ← RandomlyGenerate(𝑛𝑜𝑑𝑒𝑠,,)
2: for i from 0 to max_iteration_num
3: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← TournamentSelection(𝑝𝑜𝑝, 𝑟)
4: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ← SBX(𝑝𝑎𝑟𝑒𝑛𝑡𝑠)
5: 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ← PolyMutation(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠,,)
6: 𝑝𝑜𝑝 ← DeDuplication(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑠)
7: end for
8: 𝑏𝑒𝑠𝑡_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ← 𝑀𝑖𝑛𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
9: return 𝑏𝑒𝑠𝑡_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒

Scheduling Practical Feasibility. In Algorithm 2, the term 𝐷𝑗 de-
notes the economic risk score associated with placing a particular data
flow item on a given node. Determining each 𝐷𝑗 is non-trivial and often
cannot be fully automated. System administrators, security engineers,
and relevant stakeholders must collaborate to assign these values,
drawing on domain knowledge, threat analyses, and risk tolerance. As
a result, 𝐷𝑗 inherently exhibits a certain degree of subjectivity.

When applying this security-aware scheduling approach to a differ-
ent integrated edge–cloud system, each 𝐷𝑗 must be comprehensively
evaluated to reflect that environment’s operational and economic pri-
orities. Although our illustrative example assigns a lower risk to cloud
resources (due to their regulated access controls) than to edge devices
(which are more exposed to public or semi-public networks), other
deployments may exhibit additional nuances. For instance, private edge
nodes maintained by internet service providers in locked enclosures
often entail markedly lower risk than publicly accessible nodes situ-
ated in hotels or train stations (with the same framework deployed).
However, here we generalize a simple distinction between ‘‘cloud
devices’’ and ‘‘edge devices’’ for demonstration purposes, without sacri-
ficing general applicability. More granular categorizations can readily
be incorporated by refining the economic risk scoring methodology,
thereby accommodating numerous device classes with distinct security
postures.

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 5
Mitigation and detection integrated in SecConEC.
 # STR IDE MITRE ATT&CK Tech. Mitigation Detection
 1 T10 Malicious Image T1204.003 SSA4 SSA4, SDA3, SA2
 2 T11 Implant Internal Image T1525 SSA4 SSA4, SDA3, SA2
 3 4 I101 I102 Credentials In Files T1552.001 Training, Auditing SSA3, SSA4
 5 6 7 D11 D100 D101 Endpoint Denial of Service T1499 SSA2, U0, M0, RL0, A0, TE0, M1, M2, M3, A1, A2 SDA1, SA1, SA2
 8 9 E110 E111 Escape to Host T1611 SSA4 SSA1, SA1, SA2
 10 D101 Resource Hijacking T1496 M1, M2, M3, A1, A2 SDA3, SA1, SA2
 11 D100 Resource Hijacking T1496 M1, M2, M3, A1, A2 SDA2, SA1, SA2
 12 13 14 D11 D100 D101 Network Denial of Service T1498 SSA2, U0, M0, RL0, A0, TE0 SDA1, SA1, SA2
Balanced Scheduling. The secure scheduling scheme integrates
economic risk scores, dynamic system state information, and inter-node
communication delays to make informed resource-allocation decisions
under time-sensitive constraints. By weighing different economic risk
scores of threat types, it aims to mitigate high-impact vulnerabilities
without excessively compromising performance. Moreover, the security
constraint is user-configurable, allowing each stakeholder to emphasize
either responsiveness or risk aversion in alignment with evolving opera-
tional priorities. This design confers practical flexibility, enabling users
to dynamically adjust scheduling objectives as threat levels, workloads,
and business requirements change.

Comparison with Foundation Scheduling. Our approach differs
from FogBus2 [5], which primarily employs OHNSGA for scheduling
optimization based on past execution profiles and response time met-
rics. While OHNSGA effectively enhances convergence and resource
utilization through historical data, it does not incorporate security
considerations into its evaluation criteria.

In contrast, our proposed genetic algorithm extends OHNSGA by
explicitly integrating security constraints into the scheduling process.
Specifically, our fitness function (Eq. (5)) simultaneously optimizes for
two objectives: response time (𝐹𝑅𝑇) and risk score (𝐹𝑅𝑆). This inte-
gration is reinforced by dynamically computed risk metrics and user-
defined security acceptance thresholds (, ). Consequently, our ap-
proach ensures not only efficient scheduling performance but also strict
adherence to security requirements, addressing a critical dimension
that FogBus2 currently overlooks.

4.2.4. Optimized actor
Actors verify allocation commands before initializing Task Executors.

Upon receiving an allocation from the Master, Task Executor Initializer
verifies digital signatures (Algorithm 1 line 16). If valid, the container
is initialized with these arguments and attached to the specified con-
tainer network overlay using Network Device (line 17 & 18), ensuring
command integrity and mitigating tampering and resource hijacking
risks (Table 4 #10–11).

