
Journal of Network and Computer Applications 206 (2022) 103462

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

A state lossless scheduling strategy in distributed stream computing systems
Minghui Wu a, Dawei Sun a,∗, Yijing Cui a, Shang Gao b, Xunyun Liu c, Rajkumar Buyya d

a School of Information Engineering, China University of Geosciences, Beijing, 100083, PR China
b School of Information Technology, Deakin University, Waurn Ponds, Victoria 3216, Australia
c Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing, 100071, PR China
d Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
Stream computing
Online scheduling
State management
Bipartite graph
Hierarchical migration

A B S T R A C T

Stateful scheduling is of critical importance for the performance of a distributed stream computing system. In
such a system, inappropriate task deployment lowers the resource utilization of cluster and introduces more
communication between compute nodes. Also an online adjustment to task deployment scheme suffers slow
state recovery during task restart. To address these issues, we propose a state lossless scheduling strategy
(Sl-Stream) to optimize the task deployment and state recovery process. This paper discusses this strategy
from the following aspects: (1) A stream application model and a resource model are constructed, together
with the formalization of problems including subgraph partitioning, task deployment and stateful scheduling.
(2) A multi-factor topology partitioning method is proposed using a quantum particle swarm algorithm. The
assignment between tasks and nodes is optimized using a bipartite graph minimum matching algorithm. (3) A
hierarchical local topology migration is performed when an online scheduling is triggered, which ensures the
processing sustainability of data streams. (4) A fragment loss-tolerant jerasure tool is used to divide the state
data into fragments and periodically save them in upstream vertex instances, which ensures the available
fragments be able to reconstruct the whole state in parallel. (5) Metrics including latency, throughput and
state recovery time are evaluated in a real distributed stream computing environment. With a comprehensive
evaluation of variable-rate input scenarios, the proposed Sl-Stream system provides promising improvements
on throughput, latency and state recovery time compared to the existing Storm’s scheduling strategies.
1. Introduction

In the era of big data, emerging real-time applications are becoming
increasingly complex and applied in various areas, such as indus-
trial automation and robotics, real-time recommendations and business
monitoring (Alghamdi et al., 2017). Most of the applications emphasize
real-time and accuracy, e.g., a millisecond response must be provided
given the input data. To better support applications in real-time stream-
ing environments, a series of streaming computing frameworks have
emerged, such as Spark streaming (spark, 2022), Twitter heron (Twit-
ter, 2022), Apache Flink (Apache, 2022a), Samza (Apache, 2022b)
and Apache Storm (Apache, 2022c). Among them, Storm is the one
that is more suitable for real-time data processing scenarios and has
advantages (Sainik and Khajuria, 2014) in fault tolerance, message
handling, transaction management and development testing.

High system throughput and low system response time are two key
performance metrics for stream computing systems (Gedik et al., 2014).
Application scheduling (Li et al., 2017a, 2019a) plays an important role

∗ Corresponding author.
E-mail addresses: wuminghui@cugb.edu.cn (M. Wu), sundaweicn@cugb.edu.cn (D. Sun), cuiyijing@cugb.edu.cn (Y. Cui), shang.gao@deakin.edu.au

(S. Gao), xunyunliu@gmail.com (X. Liu), rbuyya@unimelb.edu.au (R. Buyya).

in achieving these goals. As usually requiring multi-processor systems
to implement, the applications need to be modeled as Directed Acyclic
Graphs (DAGs) (Marchal et al., 2018; Fu et al., 2021) to capture the task
dependencies, before an event scheduler steps in to allocate topological
tasks properly to each compute node. Different scheduling methods
have been proposed by researchers. EvenScheduler (Apache, 2022c) is
an example of event scheduler and has been built into the Storm plat-
form. ResourceAwareScheduler (Apache, 2022c) allocates resources to
each user. When a cluster has additional free resources, these resources
can be allocated to users in a fair manner. P-Scheduler (Eskandari
et al., 2016) assigns heavily communicating tasks to the same compute
node to reduce the network latency. MT-Scheduler (Al-Sinayyid and
Zhu, 2020) first maps a stream application to a DAG, then minimizes
communication latency and computation latency by a dynamic pro-
gramming algorithm for tasks on critical paths, and finally uses a
greedy algorithm to place tasks on non-critical paths sequentially. GFP-
Scheduler (Pathan et al., 2018) assigns priority to DAG tasks and their
vailable online 13 July 2022
084-8045/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2022.103462
Received 20 December 2021; Received in revised form 4 April 2022; Accepted 7 Ju
ly 2022

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:wuminghui@cugb.edu.cn
mailto:sundaweicn@cugb.edu.cn
mailto:cuiyijing@cugb.edu.cn
mailto:shang.gao@deakin.edu.au
mailto:xunyunliu@gmail.com
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jnca.2022.103462
https://doi.org/10.1016/j.jnca.2022.103462
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2022.103462&domain=pdf

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.

r

1

r
c
o
S
i
g
a

subtasks. In addition, a task-level scheduler and subtask-level scheduler
are applied to determine the prioritized ready tasks and execution tasks,
respectively.

However, when a rescheduling event is triggered, some schedulers
choose to kill the entire topology and restart, which might not be
the best solution as it causes the loss of topology state (Rho et al.,
2017). The topology will no longer process data until all the topological
instances are restarted and their states are recovered. Some other
schedulers choose to adjust the instances of a topology online. The
adjustment to the instances deployed on a node may result in state
loss because of the influence of factors such as network packet loss or
node failure. It may also trigger a slow state recovery. If there were
a better state management method to locally adjust the topological
instances during the rescheduling phase and perform fast recovery on
these instances, the system performance might be improved. These
thoughts motivate our research on efficient state lossless scheduling
strategy.

A state lossless scheduling strategy is expected to determine when
and how to reschedule the vertices of a running DAG based on the
fluctuating data streams and resource consumption, and manage the
state of vertices efficiently. To achieve these, we first obtain the com-
munication load between tasks, the resource consumption of tasks
and the resource consumption of nodes. Then Sl-Stream reschedules
the local vertices of the DAG without killing the entire topology. It
supports parallel state recovery of the vertices to reduce the impact
of rescheduling on the system. Sl-Stream also ensures the reliability of
state data by introducing erasure coding technology. The objectives of
continuity of data stream processing, reliability of state data and fast
recovery of task states can therefore be achieved by Sl-Stream to some
extent.

1.1. Contributions

A state lossless scheduling strategy (Sl-Stream) is proposed to im-
prove the throughput and latency of a distributed stream computing
system. Our contributions are summarized as follows:

(1) A general stream application model and a resource model are
provided, along with the formalization of problems including
subgraph partitioning, task deployment and stateful scheduling.

(2) A multi-factor graph partitioning method is proposed, which
uses a quantum particle swarm algorithm to divide a DAG
into subgraphs. Also a one-to-one matching model between sub-
graphs and nodes is constructed using the bipartite graph mini-
mum matching algorithm.

(3) A hierarchical local topology migration is implemented for
rescheduling, which ensures the processing sustainability of data
streams.

(4) A fragment loss-tolerant jerasure tool is used to divide the state
data into fragments. The fragments are periodically saved in
upstream vertex instances and the state can be reconstructed by
the available fragments in parallel when needed.

(5) Metrics such as system latency, response time and state recovery
time are evaluated to verify the effectiveness of the proposed
state lossless scheduling strategy.

Experimental evaluations are conducted on real-world data and the
esults prove the effectiveness of the strategy.

.2. Paper organization

The rest of the paper is organized as follows: Section 2 presents
elated work. Section 3 introduces the system model, the stream appli-
ation model and the resource model. Section 4 formalizes the problems
f subgraph partitioning, task deployment and stateful scheduling.
ection 5 introduces the optimization methods to address the problems
dentified in Section 4. Section 6 explains the framework and main al-
orithms of Sl-Stream. Section 7 evaluates the performance of Sl-Stream
2

nd Section 8 concludes the paper.
2. Related work

In this section, we review state-of-the-art work in two related areas:
task scheduling and state management for stream processing. A com-
parison between our work and the relevant research is summarized in
Table 1.

2.1. Task scheduling for stream processing

In stream computing systems, a better scheduling strategy is essen-
tial for improving throughput and reducing latency. Many researchers
focus on the deployment of stream applications. However, the commu-
nication load between tasks and the resources on nodes can change
due to fluctuations of data streams. It is challenging to find an optimal
deployment.

A task scheduling algorithm (Li et al., 2019b) based on deadline
constraints was proposed, where a classification scheduling strategy
was used to ensure the priority of urgent tasks and four switching
strategies were proposed for urgent tasks.

Focusing on the workflow scheduling problem in cloud environ-
ments, the authors proposed a multi-objective optimization algorithm
(Ebadifard and Babamir, 2018) with diversity criterion based on an ex-
tension of the black hole heuristic. It improves the resource utilization
efficiency of the system and eases the load imbalance problem.

A single-objective firefly algorithm (Ebadifard et al., 2018) was
proposed that allows for appropriate task deployment based on the
processing power of each virtual machine. The effectiveness of the
algorithm is evaluated by modeling, and the results show that the
algorithm can improve the resource utilization and reduce the task
completion time of the system.

A dynamic container resource allocation mechanism (CRAM) (Run-
sewe and Samaan, 2019) was proposed. A game-theoretic approach is
used to distribute the workload to the corresponding machines in a
cluster to maximize the overall performance of the system.

A new dynamic scheduling technique (Barika et al., 2021) was
proposed . It combines GA and two-level greedy algorithm to meet the
dynamic nature of data stream and minimize execution costs.

A dynamic task scheduling scheme (Ebadifard et al., 2021) was
proposed, which adopts the Hone: Mitigating Stragglers in Distributed
StreamProcessing With Tuple Schedulingybee algorithm to optimize
load balancing, reduce makespan, increase resource utilization and
improve the reliability of the system.

A new list scheduling algorithm (Djigal et al., 2021) assigned
task topologies to a heterogeneous network in order to minimize the
scheduling length. There are two main processes: task prioritization
phase and processor selection phase. However, this algorithm may
cause resources idle in the data center.

A directed acyclic graph scheduling algorithm (Al-Maytami et al.,
2019) was proposed based on predicting task computation time. The
computation is simplified by applying Principle Components Analysis.
However, the algorithm is suitable for static scheduling, i.e., assuming
that the speed at which the task arrives at the processor is known.

