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1 | INTRODUCTION

ity by enforcing “one service for all” without considering the explicit security
requirements of each asset or the costs associated with security. Dealing with
the security of assets in ultra-large environments calls for rethinking the way we
select and compose services—considering not only the services but the under-
lying supporting computational resources in the process. We motivate the need
for an asset-centric, self-adaptive security framework that selects and allocates
services and underlying resources in the cloud. The solution leverages learn-
ing algorithms and market-inspired approaches to dynamically manage changes
in the runtime security goals/requirements of assets with the provision of suit-
able services and resources, while catering for monetary and computational
constraints. The proposed framework aims to inform the self-adaptive security
efforts of security researchers and practitioners operating in dynamic large-scale
environments, such as the Cloud. To illustrate the utility of the proposed frame-
work it is evaluated using simulation on an application based scenario, involving
cloud-based storage and security services.
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The elastic and multi-tenant nature of the cloud alongside the need for enforcing security through shared, on-demand
access has changed the way we view and secure assets. By assets we refer to a “commodity” in the cloud that can be of
value for a user/organization such as files, privacy settings, location, digital identities, and accounts among others that
support the operation of cloud-based applications.

During the last decade significant progress has been witnessed on self-adaptive security systems for the cloud.
In spite of the progress, the existing solutions tend to be limited in the way they treat security and its constraints

Abbreviations: EDR, emergency detection response; I0C, indicators of compromise; IT, information technology; OT, operation technology;
SLA, service level agreement; SPs, service providers.
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(i.e., computational and monetary). Though that some of the existing cloud-based self-adaptive solutions allow for the
customization of their security, they treat security as an “aggregated quality” by enforcing the deployment of “one ser-
vice for all,” while overlooking the security requirements and constraints of individual assets. This practice results into
unnecessary high costs due to the usage of obsolete services and resources, as well as unmet security requirements per
asset. Moreover, current solutions do not facilitate effective mechanisms for the discovery and allocation of required ser-
vices and resources to users. Instead, they conduct exhaustive searches in vast search spaces for identifying candidate
solutions which can be proven ineffective for ultra-large environments, such as the cloud. Current solutions need to con-
sider the varying nature of different assets and the need for customized, ad-hoc security provision, along with the demand
for effective mechanisms for the discovery and allocation of appropriate services and resources. This is a challenging to
undertake as self-adaptive systems need not only to continuously meet the changing security needs, priorities, and con-
straints of multiple assets from different users. They also need to deploy lightweight, efficient mechanisms to enable users
(even in the presence of scarce resources) to shortlist candidate solutions and acquire service in a quick manner without
embarking into an exhaustive search.

We extend our previous work! as an attempt to address these problems. Our work provides a self-adaptive solution
that manages the changing security requirements of individual assets using a decentralized agent-based auction pro-
cedure and a supervised learning technique. The use of an auction procedure enables the proposed framework to deal
with the scale of the problem and the trade-offs that can arise due to the self-interested and diverse nature of security
requests coming from various assets. Whereas the use of a supervised learning technique (i.e., random forest classifica-
tion algorithm)*3 allows our framework to operate in a proactive and automated fashion by detecting runtime anomalies
that could be indicators of possible security threats and mitigating them prior to their manifestation. By using the random
forest classifier, it is feasible to arrive on more efficient bidding plans, informed by historical data. Instead of entering bid-
ders into an exhaustive bidding for candidate offers, the learning helps to identify optimal security strategies for securing
an asset, thus allowing us to effectively identify and shortlist appropriate candidate solutions. The selection of random
forest classifier was verified by extensive experimentation (Section 5.4) inspired on existing literature* that illustrate its
utility and effectiveness. In this direction, our article is making two key contributions:

« Propose a self-adaptive security method that builds on market-inspired approaches and learning algorithms for man-
aging the runtime security requirements/goals of assets along with the services and underlying resources required for
their satisfaction. The solution uses the random forest algorithm to inform the auctioning process for the effective
identification and selection of ad-hoc adaptation strategies for securing assets, while catering for their monetary and
computational constraints. The framework is evaluated as a simulation and tested on an application scenario involving
cloud-based storage and security services.

« The market-based approach makes a number of auctions mechanisms as sensible candidate. We evaluate and compare
how the choice of an auction can affect the trade-offs between security and cost of a solution. The objective is to inform
the choice of the auction and its suitability to runtime scenarios. We have engineered and instantiated our system with
two dominant market mechanisms, namely, the English® and posted-offer auction® models.

The results indicate that market-inspired methodologies in conjunction with learning algorithms can pose as an effec-
tive and scalable solution for the discovery and allocation of services and resources supporting the security of multiple
assets in the cloud. This can be attributed to the decentralized decision making of markets which allow users to han-
dle their own security requirements/data and promote the efficient concurrent management of multiple varying security
requests. Moreover, we illustrate that the posted-offer auction model is more effective in occasions where time is a critical
aspect of adaptation due to its computational light and simplistic nature, whereas the English auction should be employed
when users are secured and need to acquire cheap or scarce services/resources, due to the bargaining that takes place
between users and service providers (SPs). Both auction models showed that can effectively operate in environments
with limited resources by prioritizing security requests based on their urgency (reflected in bidding prices); in contrast to
conventional non-market, “first come first served” allocation mechanisms.

Although previous works on cloud security have revolved around policy enforcement,’ intrusion detection,® authenti-
cation,”? and authorization,!! among others; to be best of our knowledge, this work is the first to focus on the mitigation
of runtime threats or satisfaction of security requirements of individual assets. Moreover, we are the first to adopt
market-based mechanisms combined with learning algorithms to propose a self-adaptive security approach for cloud
computing environments.
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The rest of this article is organized as follows. Section 2 motivates the need for a self-adaptive security system that
leverages agent-based, market-inspired methodologies and learning algorithms for the selection and allocation of services
and resources in the cloud. Section 3 introduces our architecture. Section 4 analyzes the design and implementation of
the proposed framework. Section 5 tests and evaluates the architecture using simulation. Section 6 reviews related work.
Section 7 concludes with future work.

2 | SELF-SECURING ASSETS BY COMBINING MARKET AND LEARNING

This section motivates the need for a self-adaptive market-inspired framework that caters for the runtime security
goals/requirements of assets. It stimulates the usage of agent-based architectures and market-based methodologies as an
effective solution to the problem. We then justify the grounds of asserting the effectiveness of our framework based on an
application scenario involving cloud-based storage and computational resources for security in a multinational oil and
gas environment.

2.1 | The use of market in the self-securing framework

We perceive cloud as the 5th utility;'? an ultra-large marketplace with shared, on-demand services, and resources that are
traded in the same manner as traditional utilities. These services and resources can serve the changing security goals of
assets in dynamic and shared environments. The assets can be secured by selecting appropriate services and underlying
resources that can best satisfy their changing security goals and constraints. The link between services and resources is
crucial as it captures not only the computational overhead that a service could impose on underlying resources but also the
security they imply on the solution. In particular, a goal-oriented methodology can be followed. Each security goal (e.g.,
text file security) can be further decomposed into a set of security sub-goals, such as anonymity, integrity, and availability,
which can then be mapped with services and underlying resources that can best support the goals and sub-goals of an
asset, as illustrated in Figure 1.