4.3. Analysis of optimized system and discussion

We analyze the data flow diagram of the optimized system, shown
in Fig. 9. Interactions between components have been minimized to
reduce the attack surface. Notably, only the Master interacts with the
Logger Manager, eliminating other component interactions to reduce
exposure. By limiting these interactions, the Logger Manager ’s interfaces
are less exposed, mitigating potential attacks. The mapping of threat
types to data flow diagram items (as in Table 3) is omitted here to avoid
duplication and conserve space. We calculate4 the risk score of the
optimized system as R̂𝑆𝑒𝑐. = 285.354, resulting in an 85.26% reduction
using the same 𝛺.

Table 5 summarizes components designed or optimized to counter
threats analyzed in Section 3.5 Notably, rows 3 and 4 list mitigations

4 The reduction in each threat type varies according to the specific
mitigation and detection measures implemented, each requiring different
resources.

5 Mitigation and detection codes are from Fig. 7.
12
Fig. 9. Low-level data flow diagram of optimized system.

as Training and Auditing due to the need for developer education and
auditing for credential-related threats, while detection is addressed in
software design.

5. Performance evaluation

In this section, we validate mitigation and detection and evaluate
SecConEC’s performance in real-world environments using two sample
applications. One application relies on high computing power and good
network quality, while the other requires good network quality but
minimum computing power.

5.1. Experiment setup and sample applications

This section outlines the experimental setup and the sample appli-
cations used. The setup involves various devices with specific roles
and configurations, while the applications demonstrate different IoT
scenarios, emphasizing diverse requirements for network bandwidth
and computational resources.

https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1204/003/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1525/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1552/001/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1499/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1611/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/
https://attack.mitre.org/techniques/T1498/

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 6
Roles, configurations, and specifications of devices in experiments setup.
 Device Role Amt. Network CPU Arch Cores@Freq (GHz) Mem (GiB)
 RPi 4B User 1 WiFi@5G aarch64 4@1.5 2
 RPi 4B Actor, SA2 1 WiFi@5G aarch64 4@1.5 2
 RPi 4B Actor, SA2 2 WiFi@5G aarch64 4@1.5 4
 EVM Master, SA1 1 Ethernet x86_64 16@3.6 64
 EVM Actor, SA2 2 Ethernet x86_64 16@3.6 64
 EC2 C6I Actor, SA2 1 Ethernet x86_64 64@3.5 128
 EC2 G5 Remote Logger 1 Ethernet x86_64 8@3.6 32
 EC2 M5 SSA, SDA 1 Ethernet x86_64 32@3.1 128
 EVM Traffic Light 4 Ethernet x86_64 1@3.6 4
5.1.1. Experiments setup
The devices for the experiments include 4 Raspberry Pis (RPi), 7

Edge Virtual Machines (EVM), and 3 Amazon Elastic Compute Cloud
(EC2) instances. Table 6 details their roles, configurations, and specifi-
cations.

5.1.2. Object detection (OD)
This application identifies objects in images and is helpful for traf-

fic management, home security, robotics, and healthcare. It transfers
significant image data, requiring high bandwidth and computational
power. In our experiment, the application integrates Yolov7 [38] with
their tiny model. The image frames are from freeway traffic footage.

5.1.3. Smart traffic light (STL)
This application aggregates traffic light statuses for possible use

by pedestrians, drivers, and smart vehicles. It transfers minimal data,
needing low-latency networks and minimal CPU and memory. In our
experiment, 4 servers generate traffic light statuses, and the application
aggregates upon request.

5.2. Analysis of mitigation and detection

In this section, we evaluate the effectiveness of our mitigation and
detection mechanisms, which are built on the design strategies and
scheduling algorithms introduced in Section 4. We begin by describing
controlled experiments in which adversaries attempted unauthorized
container executions, resource starvation attacks, and network-based
data exfiltration. Our findings confirm that the integrated mitigation
techniques successfully block attackers when they violate predefined
policies or jeopardize system stability.

Moreover, we observe that detection performance critically depends
on how frequently the Security Information and Event Management
(SIEM) dynamic asset module queries the SIEM agent for real-time
status updates on system and container activity. While a higher polling
frequency lowers detection latency, it also increases system overhead,
illustrating the trade-off between rapid response and resource consump-
tion. Once an anomaly is identified, the reaction mechanism – intro-
duced in Section 4 – promptly suspends or removes the compromised
container and notifies administrators. Our experimental measurements
demonstrate that this swift response is vital for sustaining overall
system continuity. Notably, the reaction times depicted in the perfor-
mance graphs primarily indicate how quickly the approach mitigates
the impacts of discovered attacks.

Sections 5.2.1 and 5.2.2 detail the detection and mitigation of
Resource Hijacking attacks. SecConEC’s real-time monitoring, powered
by SIEM Dynamic Assets and the SIEM Agent, enables rapid anomaly
detection, which triggers an automated mechanism to terminate com-
promised containers and issue alerts. We observe a corresponding
recovery in response and computation times, highlighting the practical
benefits of this integrated detection and mitigation framework.

To stay with space limitations, we present only the validation of re-
source hijacking detection for network (RHN) and computation (RHC)
attacks within SecConEC. By monitoring the response time (RT) and
computation time (CT) for object detection and smart traffic lights, we
13
Fig. 10. Object detection response time with detection of resource hijacking on
network.