An ant colony algorithm (SP-Ant) (Farrokh et al., 2022) was used
to find the best operator assignment plan by considering the inter-node
communication latencies of operators in a heterogeneous network. It
can arrange highly communicative operators on the same worker node
to reduce the system response time. However, it does not consider
the fact that the resource consumption of nodes can also impact the
processing time of the system. When a rescheduling is triggered, SP-Ant
may cause state loss.

An application topology was divided into multiple parts by T3-
Scheduler (Eskandari et al., 2018), where each subtopology includes
highly communicative tasks, with a size determined by the capacity
of compute node in the heterogeneous cluster. Although reducing
communication latency is beneficial for system response latency, the

resources of nodes are also a metric that cannot be ignored.

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Table 1
Related work comparison.

Related works Aspects

Graph partitioning State lossless migration State backup Parallel recovery of state

Wu and Tan (2015) % " " "

Cardellini et al. (2016) % " % "

Ebadifard and Babamir (2018) " % % %

Ebadifard et al. (2018) " % % %

Li et al. (2019b) % % % %

Runsewe and Samaan (2019) % % % %

Zhang et al. (2020) % " % "

Zhao et al. (2021) % " % "

Our work " " " "
In summary, the above solutions provide valuable insights into the
scheduling problem. The Sl-Stream system is able to consider multi-
ple factors for graph partitioning and perform node selection for the
partitioned subgraphs to improve the resource utilization of the data
center.

2.2. State management for stream processing

Effective state management not only improves the system perfor-
mance, but also improves its reliability. In recent years, many re-
searchers have attempted to optimize the state management for stream
processing systems.

Based on a multi-tenant scheduler (Wu and Tan, 2015), the state of
each operation was sliced and these slices were backed up and stored
to different compute nodes. However, when the original state node and
the node storing the backup state slices fail at the same time, it results
in missing state.

An automatic elasticity mechanism and a state migration mecha-
nism (Cardellini et al., 2016) were introduced to support the migration
of internal state of operators on different nodes. They maintain in-
formation integrity and allow concurrent migration of multiple nodes.
However, state failure recovery is not considered.

A new stream processing system supporting state access, TStream
(Zhang et al., 2020), was introduced by leveraging transactional se-
mantics for concurrent state access. Improved scalability is achieved
by adding two designs, i.e. dual-mode scheduling and dynamic restruc-
turing execution.

A stream processing system (Zhao et al., 2021) that supports times-
tamped state sharing was proposed to make up for the fact that existing
stream processing systems only supported state local access.

State management and fault recovery mechanisms (Liu et al., 2020)
were introduced. The operators are organized into a ring to ensure
that each node has a corresponding neighbor node. The state of each
operator is divided into multiple fragments and stored in neighboring
nodes. The state of neighboring nodes is checked periodically so that
when the state is lost, it can be recovered by different state fragments.

Sl-Stream system can not only restore the state of migrated in-
stances in parallel to improve the system performance, but also perform
fault-tolerant backup of state data to improve the system reliability.

3. System model

Before introducing the Sl-Stream strategy and its related algorithms,
we first explain the stream application model and the resource model
in big data stream computing environment. For the sake of clarity, in
Table 2, we summarize the main notations used throughout the paper.

3.1. Stream application model

The logic of each stream application can be represented as a DAG.
It is composed of a set of vertices and a set of directed edges, defined
as 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)). 𝑉 (𝐺) = {𝑣𝑖|𝑖 ∈ 1,… , 𝑛} denotes a finite set of n
vertices, and each 𝑣 is an operation with a special function. 𝐸(𝐺) =
3

𝑖

Fig. 1. An example DAG with different number of instances for each vertex.

{𝑒𝑢,𝑣|1 ≤ 𝑢, 𝑣 ≤ 𝑛 𝑎𝑛𝑑 𝑢 ≠ 𝑣} is a finite set of directed edges, and
the weights associated with the edges are denoted as communication
costs. User submits a constructed DAG to a data center, which then
creates multiple instances 𝑣𝑖,𝑗 for each vertex 𝑣𝑖. The instances of the
same vertex have the same function and each 𝑣𝑖,𝑗 has a certain weight
that represents the computational cost of 𝑣𝑖,𝑗 .

As shown in Fig. 1, the example DAG has 5 vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 and
𝑣5. The number of vertex instances of 𝑣1 is 2, including 𝑣1,1 and 𝑣1,2.
𝑣2 has 3 instances, i.e. 𝑣2,1, 𝑣2,2 and 𝑣2,3. 𝑣3 and 𝑣4 have 2 instances
each, and 𝑣5 has 1 instance 𝑣5,1. Each instance has an estimation value
of resource consumption, e.g. instances 𝑣1,1 and 𝑣1,2 are expected to
consume 10 and 12 units of resources.

3.2. Resource model

In a mapped DAG 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)), if we use edges 𝐸(𝐺) to denote
the communication among tasks and vertex weights 𝑉 (𝐺) to denote
the computing resources required by tasks, the resource model can be
constructed by considering the two factors.

(1) The communication among tasks. We define 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑚) as the
data tuple transmission rate per unit time between two instances
𝑣𝑖,𝑘, 𝑣𝑗,𝑚 and it satisfies (1)

𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑚) =

⎧

⎪

⎨

⎪

0, 𝑣𝑖,𝑘 and 𝑣𝑗,𝑚 on the same
compute node,

𝐸 , otherwise,
(1)
⎩

𝑟

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.

𝑡
t

𝐸

t

w

(

o
r

𝑅

w
𝑛

𝑛

𝑅

Table 2
Description of main symbols used in the Sl-Stream models.

Symbol Description Symbol Description

𝐺 Topology of a streaming application 𝑛𝑐 Compute node
𝐺𝑠𝑢𝑏𝑘 Sub-topology 𝑘 of 𝐺 𝐿𝑛𝑐 CPU utilization of 𝑛𝑐
𝑣𝑖 Vertex 𝑖 in topology 𝑀𝑛𝑐 Memory utilization of 𝑛𝑐
𝑣𝑖,𝑗 Vertex instance 𝑗 of vertex 𝑖 𝑅𝑣𝑖,𝑗 ,𝑛𝑐 Resource consumption of 𝑣𝑖,𝑗 running on node 𝑛𝑐
𝑟(𝑣𝑖,𝑘 , 𝑣𝑗,𝑚) Data tuple transmission rate between 𝑣𝑖,𝑘 and 𝑣𝑗,𝑚 𝑅𝑚𝑣𝑖,𝑗 ,𝑛𝑐 Memory utilization of 𝑣𝑖,𝑗 running on node 𝑛𝑐
𝐸𝑟 Average transmission rate 𝑅𝑐𝑣𝑖,𝑗 ,𝑛𝑐 CPU utilization of 𝑣𝑖,𝑗 running on node 𝑛𝑐
𝑞𝑣𝑖,𝑗 Number of data tuples processed by instance 𝑣𝑖,𝑗 𝑅𝑐𝐺𝑠𝑢𝑏𝑖

Estimated CPU resource of 𝐺𝑠𝑢𝑏𝑖
𝐶𝑛𝑐 Set of instances running on node 𝑛𝑐 𝑅𝑚𝐺𝑠𝑢𝑏𝑖

Estimated memory resource of 𝐺𝑠𝑢𝑏𝑖
𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑖 Size of subgraph 𝐺𝑠𝑢𝑏𝑖 𝑝𝑜𝑙𝑑 Old partition scheme
𝑟(𝐺𝑠𝑢𝑏𝑖 , 𝐺𝑠𝑢𝑏𝑗) Communication load between 𝐺𝑠𝑢𝑏𝑖 and 𝐺𝑠𝑢𝑏𝑗 𝑝𝑛𝑒𝑤 New partition scheme
d

where 𝐸𝑟 denotes the average transmission rate during time [𝑡𝑠, 𝑡𝑒],
𝑠 denotes the start time and 𝑡𝑒 denotes the end time. There may be
ransient fluctuation in the arrival rate of data stream and 𝐸𝑟 can

effectively avoid its effects. 𝐸𝑟 can be calculated by (2).

𝑟 =
∫ 𝑡𝑒𝑡𝑠 𝐸𝑟𝑡𝑑𝑡 − max(𝐸𝑟𝑡) − min(𝐸𝑟𝑡)

𝑡𝑒 − 𝑡𝑠
. (2)

where 𝐸𝑟𝑡 denotes the transmission rate at time 𝑡, and 𝑡 ∈ [𝑡𝑠, 𝑡𝑒].
(2) The computing resources required by tasks. In a data center,

he resources of a compute node 𝑛𝑐 can be measured in different
dimensions, such as CPU, memory and I/O (Li et al., 2017b). Our
pressure experiments show that when the CPU and memory of a node
reach their bottleneck, the I/O resources of the node are not affected
much and still remain sufficient. Therefore, we only focus on the CPU
and memory utilization of nodes in this paper.

At time 𝑡, compute node 𝑛𝑐 may run multiple instances. If we denote
the set of these instances as 𝐶𝑛𝑐 , the CPU real-time utilization of node
𝑛𝑐 as 𝐿𝑛𝑐 , the number of data tuples processed by each vertex instance
𝑣𝑖,𝑗 running on node 𝑛𝑐 (𝑣𝑖,𝑗 ∈ 𝐶𝑛𝑐) at time 𝑡 as 𝑞𝑣𝑖,𝑗 , the CPU utilization
of vertex instance 𝑣𝑖,𝑗 running on node 𝑛𝑐 can be calculated by (3).

𝑅𝑐𝑣𝑖,𝑗 ,𝑛𝑐 =
𝑞𝑣𝑖,𝑗

∑

𝑣𝑘,𝑚∈𝐶𝑛𝑐
𝑞𝑣𝑘,𝑚

⋅ 𝐿𝑛𝑐 , (3)

here 𝑅𝑐𝑣𝑖,𝑗 ,𝑛𝑐 denotes the CPU utilization of instance 𝑣𝑖,𝑗 , and 𝑣𝑘,𝑚

𝑣𝑘,𝑚 ∈ 𝐶𝑛𝑐) denotes one instance on node 𝑛𝑐 .
Similarly, at time 𝑡, we can also obtain the memory utilization

f node 𝑛𝑐 , denoted as 𝑀𝑛𝑐 . The memory utilization of instance 𝑣𝑖,𝑗
unning on node 𝑛𝑐 can be calculated by (4).

𝑚
𝑣𝑖,𝑗 ,𝑛𝑐

=
𝑞𝑣𝑖,𝑗

∑

𝑣𝑘,𝑚∈𝐶𝑛𝑐
𝑞𝑣𝑘,𝑚

⋅𝑀𝑛𝑐 , (4)

here 𝑅𝑚𝑣𝑖,𝑗 ,𝑛𝑐 denotes the memory utilization of instance 𝑣𝑖,𝑗 on node
𝑐 .