Given the multi-tenant and shared nature of cloud systems along with their ultra-large scale, any cloud-based secu-
rity solutions should be grounded on fundamentally scalable architectures to eliminate the single point of processing and
coordination. Market inspired methodologies can stand as a potential solution to the problem and an effective online opti-
mization mechanism!*!° for the continuous satisfaction of the varying security requirements of multiple assets. Market
solutions enable both users and providers to make their own decisions for maximizing their utility and regulate the supply
and demand of services and resources at market equilibrium. In the presence of scarce resources, auctioning mechanisms
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FIGURE 1 [Illustrates the link between goals, sub-goals, services, and resources

SERVICES




2008 TZIAKOURIS ET AL.
WILEY

can promote the effective allocation of services and resources by prioritizing security requests based on their urgency
(reflected in bidding prices); Thus, ensuring their provision to users that face imminent threat.

Market models can also promote transparency in the way services and resources are traded and mapped to security
goals and sub-goals as their operations are founded on a systematic procedure, henceforth encouraging trust between SPs
and users.

Furthermore, the decentralized decision making nature of market methodologies advocate the development of more
dependable and elastic self-adaptive systems as they: (i) eliminate the single point of failure; (ii) enable users to handle
their own security requirements and data; and (iii) simplify the concurrent management of multiple security requests,
as a major part of the computations and decisions are performed in a decentralized manner. Finally, the usage of market
principles operate on existing services and resources as an add-on, which can relieve security engineers from introducing
structural changes to adaptive solutions, which may cause unintended effects.

2.2 | Motivating example

We consider a cybersecurity incident response driven example in a multinational oil and gas organization. “Company X”
operates in 30 countries, utilizing both information technology (IT) and operation technology (OT), which further per-
plexes security. Multinational oil and gas companies are often targeted by numerous attacks, including state-sponsored
groups and organized crime due to them (often) being part of national critical infrastructure that can impact large num-
bers of users or even entire states and/or countries. Securing assets in such environments is challenging due to the vast
difference in cybersecurity requirements and constraints of assets in conjunction with (often) limited resources available
for supporting security.

A solution for securing assets in such dynamic and ultra-large environment is the deployment of a market-inspired
security solution, enabled by machine learning that will allow users to compete for service, while catering for computa-
tional and monetary costs. For the purposes of this example, we operate with the following assumptions:

« The employees of Company X leverage the proposed system to access two main services: (i) cloud-based storage for log-
ging security and activity logs that can be used by forensic analysts in the case of a compromise to examine malicious
activity; and (ii) cloud-based computational resources supporting the use of an emergency detection response (EDR) tool
used to defend against runtime threats. The EDR tool maintains different security features that come at different com-
putational and monetary costs. In particular, the EDR provides the following features: antivirus protection, behavioral
monitoring, dynamic file analysis, OS advanced querying, treat intelligence analytics, and network intrusion detection.

« The use of storage and computational resources is provided to users by two clouds owned by a subsidiary of Company
X. Employees can use any of the two clouds at a cost. The effective use of resources in the environment is required to
avoid potential wastage due to limited resources.

« We define assets as any systems/machines such as laptops, desktops, servers, and smart portable devices owned by
Company X.

« All assets have software agents deployed, monitoring their contextual data and content. The data monitored for this
example is: (i) location of the asset, (ii) security classification (secret, classified, restricted, unclassified) depending
on the importance of an asset for Company X, (iii) indicators of compromise (IOC) from the detection of suspicious
malicious activity, and (iv) network health, indicating if a device is connected on a trusted network.

For simplicity, this example focuses on the activity of a single user and two assets. The chief financial officer (CFO),
John, of Company X uses a laptop and a tablet. The laptop often stores sensitive data and is considered to be a high value
asset, where the tablet is often used for meetings with very little or no sensitive data. The initial security configuration for
each asset in this example is as follows:

« The laptop operates in a trusted location and network, classified as restricted with no IOCs. In terms of security, an
antivirus and advanced behavioral monitoring is used, whereas for logging a cloud storage of 2 GB is used to record
access logs and file related activity.

« The tablet is also in a trusted location/network, labeled as unclassified with no IOCs. In terms of security an antivirus
is utilized, whereas a cloud storage of 1 GB is used to record access logs.



TZIAKOURIS ET AL. 2009
WILE Y—I—

John needs to travel to country “Y” to conduct business traveling with both assets. He sits in a coffee shop there
waiting for a business partner during which he turns on his laptop and tablet. The software agent detects signif-
icant changes in the monitored parameters, resulting to: operating from an untrusted location and network, with
potential network scanning activity in the network (passive attack behavior detected). The change in the param-
eters triggers the need for adaptation. Adaptation starts with the random forest classifier analyzing the changes
observed for each asset to identify the new security requirements and dynamically shortlist possible solutions based
on historical behavior and best security practices. By analyzing historical behavior, the self-adaptive system is able
to learn and enforce security in an automated manner, while arriving to a more efficient bidding strategy. Instead
of entering bidders into an exhaustive bidding for candidate offers, the learning helps to identify optimal security
strategies for securing an asset while avoiding the wasteful allocation of resources to users that do not require their
immediate use.

A model security decision that the random forest algorithm could make to address the runtime security requirements
of both assets in this scenario is to deploy network intrusion detection along with enhanced threat intelligence analytics.
In addition, enforce logging of the network package headers for the laptop. Concerning the tablet, given its low signifi-
cance for the company, arising from its non-sensitive classification state, deploy network intrusion detection. To meet the
new security requirements, the allocation of additional computational resources and storage is required for both assets.
As we assume that the two cloud providers maintain scarce resources and there are multiple self-interested users that
need to secure their assets, the self-adaptive system uses an auctioning mechanism to allow John and the other users to
compete for resources. To do so the software agent of each asset prepares a bid to enter auction. The bid encapsulates
a description of the resources required as well as the highest price that John is willing to pay to secure its assets. Once
formed, John’s bids are forwarded to a central auctioneer (coordinator) along with bids from rival users for auctioning
with the two cloud providers.

There are multiple candidate solutions for auctioning, with each introducing different characteristics, benefits, and
limitations to the problem environment. For this example, we consider a variation of the well-known posted-offer
auction. The posted-offer auction is conducted in two stages. In the first stage, the sellers (i.e., cloud providers) pri-
vately select a price for their storage service for the certain trading period along with the maximum number of
storage instances they can offer at that price. Once all sellers make their offers available their prices are revealed
to buyers and rival sellers. The trading period follows, where buyers (i.e., Company X employees) are selected in
descending order based on their bidding prices (instead of being randomly selected*) and given the opportunity to
purchase service in a take-it-or-leave-it basis. By introducing user bidding prices in the posted-offer model, it is pos-
sible for the self-adaptive system to dynamically determine if a user can afford to pay a seller’s requested price to
automate the selection process. As well as, to use bidding prices as a heuristic for ranking/selecting users to iden-
tify buyers that face imminent threat and require immediate security provision for their assets. This rises from the
sentiment that users that face imminent threat are willing to pay higher prices compared to users that are not threat-
ened. The auctioning round continues until all buyers have acquired service, or until all available resources have been
purchased.