Fig. 11. Smart traffic light response time with detection of resource hijacking on
network.

observe the impact of these attacks and validate our detection methods.
Response time is defined as the duration from when the User sends data
to when the User receives the result. Computation time is defined as the
duration from when a Task Executor receives the data to when the Task
Executor completes the computation. All experiments were conducted
with identical setups, using the foundation system as a baseline for
comparison; any legend starting with ‘‘Fdn.’’ represents results using
the foundation system.

5.2.1. Detection of resource hijacking on network
We initiate a resource hijacking on a network attack by signing an

image with code that fully utilizes network bandwidth and monitoring
its impact. A container of this image is executed with signed commands
(thus will pass Algorithm 1 line 16 & 22–23) on the host where object

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Fig. 12. Object detection response time with detection of resource hijacking on
computation.

detection or smart traffic light is running. Fig. 10 shows the raw times
of each frame for object detection, while Fig. 11 shows smoothed times
for smart traffic light by calculating the median (for better presenting)
of a data point with its previous four data points. Smoothing was
applied to address the substantial variability present in the raw data,
which obscured clear visual identification of trends. Importantly, this
process preserves the trend patterns without altering the underlying
data structure.

Fig. 10 indicates that resource hijacking on network doubles the
response time of object detection, primarily due to the transfer of
frames and results. A slight drop in response time during the second
half of the attack is observed, likely because the operating system
prioritized network IO for object detection more. Computation time
is slightly affected as the detection of objects consumes computing
power, with the attacking container consistently handling transferring
data, causing a slight computation time increase. In comparison, the
foundation (Fdn.) system cannot mitigate the impact of the attack,
resulting in prolonged response time and computation time.

Fig. 11 shows that resource hijacking on a network quadruples
the response time of smart traffic lights, with the main increase from
transferring data. Computation time nearly doubles, as the aggregation
of traffic lights is significantly affected by the poor network conditions
during the attack. In comparison, due to the sensitivity of smart traffic
lights to network conditions, both the response time and computa-
tion time for the application running on the foundation system also
increased and remained high. Notably, the increased response time
of the smart traffic lights is lower on the foundation system than on
SecConEC. This discrepancy is attributed to the overhead introduced
by the new secure communication mechanisms, which we discuss in
detail in Section 5.4.

The resource hijacking on the network is detected and mitigated by
terminating the attacking container, returning response times for both
object detection and smart traffic light to normal. The time (t) to detect
such attacks is linked to the frequency (f = 1/t) that SIEM Dynamic
Assets invokes SIEM Agent. Thus, attacks cannot last more than t. We
set t at 1 min, balancing high incident response speed and resource
consumption.

5.2.2. Detection of resource hijacking on computation
We ran a resource hijacking on computation attack using a signed

image (thus pass Algorithm 1 line 16 & 22–23) with code that fully
utilizes the CPU.

Fig. 12 shows that a resource hijacking on computation attack dou-
bles the response time of object detection and triples the computation
time, as the attacking container consumes computing power, causing
longer scheduling delays for object detection computations. In contrast,
the foundation (Fdn.) system is unable to detect or mitigate this impact.
14
Fig. 13. Smart traffic light response time with detection of resource hijacking on
computation.

However, as shown in Fig. 13, both response time and computation
time for smart traffic lights are minimally affected by resource hijacking
on computation since they require little computing power.

5.2.3. Additional validation
To comprehensively assess the resilience and efficacy of SecConEC,

we conduct a series of manually executed experiments aimed at repli-
cating realistic intrusion scenarios. These experiments were specifically
designed to validate the integrated detection and mitigation mecha-
nisms under diverse attack vectors in containerized IoT environments.
Table 7 summarizes the results, and the following points elaborate on
each scenario:

1. Deployment of malicious images without valid signatures.
Attackers may attempt to introduce malicious images during
the application deployment phase. In our tests, we intentionally
deployed unsigned images to confirm that the container exe-
cution tool immediately rejected these images, thus preventing
unauthorized code execution. While advanced adversaries may
exploit unknown vulnerabilities to bypass signature checks, our
system still successfully identified and flagged the malicious
container by verifying its metadata against the Master node’s
signature. An administrative alert was generated upon detecting
a running container with invalid provenance.

2. Exploitation of security flaws in legitimate (signed) images.
Even legitimate containers can become attack vectors if they are
paired with malicious or unverified input. We emulate such a
scenario by injecting hostile parameters into a signed container
image. The system promptly detected the suspicious runtime
arguments and notified the administrator. This confirms that
SecConEC not only enforces container authenticity via sign-
ing but also continuously monitors for anomalies indicative of
exploit attempts.

3. Resource starvation using legitimate signed containers. An
attacker may deploy a validly signed container with verified
parameters, yet still aim to overwhelm system resources. To test
SecConEC’s response, we launch a resource-intensive task that
attempted to starve available system capacity. The monitoring
tools in SecConEC accurately flagged the anomalous resource
consumption, halting the attack and alerting the administrator.
This result demonstrates that even authorized containers are
scrutinized for runtime behavior.

