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Cloud service level agreement negotiation is a process of joint decision-making between cloud clients
and providers to resolve their conflicting objectives. With the advances of cloud technology, opera-
tions such as discovery, scaling, monitoring and decommissioning are accomplished automatically.
Therefore, negotiation between cloud clients and providers can be a bottleneck if it is carried out man-
ually. Our objective is to propose a state-of-the-art solution to automate the negotiation process for
cloud environments and specifically infrastructure as a service category. The proposed negotiation
strategy is based on a time-dependent tactic. For cloud providers, the strategy uniquely considers uti-
lization of resources when generating new offers and automatically adjusts the tactic’s parameters to
concede more on the price of less utilized resources. In addition, while the previous negotiation strate-
gies in literature trust offered quality of service values regardless of their dependability, our proposed
strategy is capable of assessing reliability of offers received from cloud providers. Furthermore, to
find the right configuration of the time-dependent tactic in cloud computing environments, we inves-
tigate the effect of modifying parameters such as initial offer value and deadline on negotiation out-
puts that include ratio of deals made, and inequality index. The proposed negotiation strategy is tested
with different workloads and in diverse market conditions to show how the time-dependent tactic’s

settings can dynamically adapt to help cloud providers increase their profits.
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1. INTRODUCTION

Cloud computing has transferred the delivery of IT services to
a new level that brings the comfort of traditional utilities such
as water and electricity to its users. The advantages of cloud
computing platforms, such as cost effectiveness, scalability,
and ease of management, encourage more and more companies
and service providers to adopt cloud computing platforms and
offer their solutions via cloud computing models. According
to a recent survey of IT decision makers of large companies,
68% of the respondents expect that, more than 50% of their
company IT services will be migrated to cloud platforms [1].

Service deployment in clouds can be considered as a process
consisting of multiple phases [2, 3]. As depicted in Fig. 1 we
consider five major phases for a cloud service deployment.
During the Service Discovery phase, user requirements are

used as input for discovery of the best suited cloud services
among various repositories of cloud providers. In the Ser-
vice Level Agreement Negotiation (SLAN) phase, discovered
providers and the user negotiate on the quality of services.
Finally, an SLA contract will be achieved if two parties reach
an agreement on a set of quality of service (QoS) values. Then,
the acquired service will be continuously monitored in the
monitoring phase. If the monitoring service detects that prede-
fined thresholds are reached, services are scaled dynamically
in the scaling phase. Finally, in the decommissioning phase,
last minute operations are carried out before the service is ter-
minated. With the advances of cloud technology, operations
such as discovery [4, 5], scaling [6, 7], monitoring [8, 9] and
decommissioning are accomplished automatically [10]. There-
fore, negotiations between cloud services clients and providers
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FIGURE 1. The service deployment life cycle.

can be a bottleneck if they are carried out manually. Hence,
the objective of this work is to propose a solution that auto-
mates the negotiation process in cloud computing (specifically
infrastructure as a service) environments.

Cloud SLAN is a process of joint decision-making between
cloud users and providers to resolve their conflicting objectives.
Cloud services have cost, availability, and other non-functional
properties on one hand and generate profits on the other hand.
In cloud environments, both clients and providers have cost–
benefit models for negotiation and decision-making. There-
fore, SLA negotiation automation requires mapping of the
knowledge and objectives of policy makers to lower level
decision-making techniques. The first step towards the automa-
tion is finding, capturing, and modeling goals and objectives of
parties involved in the negotiation. The second step is finding
a proper strategy to use the goals in the low-level negotiation
process.

Automated SLAN has attracted a great deal of interest in
the context of Service Oriented Architecture (SOA), grid
computing and recently cloud computing. Studies in these
contexts mainly focused on offering negotiation strategies
that maximize the user’s utility values and the number of
signed contracts. However, they have not considered infras-
tructure management issues in the bargaining strategy. It means
that cloud providers are willing to concede on the price of
resources which are less utilized, and that has to be reflected
in the negotiation tactics. In addition, previous works have
not considered reliability in the negotiation process. These
researches assume that service requestors would trust whatever
QoS criteria values providers offer in the process of negoti-
ation. Nevertheless, providers may offer a QoS value during
the negotiation that was not fully achieved according to the
monitored QoS data.

To address these challenges, we propose a negotiation strat-
egy that acquires user’s preferences and provider’s resource
utilization status and utilizes time-dependent tactic along with
theory of statistics to maximize the cloud providers profit

while adhering to deadline constraints of users and verifying
providers offer reliability.

This paper is a significant extension of our previous
work [11]. The new contributions reported in this paper are:

(i) We investigate the effect of modifying parameters of
the time-dependent tactic such as initial offer value
and deadline on negotiation outputs including social
welfare (which is measured based on inequality index)
and success of negotiation in cloud environments.