For the purposes of this example, we assume that 1000 bids were received from various bidders and sufficient resources
exist to only serve of 800 bids/assets. John submitted high bidding prices for the laptop and a low price for the tablet. The
prices are automatically calculated according to historical averages of bidding prices of bids with similar security require-
ments/importance. Based on the submitted bidding prices, John’s laptop acquired the requested resources instantly,
whereas the tablet will receive the additional resources with delay to allow other assets with higher bidding prices, neces-
sitating for immediate security to acquire service first. Continuing with the scenario, John is now traveling to another
location in country Y and he is using his tablet for a meeting during which he suddenly receives a new document con-
taining sensitive information for an upcoming merger with another company, which is classified as secret. The software
agent detects the creation of the new file which causes a change in the asset (tablet) classification changing from unclas-
sified to secret due to the sensitive nature of the new file and redeploys the random forest algorithm to determine the new
runtime security requirements. Given the new classification of the asset there is a need for additional security as well as
additional logging. In particular, dynamic file analysis, network intrusion detection, and complete logs for all security
modifications, file and networking activity are required. As such, a new bid is created to reflect the refined computational
and storage requirements supporting the added security features of the tablet along with a higher bidding price to warrant
a match with a cloud provider.
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3

| CONCEPTUAL MARKET-BASED ARCHITECTURE

This section provides a high-level analysis of the entities and operation phases of the proposed framework (Figure 2).

3.1 | System entities description

« Agents: Agents are self-interested, autonomous entities that represent users in the cloud. An agent is responsible for

monitoring changes in the runtime security goals and sub-goals of assets and triggering security adaptation. In partic-
ular, agents record events that can cause changes in the security of assets along with relevant contextual and behavioral
data. By maintaining data records for each user, it is feasible to construct training datasets for informing the random
forest algorithm for replicating a user’s behavior and enforcing security in an automated and proactive manner. When
an unpredictable event occurs that signifies known malicious behavior, the agent examines if the existing services and
resources can satisfy the refined security goals and underlying sub-goal(s). If the assessment illustrates that are inad-
equate, the agent triggers service-resource adaptation. To adapt, the random forest algorithm examines the recorded
historical data of a user to discover correlations between previously encountered threats (including their mitigation
strategies) and the existing situation. The results from the random forest algorithm are then used to inform the auc-
tioning mechanism for shortlisting candidate solutions by constructing a security specification, called a bid, which
reflects the refined security goals and sub-goals. The bid consists of the following attributes: (i) the asset that needs
to be secured; (ii) the security classification; (iii) the security sub-goals that require support; (iv) the type of service(s)
required; (v) the highest price that a user is willing to pay to secure his/her asset; and (vi) the level of security provision
required. Once a bid is formed, it is forwarded to the coordinator (auctioneer) for auctioning.

Cloud service providers: Cloud SPs are vendors that trade their services and resources in the market. They are responsible
for publicly announcing their offers (called asks) to the coordinator. The asks comprise a specification of the traded
services and resources along with the price that they want to sell them on. In case of a match between an ask and
a bid, the SP allocates the required service(s) and resources to the winner agent by enabling access to the user. The
allocated resources fulfill the runtime security goals and sub-goals of an asset. Thus, each user has access to different
configurations of services (varying in service type, level of security, security features) and resources (varying in: number
of processors, memory, data rate, and storage space) that may be provided by different SPs.

Coordinator: The coordinator is a software system that acts as an auctioneer and market regulator. It sits between
agents and Cloud Service Providers and is responsible for implementing trading rounds during which it accepts bids

Agent X Agent Y Agent Z

- @
Cloud Cloud Cloud
Provider A Provider B Provider C

FIGURE 2 Entity-operation diagram
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and asks from agents and SPs respectively to match between them. The coordinator also oversees SPs and agents for
service level agreement (SLA) compliance as well as warranting the allocation of resource(s) to agents.

3.2 | System operation phases

The proposed framework consists of four phases operating in a continuous cycle, starting with monitoring that passes all
relevant contextual and content data to analyze and inform the adaptation process which in turn triggers feedback (allo-
cation of required resources) to meet the changing security requirements of an asset. Once a set of security requirements
are met, the monitoring phase starts again to detect new changes in the security requirements of an asset. The operational
phases are as follow:

« Monitor phase: Sensors operate on the agent side to detect contextual (e.g., user location, available resources, etc.) and
content-related (e.g., file modification, etc.) changes. The sensors are realized as lightweight software that can be easily
configured to log and process different content and contextual activity that is relevant to the different use cases that
the proposed framework is leveraged for. The input of the sensors is fed into a watchdog process that runs as a monitor
to depict changes that can affect the security goals and sub-goals of an asset.

« Analysis phase: During the analysis phase the data recorded from the sensors are examined to determine if the existing
services and resources can satisfy the runtime security goals of an asset. In case where they are deemed insufficient
adaptation is triggered. We adopt a goal-oriented approach to map security goals to their sub-goals. For example, the
goal “File security” can be further decomposed into authentication, anonymity, and authorization features. Critical
changes to the dynamics of one or more interrelated sub-goals can trigger the need for adaptation. As adaption is
expensive, the frequency of adaptation can be determined by considering the extent to which the security goals and
sub-goals diverge from the tolerance level.

« Adaptation phase: Adaptation initiates with the formulation of a bid that inquires the discovery, selection, and alloca-
tion of appropriate services and resources from different SPs within a cloud. The bid is constructed with the assistance
of the random forest algorithm which identifies the optimal course of action for facing an unpredictable event based
on previously encountered threats and mitigation strategies. The bid undergoes a validity test, in which the current
state of the user (refers to the existing SLAs that bound a user with SPs) is examined to determine if it violates previ-
ous SLAs. User state is critical when dealing with runtime service/resource selection due to conflicts that might arise
between preceding ongoing SLAs and newly selected services due to the different policies, objectives, and requirements
that bound each service. If a bid is successfully validated, it is forwarded to the coordinator for auctioning, whereas if
it maintains conflicting goals, it is refined to remove the conflicting service(s). Once a bid is received by the coordina-
tor, it is entered in an auction with available ask(s) to discover services and resources that can best satisfy the security
goals and sub-goals of an asset at the requested price.

« Feedback phase: In the event of a match, the agent pays the SP(s) for their services/resources via the coordinator. Fol-
lowing payment, the SP(s) make their services and resources available for allocation to the winner agent. Once a match
occurs, the agent forms a SLA with the matched SP(s) and updates the state of the user to contain the latest agree-
ment(s). Similarly, the training dataset of the user is updated to maintain information concerning the latest security
threats encountered and their mitigation strategies.

4 | VARIANT DESIGN AND IMPLEMENTATION

This section presents and analyzes the design and implementation of the proposed framework.