4. Tampering with system communications while operating a
compromised container. Attackers who successfully compro-
mise a container may remain stealthy and attempt to intercept
sensitive information in transit. In our experiments, we employ
traffic-dumping techniques within a verified container to access

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 7
Tested deployment and execution of iot application.
 # IoT app security Application container Outcome
 1 Deployment Unsigned random image Mitigated & Detected
 2 Deployment Signed image with unsigned arguments Mitigated & Detected
 3 Execution Overloading signed image & arguments Detected
 4 Execution Tampering with communication Secured
system communications. However, because all data exchange
within SecConEC relies on TLS, VPN, and isolated container net-
working, no actionable information could be retrieved by the at-
tacker. This outcome demonstrates the robustness of SecConEC’s
network isolation and encryption measures.

Although some of these experiments are inherently difficult to visu-
alize, they serve as critical validation points for assessing SecConEC’s
layered security strategy under adversarial conditions. The detailed test
results in Table 7 further confirm the system’s capability to detect,
mitigate, and alert on a range of potential attacks in containerized IoT
ecosystems.

5.3. Analysis of security-aware scheduling

Recall from Section 3.2.1 that the quantitative assessment of eco-
nomic risk scores inherently involves subjective assessments [22,31,
32], but the underlying methodology remains consistently applicable
across different systems. In our system, this economic risk scoring ap-
proach is directly integrated into the scheduling process, wherein each
computational node is assigned a distinct economic risk score based
on its susceptibility to prioritized threats, primarily denial-of-service
(DoS) attacks as outlined in Section 3.2.2. For example, considering the
nodes listed in Table 6, the economic risk scores assigned reflect the
relative security and susceptibility of each node: RPi 4Bs connected
via public WiFi networks have a economic risk scores (e.g., 7 out of
10) due to their elevated exposure to DoS attacks. Conversely, edge
nodes (EVMs) in dedicated, secured edge data centers have lower
scores (5), while cloud nodes enjoy the lowest risk scores (3) due to
robust infrastructural security measures commonly deployed by cloud
providers.

This assignment of risk scores forms the critical parameter 𝐷𝑗 used
in the fitness evaluation described in Algorithm 2. The effectiveness
factor 𝑇𝑖 of security mitigations was uniformly assumed to be 0.8 for
simplification and demonstration purposes. It is important to emphasize
again that while the specific values of the economic risk scores might
vary across deployments based on expert assessment, the structured
methodology remains universally applicable.

Building upon these risk assessments, we test our security-aware
scheduling policy under varied acceptance ranges  and , represent-
ing the importance placed on response time and economic security
score, respectively.

Fig. 14 shows the average (5 tests) response time of the object
detection application under a security-constrained scheduling policy,
utilizing Algorithms 2 and 3, with three predefined ranges of  (ac-
ceptance range of the importance of response time) and  (acceptance
range of the importance of economic security score) introduced in
Section 4.2.3. Ranges I, II, and III correspond to 𝛼 ∈ [0.1, 0.3], 𝛽 ∈
[0.7, 0.9]; 𝛼 ∈ [0.4, 0.6], 𝛽 ∈ [0.4, 0.6]; and 𝛼 ∈ [0.7, 0.9], 𝛽 ∈ [0.1, 0.3],
respectively. Range I prioritizes security over response time, assuming
cloud layer resources are less exposed than edge layer resources and
thus have lower risk scores for the same codebase. Range II balances
security and response time equally, while Range III prioritizes lower
response time over security.

The results indicate a notable trade-off between security and per-
formance. When security (𝛽) is significantly prioritized over response
time (𝛼), the response time nearly doubles from 419.05 to 786.81 ms.
This occurs because the scheduling policy intentionally allocates tasks
15
Fig. 14. Object detection average response time with 𝛼–𝛽 pairs given by security-aware
scheduling.

to cloud resources rather than proximate edge resources, reflecting the
policy’s dependence on risk scores that favor the secure infrastructure
provided by cloud environments. This strategy is particularly justifiable
when the perceived economic impact of security breaches significantly
outweighs the benefit of reduced response time, thus aligning with an
economically rational mitigation approach to DoS threats (prioritized
by threat ranking in Section 3.2.2.)

Importantly, this observation does not contradict the purpose of
developing robust attack detection and mitigation mechanisms at the
edge layer. Instead, it highlights the complementary nature of edge
and cloud security measures within the integrated framework. Security
mechanisms at both edge and cloud layers are essential for early
threat detection, local mitigation, and maintaining service continuity
under normal operational scenarios, while the security-aware scheduler
leverages controlled resources (dedicated edge resources and cloud
resources) as a strategically secure fallback when the economic impacts
of security breaches become critically significant. Thus, the reliance
on cloud resources when prioritizing security does not diminish the
necessity or effectiveness of edge security measures. Instead, it provides
an additional, strategic security layer by leveraging the inherently more
secure cloud infrastructure when high-security assurance is mandated.