Therefore, the resources consumed by vertex instance 𝑣𝑖,𝑗 on node
𝑐 at time 𝑡, denoted as 𝑅𝑣𝑖,𝑗 ,𝑛𝑐 , can be calculated by (5).

𝑣𝑖,𝑗 ,𝑛𝑐 = 𝛼 ⋅ 𝑅𝑐𝑣𝑖,𝑗 ,𝑛𝑐 + (1 − 𝛼) ⋅ 𝑅𝑚𝑣𝑖,𝑗 ,𝑛𝑐 , 0 < 𝛼 < 1, (5)

where 𝛼 is a weighting factor of the CPU and memory utilization for
instance 𝑣𝑖,𝑗 on node 𝑛𝑐 .

4. Problem formulation

In this section, we formalize the scheduling problems in stream
computing systems, which mainly include subgraph partitioning, task
deployment and stateful scheduling.

4.1. Subgraph partitioning problem

Based on the above models, the subgraph partitioning problem
(Jiang et al., 2017; Fischer and Bernstein, 2015) can be described
4

as follows. A stream application 𝐺 = {𝑉 (𝐺), 𝐸(𝐺)} is deployed to a
ata center, which consists of 𝑚 usable compute nodes {𝑛1, 𝑛2,… , 𝑛𝑚}.

Assume that the number of compute nodes to be used by the stream
application 𝐺 is 𝑘 and 𝑘 <= 𝑚, then the number of subgraphs into
which 𝐺 is partitioned is 𝑘. The mathematical model of the subgraph
partitioning problem is represented by (6) and (7).

𝐺 ⇔ {𝐺𝑠𝑢𝑏1 , 𝐺𝑠𝑢𝑏2 ,… , 𝐺𝑠𝑢𝑏𝑘}, (6)

Subject to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝑟(𝐺𝑠𝑢𝑏𝑖 , 𝐺𝑠𝑢𝑏𝑗),

𝑅𝑐𝐺𝑠𝑢𝑏𝑖
∑𝑘
𝑗=1 𝑅

𝑐
𝐺𝑠𝑢𝑏𝑗

≈
𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑖

∑𝑘
𝑗=1 𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑗

,

𝑅𝑚𝐺𝑠𝑢𝑏𝑖
∑𝑘
𝑗=1 𝑅

𝑚
𝐺𝑠𝑢𝑏𝑗

≈
𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑖

∑𝑘
𝑗=1 𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑗

,

(7)

where 𝑟(𝐺𝑠𝑢𝑏𝑖 , 𝐺𝑠𝑢𝑏𝑗) denotes the communication load between sub-
graph 𝐺𝑠𝑢𝑏𝑖 and subgraph 𝐺𝑠𝑢𝑏𝑗 , which can be calculated by (8). 𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑖
represents the size of subgraph 𝐺𝑠𝑢𝑏𝑖 . 𝑅

𝑐
𝐺𝑠𝑢𝑏𝑖

is the estimated CPU
resources to be used by subgraph 𝐺𝑠𝑢𝑏𝑖 , which can be calculated by (9).
𝑅𝑚𝐺𝑠𝑢𝑏𝑖

represents the estimated memory resources to be used by sub-
graph 𝐺𝑠𝑢𝑏𝑖 , which can be calculated by (10).

𝑟(𝐺𝑠𝑢𝑏𝑖 , 𝐺𝑠𝑢𝑏𝑗) =
∑

𝑣𝑖,𝑘∈𝐺𝑠𝑢𝑏𝑖

∑

𝑣𝑗,𝑚∈𝐺𝑠𝑢𝑏𝑗

𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑚). (8)

𝑅𝑐𝐺𝑠𝑢𝑏𝑖
=

∑

𝑣𝑖,𝑗∈𝐺𝑠𝑢𝑏𝑖

𝑅𝑐𝑣𝑖,𝑗 . (9)

𝑅𝑚𝐺𝑠𝑢𝑏𝑖
=

∑

𝑣𝑖,𝑗∈𝐺𝑠𝑢𝑏𝑖

𝑅𝑚𝑣𝑖,𝑗 . (10)

where 𝑅𝑐𝑣𝑖,𝑗 and 𝑅𝑚𝑣𝑖,𝑗 represent the computed CPU and memory con-

sumption by instance 𝑣𝑖,𝑗 , respectively.
As shown in Fig. 2(a), a streaming application 𝐺 is partitioned into 3

subgraphs. The objectives of subgraph partitioning are to minimize the
communication cost among subgraphs and make the resource consump-
tion among the subgraphs relatively balanced. The deployment problem
of subgraphs to compute nodes is to be discussed next.

4.2. Task deployment problem

Suppose we successfully partition the stream application 𝐺 into 𝑘
subgraphs {𝐺𝑠𝑢𝑏1 , 𝐺𝑠𝑢𝑏2 ,… , 𝐺𝑠𝑢𝑏𝑘}, then our task deployment problem
is converted to: how to select 𝑘 nodes from 𝑚 available compute nodes
and allocate 𝑘 subgraphs to them? A subgraph can have multiple com-
pute nodes as selection candidates, but a subgraph can only be allocated
to one compute node, which means the subgraph and compute node are
in a one-to-one mapping relationship. Suppose the decision variable is

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
𝑥𝑖,𝑗 (11), a subgraph 𝐺𝑠𝑢𝑏𝑗 can be allocated to a compute node 𝑛𝑖 if (12)
is satisfied.

𝑥𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

1, if 𝐿𝑛𝑖 > 𝑅
𝑐
𝐺𝑠𝑢𝑏𝑗

and 𝑀𝑛𝑖 > 𝑅
𝑚
𝐺𝑠𝑢𝑏𝑗

,

0, otherwise,
(11)

where 𝑥𝑖,𝑗 indicates whether the subgraph 𝐺𝑠𝑢𝑏𝑗 is assigned to node 𝑛𝑖,
𝑖 = {1, 2,… , 𝑚} and 𝑗 = {1, 2,… , 𝑘}.

min𝑍 =
𝑚
∑

𝑖=1

𝑘
∑

𝑗=1
𝑤𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 , (12)

subject to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘
∑

𝑗=1
𝑥𝑖,𝑗 = 1, 𝑖 = 1, 2,… , 𝑚,

𝑚
∑

𝑖=1
𝑥𝑖,𝑗 = 1, 𝑗 = 1, 2,… , 𝑘,

𝑥𝑖,𝑗 = 0 or 𝑥𝑖,𝑗 = 1,

(13)

where 𝑤𝑖,𝑗 denotes the predicted cost of subgraph 𝐺𝑠𝑢𝑏𝑗 running on node
𝑛𝑖, and 𝑤𝑖,𝑗 can be calculated by (14).

𝑤𝑖,𝑗 = 𝜇 ⋅ (𝐿𝑛𝑖 − 𝑅
𝑐
𝐺𝑠𝑢𝑏𝑗

) + (1 − 𝜇) ⋅ (𝑀𝑛𝑖 − 𝑅
𝑚
𝐺𝑠𝑢𝑏𝑗

), (14)

where 𝜇 is the weight between CPU resources and memory resources,
and 0 < 𝜇 < 1.

As shown in Fig. 2, there are multiple deployment options between
subgraphs and nodes. We have to find out the one with the minimum
cost to the data center when making a selection.

4.3. Stateful scheduling problem

At runtime, triggering task rescheduling can have a serious impact
on the system performance, making it difficult to guarantee the reliabil-
ity of state data. In Fig. 3, topology 𝑇 runs in a data center and the state
data of the vertices are backed up to remote storage. When manually
or automatically rescheduling tasks running on nodes, we have to kill
the tasks and restart. This has two negative effects.

First, when a task is restarted, the state data of the task needs to be
pulled from the remote storage. However, due to factors like network
packet loss or failure of storage nodes with the state data, the state of
the task may be lost, causing incompleteness of the state data.

Second, if the volume of task state data is large, it takes a long time
to pull data from the remote storage during state recovery, resulting in
a slow start-up.

Sl-Stream tries to ease the negative effects by dividing the state data
into blocks using erasure code technology, which ensures the reliability
of state data and reduces the data pulling time during state recovery.

5. Sl-stream: optimizer model

In this section, we propose four optimizer models for the three
problems identified above, i.e. optimizers for subgraph partitioning,
task deployment, hierarchical scheduling and state management.

5.1. Subgraph partitioning optimizer

Subgraph partitioning is an NP problem (Liu et al., 2017), which
a heuristic algorithm usually suits better. In this paper, we use the
quantum particle swarm algorithm (Yang et al., 2004) to solve it. A
set of solutions 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑚) is generated by randomly arranging
natural numbers from 1 to 𝑚 for the instances in a stream application
𝐺 using the common natural number encoding technique, where 𝑥𝑖 is a
way to randomizing the natural numbers from 1 to 𝑚, and 𝑝 denotes an
5

𝑖

Fig. 2. Minimum matching between subgraphs and nodes.

Fig. 3. Stateful topology running on Storm.

adaptation value at the current position of 𝑥𝑖, which can be calculated
by (15).

𝑞1𝑖 =
𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑖

∑𝑘
𝑗=1 𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑗

, 𝑞2𝑖 =
∑

𝑣𝑖,𝑗∈𝐺𝑠𝑢𝑏𝑖
𝑅𝑣𝑖,𝑗

∑

𝑣𝑖,𝑗∈𝐺 𝑅𝑣𝑖,𝑗
,

𝑝𝑖 =
𝑘
∑

𝑘
∑

𝑟(𝐺𝑠𝑢𝑏𝑖 , 𝐺𝑠𝑢𝑏𝑗) + 𝜌
𝑘
∑

|𝑞1𝑖 − 𝑞
2
𝑖 |.

(15)
𝑖=1 𝑗=1 𝑖=1

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Fig. 4. Matching process between nodes and subgraphs.
where 𝑠𝑖𝑧𝑒𝐺𝑠𝑢𝑏𝑖 represents the size of subgraph 𝐺𝑠𝑢𝑏𝑖 , 𝑞
1
𝑖 denotes the ratio

of the number of instances owned by the subgraph against the topology,
and 𝑞2𝑖 denotes the ratio of the resource consumption of the subgraphs
against the topology.

The particle wave function 𝜑(𝑥) of the quantum particle swarm
(Yang et al., 2004) is known to be (16).

𝜑(𝑥) = 1
√

𝐿
𝑒−

‖𝑝−𝑥‖
𝐿 . (16)

Its probability density function 𝑄(𝑥) is (17).