4.1 | Adaptation triggering

During the monitor phase, the watchdog service of the agent is deployed on each system monitoring activity to detect and
record changes in the security goals and sub-goals of assets (e.g., anonymity, integrity, etc.). Once an unpredictable event
is sensed, the recorded data is fed to the analysis phase to determine if adaptation is needed.
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Two questions are raised from the monitor and analysis phase: Which system attributes to record? and When
should adaptation be stimulated? According to Salehie and Tahvildari,” the adaptation methodology varies for each
self-adaptive system due to six causes: “(i) the different attributes of adaptable software and the dependency between
them; (ii) the temporal aspects of adaptation; (iii) the system attributes that can be altered through adaptation and
what needs to be altered in each situation?; (iv) the goals of a system; (v) the level of automation; and (vi) what
are the most appropriate actions to take for each given condition?” Since those parameters are unknown to us and
determining the optimal attributes for informing adaptation is outside the scope of this work, we do not provide a
fine-grained analysis of which system attributes to record and the threshold tolerance for adaptation. Instead, based on
our experience with machine learning, we base our adaptation methodology on the following attributes for illustration
purposes:

« Location: This dimension is concerned with the location of an asset. The values used to describe this attribute are:
secured location, unknown location, and hostile location.

« Indicators of compromise: Illustrates whether suspicious malicious activity is detected against an asset in question.

« Security classification: Illustrates the value of each asset for a company and/or individual. The security classification
attributes are as follows.

- Unclassified: An unclassified asset is of low value for a user and/or an organization, it does not store valu-
able/sensitive data and does not maintain any significant operational role. It is considered with a low priority when
securing multiple assets.

- Restricted: A restricted asset is of medium value for a user and/or an organization, it stores partially valu-
able/sensitive data and can maintain a high impact operational role. It is considered with a low to medium priority
(depending on the data stored and/or operational role) when securing multiple assets.

- Confidential: A confidential asset is of high value for a user and/or an organization, it stores valuable/sensitive data
and maintains a significant operational role. It is considered with a high priority when securing multiple assets.

- Secret: A secret asset is of critical value for a user and/or an organization, it stores extremely valuable/sensitive data
and maintains a critical operational role. It is considered with urgent priority when securing multiple assets.

« Network health: Describes the security of a network that an asset operates in/is connected to. The values used for
describing this attribute are: trusted network, unknown network, and malicious network.

When the “state” of one or more of the aforementioned attributes changes the agents trigger the need for adaptation
to proactively secure its assets. To simulate the events causing the changes on the above attributes, we have assigned a
timer to each agent which alters their state/values at random time intervals.

4.2 | Forming bids

Once adaptation is triggered, the adaptation phase is employed (algorithmic steps presented in Algorithm 1) to refine
and map the security sub-goals of an asset to suitable services and resources. These services/resources are believed to
satisfy the runtime security goals and sub-goals of an asset in the most efficient way. In order to perform adaptation,
the agents use the random forest algorithm to analyze the historical data of users and accordingly inform the auctioning
mechanism via the formulation of a bid. The random forest classifier refers to a supervised learning technique founded
on bootstrap aggregation and the random selection of features. Given a dataset D of size N((x1,y1), ... , (xN,yN)), the
algorithm constructs B tree classifiers by selecting uniformly at random Z bootstrap samples of size N < N from D. Ateach
node of each tree b, where b € B, the algorithm selects a random set of variables m from the variables p (m C p) and splits
the nodes in the tree to two children nodes. Once the ensemble trees be are constructed, each tree votes for the dominant
class with equal weight %Zbe(dx), where c is the probability of each outcome in a single tree and x each test point. The
class with the most votes is the algorithm’s derived decision (i.e., the constructed bid). The use of ensemble classifiers
allow for the mitigation of bias and data overfitting due to their high variance. In-depth experimentation was performed
for the selection of the random forest algorithm during which 22 classifiers were examined in terms of effectiveness and
accuracy based on two scenarios with 5000 samples provided as a training dataset (Section 5.4). Our findings are further
supported by existing literature* illustrating the efficiency and effectiveness of the random forest algorithm in analyzing
large, complex datasets.
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Algorithm 1. Bid formulation

Declare: Define B as a set of ensemble trees;
Define Z as a set of N data samples used to create a tree;
Define m as variables selected from a total number of p variables in dataset;
Define c as the probability of each outcome in a tree;
Define x as each test point/leaf in a tree;
Define v as a flexible percentile increment value;
1 if Adaptation isNeeded then
/* Begin RandomForestAlgo */
for b < 1to Bdo
Select Z samples of N size from Dataset D
repeat
create Tree Tb;
Select m variables from p variables;
Pick best split-point among m;
Split node to two children nodes;

© ® N e wn AW N

until node Nmin is reached in Tree Tb;

EnsembleTrees.add (Tb)

end

SecDecision < AVG ( SUM (Pb (clx) );

/* End RandomForestAlgo */
13 | historicalData « retrieveHistoryOfBids();

14 | if AuctionType isPostedOffer then

=
=]

-
N =

15 fixPrices« ExtractFixBidPrices(historicalData);
16 BidPrice«< AVG(fixPrices) + AVG(fixPrices) xv;
17 bid < (BidPrice,secDecision);

18 | elseif AuctionType is EnglishAuction then

19 closPrice « ExtractClosingPrices(historicalData);
20 BidPrice « AVG(closPrice) + AVG(closPrice) xv;
21 bid « (BidPrice, secDecision);

22 | end

23 end

The constructed bids consist of the following attributes: (i) the asset that needs to be secured; (ii) the security classi-
fication; (iii) the security sub-goals that require support; (iv) the highest price that a user is willing to pay (the average
value of all historical bids with a similar security classification); (v) the type of service (data storage and/or security ser-
vices) required; and (vi) the level of security provision required. In order for the agents to specify the required level of
security provision for each service, they use a predefined list of security descriptors. For security services the following
descriptors are used: encryption at transit (encrypts data while they are transferred online, e.g., TLS/SSL); proxy support
(usage of proxy servers for anonymity); and media encryption (provides authentication and authorization, e.g., secure
real-time transport protocol), whereas storage services are described by: encryption at rest (encryption of stored data);
encryption at transit; different encryption keys per file; password protected files; and segmentation of files to different
physical machines. Based on the security goals and sub-goals of each asset, the agents use different combinations of
security descriptors to request different levels of security provision.

To determine how the choice of an auction can affect the trade-off between security and cost of a solution, we have
engineered and instantiated our system with two dominant market mechanisms, namely, the English auction and a vari-
ant of the posted-offer auction model. Consequently, we use two different methods to calculate the bidding prices when
forming bids. Our modified posted-offer auction model* is founded on a take-it-or-leave-it basis. In this model, the SPs
publicly announce the services and resources that are trading along with their associated costs for a certain trading period.
During the trading period, agents are selected (one at a time) in descending order based on their bidding prices (instead of
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being randomly selected*) and given the opportunity to accept or decline SP offers. By introducing user bidding prices in
the posted-offer model it is possible for the self-adaptive system to determine if a user can afford to pay a seller’s requested
price hence to automate the selection process. As well as to use bidding prices as a heuristic for ranking/selecting users
based on the criticality of their requests. The auctioning round continues until all buyers have acquired service, or until all
offered service instances have been purchased. To approximate the behavior of a user that is trying to establish the appro-
priate price for biding, we allow agents to publicly view historical data of bids of interest. Agents determine their bidding

prices by calculating the average value of all historical bidding prices with similar security classification and then increase
Y FixedBidPrices

or decrease that value by a percentage v < TR —

+ Y FixedBidPrices X v). v is a flexible parameter which can

change according to the needs of the market and its users to achieve market equilibrium. The calculated bidding price is
considered to be the highest price that a user is willing to bid/pay in an auction. Once the bidding price is calculated the
agent encapsulates the price along with the other required attributes in a bid.