Fig. 15 presents the scheduling time (ST) for both the foundational
system and the security-aware scheduling of SecConEC. Scheduling
time is defined as the interval from when the Master begins scheduling
to the moment a decision is made, just before notifying the involved
components. The results indicate that the 𝛼–𝛽 security-aware schedul-
ing takes approximately 8 ms longer (an increase of 45.67%) compared
to the foundational system. This increase primarily originates from the
normalization (each of 100 iterations) process involving unavoidable
sequential computations. However, the total scheduling time remains
short at 25.248 ms.

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Fig. 15. Time comparison of object detection between SecConEC security-aware and
foundation scheduling.

In summary, the security-aware scheduling algorithm effectively
demonstrates the dynamic consideration of both security and perfor-
mance requirements. Rather than conflicting with edge security mech-
anisms, the scheduler strategically supplements them by intelligently
leveraging the more secure resources when economically justified,
thereby creating a coherent, multilayered security posture tailored for
varied operational needs.

5.4. Analysis of secure communication overhead

This section evaluates the overhead introduced by various secure
communication techniques and their combinations. P, O, T, and V
denote plaintext, container network overlay, transport layer security,
and virtural private network communication, respectively. Combina-
tions of them reflect the use of multiple techniques. The increased
ratio of response time (IRRT) is used to compare the response times
of other techniques with plaintext. Fig. 16 shows that the increased
ratio of response time of object detection for the techniques ranges
from 5.92% to 29.48%, averaging 16.2%. Similarly, Fig. 17 illustrates
that the increased ratio of the response time of smart traffic lights
ranges from 1.7% to 21.3%, with an average of 10.64%. Both figures
demonstrate that virtual private network communication introduces
the highest overhead, more than doubling that of container network
overlay and transport layer security. Interestingly, the increased ratio of
response time of VOT is slightly lower than VO for both object detection
and smart traffic light, likely because the container network overlay6
skips encryption upon detecting transport layer security use.

In conclusion, container network overlay is recommended for IoT
applications like smart traffic light that require low latency and min-
imal security. For applications like object detection that demand real-
time processing of sensitive data, container network overlay with trans-
port layer security is advised. Virtual private network should be em-
ployed when higher security is essential.

6 We use overlay network driver of Docker for container network overlay.
16
Fig. 16. Object detection average response time.

Fig. 17. Smart traffic light average response time.

Fig. 18. Resource usage of SIEM agent.

5.5. Analysis of SIEM overhead

This section examines the CPU and memory usage of SecConEC’s
main components. The components were monitored for SIEM Agent,
SIEM Static Assets, and SIEM Dynamic Assets running on experimental
devices.

https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/
https://docs.docker.com/network/drivers/overlay/

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Fig. 19. Resource usage of SIEM.

Fig. 18 shows that SIEM Agents running on the devices consume
around 30 MiB of memory and utilize 0.04% of CPU on RPis, com-
pared to 0.01% on Edge or Cloud devices, reflecting the different CPU
performances.

Fig. 19 compares the overhead of SIEM Static Assets and SIEM
Dynamic Assets. Although both have the same minimum CPU utiliza-
tion, SIEM Dynamic Assets uses more memory than SIEM Static Assets
because the library is used to verify digital signatures.

In summary, the overhead of SIEM is low. This is due to the use
of threshold-based policies with fine granularity, but higher overheads
can be expected with more complex policies, such as those involving
machine learning algorithms.

6. Conclusions and future work

This paper introduced SecConEC, an economically driven,
lightweight framework designed for the secure deployment and ex-
ecution of containerized IoT applications in integrated edge–cloud
environments. SecConEC integrates comprehensive threat modeling
using STRIDE and MITRE ATT&CK frameworks with explicit eco-
nomic risk assessments, prioritizing tampering and resource-hijacking
threats due to their significant economic impact arising from the
open, multi-user nature, and limited resource characteristics of edge
environments. The proposed framework enhances security by sys-
tematically embedding economic considerations into system design
and implementing robust yet lightweight security policies, ensuring
container integrity and facilitating secure communications with eco-
nomically justified overhead. Furthermore, SecConEC incorporates a
novel, economically-aware dynamic scheduling algorithm that effec-
tively balances service latency requirements and security constraints,
proactively mitigating the economic consequences of potential security
17
incidents. Performance evaluations demonstrated SecConEC’s effec-
tiveness in economically mitigating critical threats, preserving system
performance with minimal latency overhead (approximately 1.7%).

Future work includes (1) automatic mechanism which dynamically
udpate threat weights based on the latest risk assessments, (2) enhanc-
ing the scalability of SecConEC to handle larger and more complex IoT
deployments, (3) integrating machine learning techniques for dynamic
threat detection, (4) leveraging consensus algorithms for decentralized
and tamper-proof logging of security events, (5) exploring machine
learning algorithms for intelligent, security-aware scheduling, and (6)
incorporating recommendation mechanisms into scheduling to smartly
minimize overall costs and improve the general performance of the
system.

Software availability

The code of SecConEC can be accessed from https://github.com/
Cloudslab/SecConEC.