𝑄(𝑥) = |𝜑(𝑥)|2 = 1
𝐿
𝑒−2

‖𝑝−𝑥‖
𝐿 , (17)

where 𝑝 denotes the best adaptation value in each particle history and
the parameter 𝐿 can be calculated by (18).

𝐿(𝑡 + 1) = 2𝜓 ⋅ |𝑝 − 𝑥(𝑡)| . (18)

Based on the probability density of the wave function (17), we are
able to calculate the current wave value of 𝑥(𝑡) by the Monte Carlo
algorithm (Traub and Wozniakowski, 1992).

𝑥(𝑡) = 𝑝 ± 𝐿
2 ln(1𝜂)

, (19)

where 𝐿 can be obtained by (18) and 𝜂 takes value in range 𝑟𝑎𝑛𝑑(0, 1).
The 𝐿 parameter is expressed as (20).

𝐿(𝑡 + 1) = 2𝛽 ⋅ |𝑚𝑏𝑒𝑠𝑡 − 𝑥(𝑡)| , (20)

where 𝛽 is the convergence coefficient, and generally takes the value
of (21). Different 𝛽 affects the convergence speed of the algorithm. 𝜎
takes value in range 𝑟𝑎𝑛𝑑(0.5 ∼ 1.0). 𝑚𝑏𝑒𝑠𝑡 denotes the center of all
particles, which can be calculated by (22).

𝛽 =
𝜎 ⋅ (𝑀𝐴𝑋𝐼𝑇𝐸𝑅 − 𝑇)

𝑀𝐴𝑋𝐼𝑇𝐸𝑅
+ 0.5, (21)

𝑚𝑏𝑒𝑠𝑡 =
𝑀
∑

𝑖=1

𝑝𝑖
𝑀
, (22)

where 𝑀 is the number of populations, representing the size of the
partition schemes set for the topology. 𝑝𝑖 is the historical optimal fitness
value of the 𝑖th particle. A particle represents one partition scheme.

Based on the above description, the iteration function of the topol-
ogy partitioning algorithm is (23).

𝑥(𝑡 + 1) = 𝑝 ± 𝛽 |𝑚𝑏𝑒𝑠𝑡 − 𝑥(𝑡)| ⋅ ln 𝑢. (23)

Keep executing (23) until the maximum number of iterations is
reached. The output is then the divided subgraphs.

The deployment scheme from the divided subgraphs to compute
nodes is to be discussed next.

5.2. Task deployment optimizer

Based on the above subgraph partitioning method, we partition
the stream application 𝐺 into 𝑘 subgraphs {𝐺𝑠𝑢𝑏1 , 𝐺𝑠𝑢𝑏2 ,… , 𝐺𝑠𝑢𝑏𝑘}. 𝐺
is deployed to a data center with 𝑚 available compute nodes. We
abstract the relationship between subgraphs and compute nodes in
Fig. 5, where rows correspond to subgraphs, columns correspond to
6

Fig. 5. The cost matrix for assignment between nodes and subgraphs.

nodes, 𝑤𝑘𝑚 denotes the cost of running subgraph 𝐺𝑠𝑢𝑏𝑘 on node 𝑛𝑚. We
try to find one deployment with the minimum cost.

For example, Fig. 4(a) represents the cost matrix for assignment
between subgraphs and nodes. First, we make row and column changes
to Fig. 4(a) by subtracting the smallest element of one row for each row
and the smallest element of one column for each column. A matrix can
be obtained in Fig. 4(b). Next, determine the independent 0 elements
for trial deployment. Start with a row that has only one 0 element, mark
that 0 element in that row, and then cross out the other 0 elements
in the column where the marked 0 element is located. Similarly, start
with a column that has only one 0 element, mark the 0 element in
that column, and then cross out the other 0 elements in the row where
the marked 0 element is located. The final established independent
0 element is the box-marked 0 in Fig. 4(b). Since the number of
independent 0 elements is 3, which is less than the matrix dimension
4, the matrix needs further adjustment.

Mark a row without an independent 0 element, mark the column
with the 0 element crossed out of this row, and mark the row with an
independent 0 element in this column. Then, the unmarked rows are de-
lineated and the marked columns are delineated. The final delineation
result is shown in Fig. 4(b). Then, the minimum value of the undrawn
line is selected, the value is subtracted from the elements of the un-
drawn line, and the value is added to the elements of the intersection of
the lines to finally obtain Fig. 4(c). Determine whether Fig. 4(c) satisfies
the number of independent 0 elements equals to 4 (the dimension of
matrix). If not, repeat the process of Fig. 4(a,b,c). The final deployment
result is obtained as Fig. 4(d).

Sl-Stream triggers local adjustment to tasks based on the final
deployment scheme, which is to be discussed next.

5.3. Hierarchical scheduling optimizer

The main process of Sl-Stream runtime scheduling optimizer is
to monitor in real time whether the amount of communication be-
tween vertex instances and their resource consumption have changed
significantly, and provide an evaluation result. Decision on whether
rescheduling is made is based on this evaluation. Vertex instances are
adjusted layer-by-layer during rescheduling. Triggering rescheduling
consumes certain system resources, but the cost can be justified in the
long run.

At runtime, the monitoring module of Sl-Stream continuously col-
lects the metrics of the vertex instances and obtains the fitness value
𝑝 for the new partition scheme 𝑥 according to algorithm 1. It
𝑛𝑒𝑤 𝑛𝑒𝑤

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Fig. 6. Layer-by-layer adjustment.

compares 𝑝𝑛𝑒𝑤 with the fitness value 𝑝𝑜𝑙𝑑 of the running partition
scheme 𝑥𝑜𝑙𝑑 and triggers rescheduling when 𝑝𝑜𝑙𝑑

𝑝𝑛𝑒𝑤
< 𝜉, 0 < 𝜉 < 1

is satisfied, where 𝜉 denotes a user-defined factor that triggers task
rescheduling. The higher 𝜉 is, the more frequent the rescheduling is
triggered.

When rescheduling is triggered, it does not kill the entire topology,
but is done gradually within a certain period of time. According to
Sl-Stream’s state management strategy, a layer-by-layer instance migra-
tion is performed to avoid state loss of the instances. To ensure that the
system provide services continuously, half instances of each layer are
adjusted at a time.

As shown in Fig. 6, the stream application consists of 𝑣1, 𝑣2 and 𝑣3
three layers. When rescheduling occurs, each layer has half instances
adjusted each time. E.g. the instances of 𝑣1 are adjusted first, and the
adjustment is conducted in two steps: one instance one step. Next, the
instances of 𝑣2 are adjusted. Two instances each step for two steps.
Finally, 𝑣3 is done, which is the same as 𝑣1. The timing of this process
is user-defined.

When a task is migrated to a new node, it needs to restart and
recover its state. An effective state management can help with the fast
start-up on the new node, which is to be discussed next.

5.4. State management optimizer

State management can affect the system computational performance
during instance migration. For example, if a stateful vertex is migrated,
its state may be lost, disrupting the continuity of data processing.
Storm system uses a checkpointing mechanism to maintain stateful
vertices and store check-point (Tian et al., 2018; Zhuang et al., 2020)
data to a remote storage system (e.g. Hadoop Distributed File System
(HDFS) Lu et al., 2013). This may lead to longer time to recover the
system state. It becomes even worse if packets are lost during network
transmission, ultimately leading to incomplete state. We implement an
online state backup and recovery mechanism to address these problems.
The mechanism first divides the state data into several raw blocks,
and encode the raw blocks to generate the check blocks. Then these
data blocks are backed up to different upstream vertex instances for
synchronization, which will be pulled for parallel processing during
state recovery.

Suppose there is a stream application 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)), where
𝑉 (𝐺) = {𝑣1, 𝑣2,… , 𝑣𝑛}. Each vertex instance manages its own state
and periodically generates the raw and check blocks. As shown in
Fig. 7, the synchronization flow of state information among vertex
instances forms a logical ring. Fig. 8 indicates that in the 𝑠th vertex,
each instance 𝑣𝑠,𝑘 manages its own state while partitioning its state data
into raw blocks and generating check blocks by encoding raw blocks for
synchronization with the instances in the (𝑠−1)th vertex. Moreover, the
sum of number of check blocks and raw blocks must be equal to the
number of upstream instances of 𝑣 .
7

𝑠,𝑘
Fig. 7. Logical rings formed among stateful vertex instances.

Fig. 8. Data block backup on upstream vertex instances.

Fig. 9. State recovery for vertex instance.

If a vertex instance needs to restart, its state can be retrieved. As
shown in Fig. 9, when a vertex instance 𝑣𝑠,𝑘 needs to restart on another
node, it can pull the state from the upstream vertex instances in parallel
and then resume work. If several upstream vertex instances fail or stop
running, the state recovery of downstream instance is not affected,
given the number of failed instances less than the number of check
blocks to be discussed in Section 6(E). As shown in Fig. 10, when an
upstream vertex instance 𝑣𝑠−1,𝑘 fails, the downstream instance 𝑣𝑠,𝑘 can
still use the remaining data blocks to recover the complete state through
algorithm 5.

An instance needs to maintain state data blocks for multiple in-
stances, so organizing different data blocks into a prefix tree can
improve the locating efficiency. Nodes in the prefix tree mainly contain
routing index information and data blocks. The routing index is com-
posed of topology ID, component name (vertex name) and executor ID
(instance ID). Fig. 11 shows how each instance organizes data blocks.
Leaf nodes mainly store the data blocks and non-leaf nodes store the
routing information.

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Fig. 10. Fault-tolerant state recovery for vertex instance.

Fig. 11. Tree structure for data block management on vertex instance.

6. Sl-stream: framework and algorithms

Based on the above analysis, we propose and implement a state
lossless scheduling strategy. In this section, we introduce the system
framework and algorithms for subgraph partitioning, task deployment,
hierarchical migration and state management.