Similarly, the English auction procedure follows almost identical steps to the posted-offer model to calculate bid-
ding prices. In the English auction model [3] the bidding price initiates at a low price (established by the seller/SP) and
then raises incrementally such as progressively higher bids are solicited until the auction is closed or no higher bids

are received. Therefore, each agent calculates its highest bidding price by considering the closing prices of completed

Y ClosingPrices

auctions, in contrast to the fixed bidding prices used in the posted-offer model ( + Xii, ClosingPrices X v).

ClosingPrices.size

4.3 | Forming asks

SP’s on their side form their offers/asks which they forward to the coordinator for auctioning. Each SP is assigned a timer
which at random time intervals triggers the process of constructing and submitting asks. SPs use two different methods
for calculating their selling prices, namely, the posted-offer and English auction procedures. In both procedures, the SPs
determine the price of their services and resources based on the historical data of submitted asks. SPs estimate their selling
prices by calculating the average value of previous submitted ask prices and then subtract or add a percentage s on that
value, depending on the profit margin that a SP wants to make. s is a flexible parameter which can change according
to the needs of the simulation user. For our experiments, s was randomly generated with normal distribution between

the values 0.01 and 0.1. For the posted-offer procedure the values used for calculating the ask prices are the fixed prices
Y fixedPrices
NumOfFixedPrices
. Y ClosingPrices
Interest (NumOfClosingPrices

requested by SPs ( + Y fixedPrices X s), whereas for the English auction is the closing auction prices of

+ Y ClosingPrices x s). Once the selling price is calculated the agents encapsulate the price

Algorithm 2. Ask formulation

Declare: Define s as a parameter with values: 1%-10%;
1 repeat

2 | if RandomTimer isTriggered then
3 histData « retrieveHistoryOfAsks();
4 if AuctionType isPostedOffer then
5 fixPrices « extractAuctionPrices(histData);
6 cost «— AVG(fixPrices) + AVG(fixPrices) Xs;
7 ask « (cost, features, resources, securityLevel);
8 else if AuctionType is EnglishAuction then
9 ClosPrice « extractClosingPrices(histData);
10 cost « AVG(closPrice) + AVG(closPrice) Xs;
1 ask « (cost, features, resources, securityLevel);
12 end
13 forwardToCoordinator(ask) ;
14 | end

15 until Simulation isTerminated,
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along with a specification of the offered services and resources in an ask. The algorithmic steps describing the creation of
asks are presented in Algorithm 2.

44 | Auctioning

Once a bid is received, the coordinator discovers appropriate asks that can satisfy the security goals and sub-goals of an
asset and registers the agent in an auction to compete with rival bidders to acquire service. Depending on the method
selected for calculating the bid and ask prices (i.e., posted-offer or English auction) there is an analogous procedure
for auctioning (algorithmic steps presented in Algorithm 3). In case where the posted-offer methodology is employed,
the coordinator discovers SPs that can support the runtime security goals and sub-goals of an asset by comparing the
service specification in an ask with the bid specification. In particular, the coordinator compares the: type of service,
level of security provision (consisting of the aforementioned security descriptors for each service), computational con-
straints/requirements (if any) and price to determine the suitability of a service for an agent. In case where an ask violates
any of the specified requirements and constraints (e.g., a service offers/utilizes inadequate computational resources) of
an asset, the ask is eliminated. Upon elimination of all unsuitable asks, the coordinator sorts agents, that require similar
services and resources, in a descending price order to rank them based on the criticality of their bids/requests. Following,
the auctioneer selects agents (one at a time) starting from the top of the list to allow them to purchase the needed services,
until all agents are served or until all available units are sold.

Algorithm 3. Auctioning procedure

Declare: Define p as a bid increment value ;
1 if bid isReceived then
2 | if auctionType isPostedOffer then
3 askShortList « find AsksWhere(bidSecFeature satisfied By askSecFeature & bidSecLevelsatisfiedBy
askSecLevel & bidReqResource satisfiedBy askOfferResource & bidPrice <= askPrice);

4 descendingPriceOrder(bidList);
5 repeat
6 select (ith bid from bidList);
7 match (ith bid) with (askShortList[Random]);
8 bidList[ith + 1]
9 until Bids areServed || Asks areMatched,;
10 | end
u | elseif AuctionType isEnglishAuction then
12 askShortList « findAuctionsWhere(bidSecFeature satisfiedBy askSecFeature & bidSecLevel satisfiedBy

askSecLevel & bidReqResource satisfiedBy askOfferResource & bidPrice <= auctionPrice);
13 for j = 1st to Nth in askShortList do

14 ‘ askShortList[j].setBid(auctionPrice+p);

15 end

16 while auctions areNotCompleted do

17 if agent isOutbided & highestBidPrice <= auctionCurrentPrice then
18 ‘ reBid(auctionPrice+p)

19 end

20 end

21 | end

22 | if auction isComplete & agent isHighBidder then
23 declareWinner();

24 deleteBidsInSimilarOngoningAuctions();

25 | end

26 end
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TABLE 1 Bidincrement values

Current price Bid increment
$0.01-$0.99 $0.06
$1.00-$4.99 $0.25
$5.00-$14.99 $0.60
$15.00-$59.99 $1.30
$60.00-$149.99 $3.00
$150.00-$299.99 $5.00
$300.00-$599.99 $14.00
$600.00-$1499.99 $25.00

In the occasion where the English auction is used, the coordinator discovers all on-going auctions that satisfy the: type
of service, security level, computational constraints (if any) and bidding price and sets a bid on behalf of the agent. The
bidding price reflects the current highest price in an auction plus a bid increment value p (see Table 1). The bid increment
price is the minimum amount by which an agent’s bid can be raised to become the highest bidder. The bid increment
value can be determined based on the highest bid in an auction. The increment values used by our framework are similar
to eBay’s proxy auction increment values.?! These values are case specific and they can be altered by agents according to
their runtime needs and the market prices.

In the occasion where a rival agent tries to outbid the winning agent, the out-bid agent automatically increases its
biding price to remain the highest bidder, while ensuring that the highest price specified in its bid is not violated. The
winning auction, in which a match occurs, is the one that an agent has set a bid and upon completion of the auction
round has remained the highest bidder. If a match occurs and the agent has set a bid to more than one ongoing auctions
that trade similar services/resources these bids are discarded. Submitting multiple bids to more than one auctions that
trade similar services/resources is permitted to increase the likelihood of a match to occur. As the proposed system is
concerned with the time critical task of runtime security it needs to efficiently match bids with asks in short time periods
to overcome unpredictable events. Failing to do so can result into the compromise of the runtime security of assets.

