
ScalaSSC: Scalable Stateful Serverless Computing
for Stream Processing Applications

Tianyu Qi, Maria A. Rodriguez, and Rajkumar Buyya
School of Computing and Information Systems

The University of Melbourne, Australia
tiqi@student.unimelb.edu.au, marodriguez@unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract—Serverless platforms are increasingly being used to
process continuous streams of data. However, data processing
units (expressed as serverless ‘functions’) in such platforms can-
not maintain state internally and, instead, rely on remote storage.
Stateful serverless is an emerging paradigm that seeks to reduce
the latency associated with remote storage access by introducing
state servers on worker nodes, i.e., where the serverless functions
run. While existing stateful serverless frameworks are successful
in reducing latency compared to their stateless counterparts,
there are multiple challenges that still need to be addressed
in order to meet the real-time data processing requirements of
streaming applications. As a result, this paper proposes ScalaSSC,
a novel framework for data processing request scheduling and
operator state management tailored to stream processing appli-
cations within stateful serverless computing. ScalaSSC co-locates
requests with the state they act upon to avoid cross-worker
state access. To reduce state access contention among executors,
ScalaSSC not only introduces the concept of state parallelism
to serverless computing, but also processes requests acting upon
the same state in the same batch. During batch execution, when
multiple states are required, batch APIs are provided to access
all states in a single operation. Experimental results show that
ScalaSSC achieves up to 845 times higher throughput than
another stateful serverless system while maintaining similar end-
to-end latency. It also achieves a throughput 14 times higher than
that of Amazon Lambda while maintaining end-to-end latency
at the microsecond level, in contrast to Lambda’s latency at the
second level.

Index Terms—Serverless Computing, FaaS, Stateful Serverless,
Big Data, Stream Processing.

I. INTRODUCTION

With the advent of the big data era, the volume of data gen-
erated has exponentially increased over the past decade [17].
These data sets contain potentially valuable information that
is not known in advance and requires analysis to extract
insights. Consequently, big data technologies, such as batch
and stream processing, have become essential for organizations
and researchers aiming to uncover valuable knowledge from
data [15]. Examples of such applications include identifying
Twitter trends [21], traffic monitoring [32], and pandemic
control [7].

To effectively handle and analyze continuous data streams
in real-time, Distributed Stream Processing Systems (DSPSs)
have been developed with the goals of achieving low la-
tency and high throughput. In DSPSs, operators, which
are application-level entities that encapsulate data processing
logic, are deployed in long-running executors. These execu-
tors are considered to be heavy-weight as they maintain

system-level state (e.g., inbound and outbound data streams
from/to other executors) and application-level state specific
to an operator’s logic. Users are required to manage the
infrastructure and schedule executors, with the latter being
an NP-hard task [11]. Scaling the number of executors (i.e.,
operator instances) out enhances the processing capacity of an
application deployed in a DSPS, thus allowing it to effectively
manage higher input rates. The reason for this is two-fold.
First, scaling results in increased data processing components
available in the system. Second, and most importantly, the
data streams and application’s state are distributed and inde-
pendently managed across operator instances, thus minimising
contention and maximising concurrency. However, creating,
removing, or migrating these heavy-weight executors incurs
substantial overhead, limiting the ability of applications to
adapt to fluctuating input rates [28].

By addressing the aforementioned limitations of DSPSs,
serverless computing (through its function-as-a-service offer-
ing) has seen widespread adoption in the stream processing
domain, including in fields such as data analytics [3], [20],
machine learning [29], and IoT sensor monitoring [10], [13],
[34]. In a serverless environment, data processing operators
execute within functions. Functions are considered lightweight
and ephemeral as they disaggregate storage and comput-
ing [14] (i.e., are stateless) and incur minimal deployment
overhead. These features enable the rapid auto-scaling of
operator instances in response to workload fluctuations and
allow for instances to be flexibly distributed across nodes to
meet resource demands. However, they also require stateful
streaming applications to rely on remote storage, which ulti-
mately has a negative effect on latency and throughput.

Stateful serverless is an emerging paradigm that aims to
provide functions with system-managed storage within the
worker nodes [19], [25], [27]. While it generally decreases
state access latency compared to the stateless paradigm, there
remain challenges that need to be addressed in order to
optimize its performance for streaming applications. First, the
majority of existing stateful approaches replicate state across
multiple workers to alleviate the high latency associated with
cross-worker state access. However, streaming applications
update their state frequently, commonly after processing each
input (i.e., data tuple), thus leading to significant overhead
associated with maintaining consistency across state replicas.
Second, existing stateful serverless systems focus solely on

462

2025 IEEE 25th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

2993-2114/25/$31.00 ©2025 IEEE
DOI 10.1109/CCGRID64434.2025.00062

scaling operator instances when more processing capacity is
required. The performance gains observed from increasing
processing power are limited due to state access contention.
Finally, processing multiple tuples in batch can reduce the
workload associated with state loading [1], [35]. In the stream-
ing application, certain tuple acts upon only a subset of
the operator state. However, existing approaches either lack
support for batching or simply batch tuples based on arrival
time, which may result in increased state access operations
and state access contention among executors.