(ii) In addition, we investigate how the proposed nego-
tiation strategy reacts to different market conditions
(demand to supply ratio (DSR)) to increase the prof-
itability of the negotiation strategy. The effect of the
offered strategy on the utility of the whole system is
investigated in that regards.

(iii) The experiments for this paper are completely revised
and redesigned to cover the aforementioned novel
aspects.

The rest of the paper is organized as follows: the next section
narrows the scope of the paper while Section 3 highlights chal-
lenges in SLA negotiation in cloud which have not been given
enough attention. Next, Section 4 aims at highlighting the
uniqueness of the proposed negotiation framework by compar-
ing its characteristics with related work. Then, while Section 5
provides a high-level description of the negotiation frame-
work for the readers, Section 6 covers the detail of negotiation
strategies for both cloud providers and users. In Section 7, the
negotiation strategies are tested to evaluate their effectiveness,
and applicability in diverse market conditions. Finally, the
work is concluded with suggestions on future directions and
conclusions.

2. SCOPE AND ASSUMPTIONS

In this work, the goal of users is acquiring virtual machine (VM)
from an Infrastructure as a service provider via negotiation of
the following parameters:

(i) Hard disk (functional requirement and fixed)
(ii) CPU (functional requirement and fixed)

(iii) RAM (functional requirement and fixed)
(iv) Cost (non-functional requirement and negotiable)
(v) Availability (QoS requirement and negotiable)

(vi) Deadline (non-functional requirement and fixed)

Users and cloud providers would like to maximize their utili-
ties. Here, we assume that the utility of a provider may increase
if in the SLA contract less service availability is guaranteed and
higher price is achieved for the service. Besides, users have time
constraints when they are participating in the negotiation. This
is because if they do not acquire the required resources by a par-
ticular time they are not able to satisfy their end users expecta-
tions or reach their business objectives. Furthermore, as we have
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mentioned in the previous section, a client’s negotiation service
(NS) measures reliability of offers. We presume that there are
sufficiently large number of observations (monitoring results for
SLA contracts), which make inferences regarding reliability of
offers more accurate.

It is worth mentioning that the major objective of this work
is to show how differently cloud providers negotiate when they
consider their infrastructure status. We consider data center
resource utilization as a key aspect that can impact offers of
providers during the negotiation. In Section 7, we elaborate on
this and provide a detailed discussion. Our proposed negotia-
tion strategy is capable of handling multiple criteria, However
in this work, the majority of our experiments focuses on the
price of service as the main negotiation issue. In addition, we
introduce two main scenarios to explain experiment results in
real life contexts:

(1) In the first scenario, a single third party is responsible
for providing an NS for both cloud users and providers.
The main objective of the negotiation process is max-
imizing the number of deals made and being fair to
both clients and providers. The third party service
consists of clients’ negotiation agents and providers’
negotiation agents which are the main players in the
negotiation process and are the focus of the paper in
both scenarios.

(2) In the second scenario, parties have their own NS. In
this case, the objective of an individual NS (consists of
negotiation agents) is maximizing its utility.

3. MOTIVATIONS

3.1. Offers reliability

Since in parallel negotiation, a party makes a decision based on
the presented QoS values in SLA offers, there has to be a way to
know how reliable the provider is in delivering those promised
QoS values. The recorded data from monitoring services can be
analyzed and converted to reliability information of offers. The
monitoring is based on the copy of the signed SLA, which is kept
in the SLA repository. To make inference from the observed data
we use the theory of statistics (beta density function), which will
be explained in Section 6.

3.2. Maximizing utility of providers and users by
adaptively react to changes in data center resource
utilization and market conditions

If we consider a scenario where multiple providers, with dif-
ferences in resource utilization, negotiate with users, with
differences in resource and QoS requirement, providers might
be interested in an SLA negotiation strategy that adaptively
reacts to changes in data center resource utilization and market

conditions. To achieve that, NSes can concede more on the price
of resources that are less utilized (or have more free capacity)
and less on the price of resources that are more utilized. Con-
sequently, providers can offer more attractive prices in earlier
stages of negotiation for clients whose requested VMs allocate
less utilized resources. This has number of advantages: The
clients would be attracted to less utilized resources; users pay
less for required resources; and finally it creates an effective
load balancing across providers that maximizes the utility of
the whole system. For example, consider a scenario where a
user needs number of VMs for memory-intensive applications,
and a there are two data centers in the system one of which
has considerably higher RAM capacity available and the other
one has limited RAM available. Hence, the NS of the first data
center (based on resource utilization) gives more discount to
the user compared with other data center, therefore it is more
likely that user reaches an agreement with the first data center.
Consequently, load is redirected to less utilized data center and
uses acquire resources with less price, which in theory should
maximize the whole system utility.