4.5 | Allocation of services and resources

Once a match occurs the feedback phase is initiated, during which the coordinator notifies the winner SP and agent to
commerce the trade. The agent is requested to forward the payment for the won service(s) and resources to the SP. The
transaction is recorded by the coordinator to ensure that no party will lie concerning the validity of the payment and
allocation. In case where the auctioning was performed based on the English auction, the agent needs to pay the price of
the second highest bid plus a defined bid increment (see Table 1), whereas if the posted-offer auction was used the fixed
price set by a SP is paid. Once the payment is received, the SP releases the requested services and resources for allocation.
Following, the SP creates a virtual machine (VM) to encapsulates the requested service instance(s) and resources and
allocates it to the winner agent. The coordinator is paid for its auctioning services by adding a small commission fee for
every successful match which is equally split between the winner agent and SP. The algorithmic steps for the allocation
procedure is presented in Algorithm 4.

5 | PERFORMANCE EVALUATION
To assert the applicability and usefulness of our method, we have developed a Java prototype simulation system imple-
menting the proposed framework based on the application scenario involving cloud-based storage and computational

resources in a multinational oil and gas environment.” We have identified simulation as the dominant methodology for

*Simulation tool can be found at: github.com/GiannisT/UniMarketSimulation.
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evaluating our framework as the development of real test-beds limit the experiment to the scale of the test-bed and make
the reproduction of results a difficult undertake. Additionally, the creation of real test-beds introduce low-level tasks
which are time and money consuming. Furthermore, real life markets do not allow the manipulation of key attributes
from developers, which restricts the experiment and its outcomes. Contrary, the use of simulation tools allows the evalua-
tion of hypothesis in an environment where one can reproduce experiments. It allow users to test their services/resources
in a repeatable and controllable environment free of cost. At the provider side, simulation environments allow the eval-
uation of different kinds of resource leasing scenarios under varying loads and pricing distributions. Lastly, simulation
tools enable the homogeneous quantification of results as they are generic, architecture imperative solutions, where real
life markets have their own composition and deployment requirements.??

The engineered solution manages the runtime security goals and sub-goals of the assets of multiple assets (devices
owned by the oil and gas company) via the selection and allocation of services and underlying resources. For illustration
purposes we restrict the available services in the market to computational resources supporting EDR security features and
cloud-based storage services for data security logging. Depending on the security requirements of an asset, different EDR
services and logging features can be activated imposing different computational and monetary costs. The EDR provides
the following features: antivirus protection, behavioral monitoring, dynamic file analysis, OS advanced querying, treat
intelligence analytics, and network intrusion detection. Where storage services support the record of security logging,
including network, user authentication requests and file activity. Despite the small number of different types of services
and resources supported by our simulation, it can be extended to support a wider variety of services/resources based on
the needs of the users and the market itself.

Our simulation system allowed us to answer the following research questions: (i) Can asset-centric security be more
cost-effective and efficient for the satisfaction of runtime security goals than aggregated security approaches?; (ii) Can
market mechanisms prioritize and satisfy security requests more effectively than current “first come first served” allo-
cation mechanisms?; (iii) How can different auctioning models influence the security, performance, and costs of the
proposed framework?; (iv) Can learning algorithms effectively mimic user behavior and secure assets in an automated
fashion?; and (v) Can learning algorithms be used to arrive on more efficient bidding plans, instead of entering bidders
into an exhaustive bidding for candidate offers?

To conduct our experiment we leveraged a notebook running on Intel Core i5-3210M CPU @ 2.50 GHz, 8 GB RAM
and JDK version 17 and configured our simulation in the following way: (i) 20% of service providers operate in a malicious
manner and (ii) adverse conditions for 20% of resources selected as damaged. The consideration of malicious activities
and adverse conditions in the proposed experiment limit the number of service providers and their resources further
illustrating the value of auction-based allocation.

51 | Aggregate versus asset-centric security

Existing self-adaptive systems are not concerned with the runtime security of individual assets; instead, they treat security
as an aggregated quality, which imposes higher costs and unmet security goals. To demonstrate the above assertion and
exemplify the significance of asset-centric security, we have examined if the selection of a single storage service can satisfy
the security goals of all of the assets/files maintained by an agent. To conduct this experiment, we have configured our
simulation to operate with both asset-centric and aggregated security to draw conclusions concerning the effectiveness

Algorithm 4. Allocation of services and resources

if AuctionMatch isTrue then
notifyWinners(SP, Agent) ;
payment « agent.Pay(auctionPrice + marketFee/2) ;
if payment isPerformed then
VM <« CreateVM(Services, Resources) ;
SP.Allocate(VM)to(Agent) ;
7 | end

1
2
3
4
5
6

s end
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of each approach. In particular, the purpose of this experiment is to identify the number of assets with satisfied security
goals, excessive security provision and insufficient security provision. In the occasion where an asset acquires insufficient
security, it can lead to the compromise of its security, where in the presence of excessive security the associated monetary
and computational costs can be unnecessarily high.

To conduct this experiment, we have used 1000 assets (company devices). For each asset we have constructed a bid
describing its security requirements. All the values used for forming the bids were randomly generated to simulate the
diverse nature of the security requirements of different assets. We have then compared the constructed bids with the secu-
rity specification/ask of a real life, well secured storage provider, that is, pCloud?® (supports encryption at rest and transit,
different encryption keys per file and password protected files), to determine if aggregate security can satisfy the secu-
rity goals of all assets. Our results demonstrated that only 630 assets met their exact security goals, where 200 obtained
excessive security and 170 insufficient security due to absence of data segmentation techniques. In terms of resource
consumption, pCloud required the utilization of 2 CPU cores @ 3.16 GHz, 450 MB RAM, and 4 GB of storage to accom-
modate all 1000 assets. Contrary, the experiment conducted with our asset-centric security framework demonstrated the
satisfaction of the security goals of all assets, as well as lower computational costs. To accommodate all 1000 assets our
methodology required 1 CPU core, 325 MB RAM, and 2 GB disk space, which is significantly less than the resources
reserved in the experiment with aggregate security.

5.2 | Market versus non-market allocation mechanisms

As ultra-large multi-national companies often need to continuously satisfy the changing security requirements of large
numbers of users with limited resources, it is essential to use effective allocation mechanisms that can prioritize security
requests based on their significance. By doing so, self-adaptive systems will allow users that face imminent threat to
acquire service first. This experiment demonstrates that market mechanisms can pose as an effective solution to the above
problem as users can reflect the significance of their requests in their bidding prices.