To address these challenges, we propose ScalaSSC1, a
framework designed for stream processing applications in
stateful serverless systems, with the goal of achieving low
latency and high throughput. We classify application operators
into three types: stateless, stateful, and partitioned stateful [12],
and apply tailored scheduling, batching, and execution strate-
gies for the tuple to each type. When processing a tuple acts
upon the state of previous intermediate results, we schedule
incoming tuples to the worker that holds the relevant state,
in order to avoid cross-worker access. To reduce state access
contention under high input rate, we scale the operator state to
multiple independently managed instances, each being acted
upon by a sub-stream of tuples. Once dispatched to a worker,
tuples acting upon the same state are aggregated and executed
in the same batch. In batch execution, our proposed batch
APIs enable access to multiple states in a single operation,
reducing the communication overhead. To reduce state access
contention among executors, an operator’s state is divided
into fine-grained partitions. This ensures that a given tuple
does not contend for the state it does not act upon. We build
ScalaSSC on the stateful serverless platform FAASM [25]
and evaluate it using DSPBench [6] applications on FAASM
and AWS Lambda, focusing on performance metrics like
end-to-end latency and throughput. Evaluation results show a
maximum throughput improvement of 845 times and 8 times
over FAASM and Lambda, respectively, along with a reduction
in end-to-end latency of up to 87% and 95% compared to both
systems.

II. RELATED WORK

Extensive research has been conducted on stateful server-
less computing by integrating storage servers inside workers.
Shillaker and Pietzuch [25] propose FAASM which distributes
a memory storage server on each host. FAASM features a
local memory tier accessible by functions in the same host
and a global memory tier shared across all functions to
store state. The consistency among multiple replicas of the
same state is maintained by the master copy. Sreekanti et
al. [27] maintain a local cache on every execution VM and
guarantee consistency by leveraging both application workflow
and operation timestamp. Mvondo et al. [19] introduce OFC,
a RAM-based durable key-value store on each node, com-
prising a master and backup copy for each data item, whose

1ScalaSSC is open-source and available at https://github.com/ScalaSSC/
faasm

consistency is maintained by using the version number. All of
these systems maintain multiple copies of the same state. In
streaming applications, the frequently updated state introduces
significant costs for maintaining consistency between these
copies. To reduce the significant access latency associated with
remote storage, some research focused on designing memory
storage serving as middleware between the serverless platform
and remote storage [4], [5], [16]. These frameworks can be
deployed on top of any serverless platforms and their functions
bind data to the memory storage instead of the remote storage.
However, they result in higher access latency compared to
the integrated storage frameworks due to the network delay.
FaasFlow [18] and HashCache [30] utilize memory storage to
transfer data between functions and do not address concurrent
access issues.

Considerable research has been conducted on batching in
serverless computing for machine learning. Certain studies
conduct batch execution of multiple requests within a single
function to achieve higher throughput [1], [2], [33], [35].
By utilizing multiple processes, some research further batch
executes multiple requests concurrently in one function, as
described in [8], [31]. However, in streaming applications, the
states that requests act upon can differ and are locked while
processing. Both simply executing all requests to the same
operator in one batch and executing them concurrently cause
unnecessary lock contention.

Several research studies have tailored serverless frameworks
specifically to stream processing applications. Cai et al. [9]
executes streaming applications on top of Lambda, using
AWS DynamoDB as state storage. Song et al. [26] harnesses
both virtual machines and serverless functions for streaming
applications to meet latency requirements at a low monetary
cost. However, both of these approaches lack adequate state
management and access strategies to reduce access latency and
state access contention between executors.

III. BACKGROUND

This section provides background on streaming applications
and defines the state models within ScalaSSC.

A. Operator Classification

We categorize streaming application operators into three
types: stateless, stateful, and partitioned stateful.

A stateless operator processes each input tuple indepen-
dently, without referencing previous processing results. In
contrast, a stateful operator maintains an internal state to store
intermediate results, referencing and updating this state as it
processes new tuples. The operator state consists of multiple
elements; for example, in Fig. 2, the alert trigger operator in
the machine outlier application determines whether the input
score indicates an anomaly based on past observations. Its
state includes multiple elements: the previous timestamp, the
minimum and maximum recorded scores, and a list of recorded
observations.

A partitioned stateful operator is a commonly used special-
ized stateful operator. Bordin et al. [6] introduced a benchmark

463

suite comprising 15 applications from various domains, 13 of
which involve partitioned stateful operators. In a partitioned
stateful operator, an attribute from the input tuple is defined as
the partitioning attribute. Meanwhile, each element within the
operator state is associated with a specific partitioning attribute
value [12]. The operator logic ensures that the processing
of each tuple acts upon only the state element associated
with its partitioning attribute. For example, in the word count
application, the partitioning attribute for the counter operator
is the word itself, and each state element tracks the occurrence
count for each word independently.

B. State Modeling

To execute stream processing applications in serverless
systems, input data tuples are either encapsulated individually
or grouped with other tuples targeting the same operator
within an invocation request. In ScalaSSC, an input request
R contains the invoked operator O and input tuples T , which
comprises attribute A-value V pairs, represented as:

R = {o, t1, t2, . . . , tn}, T = (a1, v1), (a2, v2), . . . , (an, vn)

For example, consider a request to the speed calculator
operator which calculates the average car speed of each road in
the traffic monitoring application [6]. The invoked operator o
is speed calculator, with the first tuple t1 containing attribute-
value pairs where a1 = road_id with v1 represents the
specific road ID, and a2 = speed with v2 representing the
speedometer value recorded by a car.

In our framework, we define the operator state, θ, to
represent the set of elements E maintained by an operator.
For a stateful operator o with n elements, the operator state is
represented as:

θo = {e1, e2, e3, . . . , en}

In DSPSs, parallelism refers to the number of instances
of an operator, with each instance maintaining its own state
partition of the operator state. In our framework, parallelism
is defined as the number of operator state partitions. For the
stateful operator with parallelism m, DSPSs and our approach
replicate each element ei into m replicas. In this context, the
kth operator state partition θko for operator o can be represented
as follows:

θko = {ek1 , ek2 , ek3 , . . . , ekn} ∀k ∈ {1, 2, . . . ,m}

For the partitioned stateful operator, a partitioning attribute
Ap is predefined. In both DSPSs and our approach, the state
θ of a partitioned operator o includes an element e for each
partitioning attribute, represented as:

θo = {(ap1
, e1), (ap2

, e2), (ap3
, e3), . . . , (apn

, en)}

With parallelism m, a partition function P is used to
distribute elements among the state partitions. The kth operator
state partition can be represented as:

θko = {(apn , en) | P (apn) = k, (apn , en) ∈ θo},
∀k ∈ {1, 2, . . . ,m}

Where:
• P (apn) = k indicates that the partition function maps

apn to state partition k.