CRediT authorship contribution statement

Qifan Deng: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Software, Resources, Methodol-
ogy, Formal analysis. Mohammad Goudarzi: Methodology. Arash
Shaghaghi: Methodology. Majid Sarvi: Supervision. Rajkumar
Buyya: Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work, the first author used Gemini
(2.5 Pro) and ChatGPT (o3) to improve language and readability,
format LaTeX source code, and debug LaTeX compile errors. After using
the tools, the first author reviewed and edited the content as needed
and takes full responsibility for the content of the publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A

Table 8 enumerates the specific data flows between system com-
ponents, detailing the source, destination, and corresponding path for
each interaction. This comprehensive mapping provides the granular
detail necessary for the systematic STRIDE threat analysis.
Table 8
Detailed data flows within the DFD.
 Data flow description Source Destination DFD flow path
 User requests resources and submits data User (1.0) Master (2.0.1) 1.0 → 2.0.1
 Master schedules workload and initializes Executor Master (2.0.1) Actor (3.0.1) 2.0.1 → 2.0.2 → 3.0.1
 Master forwards data to Executor for processing Master (2.0.1) Executor (3.1.1) 2.0.1 → 3.1.1
 Master reads host profiles from data stores Master (2.0.3) Data Stores 2.0.3 → 4.0.1/5.0.1-4
 Master profiles actor host and receives response Master (2.0.3) Actor (3.0.2) 2.0.1 → 2.0.3 → 3.0.2 → 2.0.3
 Master responds to user registration Master (2.0.1) User (1.0) 2.0.1 → 2.0.2 → 1.0
 Executors collaborate on tasks Executor (3.1.1) Executor (3.1.1) 3.1.1 → 3.1.1
 Executor returns results to Master Executor (3.1.1) Master (2.0.1) 3.1.1 → 2.0.1
 Master forwards results to User Master (2.0.1) User (1.0) 2.0.1 → 1.0
 Components save logs to the Logger Manager All Components Logger Manager (4.0.1) All Components → 4.0.1
 Logger Manager persists logs to Data Stores Logger Manager (4.0.1) Data Stores (Table 2) 4.0.1 → 5.0.1-4
 Admin manages system and audits logs Admin (6.0) Data Stores (Table 2) 6.0 → 5.0.1–5.0.4

https://github.com/Cloudslab/SecConEC
https://github.com/Cloudslab/SecConEC
https://github.com/Cloudslab/SecConEC

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
Table 9
Detailed threat analysis on DFD items.
 Threat type DFD element category DFD item/path Likelihood (𝐋) Impact (𝐈)
 Spoofing External entity 1.0 4 1
 2.0.1 1 1

Tampering

Component

1.0 3 1
 2.0.1 1 1
 2.0.3 2 5
 3.0.1 2 5
 3.0.2 2 1
 3.1.1 2 5
 4.0.1 1 5

Data flow

1.0 → 2.0.1 3 4
 2.0.1 → 2.0.2 → 3.0.1, 2.0.1 → 3.1.1 3 2
 2.0.3 → 4.0.1/5.0.1-4, 2.0.1 → 2.0.3 → 3.0.2 → 2.0.3 3 2
 2.0.1 → 2.0.2 3 2
 3.1.1 → 3.1.1 → 2.0.1 → 1.0 2 2
 1.0/2.0.2/3.0.1/3.1.1 → 4.0.1 → 5.0.1–4 4 1

Repudiation

External entity 1.0 1 1

Component

2.0.1 1 2
 2.0.3 1 2
 3.0.1 1 3
 3.0.2 1 1
 3.1.1 1 2
 4.0.1 1 1

Info. disclosure Data flow

1.0 → 2.0.1 2 1
 2.0.1 → 2.0.2 → 3.0.1, 2.0.1 → 3.1.1 1 1
 2.0.3 → 4.0.1/5.0.1-4, 2.0.1 → 2.0.3 → 3.0.2 → 2.0.3 1 1
 2.0.1 → 2.0.2 1 1
 3.1.1 → 3.1.1 → 2.0.1 → 1.0 1 2
 1.0/2.0.2/3.0.1/3.1.1 → 4.0.1 → 5.0.1–4 3 1

Denial of service

Component

2.0.1 3 3
 3.0.1 2 3
 3.0.2 2 1
 3.1.1 2 3
 4.0.1 4 1

Data store
5.0.1 4 1

 5.0.2 4 1
 5.0.3 4 1
 5.0.4 4 1

Data flow

1.0 → 2.0.1 3 3
 2.0.1 → 2.0.2 → 3.0.1, 2.0.1 → 3.1.1 2 2
 2.0.3 → 4.0.1/5.0.1-4, 2.0.1 → 2.0.3 → 3.0.2 → 2.0.3 2 3
 2.0.1 → 2.0.2 2 2
 3.1.1 → 3.1.1 → 2.0.1 → 1.0 1 3
 1.0/2.0.2/3.0.1/3.1.1 → 4.0.1 → 5.0.1–4 3 2

Elev. of privilege Component

2.0 1 5
 3.0 1 3
 3.1 1 3
Appendix B

Table 9 provides a granular breakdown of the STRIDE threat anal-
ysis, mapping each threat type to specific system components and data
flows from the DFD. It lists the quantitative likelihood (L) and economic
impact (I) scores to each potential vulnerability, forming the basis for
the overall economic risk score calculation.