To conduct this experiment, we have simulated a cloud storage provider (i.e., pCloud) and 1000 assets (company
devices). The simulation tool was configured to operate with limited resources that only suffice for securing 700 of the
assets. For each asset we have randomly generated a bid specification and labeled them according to their security classi-
fication: 500 as of “secret,” 100 as of “classified,” 110 as of “restricted” and 290 as of “unclassified.” We have then executed
our simulation with both a market (i.e., variant of posted-offer model) and a non-market (first-come-first-served) alloca-
tion mechanisms and observed their effectiveness in prioritizing security requests based on the number of requests/assets
served from each security classification group. For the experiment with the non-market mechanism, the security requests
were submitted in a random order to approximate real-life conditions. The obtained results show that only 352 “secret”
requests, 80 “classified” requests, 88 “restricted” requests, and 180 “unclassified” requests were served. The results indi-
cate the wasteful allocation of resources as a large number of “secret” requests were not immediate served, where a big
number of “unclassified” requests were accommodated first, leaving high value assets exposed to attacks.
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FIGURE 3 Number of assets satisfied from each “security classification group” with market and non-market mechanisms
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Following, another experiment was conducted with the proposed market mechanism indicating a more effective allo-
cation of resources, allowing: 453 “secret,” 90 “classified,” 85 “restricted,” and 72 “unclassified” assets to acquire service.
The results illustrate a significant increase in served “secrete” classified assets, as well as a massive drop in the number
of accommodated “unclassified” requests (as illustrated in Figure 3). This can be attributed to the absence of simplistic
allocation mechanisms that are grounded on a “first come first served” basis.

The small number of 47, “secret” assets not accommodated by the posted-offer mechanism can be attributed to the low
bidding prices. The bidding prices were semi-randomly generated according to each group of security requests. “Secret”
bidding prices were generated with normal distribution between $30 and $17, where “classified” bidding prices between
$23 and $12, “restricted” bids between $19 and $9 and bids for “unclassified” between $15 and $3. The rational behind
selecting these prices is grounded on the sentiment that users that face imminent threat are often willing to pay higher
prices to secure their assets compared to users that are secured.

5.3 | Performance

In approximately 40 s our simulation system was able to replicate a cloud environment, construct the system entities
described in Section 3, simulate unpredictable events, formulate bids with the assistance of the random forest algorithm,
perform market auctions and allocate services and resources to agents. No network latency or noise was simulated in our
approach; hence, the time recorded for the simulation is not an accurate representation of the execution time in real life,
since it can vary according to the network latency, noise, data rate, collisions, errors, and traffic in a network.

We have observed that our simulation consumed between 2 and 30 MB of memory to operate with the given configu-
ration. More precisely, the proposed framework used 4.087 MB of memory to support all functionalities of the simulation
(asillustrated in Figure 4). It was possible to observe three spikes in memory use that are associated to the auctioning and
allocation features of the simulation. In terms of CPU usage (as illustrated in Figure 5) the proposed framework when
was configured to simulate a cloud environment of 100,000 asks and 100,000 bids required up to 40% of the utilized CPU
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FIGURE 4 Memory usage of simulation
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TABLE 2 Simulation execution time

Number of bids Number of asks Execution time (s)
10 10 19.03
100 100 19.03
1000 1000 19.03
10,000 10,000 19.03
100,000 100,000 25.05
1,000,000 1,000,000 40.01

resources (Intel Core i5-3210M CPU @ 2.50GHz) to operate. Once more it was possible to observe three spikes of CPU
usage that are associated with the auctioning and allocation features of the simulation.

To further examine the performance and scalability of our tool we had executed the simulation six times (using both
the posted-offer and English auction models) with a varying number of bids and asks. We have adopted six as our simula-
tion executions as the additional simulation runs haven’t provided any insight. The obtained results (see Table 2) illustrate
that even when the numbers of asks and bids are significantly increased, the execution time only slightly increases. When
the market was configured to auction between 10 and 10,000 bids and asks respectively the execution time remained static
to 19.03 s. When the bids and asks were increased to 100,000 the execution time was increased to 25.05 s, whereas when
the bids and asks were further increased to 1,000,000 the execution time escalate to 40.01 s.

Throughout this test, we have observed significant differences between the two auctions algorithms. English auction
exhibited a more complex, time-consuming procedure that necessitate an average of 789.8 ms to establish an auction
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FIGURE 6 CPU usage comparison between English auction and posted-offer algorithm

match in contrast to the 577.8 ms required by the posted-offer algorithm. Additionally, the English auction algorithm
displayed signs of high computational overhead, reaching at some occasions 22% more than the CPU overhead generated
by the posted-offer model (as illustrated in Figure 6). Contrary, the posted-offer model has proven an efficient and scalable
procedure with low computational overhead, due to the lack of complex negotiations between SPs and agents. Therefore,
the posted-offer model is more suitable for occasions where agents face imminent threat and time is a critical aspect of
adapting security. Contrary, the English auction is more suitable for occasions where agents are not constrained by time,
their security is not threaten and are willing to sacrifice time to discover cheap and/or scarce services and resources.

5.4 | Asserting the effectiveness of machine learning algorithms for security

To identify the best machine learning algorithm for our solution and determine whether learning techniques can assist us
on reaching more effective bidding plans for security, we have examined the supervised learners offered by WEKA data
mining tool?> and monitored their effectiveness on multiple scenarios involving cloud-based storage and computational
resources in an ultra-large environment. In particular, this experiment allowed us to determine: (i) to what extent machine
learning algorithms can replace user interaction and secure assets in an automated manner and (ii) if learning algorithms
can be used to arrive on more efficient bidding plans.

To evaluate these algorithms, we have generated a training dataset of 5000 samples to inform the supervised learners.
Each sample consists of the location, asset security classification and network health of assets in the oil and gas company.
We then generated a test dataset of another 5000 samples describing additional scenarios to assert the effectiveness of
each algorithm. The values used for constructing the attributes of each sample were semi-randomly generated. The aim
of this experiment is for each learning algorithm to classify the test samples according to the level of security provision
that they require, namely: secure, fairly secure, and unsecure.

Our results identified (see Table 3) random forest as the dominant learning algorithm for our solution, achieving the
correct classification of the 94.86% of the test samples. The acquired results attested the experiments conducted in the
work of Caruana and Niculescu-Mizil,* which compared a wide number of classification techniques on various datasets
and identified random forest as one of the best classification techniques with an extremely high detection accuracy and
minimal costs.

In spite of the high classification rate witnessed by the random forest algorithm, its accuracy can vary according to
the volume and quality of the data informing its training process. To attest the accuracy of the random forest algorithm in
the presence of limited training data, we have used a varying number of training samples and examined the percentage
of the correct classified test samples. We have witnessed that even in the presence of 200 training samples, the random
forest algorithm was able to correctly classify 88.6% of the 5000 test samples (see Table 4). Showing that the random forest