IV. METHODOLOGY

In this section, we present the design of ScalaSSC. As
illustrated in Fig. 1, the request processing workflow consists
of four distinct phases. ScalaSSC consists of a centralized
planner and multiple workers.

The planner is responsible for receiving requests from users
or functions and dispatching them to workers. It incorporates
a scheduler that manages information about hosts, operators,
and state locations. Upon receiving a request, the planner first
uses the scheduler to verify whether the invoked operator is
stateless. If not, the scheduler identifies which state partition
the request acts upon (state identification). Subsequently, the
scheduler distributes this request to a specific worker (request
distribution).

The worker carries out the processing of received requests
inside executors. After receiving the request from the planner,
the worker initially stores it in the queue. Periodically, a
worker manager aggregates multiple queued requests into
a batch request (batching). After that, the worker executes
the batch request within a single executer/function (batch
execution).

Request

Operator
Type?

Round-robin Partitioning
attribute

Stateless Stateful Partitioned Stateful

State
location

State
locationRound-robin

Partitioning
attributeFIFOFIFO

ReorderedSequential Sequential

State
identification

Request
distribution

Batching

Batch
execution

Figure 1: The workflow for ScalaSSC.

A. Request Scheduling Algorithm

Within the workflow of ScalaSSC, the first two phases are
state identification and request distribution. Before running
applications, the type of each operator and the parallelism of
each stateful/partitioned stateful operator are predefined by

464

users. Once configured, the scheduler creates each operator
state partition sequentially and distributes it among workers
until the desired parallelism is reached. The scheduler assigns
each partition to the worker that has the fewest partitions
belonging to the same operator as that partition. Ties are
broken by selecting the worker with the fewest total partitions.
Prior to batching, each request contains only a single tuple.
For simplicity, we refer to the attributes of the request’s sole
tuple as the attributes of the request in §IV-A and §IV-B.

Our method caps the maximum number of in-flight requests
at Rmax. Upon receiving a request, the planner rejects it if the
in-flight requests have already reached this limit; otherwise,
the scheduler verifies the type of the invoked operator and
schedules the request accordingly.

Request to stateless operator: The request is distributed
across workers using a round-robin method.

Request to stateful operator: When the invoked operator
encompasses multiple state partitions, the request acts upon
only one state partition θio for processing. The scheduler
assigns it to the kth partition in a round-robin manner and
routes it to the worker containing state partition θko .

Request to partitioned stateful operator: An request with
partitioning attribute api acts upon element epi for process-
ing. The scheduler computes the kth operator state partition
contains element epi

by applying the partition function P
(Virtual Nodes) to the attribute api

and operator parallelism.
Subsequently, it routes the request to the worker holding the
state partition θko .

Then, the scheduler attaches the state partition θko to the
request and dispatches it to the scheduled worker.

B. Request Queuing and Batching

The third phase in the workflow of ScalaSSC is batching. In
our approach, each worker maintains multiple queues to store
requests dispatched from the scheduler. The requests with the
same invoked operator o and state partition θko are grouped in
the same queue. It is worth noting that requests to stateless
operators are grouped only by operator o.

A worker manager retrieves and batches requests from
each queue in turn, and then forwards them to executors.
To prevent resource overload, a maximum concurrency Cmax

is defined, representing the maximum number of executors
allowed to execute concurrently for each queue. If there is no
available executor, the manager will not retrieve any requests
from it. The batch size Bsize and batching window W are
user-defined parameters for batching requests. The manager
retrieves requests from the queue once the batch size Bsize
is reached or the window W expires, whichever occurs first.
The strategies for retrieving vary in accordance with operator
types:

Request to stateless operator and stateful operator: The
worker manager enqueues requests into the queue according
to their arrival time and retrieves requests in the FIFO order.

Request to partitioned stateful operator: Since a request
acts upon only the state element associated with its partitioning
attribute, the worker manager prioritizes retrieving requests

with the same partitioning attribute from the queue to execute
them together. This may disrupt the processing order of
requests with different partitioning attributes; however, this
does not affect the outcome, as they act upon different state
elements.

Algorithm 1: PartitionedStateRequestsQueue
Data:
be: The expected processing batch index of enqueued
request, initialized as 1;
MBe,Ap

[R]: A map where the key is the expected
batch index be and the value is a map from the
partitioning attribute ap to a queue of requests.