Moreover, this strategy can work for SaaS or PaaS services
that consume multiple types of resources with limited sup-
plies. In other words, if there exist a range of services and
different quantities of resources allocated to each service type,
then this negotiation strategy can be effectively utilized. We
provide more details on the aforementioned advantages in
Section 7.

3.3. Investigating behavior of the time-dependent
function in the cloud computing context

Time-dependent tactics [12] are proper candidates to be adopted
for cloud computing environments as users have deadline for
acquiring resources when they are participating in a negotiation.
However, with the best of our knowledge, their applicability for
the cloud context has not yet been deeply investigated. There-
fore, first we are going to create a testbed that allows us to imple-
ment time-dependent functions for an environment consisting of
multiple clouds and brokers which are negotiating on behalf of
users, and then we modify negotiation parameters such as dead-
line of requests and initial offer values and type of tactic (poly-
nomial or exponential) to study the behavior of time-dependent
tactics for our problem.

4. RELATED WORK

SLAN has been investigated in details by researchers in the
context of SOA and grid computing (either for a single ser-
vice or for a service composition). Figure 2 shows the main
categories of approaches for SLAN. In this section, first
we briefly describe the common negotiation tactics. After
that, we review SLA negotiation strategies used in cloud
environments.
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FIGURE 2. Negotiation tactics taxonomy.

4.1. Negotiation tactics

The following families are the most commonly used negotia-
tion techniques in the literature: (1) time dependent: if parties
have deadline in the negotiation, these techniques are the
appropriate choice. This category of techniques concedes faster
as the deadline approaches [12]. (2) Resource-dependent:
this family of negotiation strategies are particularly helpful
to reach a consensus, when resource constraints such as the
remaining bandwidth (for providers) and the budget (for users)
are imposed. This family generates offers and counter-offers
based on the resource availability. (3) Policy-based: they aim
at defining protocols and languages to capture user preferences
in the form of policies, and then proposing transformation
approaches to map high-level policies to low-level offer values.
(4) Behavior-dependent: when there is no deadline in a negoti-
ation, agents can adopt this class of techniques. This way, they
can imitate behaviors of opponents (e.g. through prediction
using regression analysis [13]) to perform at least as well as
other parties in the negotiation. Both Axelrod [14] and Faratin
[12] have studied this category. The amount of relaxation in
this class is decided based on the opportunity function [15].
The opportunity function works out the probability of reaching
an agreement based on the number of alternative negotiation
parties and the difference between its offers and the received
counter offers.

In addition, these tactics differ in number of criteria they
deal with (single vs multiple) and number of parties involved in
the negotiation process. Coehoorn and Jennings [16] proposed
a multi-issue negotiation approach by gathering information
regarding opponents’ preferences across negotiation issues

using kernel density estimation. After obtaining the prefer-
ences, the work uses fuzzy similarity [17] to create a counter
offer. In addition, Rahwan et al. [18] proposed a negotiation
tactic which addresses challenges of one-to-many negotiation,
where buyer agents coordinates a set of sub-negotiators.

4.2. Cloud and grid computing SLA negotiation

In the context of Grid computing studies [19–21] generally
applied the pure resource-dependent techniques or its com-
bination with other techniques for SLA negotiation problem.
For example, they concede slower when resources such as the
bandwidth are scarce. Comuzzi et al. [22] proposed a resource
dependent negotiation strategy for pricing of network services.
Similar to our approach, the negotiation strategy is time depen-
dent, bilateral, and considers multiple criteria. However, in
contrast to our work the time-dependent function parameters
are not adjusted automatically. Likewise, Sim [23] investi-
gated market dynamics in their negotiation strategy for Grid
computing environments. They considered a heterogeneous
e-market where users and resource providers exercise diverse
negotiation strategies. Compared with their study, in addition
to the market condition, we used resource utilization to offer
a negotiation strategy for providers, and reliability to improve
the negotiation strategy of users.

Zulkernine and Martin [24] used time-dependent functions
for SLA negotiation in the context of cloud and Software-as-
a-Service. We argue that our approach is suitable for parallel
negotiation. The reason is that we are discriminating regard-
ing the pattern of concession when negotiating concurrently
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with multiple clients (to increase cloud providers profit) while
Zulkernine et al. assume the same pattern of concession for all
clients.

An SLA management framework for cloud computing
environments is proposed by Chhetri et al. [25], which uses
a policy-based model to support the automated establishment
of SLA. The approach uses WS-policy [26] to create a set of
rules that can be later queried by cloud users and providers to
automatically choose the most appropriate interaction protocol
in a given context. Nevertheless, the approach only considers
the client side and lacks a negotiation strategy that maximizes
providers’ profit.