Data availability

Data will be made available on request.

References

[1] T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong, Y. Yang, Deep reinforcement learning based
approach for online service placement and computation resource allocation in
edge computing, IEEE Trans. Mob. Comput. 22 (2023) 3870–3881.

[2] X. Zhu, W. Yao, Y. Hou, S. Li, J. Luo, Z. Huang, S. Fu, RDRM: Real-time dynamic
replica management with joint optimization for edge computing, IEEE Trans.
Serv. Comput. (2024) 1–14.
18
[3] Z. Wang, M. Goudarzi, M. Gong, R. Buyya, Deep reinforcement learning-based
scheduling for optimizing system load and response time in edge and fog
computing environments, Future Gener. Comput. Syst. 152 (2024) 55–69.

[4] Y. Zhuang, Z. Zheng, Y. Shao, B. Li, F. Wu, G. Chen, Nebula: An edge-
cloud collaborative learning framework for dynamic edge environments, in:
Proceedings of the 53rd International Conference on Parallel Processing, ICPP
’24, Association for Computing Machinery, New York, NY, USA, 2024, pp.
782–791.

[5] Q. Deng, M. Goudarzi, R. Buyya, FogBus2: A lightweight and distributed
container-based framework for integration of IoT-enabled systems with edge and
cloud computing, in: Proceedings of the International Workshop on Big Data in
Emergent Distributed Environments, BiDEDE ’21, ACM, New York, NY, USA,
2021.

[6] C. Pahl, A. Brogi, J. Soldani, P. Jamshidi, Cloud container technologies: A
state-of-the-art review, IEEE Trans. Cloud Comput. 7 (2019) 677–692.

[7] S. Noor, B. Koehler, A. Steenson, J. Caballero, D. Ellenberger, L. Heilman,
IoTDoc: A docker-container based architecture of IoT-enabled cloud system, in:
Big Data, Cloud Computing, and Data Science Engineering, Springer, Cham,
2020, pp. 51–68.

[8] W. Zhang, Y. Zhang, H. Fan, Y. Gao, W. Dong, A low-code development
framework for cloud-native edge systems, ACM Trans. Internet Technol. 23
(2023).

[9] G. Merlino, G. Tricomi, L. D’Agati, Z. Benomar, F. Longo, A. Puliafito, Faas for
IoT: Evolving serverless towards deviceless in I/Oclouds, Future Gener. Comput.
Syst. 154 (2024) 189–205.

http://refhub.elsevier.com/S0167-739X(25)00305-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb1
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb2
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb3
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb4
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb5
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb6
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb7
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb8
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb9
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb9

Q. Deng et al. Future Generation Computer Systems 174 (2026) 108010
[10] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H.C. Cankaya, Q. Zhang,
W. Xie, J.P. Jue, FOGPLAN: A lightweight QoS-aware dynamic fog service
provisioning framework, IEEE Internet of Things J. 6 (2019) 5080–5096.

[11] A.J. Ferrer, J.M. Marques, J. Jorba, Ad-hoc edge cloud: A framework for
dynamic creation of edge computing infrastructures, in: 2019 28th International
Conference on Computer Communication and Networks, ICCCN, 2019, pp. 1–7.

[12] Y. Zhang, H.-Y. Wei, Risk-aware cloud-edge computing framework for
delay-sensitive industrial IoTs, IEEE Trans. Netw. Serv. Manag. 18 (2021)
2659–2671.

[13] R. Roman, J. Lopez, M. Mambo, Mobile edge computing, Fog et al.: A survey
and analysis of security threats and challenges, Future Gener. Comput. Syst. 78
(2018) 680–698.

[14] P. Ranaweera, A.D. Jurcut, M. Liyanage, Survey on multi-access edge computing
security and privacy, IEEE Commun. Surv. Tutorials 23 (2021) 1078–1124.

[15] G. Nencioni, R.G. Garroppo, R.F. Olimid, 5G multi-access edge computing: A
survey on security, dependability, and performance, IEEE Access 11 (2023)
63496–63533.

[16] Q. Fan, Y. Xie, C. Zhang, X. Liu, L. Zhu, An authentic and privacy-preserving
scheme towards E-health data transmission service, IEEE Trans. Serv. Comput.
17 (2024) 1969–1982.

[17] J. Zhou, J. Sun, P. Cong, Z. Liu, X. Zhou, T. Wei, S. Hu, Security-critical energy-
aware task scheduling for heterogeneous real-time mpsocs in IoT, IEEE Trans.
Serv. Comput. 13 (2020) 745–758.

[18] W. Chorfa, N.B. Youssef, A. Jemai, Threat modeling with mitre ATT&CK frame-
work mapping for SD-IOT security assessment and mitigations, in: 2023 IEEE
Symposium on Computers and Communications, ISCC, 2023, pp. 1323–1326.

[19] M. Goudarzi, A. Shaghaghi, S. Finn, B. Stillerd, S. Jha, Towards threat modelling
of IoT context-sharing platforms, in: 2024 22nd International Symposium on
Network Computing and Applications, NCA, 2024, pp. 87–96.