1 Function Enqueue(r):
2 Mbe,r.ap

.push(r)
3 if Mbe .size == Bsize then
4 be = be + 1
5 end
6

7 Function Dequeue():
8 D[R] = empty list of requests
9 aprev = null

10 while D.size less than Bsize do
11 bmin = the minimum be in M
12 if aprev != null and be of the earliest r with

aprev in M − bmin < Cmax then
13 beadd

= be of the earliest r with aprev
14 radd = Mbeadd

,aprev
.front

15 else
16 radd = the earliest request in Mbmin

17 end
18 D.add(radd)
19 aprev = radd.ap
20 M .remove(radd)
21 if M .size == 0 and D.size < Bsize then
22 be = be + 1
23 break
24 end
25 end
26 return D

As illustrated in Alg. 1, the key steps of the enqueue
and dequeue operations on requests to partitioned stateful
operator are outlined below. When receiving a request R with
partitioning attribute r.ap, the worker manager Enqueue it. We
assign an expected processing batch index be to it and then
push it to the queue belonging to r.ap within Mbe (Line 2). The
be assigned to the next request is incremented if the number
of requests enqueued with the current expected batch index
Mbe .size reaches the batch size (Lines 3–5). When retrieving
requests, the manager uses Dequeue to select requests within
a loop until the batch size is reached (Lines 10–25). For
each selection (except the first request), we select the earliest
request sharing the same partitioning attribute as the previously
selected request if the difference between its expected batch

465

index and the minimum expected batch index bmin in map
M is less than Cmax (Lines 11–14). Otherwise, the earliest
request in M is selected (Line 16). This restriction ensures
that no request experiences endless delay. Then, we add the
selected request to the dequeued requests list D and update
the previous attribute aprev and the map M accordingly (Lines
18–20). If the map M becomes empty before the dequeued
requests reach the batch size, indicating that these requests
are dequeued upon expiration of the batch window W , we
increment the expected batch number and terminate the loop
(Lines 21–23). Finally, the dequeued requests are returned.

After retrieving requests, the worker manager combines
their tuples into one batch request while preserving the original
order and executes this batch request in an executor.

C. Batched Execution

API Function
θo GetStateLock()

Lock and get the operator state of current operator
void SetStateUnlock(θo)

Set and unlock the operator state of current operator
list[Ap, E] GetParStateLock(list[Ap])

Lock and get available elements of input partitioning attributes
void SetParStateUnlock(list[Ap, E])

Set and unlock elements of input list

Table I: Core API host interface.

In the batch execution phase of ScalaSSC, batch APIs are
used to access states for multiple requests in one operation,
aiming to reduce communication overhead. As depicted in
Tab. I, the core batch APIs we support are: i) retrieving and
setting the operator state; ii) getting the available, practically
unlocked, state elements associated with the partitioning at-
tributes from the input list and setting the updated elements
back. By leveraging these APIs, we employ diverse execution
strategies depending on the invoked operator:

Request to stateless operator and stateful operator:
Request’s tuples are processed sequentially, while storing the
chained calls temporarily. Once all the tuples have been
processed, the chained calls are sent to the planner. However,
stateful operators must use GetStateLock to read the oper-
ator state before processing tuples and SetStateUnlock to
update the operator state after processing all the tuples (before
sending chain calls).

Request to partitioned stateful operator: Request’s tu-
ple acts upon only the state element related to its parti-
tioning attribute. Thus, accessing the entire operator state
results in unnecessary communication and state contention
overhead. Within the execution of a request, the executor
processes tuples within a loop. In every loop, the executor
uses GetParStateLock to acquire available elements acted
upon by unprocessed tuples. Afterward, the executor processes
tuples whose acting-upon elements have been acquired se-
quentially. Later on, it uses SetParStateUnlock to write
updated elements back. Within each loop, all chained calls are
temporarily stored. The loop iterates through multiple rounds
until all tuples are processed. Finally, the stored chained calls
are sent.

The function GetParStateLock operates by initially
making an attempt to acquire locks for all the unlocked
partitioning attributes within the input list. Once any lock
has been obtained, it will return the elements related to the
acquired attributes. Otherwise, it registers and waits for all
attributes within the input list. Whenever any attribute is
released, it attempts to lock those attributes once again.

V. PERFORMANCE EVALUATION

In this section, we evaluate the following aspects of
ScalaSSC: (i) the benefits of co-locating requests with states
they act upon (§ IV-A), (ii) the performance improvements
from increasing operator parallelism(§ IV-A), (iii) the gains
achieved by batching requests(§ IV-C) and executing requests
that act upon the same state together(§ IV-B), and (iv) the
overall performance improvements compared to serverless
baselines.

A. Experiment setup

a) Serverless Baselines and Testbed: We compared
ScalaSSC against FAASM and AWS Lambda. In FAASM,
a request queue has been added to the planner. Other-
wise, chained call requests might be lost. Both FAASM
and ScalaSSC are executed on the same Kubernetes cluster
consisting of 4 nodes. The Planner is deployed on an 8-core
AMD EPYC 2.30 GHz machine with 1500GB of RAM to
load input data and collect performance metrics in memory.
Three worker nodes are run on 4-core AMD EPYC 2.30 GHz
machines with 16GB of RAM. In the Lambda setup, each
function is configured without a concurrency limitation and
allocated 1769 MB of memory, corresponding to one full
vCPU [24]. We use Kinesis [23] for transferring intermedi-
ate messages and batching requests, and ElastiCache [22],
which offers the lowest access latency among AWS storage
options [16], to store state. Each Kinesis stream is initialized
in on-demand mode, which automatically scales throughput up
to 200,000 records per second. Our ElastiCache setup utilizes
the Serverless Redis OSS Cache.

b) Evaluation Metrics: Our primary goal is to increase
throughput and reduce end-to-end latency. We define through-
put as the number of tuples processed end-to-end (i.e., by all
operators) per second, while end-to-end latency refers to the
time it takes for a tuple and all of its subtuples to be processed
by the entire pipeline. We also evaluate the average tuple
processing latency for non-stateless operators. This is defined
as the time it takes to retrieve the initial state, process tuples,
and write all updated states back, divided by the number of
processed tuples.