Copil et al. [27] proposed a negotiation protocol that involves
performance-oriented cloud users and the cloud provider whose
objective is saving energy. The process of negotiation deter-
mines the amount of overprovisioning a provider is allowed
to make. The negotiation strategy employs Particle Swarm
Optimization to reach maximum welfare for both negotiation
parties. Contrary to our strategy market condition was not
considered in their study.

Likewise, the technique that maximizes the objective func-
tions of both cloud providers (Platform as a Service providers)
and customers is proposed by Ranaldo and Zimeo [28]. They
introduced a new approach for dynamic evaluation of the
acceptable region of SLA offers when there exists a non-
additive utility function. The effectiveness of the negotiation
strategy is verified through queuing-based performance model.
Similar to our strategy the proposed strategy takes into account
information about providers’ capacity. However, their strategy
cannot estimate the reliability of providers’ offers and is not
capable of pricing cloud resources.

To reduce the SLA-gap between cloud providers and users,
an SLA negotiation mechanism [29] for cloud environment is
modeled using GENIUS [29] which is a generic negotiation
platform. Similar to our work, they considered social welfare,
social utility and mutual gain metrics. The strategy is a subclass
of Tit-for-Tat (behavior-dependent) which aims at predicting
opponent behavior. Although the strategy can achieve fair
SLAs, it has not considered the market condition and capacity
management.

An SLA negotiation mechanism for multi-issue negotia-
tion was proposed by Son and Sim [30]. They considered time
slot and price as negotiation criteria. The SLA negotiation is
equipped with a technique that selects a proper data center from
set of globally distributed locations to minimize the SLA vio-
lations. The novelty of the approach is related to the proposed
utility function that models preferences for different time slots.
The negotiation tactic is based on a trade-off algorithm and
improves the negotiation speed and the aggregated utility func-
tion. The negotiation techniques results in a pricing approach
that once compared with the three pricing models of Amazon
EC2, shows support for faster agreements and achieves higher
utilities. However, this strategy does not capture reliability
of offers.

In summary, our approach has the following combined
features that are contributions over previous research works:
setting a deadline for negotiation while considering resource
utilization and market condition; discriminating regarding the
pattern of concession to maximize providers’ profit; taking
into account reliability metric to discard unreliable offers, and
investigating social optimality of time-dependent functions in
the negotiation process.

5. NEGOTIATION FRAMEWORK

Figure 3 describes the sequence of interaction between the cloud
provider NS and the client NS. First, the service requester spec-
ifies hardware specifications like CPU, storage, memory as
well as preferences on the QoS criteria. After that, functional
and QoS requirements are used as input for discovering suit-
able cloud services. Afterwards, the client NS starts negotiating
with the discovered service providers’ NSes on QoS criteria
(price and availability) based on the requester’s preferences.
Client’s budget and deadline for acquiring resources are used
by the client NS to make a decision on accepting or rejecting
an offer. Client NS uses time-dependent tactic that takes the
client’s preferences as an input and automatically generates
an initial and then consequent offers. Once cloud NS receives
the offer, it uses request functional and QoS requirements
and cloud resources utilization from the monitoring system
to generate counter offers. On the arrival of providers’ offers,
the client NS uses the reliability evaluator component and the
time-dependent tactic to accept or reject the offer, or otherwise
reply with a counteroffer.

If the negotiation is successful, an SLA contract will be signed
by both parties and the obtained contract, which includes a set of
expected QoS values (service level objectives (SLOs)), is kept
in the SLA contract repository. The SLA will be constantly mon-
itored, and reliability evaluator will be notified in the case of
violation of SLOs.

6. NEGOTIATION STRATEGY

Prior to explaining the negotiation strategies for each party,
a brief description of the negotiation model and the applied
negotiation tactics are given. Descriptions of symbols used for
expressing the negotiation process are listed in Table 1.

6.1. Negotiation model

To create a negotiation model, we extended the model pro-
posed by Raiffa [31] to incorporate the reliability of offers.
In the model, the NS receives requestor preferences on the
importance (Wi) of n negotiation issues, mini and maxi (reser-
vation values), which are the acceptable range of values for
issue i (VIi), and negotiation deadline (tmax). The service then
measures the utility of offers received from other NS based on
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FIGURE 3. Negotiation sequence diagram.

Eqs. (1) and (2).

UV =
n∑

i=1

WiVIi(yi) where
n∑

i=1

Wi = 1 (1)

VIi(yi) =

⎧⎪⎪⎨
⎪⎪⎩

maxi −yi

maxi − mini
VIi increases as yi decreases;

yi − min i

maxi − mini
VIi decreases as yi decreases.