2022 TZIAKOURIS ET AL.
WILEY

TABLE 3 Percentage of correctly classified samples per classifier

Classifier Training Test Cross-validation Average
BayesNet 90.860% 92.000% 90.340% 90.667%
NaiveBayes 91.020% 91.600% 90.300% 90.705%
NaiveBayesMultinomial Text 45.320% 46.800% 45.320% 45.390%
NaiveBayesUpdatable 91.020% 91.600% 90.300% 90.705%
Logistic 91.640% 90.000% 90.400% 90.971%
MultilayerPerceptron 92.660% 89.800% 90.380% 91.438%
SimpleLogistic 91.020% 91.400% 90.140% 90.619%
SMO 92.240% 90.600% 90.400% 91.286%
Ibk 100.000% 86.600% 86.760% 93.057%
Kstar 100.000% 14.600% 39.560% 67.152%
DecisionTable 90.920% 90.400% 90.520% 90.705%
Jrip 92.000% 90.000% 89.880% 90.895%
OneR 90.580% 91.600% 90.580% 90.629%
PART 98.020% 90.600% 90.860% 94.257%
ZeroR 45.320% 46.800% 45.320% 45.390%
DecisionStump 53.080% 53.800% 51.060% 52.152%
HoeffdingTree 91.340% 91.200% 90.300% 90.838%
J48 96.500% 89.400% 91.380% 93.724%
LMT 98.720% 90.600% 90.420% 94.381%
RandomForest 100.000% 90.600% 90.140% 94.857%
RandomTree 100.000% 89.600% 85.460% 92.581%
REPTree 93.520% 89.400% 90.900% 92.076%

TABLE 4 Correctly classified samples by random forest

Number of samples Cross-validation Test

200 88.05% 88.6%
500 91.61% 90.4%
1000 92.10% 90.6%
2500 91.60% 90.8%
3750 90.21% 91.0%

algorithm can be effective in informing the auctioning mechanism for identifying appropriate services and resources
for security, once a small yet significant amount of data is collected for training the algorithm. In the occasion where
insufficient and/or inconsistent data is used for informing adaptation it is possible that incorrect conclusions can be
drawn, and false security measures are deployed. Therefore, in the existence of insufficient or inconsistent data users
need to manually provide input concerning the security countermeasures that they want to enforce.

6 | RELATED WORK

The majority of the existing work on cloud security revolves around dimensions such as policy enforcement,’ intrusion
detection,® authentication,”!° authorization,!! and encryption frameworks.?*?> Despite their significance, these solutions
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are not concerned with the mitigation of runtime threats or the satisfaction of the security requirements of individual
assets. Moreover, we are not aware of any systematic attempt in exploring and deploying market-based methodologies
for security in cloud. Therefore, we focus on reviewing self-adaptive security methodologies for the cloud that maintain
characteristics that can drive the design of our solution.

CyberGuarder?® is a “visualization security assurance architecture.” It uses three services to enforce security, namely,
a “virtual machine security service; a virtual network security service; and a policy based trust management service.”
The virtual security service consists of a virtual machine management integrity measurement method for NetApps
trusted loading; a NetApp mechanism for the isolation of users from the operating systems; and a mechanism for
isolating virtual machines and networks for multiple NetApp’s according to their security requirements and energy
constraints. The virtual network service is used for the installation of virtual secure services in a NetApp system, in
which the trust management service is used for the implementation of access control policies on network resources
as well as the selection of configurations that can maximize the privacy and cost efficiency among different resource
pools.

The work of Mazur et al. proposes an agent-modeled self-adaptive security mechanism for the cloud.?” The frame-
work uses smart agents and network data ontologies to detect and eliminate runtime security threats. The agents are
used for the collection of data associated to “network devices, machine language execution, byte code, data streams,
and services.” The recorded data are then used to generate data ontologies, which are deployed with game theoretic
hazard evaluation by brokering agents for changing their behavior. The usage of ontologies allows the system to per-
form comparisons between them and determine whether a threat exists, which depends on how close the association
between two ontologies is. In case that a malware is detected the framework deploys the predefined security policies to
remove it.

CloudSEC? is a framework that composes cloud services for the detection and containment of runtime threats. To
mitigate threats, CloudSEC deploys three different mechanisms: “the administration group, the collaboration groups,
and the peripheral entities.” The administration group is used as the main interface and is maintained by task coor-
dinators. Each coordinator is in control of performing security policy decisions; managing collaboration tasks; and
sharing analytical data over different domains. Each collaboration group composes a security service by performing
a collaborative process. Collaboration groups comprise of dynamically clustered security agents, with each produc-
ing a group of global access points to different security mechanisms. Finally, the peripheral entity aggregates all
the SPs and users in the cloud and can deploy security services and consumes resources with the assistance of a
push/pull tool.

The work of Squicciarini et al.?® presents a policy execution methodology for securing users’ sensitive resources
(referred as “security-aware objects”) in cloud. According to the context, local laws and service level agreements of a
security-aware object the system adapts and deploys different security policies. To secure a security-aware object the
framework deploys five security components: “authentication and authorization tools; self-enforcement policy engine;
security policies in executable form; secure connections manager; and protected file(s).” Once a security-aware object is
formed or its location is changed, the policy composition and translation process is triggered to warrant that only suit-
able policies are enforced. The policy translation is performed once suitable rules are selected, which is the followed by a
static ordering of applicable rules, which result into the dominant security policy.

Ma and Wang*® promote a dynamic access control method for the cloud. The system comprises of five phases: “mon-
itor, analyze, plan, execute, and knowledge base.” The framework initiates by monitoring the behavior and historical
records of user access requests which are fed as an input to the analysis module. The analysis module analyzes the
recorded data which ascertains whether it is needed to update the knowledge base by selecting a recorded training

TABLE 5 Summary of related work

Related work
Features 26 27 28 29 30 Our work
Asset-centric X X X v v 4
Self-adaptive security v v v X v
Market-based adaptation X X X X X v
Cost-efficient v X X X X v
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sample. The knowledge base maintains access control data, including the relations between access control attributes.
Based on access feedback the relation degree can self-repair and self-improve. Following, the plan module calculates
the relation degrees between the recorded samples and accordingly updates the knowledge base for future decisions
concerning access control policies. Finally, the execute module obtains the updated knowledge base and enforces the
access request decisions. A summary of the comparison between our approach and the closely related works is presented
in Table 5.

7 | CONCLUSIONS AND FUTURE WORK

We have developed a method for dynamically managing the security goals of assets and the underlying services and
resources required to satisfy them at runtime. The proposed solution allows for the satisfaction of the security goals of
individual assets via the identification and selection of appropriate services and resources, while catering for monetary
and computational constraints. The method is founded on decentralized agent-based auction models (i.e., the English
and posted-offer auction) and the random forest classification technique. The usage of the market allows our solution to
deal with the scale of the problem, whereas the random forest classifier enables our system to arrive on more efficient
bidding plans and thus identify and shortlist candidate security solutions more effectively.

We have reported on the method simulation and demonstrated its applicability based on an ultra-large, diverse appli-
cation environment. Our results indicate that asset-centric security is more effective than aggregate security in terms
of costs and security goal satisfaction. We have also shown that market models are a dependable and scalable solution
for securing multiple assets in environments with limited resources as they allow users to compete for provision in a
decentralized manner. Moreover, we have compared the performance of the English and posted-offer auction models and
showed that the latter should be employed in occasions where time is a critical aspect of security adaptation due to its triv-
ial nature. Contrary, the English auction should be employed when users are secured and need to acquire cheap and/or
scarce services due to the bargaining that takes place between agents and SPs.

As future work, we intend to identify, classify, and mitigate various market specific threats that can disturb the
operations of bidders, sellers, and the auction mechanisms in our system.
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