466

Source

Split

Counter

Source

Moving
Average

Spike
Detection

Source

Observation
Scorer

Anomaly
Scorer

Alert
Trigger

Word Count Spike Detection Machine Outlier

Stateless

Stateful

Partitioned
Stateful

Operator Type

1:1

1:n 1:1

1:1

1:1

1:1

1:1

group by word

group by id

group by id

Figure 2: The Workflows of WC, SD, and MO. The ratios of
the input tuples between different operators are marked.

c) Benchmark Applications: We evaluate our approach
on Word Count (WC), Spike Detection (SD), and Machine
Outlier (MO) applications from DSPBench [6], whose work-
flows are shown in Fig 2. Their input data are sourced from
real-world datasets. In WC, we measure throughput based
on the number of words counted rather than the number of
sentences. In MO, as the first operator aggregates tuples and
subsequently processes them collectively when a threshold
is reached, not every tuple has subtuples processed by the
subsequent operators. We therefore measure the end-to-end
latency based only on the tuples whose subtuples are processed
by all operators. It is important to note that executing requests
in concurrent executors does not guarantee the processing
order will align with the receiving order, and this discrepancy
should be tolerated within the application logic.

This work does not address the optimization of any parame-
ter for performance enhancement. In ScalaSSC, we configure
the maximum in-flight requests Rmax as 15,000 and batch
window W as 20 ms. By default, we set the batch size to 20,
the concurrency to 10, the parallelism for stateful operators
and partitioned stateful operators to 1 and 3, respectively. Our
evaluation reports end-to-end latency in milliseconds and com-
pares the 99th percentile latency. The average tuple processing
latency is measured in nanoseconds, and the average values
are reported. Each experiment is run for ten minutes and five
times.

MO SD WC
Application

102

103

104

105

Av
er

ag
e

Tu
pl

e
Pr

oc
es

sin
g

La
te

nc
y

(µ
s)

 [L
og

 S
ca

le
]

Platform
FAASM-1
FAASM-3
ScalaSSC-1
ScalaSSC-3

Figure 3: Comparison of the tuple processing latency for
FAASM and ScalaSSC with varied nodes/parallelism.

B. State Access Evaluation

This experiment demonstrates state access latency improve-
ments achieved by collocating requests with the states they
act upon. We executed the WC, SD, and MO applications on
FAASM by using a round-robin scheduler with both single-
worker and three-worker configurations. Besides, with batch
size 1, we conducted these applications on ScalaSSC using
parallelism hints of one and three for the partitioned stateful
operators. With FAASM configured to use a single worker and
ScalaSSC set to parallelism of one, all requests to partitioned
stateful operator run on the same worker. However, with
FAASM using three workers and ScalaSSC with three par-
allelism hints, all requests are executed across three workers.
In each operator, the processing logic for each tuple remains
the same, and the average tuple processing latency differences
across setups are predominantly determined by state access
time. For both FAASM and ScalaSSC, the input tuple rate is
set at 1 tuple per second. Additionally, the systems process
only one input tuple concurrently to ensure that the impact of
lock contention on the state access time stays consistent across
all configurations. We compare the average tuple processing
latency of partitioning stateful operators.

As shown in Fig.3, in WC, FAASM’s average tuple pro-
cessing latency with one worker (850 µs) is significantly lower
than with three workers (202,384 µs). In ScalaSSC, the latency
with parallelism hint 1 (20 µs) is nearly identical to that
with parallelism hint 3 (34 µs). SD and MO exhibit similar
behavior.

In FAASM, increasing the cluster workers from one to
three introduces remote state access, resulting in a significant
increase in latency. However, in ScalaSSC, the latency remains
unchanged when additional workers are utilized. Because the
tuple and the state it acts upon are co-located in the same
worker, there is no introduction of cross-worker communica-
tion. The latency of ScalaSSC in parallelism 1 is lower than
that of FAASM in one worker. This is because FAASM utilizes
Redis to maintain the location of the master copy for every
state, introducing high latency when initializing the state. In
contrast, our approach uses consistent hashing to identify the
state location, eliminating the high Redis access latency.

C. Request Grouping Evaluation

This experiment investigates the impact of executing tuples
act upon the same state element together in ScalaSSC. In the
WC, SD, and MO applications, we set the batch size to 30
and the parallelism hint for every operator to one, varying
the concurrency from 1 to 5 to compare the average tuple
processing latency of partitioned operators.

As shown in Fig. 4, the average tuple processing latency
increases by 64%, 192%, and 62% for WC, SD, and MO,
respectively, when concurrency rises from 1 to 2. After which,
in WC, the latency grows slowly with further increases in
concurrency. In contrast, in SD and MO, latency decreases
by 38% and 5%, respectively, at concurrency 5 compared to
concurrency 2.

467

1 2 3 4 5
8

10

12

14

16

18

Av
er

ag
e

Tu
pl

e
Pr

oc
es

sin
g

La
te

nc
y

(µ
s)

(a) WC

1 2 3 4 5

15

20

25

30

35

(b) SD

1 2 3 4 5

16

18

20

22

24

26

(c) MO

Figure 4: Comparison of tuple processing latency for ScalaSSC under varied concurrency. The X-axis represents concurrency.

1000.0 2000.0 4000.0 6000.0 inf
0

2

4

6

8

10

12

Av
er

ag
e

Tu
pl

e
Pr

oc
es

sin
g

La
te

nc
y

(µ
s)

Scale
1
2
3

(a) WC p-latency

5000.0 10000.0 15000.0 20000.0 inf
0

5

10

15

20

25

30

35
Scale

1
2
3

(b) SD p-latency

8000.0 10000.0 12000.0 16000.0 inf
0

5

10

15

20

25

30

35 Scale
1
2
3

(c) MO p-latency

12000.0 14000.0 16000.0 18000.0 inf
0

10

20

30

40

Scale
1
2
3

(d) MO-5 p-latency

1000.0 2000.0 4000.0 6000.0 inf
0

5k

10k

15k

20k

25k

30k

35k

40k

Th
ro

ug
hp

ut
 (t

up
le

/s
)