(2)

Next, as shown in Eq. (3), the offer is accepted if its utility
value is greater than or equal to the utility of the counter offer
that will be sent by the NS. Otherwise, the NS generates a new
counter offer. In addition, if the timestamp of the received offer
(toffer) is greater than the deadline the service terminates the
negotiation.

Response =

⎧⎪⎪⎨
⎪⎪⎩

terminate if toffer > tmax;

accept if UVoffer > UVcounter offer;

new counter offer otherwise.

(3)

6.2. Time-dependent negotiation tactic

As cited by Faratin [12], time-dependent negotiation tactics are
a class of functions that compute the value of a negotiation issue

by considering the time factor. Therefore, they are particularly
helpful when the NS receives a deadline (tmax) as an input, and
has to concede faster as the deadline approaches. For this family
of tactics, Eq. (4) is used by NS ‘a’, which represents either a
cloud service requestor or a provider to generate a new counter
offer for NS ‘b’ for negotiable issue i.

Ot
a→b[i] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mina
i +αa

i (t)(maxa
i − mina

i )

if V a
i is decreasing;

mina
i +(1 − αa

i (t))(maxa
i − mina

i )

if V a
i is increasing.

(4)

Numerous functions have been defined for calculation of
αa

i (t) such as polynomial and exponential [12]. As it can be
figured out from Eq. (5), by changing the value of β (convex-
ity degree) in both functions, the behavior of the negotiation
tactic changes. If β > 1, the tactic reaches its reservation’s
value at the early stage of negotiation. On the contrary, in the
case of β < 1, it concedes to its reservation value only when
the deadline is approaching. In addition, K is determining the
initial offer value. We adopt this family of the negotiation func-
tions and change β and K dynamically to maximize the NS
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TABLE 1. Description of symbols.

Symbols Description

a,b negotiation parties
Wi importance of issue i
VIi offer value for issue i
UV utility value of the offer
toffer offer timestamp
tmax negotiation deadline
Ot

a→b [i] offer sent from a to b for issue i
mina

i minimum acceptable value of issue i for a
maxa

i maximum acceptable value of issue i for a
yi defines the range of values for an issue i
αa

i (t) time-dependent function of issue i for a
Va

i value offered for issue i by a
Ka

i initial offer value for issue i by a
β convexity degree
Pt price of virtual machine instance at t
RPjt price of a resource j (e.g. RAM) at t
αRPj time-dependent function for price of resource j
IRPj initial price for resource j
Aj portion of resource j that is available
βj convexity degree for price of resource j
RA resource aware tactic
PO priority oriented tactic
γ1 relative importance of RA
γ2 relative importance of PO
RCofferVIi reliability constraint for issue i
RofferVIi reliability of an offer’s value of issue i
COD consensus desirability
CF conceding factor
ρ, τ beta distribution parameters

utility function

αa
i (t) =

⎧⎪⎨
⎪⎩

ka
i + (

1 − ka
i

) (
min(t, tmax)

tmax

)1/β

Polynomial;

e(1−min(t,tmax)/tmax)
β ln ka

i Exponential.
(5)

6.3. Providers strategy

For providers, the NS input is composed of the cloud resource
utilization, minimum and maximum resource prices, and
amounts of requested resources. The output of NS can be an
SLA contract with a detailed description of a provider, a client,
a service and SLOs. Providers are interested in an SLA negoti-
ation strategy that gives the attractive offers while keeps their
utility functions high. If providers concede more (by adjust-
ing time-dependent function parameters) on the price of the
resources that are less utilized (or have more free capacity)
and less on the resources that are more utilized, the utility

of whole system increases. This is because this strategy can
resemble a load balancer that distributes user requests to the
least-expensive resources that are offered by the least utilized
providers [32]. In addition, as we show in Section 7, it can
improve the utilization of data centers.

Unlike the majority of works that require time-dependent
function parameters to be given explicitly, Zulkernine and
Martin [24] proposed a method to derive the parameters from
the high-level negotiation policy. Inspired by their work, we
propose an approach to derive a price for the next offer based
on the cloud resource utilization. In comparison with their
work, we argue that our approach is more suitable for the cloud
context as we consider the resource management in the negoti-
ation. As shown in Eqs. (6–10), we first define a total price of
a VM instance as the sum of prices of its individual resources
Eq. (6). In the next step, for each resource, a time-dependent
function (Eqs. (7) and (8)) is defined, and its parameters are
adjusted (Eqs. (9) and (10)) based on its underutilized capacity
compared with average resources’ idle capacity (Ā) for m type
of resources.

Pt =
m∑

j=1

RPjt (6)

RPjt = Min RPj + αRPj(Max RPj − Min RPj) (7)

αRPj = IRPj + (1 − IRPj)

(
min(t, tmax)

tmax

)1/βj

(8)

Ā =
∑m

j=1 Aj

m
(9)

βj = CF × eC(Aj−Ā)

where CF = ω × COD and, (10)

ω and C are constants and c, ω > 0.