6.1. System framework

The framework of Sl-Stream is shown in Fig. 12. The process of the
state lossless scheduling strategy can be decomposed into the following
five steps: Step 1: monitor communication 𝐸𝑟, CPU 𝐿𝑛𝑐 and memory
𝑀𝑛𝑐 load. This step collects information about the amount of com-
munication 𝐸𝑟 between tasks and the load on the nodes, and predicts
the CPU 𝑅𝑐𝑣𝑖,𝑗 ,𝑛𝑐 and memory 𝑅𝑚𝑣𝑖,𝑗 ,𝑛𝑐 load of each task. Step 2: trigger
scheduling. When the ratio between old 𝑝𝑜𝑙𝑑 and new 𝑝𝑛𝑒𝑤 scheduling is
less 0.7 (defined by user, the higher this value is, the more frequent the
rescheduling is triggered), new scheduling can be triggered at runtime
based on the workload and communication 𝐸𝑟 information. Step 3:
partition subgraphs. Suppose that a streaming application requires 3
compute nodes to run, the corresponding DAG graph will be divided
into 3 subgraphs. Communication-intensive tasks are placed on the
same subgraph by algorithm 1 and the workload of each subgraph is
guaranteed to be relatively balanced. Step 4: assign tasks. Suppose that
there are 5 compute nodes in the cluster. 3 of 5 nodes will be selected
by algorithm 2 to run the streaming application based on Step 3, and
the algorithm guarantees the selected node costs are minimal. Step 5:
generate a scheduling scheme and notify the data center of the scheme.

6.2. Subgraph partitioning algorithm

If the response time is higher or the throughput is lower than user’s
expectations, part of vertices of the DAG running online need to be
rescheduled to improve the system performance.

In the online rescheduling phase, the DAG needs to be partitioned
into the subgraphs to ensure that the system communication delay is
8

minimized and the workload of the nodes are relatively balanced. This
process is described in algorithm 1.

Algorithm 1: subgraph partition.
Input: Stream application 𝐺, predicted workload for each

instance 𝑣𝑖,𝑗 , communication load between instances
𝑟(𝑣𝑖,𝑗 , 𝑣𝑘,𝑚);

Output: subgraph partition scheme 𝑥𝑖;
1 Initialize the maximum number of iteration defined by user,

noted as 𝑐𝑜𝑢𝑛𝑡 ;
2 Initialize the population size defined by user, noted as 𝑀 ;
3 Initialize the set of partition schemes, noted as 𝑋 ;
4 for each 𝑀 do
5 𝐺’s instances are encoded with natural numbers, denoted as

𝑥𝑖;
6 𝑋 ← 𝑥𝑖;
7 end
8 while 𝑐𝑜𝑢𝑛𝑡 > 0 do
9 Initialize the population optimum 𝑔𝑏𝑒𝑠𝑡, the center of

gravity 𝑚𝑏𝑒𝑠𝑡 of 𝑥𝑖 ;
10 for each 𝑥𝑖 in 𝑋 do
11 Calculate the historical optimum 𝑝𝑏𝑒𝑠𝑡 for 𝑥𝑖. Calculate

the fitness value 𝑝𝑖 for each 𝑥𝑖 according to (15), and
compare it with the historical optimum 𝑝𝑏𝑒𝑠𝑡. 𝑝𝑏𝑒𝑠𝑡
keeps the maximum value of both;

12 Calculate the population optimal 𝑔𝑏𝑒𝑠𝑡 for 𝑋. Calculate
the fitness value 𝑝𝑖 for each 𝑥𝑖 and compare it with the
𝑔𝑏𝑒𝑠𝑡. 𝑔𝑏𝑒𝑠𝑡 keeps the maximum value of all 𝑝𝑖;

13 Update the center of gravity 𝑚𝑏𝑒𝑠𝑡 of all 𝑥𝑖 according to
Eq. (22);

14 end
15 for each 𝑥𝑖 in 𝑋 do
16 Update the position of each 𝑥𝑖 according to (23) to

generate new populations;
17 end
18 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 − 1 ;
19 end
20 return subgraph partition scheme 𝑥𝑖 with maximum fitness value

The input of algorithm 1 includes a DAG, workload of each instance
and communication load between instances. Its output is a set of
instances to be run on each node. Step 4 to step 7 initialize a population
at random. Step 10 to step 14 calculate the historical optimal fitness
value of subgraph partition scheme 𝑥𝑖, the global optimal value and
the center of gravity of all 𝑥𝑖. Step 15 to step 17 update the positions
of all 𝑥𝑖. The time complexity of algorithm 1 is 𝑂(𝑝 ⋅ 𝑛), where 𝑝 is
the population size defined by user, and 𝑛 is the maximum number of
iteration.

In algorithm 1, the node where a vertex instance is deployed is very
likely to change, resulting in the redeployment of the online DAG. In
this case, both the communication load and the resource consumption
of the vertex instance are considered. The resource consumption of
instance can be computed at DAG runtime.

6.3. Task deployment algorithm

Based on algorithm 1, when a stream application 𝐺 is successfully
partitioned into multiple subgraphs, each subgraph may have multiple
nodes satisfying the subgraph deployment condition, which means that
the computational resources required by the subgraph are less than the
available resources of the nodes. If subgraphs are improperly assigned
to nodes, a large amount of resources might be left idle in the data
center.

When assigning subgraphs to nodes, the deployment with the min-
imum cost is preferred to ensure the maximum resource utilization in
the data center. This is described in algorithm 2.

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Fig. 12. The framework of Sl-Stream.
Algorithm 2: Minimum Cost Matching.
Input: Subgraphs of stream application 𝐺, predicted workload

of each subgraph, and workload of each node;
Output: A set of one-to-one mappings between subgraphs and

nodes;
1 Initialize the cost matrix 𝑀 between subgraphs and nodes. The

element value of the matrix 𝑀 is the workload of each node
minus the workload of each subgraph, and the value must be
greater than 0. If it is less than 0, the element value is set to
1000 representing ‘‘infinity’’ here;

2 while true do
3 for each row of matrix 𝑀 do
4 Row minus the minimum value of this row;
5 end
6 for each column of matrix 𝑀 do
7 Column minus the minimum value of this column;
8 end
9 Perform a trial deployment. Find as many independent 0

elements as possible;
10 Starting from the row with only one 0 element, mark the 0

element in the row, and cross out the other 0 elements in
the column where the marked 0 element is located;

11 Starting from a column with only one 0 element, mark the
0 element in that column , and cross out the other 0
elements in the row where the marked 0 element is
located;

12 if the number of independent 0 elements == the number of
dimensions of the square matrix then

13 End the program, break;
14 end
15 Pass all 0 elements with the least number of straight lines;
16 The minimum value 𝑚𝑖𝑛 of the unpassed elements of the

line is selected, and 𝑚𝑖𝑛 is subtracted from all the
unpassed elements of the line, and 𝑚𝑖𝑛 is added to the
intersecting elements of the line to obtain a new matrix;

17 end
18 return matrix 𝑀
9

The input of algorithm 2 includes subgraphs of stream application
𝐺, predicted workload of each subgraph and workload of each node.
The output is a set of one-to-one mappings between subgraphs and
nodes. Step 3 to 14 find the independent 0 elements and determine if
the end condition of the program is satisfied. Step 15 to 16 adjust the
matrix to produce more independent 0 elements. The time complexity
of algorithm 2 is 𝑂(𝑚3), where 𝑚 is the number of compute node.

In algorithm 2, the matrix composed of subgraphs and nodes may
not be a square matrix, so the maximum number of rows and columns
of the matrix are chosen as the dimension of the square matrix. The
missing part of the square matrix is filled with value 10 000 (‘‘infinity’’)
for supplementation.

6.4. Hierarchical migration algorithm

If rescheduling is triggered, an efficient local task migration method
is available to enable the sustainable processing of data stream. Based
on algorithm 1, the adaptation value 𝑝𝑛𝑒𝑤 for a new partition scheme
is continuously obtained. Based on algorithm 2, the mapping rela-
tionships between tasks and nodes in an deployment scheme can be
obtained.

In task migration phase, all the tasks of the application are adjusted
in batches layer by layer to ensure their state data integrity. This
process is described in algorithm 3.

The input of algorithm 3 includes current state of 𝐺, predicted
workload of vertex instances and workload of each node. The output is
a boolean of Hierarchical migration. Step 2 and step 4 invoke algorithm
1 and algorithm 2 to get the necessary data. Step 6 to 16 find the
vertex instances to be changed in each layer and process the changed
instances in two batches for each layer. Step 17 to 23 migrate the
changed instances in batches. The time complexity of algorithm 3 is
𝑂(𝑠), where 𝑠 is the number of instances in the topology.

Algorithm 3 perceives fluctuations in data stream and responds in a
timely manner. We perform the migration in batches according to the
changes of resource consumption and communication load of tasks in
each vertex. It ensures the system continue to provide services and the
task state be recovered quickly in case of rescheduling.

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Algorithm 3: Hierarchical migration.
Input: Current state of stream application 𝐺, predicted

workload of vertex instances and workload of each
node;

Output: The boolean of Hierarchical migration;
1 while true do
2 Call algorithm 1 to get the current partition scheme and the

fitness value (𝑥𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤);
3 if 𝑝𝑜𝑙𝑑

𝑃𝑛𝑒𝑤
< 𝜉 then

4 Input 𝑥𝑛𝑒𝑤 into algorithm 2 to get the mapping
relationship (deployment scheme) between subgraphs
and nodes (𝐺𝑛𝑒𝑤𝑠𝑢𝑏, 𝑛𝑜𝑑𝑒𝐼𝑑);

5 Use 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 to represent the set of migration batches
for tasks;

6 for each 𝑣𝑖 in 𝐺 do
7 Use 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ to represent the set of tasks 𝑣𝑖,𝑗 of the

current vertex 𝑣𝑖 that have changed position;
8 for each instance 𝑣𝑖,𝑗 in 𝑣𝑖 do
9 Find the location of 𝑣𝑖,𝑗 in 𝐺𝑛𝑒𝑤𝑠𝑢𝑏 and mark the

𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝐼𝑑 corresponding to 𝐺𝑛𝑒𝑤𝑠𝑢𝑏;
10 Find the location of 𝑣𝑖,𝑗 in 𝐺𝑜𝑙𝑑𝑠𝑢𝑏 and mark the

𝑜𝑙𝑑𝑁𝑜𝑑𝑒𝐼𝐷 corresponding to 𝐺𝑜𝑙𝑑𝑠𝑢𝑏;
11 Establish the relationship 𝑓 (𝑣𝑖,𝑗) for the position

change of 𝑣𝑖,𝑗 ,
𝑓 (𝑣𝑖,𝑗) = 𝑜𝑙𝑑𝑁𝑜𝑑𝑒𝐼𝑑(𝑣𝑖,𝑗) → 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝐼𝑑(𝑣𝑖,𝑗);

12 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ← 𝑓 (𝑣𝑖,𝑗);
13 end
14 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ is divided into 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ1 and 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ2;
15 𝐵𝑎𝑡𝑐ℎ𝑒𝑠← 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ1 𝐵𝑎𝑡𝑐ℎ𝑒𝑠← 𝑆𝑢𝑏𝐵𝑎𝑡𝑐ℎ2;
16 end
17 for each 𝑠𝑢𝑏𝐵𝑎𝑡𝑐ℎ in 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 do
18 for 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 in each change of task 𝑓 (𝑣𝑖,𝑗) do
19 Kill 𝑣𝑖,𝑗 task on 𝑜𝑙𝑑𝑁𝑜𝑑𝑒𝐼𝑑 node;
20 Start the 𝑣𝑖,𝑗 task on 𝑛𝑒𝑤𝑁𝑜𝑑𝑒𝐼𝑑 node;
21 The latest data block is pulled from the

upstream instances of 𝑣𝑖,𝑗 task in parallel and
the state data is restored according to
algorithm 4 to resume 𝑣𝑖,𝑗 ’s work;

22 end
23 end
24 return 𝑇 𝑟𝑢𝑒
25 end
26 end
27 return 𝐹𝑎𝑙𝑠𝑒

6.5. State management algorithm

Fault-tolerant state backup can be implemented with the jerasure
tool (Plank and Greenan, 2022). The whole process can be divided
into two steps: encoding the state data after partition and decoding the
encoded data blocks.