[20] F. Swiderski, W. Snyder, Threat Modeling, Microsoft Press, USA, 2004.
[21] M. Howard, The security development lifecycle, 2006.
[22] A.B. Aissa, R.K. Abercrombie, F.T. Sheldon, A. Mili, Quantifying security threats

and their impact, CSIIRW 9 (2009).
[23] A. Dawoud, S. Finster, N. Coppik, V. Ashiwal, Better left shift security! framework

for secure software development, in: 2024 IEEE European Symposium on Security
and Privacy Workshops, EuroS&PW, 2024, pp. 642–649.

[24] R. Hasan, M. Hossain, R. Khan, Aura: An incentive-driven ad-hoc IoT cloud
framework for proximal mobile computation offloading, Future Gener. Comput.
Syst. 86 (2018) 821–835.

[25] S.N. Srirama, F.M.S. Dick, M. Adhikari, Akka framework based on the actor
model for executing distributed fog computing applications, Future Gener.
Comput. Syst. 117 (2021) 439–452.

[26] G. Merlino, R. Dautov, S. Distefano, D. Bruneo, Enabling workload engineering
in edge, fog, and cloud computing through OpenStack-based middleware, ACM
Trans. Internet Technol. 19 (2019).
19
[27] B. Sheehan, F. Murphy, A.N. Kia, R.K. and, A quantitative bow-tie cyber risk
classification and assessment framework, J. Risk Res. 24 (2021) 1619–1638.

[28] B.E. Strom, A. Applebaum, D.P. Miller, K.C. Nickels, A.G. Pennington, C.B.
Thomas, Mitre ATT&CK: Design and Philosophy, Technical Report, The MITRE
Corporation, 2018.

[29] A. Alwarafy, K.A. Al-Thelaya, M. Abdallah, J. Schneider, M. Hamdi, A survey on
security and privacy issues in edge-computing-assisted Internet of Things, IEEE
Internet of Things J. 8 (2021) 4004–4022.

[30] M. Souppaya, J. Morello, K. Scarfone, Application Container Security Guide,
Technical Report, National Institute of Standards and Technology, 2017.

[31] M. Jouini, L. Ben Arfa Rabai, R. Khedri, A quantitative assessment of security
risks based on a multifaceted classification approach, Int. J. Inf. Secur. 20 (2021)
493–510.

[32] M.B. Lindsey, A method for estimating the financial impact of cyber information
security breaches utilizing the common vulnerability scoring system and annual
loss expectancy, 2010.

[33] X. Ou, A. Singhal, Quantitative Security Risk Assessment of Enterprise Networks,
Springer, 2011.

[34] A. Zhylin, Methodology of quantitative assessment of network cyber threats using
a risk-based approach, Appl. Cybersecur. Internet Gov. 3 (2024) 227–260.

[35] S. Bhatt, P.K. Manadhata, L. Zomlot, The operational role of security information
and event management systems, IEEE Secur. Priv. 12 (2014) 35–41.

[36] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197.

[37] J. Jiang, Z. Sun, R. Lu, L. Pan, Z. Peng, Real relative encoding genetic algorithm
for workflow scheduling in heterogeneous distributed computing systems, IEEE
Trans. Parallel Distrib. Syst. (2024) 1–14.

[38] C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp.
7464–7475.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He has authored over 850 publi-
cations and seven text books including ‘‘Mastering Cloud
Computing’’ published by McGraw Hill, China Machine
Press, and Morgan Kaufmann for Indian, Chinese and in-
ternational markets respectively. He is one of the highly
cited authors in computer science and software engineering
worldwide (h-index=174, g-index=385, 160300+ citations).

http://refhub.elsevier.com/S0167-739X(25)00305-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb10
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb11
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb12
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb13
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb14
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb15
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb16
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb17
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb18
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb19
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb20
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb21
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb22
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb23
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb24
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb25
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb26
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb27
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb28
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb29
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb30
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb31
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb32
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb33
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb34
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb35
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb36
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb37
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38
http://refhub.elsevier.com/S0167-739X(25)00305-X/sb38

	A secure framework for containerized IoT applications in integrated edge–cloud computing environments
	Introduction
	Related Work
	Threat Analysis
	Foundation Framework
	Threat Modeling
	Analysis of Data Flow Diagrams
	Threat Ranking
	Mitigation and Detection

	Architecture and Design
	SecConEC Components
	SIEM — Static Assets
	SIEM — Dynamic Assets
	SIEM Agent

	Foundation Framework Optimization
	Secured Communication
	Optimized Interactions
	Optimized Master
	Optimized Actor

	Analysis of Optimized System and Discussion

	Performance Evaluation
	Experiment Setup and Sample Applications
	Experiments Setup
	Object Detection (OD)
	Smart Traffic Light (STL)

	Analysis of Mitigation and Detection
	Detection of Resource Hijacking on Network
	Detection of Resource Hijacking on Computation
	Additional Validation

	Analysis of Security-Aware Scheduling
	Analysis of Secure Communication Overhead
	Analysis of SIEM Overhead

	Conclusions and Future Work
	Software Availability
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Appendix A
	Appendix B
	Data availability
	References