As shown in Eq. (10), when the idle capacity of a resource
is greater than the average free capacity of resources in the
data center, Aj − Ā > 0 and βj > 1, and therefore the negoti-
ation strategy is conceding on the price of that resource. As a
result, providers offer a more attractive price in earlier stages
of negotiation for clients whose requested VMs’ allocations
would balance resource utilization. This increases the chance
of reaching an agreement with the preferred request. However,
in this tactic β is calculated based on the resources utilization
and does not reflect the preferences of provider regarding the
importance of price and guaranteed availability criteria. The
tactic based on [24] is adopted in Eq. (11) to derive β from
provider’s preferences. When NS deals with multiple criteria,
weights that are presented in Eq. (10) are same as the one used
in Eq. (1) as they show how important is an issue compare
with the others. Consequently, in order to satisfy all providers’
objectives, the negotiation strategy has to be built as a mixture
of those aforementioned tactics as shown in Eq. (12).

βj = eC(1/n−Wi) (11)
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where n is the number of criteria in the negotiation, C is a con-
stant and Wi is the importance of issue i and

∑n
i=1 Wi = 1.

Ot
a→b[i] = γ1RAt

a→b[i] + γ2POt
a→b[i] (12)

where γ1 + γ2 = 1, 0 ≤ γ1, γ2 ≤ 1, and RA, PO are offers’
issue values generated by Resource Utilization Balancing
Oriented tactic and Preference Oriented tactic, respectively.

6.3.1. Discussion
When the negotiation scenario consists of multiple criteria and
the mixture of strategies as shown in Eq. (12) is used, one of the
following three conditions holds:

(i) β > 1 for RA, that means the provider is interested
in the client’s offer, and β < 1 for the issue of price
in PO, that means the price is the most important
issue for the provider. Therefore, it is likely that the
provider reaches consensus with clients (with desir-
able resource demand) who are interested in higher
guaranteed availability.

(ii) β > 1 for RA, that means the provider is interested in
the client’s offer, and β > 1 for the issue of price in
PO, that means the availability is the most important
issue in the negotiation for the provider. Then, it is
likely that the provider reaches consensus with clients
(with desirable resource demand) who are less con-
cerned regarding the lower guaranteed availability.

(iii) β < 1 for RA, that means the provider is not interested
in the client’s offer, and β < 1 for the issue of price in
PO, that means the price is the most important issue
in the negotiation for the provider. Then, it is likely
that the provider reaches consensus with clients who
are willing to pay considerably higher for the desirable
guaranteed availability.

(iv) β < 1 for RA, that means the provider is not interested
in the client’s offer, and β > 1 for the issue of price
in PO, that means the availability is the most impor-
tant issue in the negotiation for the provider. Then, it is
likely that the client receives neither an attractive offer
on the price nor on the availability issue.

The focus of this work is on cases where providers
and users are purely interested in the price factor and
the remaining scenarios will be investigated in our
future works.

6.3.2. Extending provider strategy to support negotiation for
auto-scaling

As mentioned in Section 1, with recent advances in cloud
technology, cloud users are capable of scaling their resources
capacity up or down automatically based on conditions they
define on performance metrics. Auto-scaling is an important
feature for both applications that experience steady demand
patterns or those have daily or hourly surges in workload.

However, both cloud providers and users have to first reach
a consensus on SLA conditions for the required capacity.
Our negotiation strategy can be extended via two different
methods to support auto-scaling negotiation: (i) on-demand
when scaling-up is required and (ii) at deployment time before
scaling-up is required.

Negotiation process triggered on-demand when scaling-up is
required: for this case, the same proposed negotiation strategy
can be employed and negotiation is triggered by user-defined
thresholds on performance metrics (e.g. CPU utilization). How-
ever, this approach suffers from two drawbacks. First, the time
required to reach consensus may affect the SLA of a business
services which are deployed on the cloud resources. In addition,
there may not be enough resources available in the market when
scaling up is required. In this condition, cloud users either have
to pay considerably higher price for the resources or may not be
able to acquire the capacity they need.

Negotiation process triggered at deployment time before
scaling is required: to address the challenges associated with the
first approach, the negotiation process can be started at deploy-
ment time. This means that clients negotiate for a reserved
capacity that later can be utilized when scaling up is needed. To
support this, our proposed negotiation strategy is required to be
extended. First, the provider strategy has to consider a separate
resource pool that is built to reserve resources for auto-scaling
purposes. Secondly, two new negotiation criteria along with the
one described in Section 2 have to be considered by negotiation
strategies:

(1) Upfront payment: amount to be paid by clients for
reserving a capacity in the provider data center for
auto-scaling.