(1) Encoding step: if the number of upstream vertex instances for
vertex instance 𝑣𝑠,𝑘 is 𝑢, the state data of 𝑣𝑠,𝑘 can be partitioned into 𝑟
raw blocks and 𝑐 check blocks, and 𝑟 and 𝑐 satisfy (24). These (𝑟 + 𝑐)
data blocks are stored respectively in the upstream vertex instances of
𝑣𝑠,𝑘. As long as the number of failed upstream instances is less than
𝑐, instance 𝑣𝑠,𝑘 is able to recover the complete state data from the
remaining 𝑟 copies of data blocks (no matter raw or check), enabling
the state data tolerate loss of 𝑐 number of blocks.

𝑢 = 𝑟 + 𝑐 (24)

Assume that the number of upstream vertex instances for instance
𝑣 is 8, and the 𝑣 state is partitioned into 5 raw blocks and 3 check
10

𝑠,𝑘 𝑠,𝑘
Fig. 13. Encoding of stateful data.

Fig. 14. Decoding of stateful data.

blocks, i.e., 𝑟 = 5, 𝑐 = 3. As shown in Fig. 13, the 𝑟 raw blocks
𝐵1 ∼ 𝐵5 are arranged into 𝐵 vectors and a (𝑟 + 𝑐) ∗ 𝑟 encoding
matrix 𝐴 is constructed. Where matrix 𝐴 must satisfy: (1) the first 𝑟
rows are unit matrices; (2) the 𝑟 ∗ 𝑟 square matrix consisting of any 𝑟
row vectors in matrix 𝐴 must be invertible. In this work, the encoding
matrix technique used is the Vandermonde matrix (Klinger, 1967). The
𝑢 data blocks, denoted as vector 𝐷, are obtained by multiplying the
encoding matrix 𝐴 with the matrix 𝐵.

(2) Decoding step: Suppose the upstream instances storing the data
blocks 𝐵1, 𝐵3 and 𝐶1 for 𝑣𝑠,𝑘 are faulty, the state of 𝑣𝑠,𝑘 can be recovered
from the data blocks stored in the remaining instances. As shown in
Fig. 14(a), 𝑣𝑠,𝑘 pulls the remaining data blocks to produce vector 𝐷′

from square matrix 𝐴′ and vector 𝐵. Our goal is to solve for vector 𝐵,
which represents the complete state of 𝑣𝑠,𝑘.

As the 𝑟 ∗ 𝑟 square matrix consisting of any 𝑟 row vectors of
matrix 𝐴 is invertible, the square matrix 𝐴′ is invertible. As shown in

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.

o

f
a

b
o
S
u

v
1
s
w

d
u
O
d

Fig. 14(b), it is only necessary to multiply the matrix 𝐴′−1 on both sides
of the equation in Fig. 14(a) to solve for the vector 𝐵. Then the data
block integration is performed and the complete state data 𝐵1 ∼ 𝐵5 is
btained.

In the encoding and decoding steps for the state data, the inter-
ace to the jerasure tool is called. The encoding step is described in
lgorithm 4.

Algorithm 4: Encoding of stateful data.
Input: Storage location of state data, number of raw blocks

and number of check blocks;
Output: The boolean of encoding stateful data;

1 Construct encoding matrix 𝐴;
2 Access the jerasure toolkit, call the encoding interface

jerasure_matrix_encode to generate data blocks. Pass in the
parameters 𝐴, number of raw blocks, number of check blocks
and state data location;

3 Pull the metadata (especially the node location data) of the
upstream vertex instances for the instance;

4 for each block of data do
5 Send data blocks to the upstream vertex instances based on

the location information in metadata;
6 end
7 return 𝑇 𝑟𝑢𝑒

The input of algorithm 4 includes state data storage location, num-
er of raw blocks and number of check blocks. The output is a boolean
f encoding stateful data. Step 2 partitions and encodes the state data.
tep 3 to step 6 synchronize the raw blocks and check blocks with the
pstream vertices. The time complexity of algorithm 4 is 𝑂(𝑒), where 𝑒

is the number of blocks of the state data. The decoding step is described
in algorithm 5.

Algorithm 5: Decoding of stateful data.
Input: Upstream instances information for the instance;
Output: Complete state data;

1 Initialize the number of raw blocks of the instance, noted as 𝑟 ;
2 Pull the surviving data block 𝑏 from the upstream vertex

instances;
3 if 𝑏 > 𝑟 then
4 Construct the encoding square matrix 𝐴′ based on the

surviving data blocks;
5 Initialize the 𝑗𝑒𝑟𝑎𝑠𝑢𝑟𝑒 class by the jerasure toolkit;
6 Call the decoding interface of the 𝑗𝑒𝑟𝑎𝑠𝑢𝑟𝑒 class by passing

in the parameter square matrix 𝐴′ and the data block
location;

7 Construct state data 𝐵;
8 return 𝐵;
9 else
10 return null
11 end

The input of algorithm 5 includes information of the upstream
ertices for the instance. The output is the complete state data. Step
pulls the surviving data blocks. Step 3 to step 9 recover from the

urviving data blocks. The time complexity of algorithm 5 is 𝑂(𝑑),
here 𝑑 is the number of blocks of the state data.

Since each vertex instance keeps the state data blocks for multiple
ownstream instances, organizing and managing these data blocks
sing a prefix tree can improve the efficiency of finding data blocks.
nce the prefix tree is constructed, it is rarely changed. Algorithm 6
escribes the data block querying process.
11
Algorithm 6: Querying data block location.
Input: Prefix of the data block 𝑝𝑑 and root node of the prefix

tree 𝑟𝑛;
Output: Location of data blocks;

1 while 𝑟𝑛 is not a leaf node do
2 for Each child node 𝑒 of 𝑟𝑛 do
3 𝑓𝑙𝑎𝑔 = 𝑓𝑙𝑎𝑠𝑒;
4 if 𝑒→ 𝑏𝑙𝑜𝑐𝑘𝐷𝑎𝑡𝑎 == 𝑝𝑑 then
5 𝑓𝑙𝑎𝑔 = 𝑡𝑢𝑟𝑒;
6 𝑟𝑛← 𝑒;
7 break;
8 end
9 end
10 if 𝑓𝑙𝑎𝑔 == 𝑡𝑟𝑢𝑒 then
11 return null
12 end
13 end
14 if 𝑟𝑛→ 𝑏𝑙𝑜𝑐𝑘𝐷𝑎𝑡𝑎 == 𝑝𝑑 then
15 return 𝑟𝑛
16 end
17 return null

Table 3
Software configuration of the Sl-Stream.

SoftWare Version

Ubuntu Ubuntu 16.04 64 bit
Storm Apache-Storm-1.0.2
JDK Jdk1.8
Zookeeper Zookeeper-3.4.6
Python Python 2.7.2
MySql MySql-5.1.7

The input of algorithm 6 is prefix of the data block queried by user
and root node of the prefix tree. The output is the location of the data
blocks. Step 2 to step 12 traverse the index information of the prefix
tree. If the index information is not found in non-leaf nodes, null is
returned. Step 14 to step 16 return data blocks. The time complexity
of algorithm 6 is 𝑂(ℎ), where h is the height of the prefix tree. This
algorithm can quickly find the location of data blocks based on the
index information. Once the data blocks are obtained, they can be
modified or transferred over the network.

7. Performance evaluation

In this section, we evaluate the performance of Sl-Stream system.
The experimental environment and parameter settings are first dis-
cussed, followed by the analysis of the evaluation results and the
fault-tolerant state management algorithms.

7.1. Experimental environment and parameter setup

The Sl-Stream system is developed based on Storm 1.0.2 and de-
ployed on Ubuntu 16.04. Real-world data experiments are conducted
on a cluster of AliCloud. The cluster consists of 10 machines, 2 of which
run Storm nimbus as master nodes and 3 deploy zookeeper. The nodes
deploying nimbus and zookeeper also deploy supervisor nodes, while
the other 5 deploy only supervisor nodes. The software configuration
of Sl-Stream is shown in Table 3.

In addition, Top_N DAGs, one of the commonly used test applica-
tions, are submitted to the data center as the stream application. Two
logic graphs of Top_N are shown in Fig. 15. The vertex functions and

the number of instances are shown in Table 4.

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Table 4
Vertex functions of Top_N.

Vertex Instances Function

𝑣1 1, 4 Read words from data stream
𝑣2 10, 3 Split words
𝑣3 8, 3 Count words
𝑣4 1, 1 Merge all ranks from upstream

Fig. 15. Two topologies of Top_N.

7.2. Performance results

The experiments focus on three metrics: system throughput, system
response time and cluster size.

(1) System Throughput.
System throughput reflects the performance of a system and is

measured by the number of output tuples per second for a DAG the
system is running. The higher the system throughput, the more capable
the system is of processing data. In this set of experiments, we set the
input rates of the data stream to 1000 tuples/s and 2000 tuples/s to
test the system throughput. The experimental results are the average
throughput of topology 1 and topology 2.

The Sl-Stream strategy has higher system throughput than the Storm
EvenScheduler and ResourceAwareScheduler when the input rate of
data stream is kept stable at 1000 tuples/s. As shown in Fig. 16,
the system throughput basically remains stable after 200 s. The av-
erage throughput of Sl-Stream is 523 tuples/s, roughly two times
12
Fig. 16. System throughput under data rates of 1000 tuples/s.