Scale
1
2
3

(e) WC throughput

5000.0 10000.0 15000.0 20000.0 inf
0

2k

4k

6k

8k

10k

12k

14k

16k Scale
1
2
3

(f) SD throughput

8000.0 10000.0 12000.0 16000.0 inf
0

2k

4k

6k

8k

10k

12k

14k
Scale

1
2
3

(g) MO throughput

12000.0 14000.0 16000.0 18000.0 inf
0

2k

4k

6k

8k

10k

12k

14k

16k
Scale

1
2
3

(h) MO-5 throughput

1000.0 2000.0 4000.0 6000.0 inf
0

2k

4k

6k

8k

10k

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)

Scale
1
2
3

(i) WC E2E latency

5000.0 10000.0 15000.0 20000.0 inf
0

25

50

75

100

125

150

175 Scale
1
2
3

(j) SD E2E latency

8000.0 10000.0 12000.0 16000.0 inf
0

2k

4k

6k

8k

10k

12k

14k

16k
Scale

1
2
3

(k) MO E2E latency

12000.0 14000.0 16000.0 18000.0 inf
0

5k

10k

15k

20k

25k

Scale
1
2
3

(l) MO-5 E2E latency

Figure 5: Comparison of tuple processing latency (p-latency), throughput and end-to-end latency metrics (E2E latency) in
ScalaSSC with varied parallelism under different input rates (tuple/s). The X-axis represents input rates.

The average tuple processing latency increases when the
concurrency level changes from 1 to 2 due to the introduction
of state access contention, resulting in lock waiting time and
increased state access operations. As concurrency increases
further, latency in SD and MO decreases because higher
concurrency offers greater flexibility in prioritizing tuples with
the same partitioning attribute. Executing tuples that act upon
the same state element together not only reduces lock con-
tention between executors, but also enables loaded elements
to be acted upon by multiple tuples. However, WC does not
exhibit this trend. This discrepancy arises from differences in
the partitioning attributes of their partitioned operators: the
counter of WC uses words, whereas the moving average of
SD and anomaly scorer of MO use sensor or machine IDs.
The number of unique words in the dataset is significantly
higher than the number of IDs (approximately 100 unique
IDs), resulting in a lower likelihood of combining tuples with

the same partitioning attribute together.

D. Parallelism

This experiment investigates the impact of increasing op-
erator parallelism. We vary the parallelism of partitioned
operators and the input rate for WC, SD and MO applications
to compare end-to-end latency, throughput, and average tuple
processing latency of partitioned operators under different
parallelism levels. In the following evaluations, input rates
were incrementally increased until unthrottled, denoted as
”inf” in the figures. Additionally, MO was executed on a
cluster with 5 workers.

As shown in Figs.5a–5d, in WC, increasing the parallelism
hints to 2 and 3 reduces the average tuple processing latency of
the partitioned operator by up to 18% and 15%, respectively.
SD and MO exhibit comparable behavior. The reduction in
latency occurs because fewer state elements are stored in each

468

2000.0 4000.0 6000.0 8000.0 inf
0

20k

40k

60k

80k

100k

120k

Th
ro

ug
hp

ut
 (m

sg
/s

ec
)

Batch Size
1
10
20
40
80
200
500

(a) WC throughput

12000.0 15000.0 18000.0 21000.0 inf
0

2k

4k

6k

8k

10k

12k

14k

16k

Batch Size
1
10
20
40
80
200
500

(b) SD throughput

10000.0 12000.0 14000.0 16000.0 inf
0

2k

4k

6k

8k

10k

12k

14k

16k Batch Size
1
10
20
40
80
200
500

(c) MO throughput

2000.0 4000.0 6000.0 8000.0 inf

103

104

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)

Batch Size
1
10
20
40
80
200
500

(d) WC latency

12000.0 15000.0 18000.0 21000.0 inf

102

103

Batch Size
1
10
20
40
80
200
500

(e) SD latency

10000.0 12000.0 14000.0 16000.0 inf

103

104

105
Batch Size

1
10
20
40
80
200
500

(f) MO latency

Figure 6: Comparison of throughput and end-to-end latency (E2E latency) in ScalaSSC with varied batch size under different
input rates (tuple/s). The X-axis represents input rates.

state server after scaling, which increases the likelihood of
executing tuples with the partitioning attribute in batch.

As shown in Figs.5e–5h, parallelism hints 2 and 3 achieve
up to 47% and 115% higher throughput in WC. Similar results
are achieved in SD and MO with 5 workers. However, there is
a degradation in throughput of up to 32% and 17% in MO at
parallelism hints 2 and 3 respectively. In WC and SD, higher
parallelism achieves greater throughput by reducing average
tuple processing latency and distributing the workload among
other workers so as to utilize available resources on other
nodes.

MO is made up of one partitioned stateful operator and
two stateful operators. When the parallelism is set to 1 and
there are three workers, it distributes the states of the three
operators as well as their corresponding requests evenly among
the workers, with one state being placed in each worker. After
scaling the parallelism of the partitioned stateful operator to
2, its scaled state partition and corresponding requests are
distributed to another node, co-located with another operator
state. Due to the resource contention, this operator quickly
becomes the bottleneck and decreases the throughput. After
scaling parallelism to 3, the workload on this worker is
reduced, resulting in higher throughput. In the cluster with
5 workers, all the scaled state partitions of MO will be
distributed to a new worker, increasing the throughput by using
more available resources.