(2) Utilization pattern: it defines how the reserved capac-
ity is utilized (for example, 30% of the time).

Thirdly, the provider strategy (which was a mixture of a time-
dependent and resource-dependent) has to be further updated
to additionally accommodate a trade-off tactic (as described
in Section 4) that balances the amount of upfront payment and
effective hourly price of VM based on the utilization pattern to
both attract more customers and maximize the cloud provider’s
profit.1 This has two advantages: through negotiation, clients
can minimize their expenses once they gain knowledge on their
utilization pattern, and providers can benefit from the utiliza-
tion pattern information supplied by clients to perform and
efficient capacity planning.

Although this approach solves the challenges of the first
extension, it is more complex as it requires a decision to be
made on how to partition resources between on-demand and
reserved pools.

1 For example in Amazon EC2 for light-utilization reserved instance type,
clients pay less upfront and pay more hourly. http://aws.amazon.com/ec2/
purchasing-options/reserved-instances/
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6.4. Cloud client NS

The client NS receives user preferences on budget, dead-
line and QoS criteria importance and maps them to low-level
time-dependent parameters as described in the previous section
and based on Eq. (11) [24]. It means that β is defined in a way
that the NS concedes less if the criteria are more important to
the user and concedes more otherwise. To capture the impor-
tance of the criteria for the user, analytic hierarchy process
[33] is adopted. Similar to the provider NS, the output can be
an SLA contract with full specification of services, provider,
client and SLOs. In this strategy, our contribution lies in the
probabilistic assessment of offers reliability in negotiation.

The client NS assesses providers offers’ in a probabilistic
approach based on their past adherence level to SLA con-
tracts. Therefore, as shown in Eq. (13), the client NS only
accepts offers when similar previous accepted offers have
achieved certain level of reliability (based on the monitored
data) for each issue. For example, if in a multi-criteria negoti-
ation a provider concedes in availability, and its reliability in
such criteria is not high, users should not consider that as an
attractive offer.

Offer acceptance conditions

=
{

UVoffer > UVcounter offer and

for each VIi Roffer VIi > RCoffer VIi .
(13)

We used the β reputation system [34] to assess the reliabil-
ity of offers. The reason is that monitoring outcome (MO) of a
particular SLA contract SLO can be modeled as in Eq. (14), and
therefore is a binary event. For example, a cloud service can be
either available for more that 80% of time in a year or not. There-
fore, for each contract and for the availability criterion (which is
our focus here) you can brake down your monitoring results to
binary events. The MO is measured per specific Service Level
Objectives. It is important to mention that the objective is not
to measure the reliability of a provider, but to measure the reli-
ability of an offer by counting the number of time an SLO was
achieved for all similar contracts. Consequently, the beta den-
sity function, which is shown in Eq. (15), can be efficiently used
to calculate posteriori probabilities of the event. The higher the
number of monitoring observations the higher the accuracy of
offers reliability. The mean or expected value of the distribution
can be represented by Eq. (16).

MO = {SLO not achieved, SLO achieved} (14)

f (x | ρ, τ) = �(ρ + τ)

�(ρ)�(τ)
xρ−1(1 − x)τ−1

where 0 ≤ x ≤ 1, ρ > 0, τ > 0 (15)

μ = E(x) = ρ/(ρ + τ) (16)

As mentioned in Section 5, in our architecture a component is
responsible for monitoring SLA contracts. If we assume that the
monitoring component has detected that SLA violation occurred

v times for provider p (for a total number of n monitored SLAs).
Considering that ρ = n − v + 1 and τ = v + 1, the reliability is
equal to probability expectation of SLA is not going to be vio-
lated and is calculated as shown in Eq. (17). Once Roffer VIi is cal-
culated for all issues, NS can only accept the offer if for all the
issues Roffer VIi is greater than RCoffer VIi .

Roffer VIi = n − v + 1

n + 2
(17)

In our study, we consider availability as a criteria that is part
of the SLA and can be measured by the third party monitor-
ing services or in the case of IaaS, that is our focus, even by a
client-owned monitoring service. In addition, negotiating for
an SLA that consists of QoS criteria that cannot be monitored
is not realistic. Hence, if cloud providers believe that offering
services under certain SLA can attract more customers, they
need to facilitate the monitoring data collection. Currently,
monitoring of existing valid SLA for metrics such as availabil-
ity is not a challenge, however, the problem arises when clients
have no history of SLA monitoring data and have not used the
service before. In this case, the provider has to provide the SLA
monitoring data with the motivation to attract more customers
by being transparent and loyal to the agreement. Nevertheless,
if no historical data are available, then approaches such as sen-
timent analysis on social media data [35] and consensus-based
reliability analysis [36] can be used to estimate the reliability
of the offer.