Fig. 17. System throughput under data rates of 2000 tuples/s.

more than the EvenScheduler’s 254 tuples/s and ResourceAwareSched-
uler’s 221tuples/s. Experiments show the average throughput of the
Sl-Stream system is higher than that of the EvenScheduler and Re-
sourceAwareScheduler when the input rate is stable for the given
application.

When the input rate fluctuates over time, as shown in Fig. 17, ramp-
ing up to 2000 tuples/s at the 500 s, Sl-Stream system still has a higher
system throughput than the EvenScheduler and ResourceAwareSched-
uler. At around 700 s, the system throughput remains stable again.
The throughput of Sl-Stream changes from 523 tuples/s to 922 tu-
ples/s, the throughput of the EvenScheduler changes from 254 tuples/s
to 431 tuples/s, and that of the ResourceAwareScheduler changes
from 212 tuples/s to 405 tuples/s. Experiments show that the average
throughput of Sl-Stream is still greater than those of the EvenScheduler
and ResourceAwareScheduler when the input rate fluctuates for the
given application.

From Fig. 17, it can be observed that the throughput of Sl-Stream
drops sharply at 593 s after the rate increases. The main reason for
this is that the communication between tasks may shift when the
data stream rate changes, causing the monitoring module to trigger a
rescheduling command.

(2) System Response Time
As the response time of a system can directly affect user’s experi-

ence, it is considered as an important evaluation metric. The shorter
the response time of a system, the better the user experience and the
better the real-time performance.

When the input rate is kept stable at 2000 tuples/s for topology
1 of Top_N, Sl-Stream has a lower response time compared to the

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Fig. 18. System response time of topology 1 under data rates of 2000 tuples/s.

Fig. 19. System response time topology 2 under data rates of 2000 tuples/s.

EvenScheduler and ResourceAwareScheduler. As shown in Fig. 18,
the average response time for Sl-Stream, the EvenScheduler and Re-
sourceAwareScheduler are 9.3 ms, 13.2 ms and 14.1 ms, respectively
after the system becomes stable. The experiments clearly show that
the average response time of Sl-Stream is lower than those of the
EvenScheduler and ResourceAwareScheduler when the input rate is
stable.

When the input rate is kept stable at 2000 tuples/s for topology 2
of Top_N, Sl-Stream also has a lower response time compared to the
EvenScheduler and ResourceAwareScheduler. As shown in Fig. 19, the
average response time are 8.6 ms, 12.9 ms and 13.7 ms for Sl-Stream,
EvenScheduler and ResourceAwareScheduler when the system becomes
stable. It is obvious that the average response time of Sl-Stream is lower
than those of the EvenScheduler and ResourceAwareScheduler when
the input rate is stable.

7.3. State recovery time evaluation

We compare the state recovery technique of Sl-Stream with the
checkpoint recovery of Storm by changing the size of state. In this
experiment, we focus on a stream application where only one task
needs to be migrated when rescheduling is triggered. The number of
check blocks and raw blocks are set to 3 and 7, respectively.

As shown in Fig. 20, the state recovery time for Sl-Stream and
checkpoint are similar when the state data size falls in range [2 MB,
30 MB]. However, the state recovery time of Sl-Stream is reduced
roughly from 5.2% to 31.4% when the state data size varies in range
13
Fig. 20. Recovery time under different state sizes.

Fig. 21. State saving time under different state sizes.

[40 MB, 200 MB]. And this difference keeps getting larger as the
amount of data in the state increases. The state recovery time for
Sl-Stream mainly includes data blocks pulling time and data blocks
computing time. Given the network bandwidth resources are sufficient,
the time difference between Sl-Stream and checkpoint for pulling the
state data is not significant when the state data size is small. Therefore,
the state recovery time of both is similar. When the state data size
becomes larger, it becomes a major factor affecting the state recovery
time. Sl-Stream simultaneously pulls multiple state data blocks when
performing state recovery. Storm’s check-point recovery, on the other
hand, can only use single-threaded state data pulling. Therefore, the
state recovery time of Sl-Stream is much shorter than that of Storm
when the size of the state data is large.

We also compare the state saving cost of Sl-Stream with that of the
checkpoint recovery by changing the size of state data. As shown in
Fig. 21, when the size of state data reaches 80 MB, the state saving
time for Sl-Stream and for Storm is 2.9 s and 3.7 s, respectively. When
the size of state data is 200 MB, the time is 6.2 s and 8.2 s for Sl-Stream
and Storm. Sl-Stream always takes much less time than Storm to save
the state data with increasing sizes. And the time gap increases as the
size increases.

The total state recovery time of Sl-Stream and of the Storm check-
point recovery is evaluated by changing the number of migrated in-
stances when rescheduling is triggered. In this experiment, the mini-
mum and maximum sizes of the migrated instance state data are 10 MB
and 80 MB, respectively. As shown in Fig. 22, when the number of
migrated instances is 4, the total state recovery time of Sl-Stream and

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Fig. 22. Total recovery time for migrating different number of instances.

Fig. 23. Computation time for different number of raw blocks.

of Storm checkpoint recovery is 3.5 s and 4.6 s, respectively. When the
number is 8, the total time for Sl-Stream and for Storm is 4.4 s and
5.8 s, respectively. When the number is 16, the time is 7.4 s and 10.6 s
for Sl-Stream and Storm. Sl-Stream always takes much less time than
Storm to recover the state.

We evaluate the performance impact by the number of raw blocks
between 6 and 16 on state recovery, where the state data size is 10 MB
and the number of check blocks is 3. As shown in Fig. 23, the system
computation time to recover the state data is evaluated by varying the
number of raw blocks. It can be observed that as the number of raw
blocks increases, the required computation time decreases.

We also evaluate the performance impact by the number of the
check blocks between 2 and 8 on state recovery, where the state data
size is 10 MB and the number of raw blocks is 8. As shown in Fig. 24,
the system computation time to recover the state data is evaluated by
varying the number of check data blocks. It can be observed that as the
number of checksum data blocks increases, the required computation
time increases as well.

Therefore, reasonable numbers of raw blocks and check blocks can
improve the system performance when recovering state data.

We also evaluate the performance impact by number of unavailable
data blocks between 1 and 8 on state recovery, where the size of state
data is 10 MB, the number of raw blocks is 8, and the number of
check blocks is 8. As shown in Fig. 25, the system computation time to
recover state data is evaluated by varying the number of unavailable
data blocks. It can be observed that as the number of unavailable data
blocks increases, the computation time required gradually decreases.
14
Fig. 24. Computation time for different number of check blocks.

Fig. 25. Computation time for different number of unavailable blocks.

Therefore, the loss of data blocks does not consume longer time for
state data recovery.

8. Conclusions and future work

In this paper, we propose a state lossless scheduling strategy. This
strategy is divided into three main phases. First, one stream application
is divided into different subgraphs based on the amount of communica-
tion between tasks and their potential resource consumption. Second,
the nodes and subgraphs are matched at minimum cost based on the
predicted cost of nodes running the subgraph. Third, local instance
adjustment is conducted for each layer of the topology and its state is
restored in parallel for the adjusted vertex instance. Sl-Stream provides
distributed state management measures to enhance the system relia-
bility. The experiments show that our Sl-Stream scheduling strategy is
effective.

In our strategy, the subgraph partition phase, task deployment
phase and stateful scheduling phase run sequentially. The solutions
are proposed to address the problems in each phase and they run
independent from each other. Suboptimal results of a predecessor phase
should not affect much the following phases as they try to optimize
each phase independently.

As partly the future work, we will further investigate the following
areas.

(1) Consider the parallelism of DAG to further reduce the data
processing latency of the system.

(2) Integrate cluster energy consumption into Sl-Stream to improve
the energy efficiency of the system.

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
CRediT authorship contribution statement

Minghui Wu: Conceptualization, Methodology, Validation, Writing
– original draft. Dawei Sun: Methodology, Validation, Writing – orig-
inal draft, Investigation, Funding acquisition. Yijing Cui: Validation,
Investigation, Writing – review & editing. Shang Gao: Formal analysis,
Investigation, Writing – review & editing. Xunyun Liu: Validation,
Data curation, Investigation. Rajkumar Buyya: Methodology, Writing
– review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China under Grant No. 61972364; the Fundamental Research Funds
for the Central Universities, PR China under Grant No. 265QZ2021001;
and MelbourneChindia Cloud Computing (MC3) Research Network, PR
China.

References

Al-Maytami, B.A., Fan, P., Hussain, A., Baker, T., Liatsis, P., 2019. A task scheduling
algorithm with improved makespan based on prediction of tasks computation time
algorithm for cloud computing. IEEE Access 7, 160916–160926.

Al-Sinayyid, A., Zhu, M., 2020. Job scheduler for streaming applications in
heterogeneous distributed processing systems. J. Super Comput. 76, 9609–9628.

Alghamdi, M.I., Jiang, X., Zhang, J., Zhang, J., Jiang, M., Qin, X., 2017. Towards two-
phase scheduling of real-time applications in distributed systems. J. Netw. Comput.
Appl. 84, 109–117.

Apache, 2022a. Flink. http://flink.apache.org/.
Apache, 2022b. Samza. https://github.com/apache/incubator-heron/.
Apache, 2022c. Storm. http://storm.apache/org/.
Barika, M., Garg, S., Zomaya, A.Y., Ranjan, R., 2021. Online scheduling technique to

handle data velocity changes in stream workflows. IEEE Trans. Parallel Distrib.
Syst. 32 (8), 2115–2130.

Cardellini, V., Nardelli, M., Luzi, D., 2016. Elastic stateful stream processing in storm.
In: 2016 International Conference on High Performance Computing & Simulation
(HPCS). pp. 583–590.

Djigal, H., Feng, J., Lu, J., Ge, J., 2021. IPPTS: An efficient algorithm for scientific
workflow scheduling in heterogeneous computing systems. IEEE Trans. Parallel
Distrib. Syst. 32 (5), 1057–1071.

Ebadifard, F., Babamir, S.M., 2018. A modified black hole-based multi-objective
workflow scheduling improved using the priority queues for cloud computing
environment. In: 2018 4th International Conference on Web Research (ICWR). pp.
162–167.

Ebadifard, F., Babamir, S.M., Barani, S., 2021. A dynamic task scheduling algorithm
improved by load balancing in cloud computing. IEEE Trans. Parallel Distrib. Syst.
117–183.