As depicted in Figs. 5i–5l, with the maximum input rate,
when parallelism hints are set to 2 and 3, the end-to-end la-
tency results in a 25% and 52% reduction for WC respectively,
a 34% and 62% increase for SD respectively, and a 95% and
96% reduction for MO respectively. In WC and MO, higher

parallelism reduces latency not only by decreasing the tuple
processing time but also by reducing request waiting time for
available executors through increased capacity of the scaled
operator. MO achieves significant latency reduction because
the observation scorer operator aggregates requests, which
results in a peak input flow to the successor operator. The
scaled operator with higher capacity can handle this peak more
effectively.

In SD, the first operator is scaled. As the end-to-end latency
is calculated starting from the moment when the tuple is
being processed by the first operator, the reduced executor
waiting time of the first operator is not reflected in latency.
Additionally, both the increased communication overhead that
occurs when communicating with more workers and the higher
throughput resulting from the higher parallelism contribute to
an increase in latency.

E. Batch Execution Evaluation

This experiment demonstrates the performance improve-
ments achieved by batching. We varied the batch size and
input rate for the WC, SD and MO applications to compare
performance under different batch sizes.

As shown in Figs. 6a–6c, within maximum input range,
by batching requests, WC, SD, and MO achieve throughput
increase up to 36 times, 9 times, and 16 times when compared
to the throughput at batch size of 1. WC achieves maximum
throughput at batch size 500, whereas SD and MO peak at
batch sizes of 20 and 40, respectively. The throughput is
increased via batching as requests executed together share the
initialized executor as well as the loaded state, reducing the
relevant workload. Compared to WC, both SD and MO achieve
maximum throughput at smaller batch sizes. The reason for

469

1 1000 2000 3500 5000 6500

0

10k

20k

30k

40k

Th
ro

ug
hp

ut
 (t

up
le

/s
)

Approach
FAASM
ScalaSSC
Lambda

(a) WC throughput

1 1000 3000 10000 18000 26000

0

2k

4k

6k

8k

10k

12k

14k

16k Approach
FAASM
ScalaSSC
Lambda

(b) SD throughput

1 1000 3000 6000 12000 18000

0

2k

4k

6k

8k

10k

12k Approach
FAASM
ScalaSSC
Lambda

(c) MO latency

1 1000 2000 3500 5000 6500

102

103

104

105

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)
 [L

og
 S

ca
le

]

Approach
FAASM
ScalaSSC
Lambda

(d) WC latency

1 1000 3000 10000 18000 26000

101

102

103

Approach
FAASM
ScalaSSC
Lambda

(e) SD latency

1 1000 3000 6000 12000 18000
102

103

104

Approach
FAASM
ScalaSSC
Lambda

(f) MO latency

Figure 7: Comparison of throughput and end-to-end latency metrics for FAASM, Lambda and ScalaSSC under different input
rates (tuple/s). The X-axis represents input rates.

this is that WC is a data-intensive application, while SD and
MO are compute-intensive applications, and their throughput
is restricted by the computation workload.

As shown in Figs. 6d–6f, increasing batch sizes initially
decreases end-to-end latency, but beyond a certain batch
size, the latency begins to rise. For different input rates,
the minimum latency is achieved at different batch sizes.
Initially, latency decreases as larger batch sizes provide higher
throughput capacity for processing tuples, reducing the waiting
time for available executors. However, as batch sizes grow, the
inputs fail to fill the batch within the window time, leading to
unnecessary waiting time.

F. Overall Evaluation

This experiment compares the performance between
FAASM, Lambda and ScalaSSC. We run WC, SD, and MO
under varying input rates to benchmark ScalaSSC. As illus-
trated in Fig. 7, within the maximum input rate range, our
approach exhibits a throughput enhancement of up to 845
times compared to FAASM and 14 times compared to Lambda
respectively. Additionally, it delivers a reduction in end-to-end
latency of up to 87% and 95% respectively.

Compared with FAASM, ScalaSSC shows higher latency
when the input rate is 1. This is mainly because of the time to
accumulate a batch request. ScalaSSC shows higher through-
put than FAASM because of the use of batch processing.
Moreover, it achieves lower latency under high input rates
by reducing the state access latency and available executors
waiting time. Furthermore, our approach maintains end-to-end
latency at the millisecond level, whereas Lambda operates at
the second level, due to the integration of state servers within
workers and the support for batch state access APIs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose ScalaSSC, a stateful server-
less computing framework designed for stream processing
applications. It co-locates the request with the state it acts
upon and increases operator parallelism by scaling the state
instance, aiming to reduce state access latency. In batch
execution, it executes the requests act upon the same state
together and provides batch APIs to enhance the efficiency
of state access. Experimental results show the enhancements
in both throughput and latency. As shown in the experiment,
parameters like batch size and parallelism have a significant
impact on performance. Our future direction is dynamically
optimizing these parameters during the runtime to achieve
better performance.

REFERENCES

[1] A. Ali, R. Pinciroli, F. Yan, and E. Smirni. Batch: Machine learning in-
ference serving on serverless platforms with adaptive batching. In SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2020.

[2] A. Ali, R. Pinciroli, F. Yan, and E. Smirni. Optimizing inference serving
on serverless platforms. Proc. VLDB Endow., 15(10):2071–2084, June
2022.

[3] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter. Sprocket: A
serverless video processing framework. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’18, page 263–274, New York,
NY, USA, 2018. Association for Computing Machinery.

[4] D. Barcelona-Pons, P. Garcı́a-López, and B. Metzler. Glider: Serverless
ephemeral stateful near-data computation. In Proceedings of the 24th
International Middleware Conference, pages 247–260, 2023.

[5] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. Parı́s, and
P. Garcı́a-López. Stateful serverless computing with crucial. ACM
Transactions on Software Engineering and Methodology (TOSEM),
31(3):1–38, 2022.

[6] M. V. Bordin, D. Griebler, G. Mencagli, C. F. Geyer, and L. G. L.
Fernandes. Dspbench: A suite of benchmark applications for distributed
data stream processing systems. IEEE Access, 8:222900–222917, 2020.

470

[7] N. L. Bragazzi, H. Dai, G. Damiani, M. Behzadifar, M. Martini, and
J. Wu. How big data and artificial intelligence can help better manage the
covid-19 pandemic. International Journal of Environmental Research
and Public Health, 17(9):3176, 2020.

[8] S. Cai, Z. Zhou, K. Zhao, and X. Chen. Cost-efficient serverless infer-
ence serving with joint batching and multi-processing. In Proceedings of
the 14th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’23,
page 43–49, New York, NY, USA, 2023. Association for Computing
Machinery.

[9] Z. Cai, Z. Chen, X. Chen, R. Ma, H. Guan, and R. Buyya. Spsc: Stream
processing framework atop serverless computing for industrial big data.
IEEE Transactions on Cybernetics, 2024.

[10] C. Cicconetti, M. Conti, and A. Passarella. A decentralized framework
for serverless edge computing in the internet of things. IEEE Transac-
tions on Network and Service Management, 18(2):2166–2180, 2020.

[11] R. Eidenbenz and T. Locher. Task allocation for distributed stream pro-
cessing. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9, 2016.

[12] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu. Elastic scaling for
data stream processing. IEEE Transactions on Parallel and Distributed
Systems, 25(6):1447–1463, 2013.

[13] A. Hall and U. Ramachandran. An execution model for serverless
functions at the edge. In Proceedings of the International Conference on
Internet of Things Design and Implementation, pages 225–236, 2019.

[14] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker. Network
support for resource disaggregation in next-generation datacenters. In
Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
pages 1–7, 2013.

[15] M. H. Iqbal and T. R. Soomro. Big data analysis: Apache storm
perspective. International journal of computer trends and technology,
19(1):9–14, 2015.

[16] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and I. Stoica. Jiffy:
Elastic far-memory for stateful serverless analytics. In Proceedings of
the Seventeenth European Conference on Computer Systems, pages 697–
713, 2022.

[17] W. Li, Y. Liang, and S. Wang. Data driven smart manufacturing
technologies and applications. Springer, 2021.

[18] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo.
Faasflow: Enable efficient workflow execution for function-as-a-service.
In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 782–796, 2022.

[19] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget,
J. Kouam, R. Lachaize, J. Hwang, T. Wood, D. Hagimont, et al. Ofc: an
opportunistic caching system for faas platforms. In Proceedings of the
Sixteenth European Conference on Computer Systems, pages 228–244,
2021.

[20] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan. A serverless
real-time data analytics platform for edge computing. IEEE Internet
Computing, 21(4):64–71, 2017.

[21] A. P. Rodrigues, R. Fernandes, A. Bhandary, A. C. Shenoy, A. Shetty,
and M. Anisha. Real-time twitter trend analysis using big data analytics
and machine learning techniques. Wireless Communications and Mobile
Computing, 2021(1):3920325, 2021.

[22] A. W. Services. Amazon elasticache. https://aws.amazon.com/
elasticache/, 2024.

[23] A. W. Services. Amazon kinesis. https://aws.amazon.com/kinesis/, 2024.
[24] A. W. Services. Configure lambda function memory. https://docs.aws.

amazon.com/lambda/latest/dg/configuration-memory.html, 2024.
[25] S. Shillaker and P. Pietzuch. Faasm: Lightweight isolation for efficient

stateful serverless computing. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 419–433, 2020.

[26] W. W. Song, T. Um, S. Elnikety, M. Jeon, and B.-G. Chun. Sponge: Fast
reactive scaling for stream processing with serverless frameworks. In
2023 USENIX Annual Technical Conference (USENIX ATC 23), pages
301–314, Boston, MA, July 2023. USENIX Association.

[27] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M.
Hellerstein, and A. Tumanov. Cloudburst: stateful functions-as-a-service.
Proc. VLDB Endow., 13(12):2438–2452, July 2020.

[28] E. Volnes, T. Plagemann, and V. Goebel. To migrate or not to migrate:
An analysis of operator migration in distributed stream processing. IEEE
Communications Surveys & Tutorials, 2023.

[29] H. Wang, D. Niu, and B. Li. Distributed machine learning with a
serverless architecture. In Proceedings of the IEEE INFOCOM 2019
- IEEE Conference on Computer Communications, pages 1288–1296,
2019.

[30] Z. Wu, Y. Deng, Y. Zhou, L. Cui, and X. Qin. Hashcache: Accelerating
serverless computing by skipping duplicated function execution. IEEE
Transactions on Parallel and Distributed Systems, 2023.

[31] Z. Wu, Y. Deng, Y. Zhou, J. Li, S. Pang, and X. Qin. Faasbatch:
Boosting serverless efficiency with in-container parallelism and resource
multiplexing. IEEE Transactions on Computers, 73(4):1071–1085, 2024.

[32] S. Yang. Iot stream processing and analytics in the fog. IEEE
Communications Magazine, 55(8):21–27, 2017.

[33] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao, X. Chen, and
K. Li. Infless: a native serverless system for low-latency, high-throughput
inference. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’22, page 768–781, New York, NY, USA, 2022.
Association for Computing Machinery.

[34] X. Yao, N. Chen, X. Yuan, and P. Ou. Performance optimization of
serverless edge computing function offloading based on deep reinforce-
ment learning. Future Generation Computer Systems, 139:74–86, 2023.

[35] C. Zhang, M. Yu, W. Wang, and F. Yan. MArk: Exploiting cloud services
for Cost-Effective, SLO-Aware machine learning inference serving. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
1049–1062, Renton, WA, July 2019. USENIX Association.

471