Ebadifard, F., Doostali, S., Babamir, S.M., 2018. A firefly-based task scheduling
algorithm for the cloud computing environment: Formal verification and simulation
analyses. In: 2018 9th International Symposium on Telecommunications (IST). pp.
664–669.

Eskandari, L., Huang, Z., Eyers, D., 2016. P-Scheduler: adaptive hierarchical scheduling
in apache storm. In: Proceedings of the Australasian Computer Science Week
MulticonferenceFebruary, pp. 1–10.

Eskandari, L., Mair, J., Huang, Z., Eyers, D., 2018. T3-scheduler: A topology and traffic
aware two-level scheduler for stream processing systems in a heterogeneous cluster.
Future Gener. Comput. Syst. 89, 617–632.

Farrokh, M., Hadian, H., Sharifi, M., Jafari, A., 2022. SP-ant: An ant colony optimization
based operator scheduler for high performance distributed stream processing on
heterogeneous clusters. Expert Syst. Appl. 191, 116322.

Fischer, L., Bernstein, A., 2015. Workload scheduling in distributed stream processors
using graph partitioning. In: 2015 IEEE International Conference on Big Data (Big
Data). pp. 124–133.

Fu, X., Tang, B., Guo, F., Kang, L., 2021. Priority and dependency-based DAG tasks
offloading in fog/edge collaborative environment. In: 2021 IEEE 24th International
Conference on Computer Supported Cooperative Work in Design (CSCWD). pp.
440–445.

Gedik, B., Schneider, S., Hirzel, M., Wu, K., 2014. Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 1447–1463.

Jiang, J., Zhang, Z., Cui, B., Tong, Y., Xu, N., 2017. StroMAX: Partitioning-based sched-
uler for real-time stream processing system. In: Database Systems for Advanced
Applications - 22nd International Conference. pp. 269–288.
15
Klinger, A., 1967. The vandermonde matrix. Amer. Math. Monthly 74 (5), 571–574.
Li, C., Tang, J., Ma, T., Yang, X., Luo, Y., 2019a. Load balance based workflow job

scheduling algorithm in distributed cloud. J. Netw. Comput. Appl. 152 (4), 102518.
Li, H., Wu, J., Jiang, Z., X. Li, X.W., 2017b. Task allocation for stream processing

with recovery latency guarantee. In: 2017 IEEE International Conference on Cluster
Computing, CLUSTER 2017. IEEE Press, pp. 379–383.

Li, C., Zhang, J., Luo, Y., 2017a. Real-time scheduling based on optimized topology
and communication traffic in distributed real-time computation platform of storm.
J. Netw. Comput. Appl. 87, 100–115.

Li, J., Zheng, G., Zhang, H., Shi, G., 2019b. Task scheduling algorithm for heterogeneous
real-time systems based on deadline constraints. In: IEEE International Conference
on Electronics Information and Emergency Communication. pp. 113–116.

Liu, Y., Chao, G., Zhang, Z., Lu, Y., Shi, C., Liang, M., Li, T., 2017. Solving NP-hard
problems with physarum-based ant colony system. IEEE/ACM Trans. Comput. Biol.
Bioinform. 14 (1), 108–120.

Liu, P., Xu, H., Silva, D.D., Wang, Q., Ahmed, S.T., Hu, L., 2020. FP4S: Fragment-based
parallel state recovery for stateful stream applications. In: 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 1537–1548.

Lu, K., Dai, D., Sun, M., 2013. HDFS+: Concurrent writes improvements for HDFS.
In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing. pp. 182–183.

Marchal, L., Nagy, H., Simon, B., Vivien, F., 2018. Parallel scheduling of DAGs under
memory constraints. In: 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). pp. 204–213.

Pathan, R., Voudouris, P., Stenström, P., 2018. Scheduling parallel real-time recurrent
tasks on multicore platforms. IEEE Trans. Parallel Distrib. Syst. 29 (4), 915–928.

Plank, S., Greenan, M., 2022. Jerasure. https://github.com/tsuraan/Jerasure/.
Rho, J., Azumi, T., Nakagawa, M., Sato, K., Nishio, N., 2017. Scheduling parallel and

distributed processing for automotive data stream management system. J. Parallel
Distrib. Comput 286–300.

Runsewe, O., Samaan, N., 2019. CRAM: a container resource allocation mechanism for
big data streaming applica-tions. In: 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). pp. 321–3320.

Sainik, L., Khajuria, D., 2014. Fault tolerant data flow using curator — Storm. In: 2014
IEEE 5th International Conference on Software Engineering and Service Science. pp.
472–475.

spark, 2022. streaming. https://spark.apache.org/.
Tian, Y., Shen, Q., Zhu, Z., Yang, Y., Wu, Z., 2018. Non-authentication based checkpoint

fault-tolerant vulnerability in spark streaming. In: 2018 IEEE Symposium on
Computers and Communications (ISCC). pp. 00783–00786.

Traub, J.F., Wozniakowski, H., 1992. The Monte Carlo algorithm with a pseudorandom
generator. Math. Comp. 58 (197), 323–339.

Twitter, 2022. Heron. https://github.com/apache/incubator-heron.
Wu, Y., Tan, K., 2015. ChronoStream: Elastic stateful stream computation in the cloud.

In: 2015 IEEE 31st International Conference on Data Engineering. pp. 723–734.
Yang, S., Wang, M., jiao, L., 2004. A quantum particle swarm optimization, In:

Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat), 1, pp.
320–324.

Zhang, S., Wu, Y., Zhang, F., He, B., 2020. Towards concurrent stateful stream
processing on multicore processors. IEEE Trans. Parallel Distrib. Syst. 1537–1548.

Zhao, Y., Liu, Z., Wu, Y., Jiang, J., Cheng, J., Liu, K., Yan, X., 2021. Timestamped state
sharing for stream analytics. IEEE Trans. Parallel Distrib. Syst. 32 (11), 2691–2704.

Zhuang, Y., Wei, X., Li, H., Hou, M., Wang, Y., 2020. Reducing fault-tolerant
overhead for distributed stream processing with approximate backup. In: 2020 29th
International Conference on Computer Communications and Networks (ICCCN). pp.
1–9.

Minghui Wu is a postgraduate student at the School of
Information Engineering, China University of Geosciences,
Beijing, China. He received his Bachelor Degree in Network
Engineering from Zhengzhou University of Aeronautics,
Zhengzhou, China in 2020. His research interests include big
data stream computing, distributed systems and blockchain.

Dawei Sun is an Associate Professor in the School of
Information Engineering, China University of Geosciences,
Beijing, P.R. China. He received his Ph.D. degree in com-
puter science from Northeastern University, China in 2012,
and conducted the Postdoctoral research in the department
of computer science and technology at Tsinghua University,
China in 2015. His current research interests include big
data computing, cloud computing and distributed systems.
In these areas, he has authored over 70 journal and
conference papers.

http://refhub.elsevier.com/S1084-8045(22)00111-4/sb1
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb1
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb1
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb1
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb1
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb2
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb2
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb2
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb3
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb3
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb3
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb3
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb3
http://flink.apache.org/
https://github.com/apache/incubator-heron/
http://storm.apache/org/
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb7
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb7
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb7
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb7
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb7
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb8
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb8
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb8
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb8
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb8
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb9
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb9
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb9
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb9
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb9
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb10
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb11
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb11
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb11
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb11
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb11
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb12
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb14
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb14
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb14
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb14
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb14
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb15
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb15
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb15
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb15
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb15
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb16
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb16
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb16
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb16
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb16
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb17
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb18
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb18
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb18
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb19
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb19
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb19
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb19
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb19
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb20
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb21
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb21
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb21
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb22
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb22
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb22
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb22
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb22
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb23
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb23
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb23
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb23
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb23
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb24
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb24
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb24
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb24
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb24
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb25
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb25
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb25
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb25
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb25
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb26
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb26
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb26
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb26
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb26
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb27
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb27
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb27
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb27
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb27
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb28
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb28
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb28
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb28
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb28
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb29
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb29
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb29
https://github.com/tsuraan/Jerasure/
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb31
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb31
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb31
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb31
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb31
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb32
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb32
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb32
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb32
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb32
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb33
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb33
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb33
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb33
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb33
https://spark.apache.org/
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb35
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb35
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb35
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb35
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb35
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb36
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb36
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb36
https://github.com/apache/incubator-heron
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb38
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb38
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb38
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb40
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb40
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb40
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb41
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb41
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb41
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42
http://refhub.elsevier.com/S1084-8045(22)00111-4/sb42

Journal of Network and Computer Applications 206 (2022) 103462M. Wu et al.
Yijing Cui is a postgraduate student at the School of
Information Engineering, China University of Geosciences,
Beijing, China. She received her Bachelor Degree in Network
Engineering from Zhengzhou University of Aeronautics,
Zhengzhou, China in 2020. Her research interests include
big data stream computing, data analytics and distributed
systems.

Shang Gao received her Ph.D. degree in computer sci-
ence from Northeastern University, China in 2000. She is
currently a Senior Lecturer in the School of Information
Technology, Deakin University, Geelong, Australia. Her cur-
rent research interests include distributed system, cloud
computing and cyber security.
16
Xunyun Liu received the B.E. and M.E degree in Computer
Science and Technology from the National University of
Defense Technology in 2011 and 2013, respectively. He
obtained the Ph.D. degree in Computer Science at the
University of Melbourne in 2018. His research interests
include stream processing and distributed systems.

Rajkumar Buyya is a Redmond Barry Distinguished Profes-
sor and Director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the University, com-
mercializing its innovations in Cloud Computing. He has
authored over 750 publications and four text books. He
is one of the highly cited authors in computer science
and software engineering worldwide (h-index 153 with
123,500+ citations). He served as the founding Editor-in-
Chief (EiC) of IEEE Transactions on Cloud Computing and
now serving as EiC of Journal of Software: Practice and
Experience.

	A state lossless scheduling strategy in distributed stream computing systems
	Introduction
	Contributions
	Paper organization

	Related work
	Task scheduling for stream processing
	State management for stream processing

	System model
	Stream application model
	Resource model

	Problem formulation
	Subgraph partitioning problem
	Task deployment problem
	Stateful scheduling problem

	Sl-stream: optimizer model
	Subgraph partitioning optimizer
	Task deployment optimizer
	Hierarchical scheduling optimizer
	State management optimizer

	Sl-stream: framework and algorithms
	System framework
	Subgraph partitioning algorithm
	Task deployment algorithm
	Hierarchical migration algorithm
	State management algorithm

	Performance evaluation
	Experimental environment and parameter setup
	Performance results
	State recovery time evaluation

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