6.5. Discussion

Techniques based on the game theory assume that all agents
are aware of the possible strategies of their opponents. There-
fore, they are the best fit for cooperative problem-solving
negotiation scenarios such as the one where a third party NS is
responsible to maximize the utility of both users and providers.
Conversely, our proposed negotiation strategy does not require
prior knowledge of an opponent’s strategy to operate. However,
this does not mean that it is entirely immune to malicious nego-
tiation attempts. Here we investigate two malicious negotiation
scenarios:

(1) A malicious client submits arbitrary offers to gain
the knowledge regarding utilization of resources and
preferences of a cloud provider. Then, the client can
concede faster in the particular negotiation criteria that
is more important for the provider and thus allocate
the cloud service earlier (but only if the utilization of
resources and provider preferences do not vary fre-
quently). This may not decrease the utility providers as
the client ultimately has to pay for what they acquire.
However, the client may be able to win the competi-
tion in the market if there is not enough resources to
satisfy demands of all the clients.

(2) In another scenario, a provider can act as a malicious
client to consume scarce resources of other providers
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to stop them serving their client efficiently. However,
if all providers start following the same approach, then
the utility of the whole system decreases, not only of a
particular provider.

7. PERFORMANCE EVALUATION

For our performance evaluation, we extended CloudSim, a
discrete event cloud simulator [37], to build a new environ-
ment for testing negotiation techniques for cloud computing
environment. The inter-arrival time of requests does not affect
the performance of the negotiation strategies. Therefore, it
is simply considered as a uniform distributed value between
0.0 and 1.0 s. The simulation period is 1 h and when the DSR
(Eq. (18)) in the experiment is <1, the data centers capacity
is set to 100 000 Hosts. When DSR is >1, data center capac-
ity is set to 10 000 Hosts. Each Host has 12 CPU cores, each
1.7 GHz; 12 GB RAM and disk capacity of 4 TB. Reservation
values for clients are set to $5 per resource unit for the min
price and $15 for the maximum. For clouds, however, reserva-
tion values are $10 and $20 per resource unit for minimum and
maximum price, respectively. In our work, we have not consid-
ered different payment plans as the price of services have no
impact on our proposed negotiation strategy. Using the request
generator class, brokers in CloudSim (which represent clients)
send requests simultaneously to data centers. The request gen-
erator randomly generates requests with different deadlines and
required instance types (defined as a tuple with three elements
as represented by Eq. (19)).

DSR = total resource requirements

total resource supply
(18)

Instance = (NCU , NRU , NHDU ) (19)

where NCU is the number of CPU units requested, NRU is
the number of RAM units requested and NHDU is the num-
ber of hard disk units requested. If we assume that providers
offer same instance types as Amazon EC2 does, then requests
generated for experiments can be classified into two classes,
namely balanced and unbalanced. In a balanced request,
NCU = NRU = NHDU , while in an unbalanced requests
NCU �= NRU �= NHDU . Requests for our experiments have
been designed according to Amazon EC2 instances types [38].
Examples of unbalanced instances are the ones from mem-
ory, storage or compute optimized family offered by EC2. An
example of balanced instance type is the small instance type
from the general purpose family. In addition, they can be fur-
ther categorized to requests with tight (from 20 to 40 rounds),
moderate (from 40 to 50 rounds) and loose deadline (from 50
to 100 rounds). These categories of deadlines are created to
investigate the impacts of deadlines on negotiation outcomes
as explained in Section 7.2. For example, when we mention
that from 20 to 40 rounds are categorized as a tight deadline,
we mean that NSes have comparatively less time to reach

consensus and this has impacts on the negotiation outcome.
We generate the workload by assigning a probability to each
category of requests. For example, to generate a workload to
investigate the effects of tight deadline, we can set the proba-
bility of a request having tight deadline to 0.8. The experiments
described in the following subsections are repeated 30 times.

In addition, we introduce two main scenarios to explain
experiment results in real life contexts:

(1) In the first scenario, a single third party system is
responsible for providing an NS for both cloud users
and providers. The main objective of the negotiation
process can be maximizing the number of deals made
or being fair to both clients and providers.

(2) In the second scenario, parties have their own negotia-
tion systems. In this case the objective of each individ-
ual negotiation system is maximizing its utility.

The conducted experiments investigate:

(i) How modifying deadline of requests, initial offer val-
ues and time-dependent function type affect the con-
sensus rate and social welfare (Sections 7.1 and 7.2);

(ii) How successful the proposed strategy for cloud NS
is in increasing cloud providers’ profits, which is cal-
culated based on the number of VM allocated and the
achieved price in the negotiation (Sections 7.3); and

(iii) How to react to different market conditions to increase
the profitability of negotiation strategy (Section 7.4).

7.1. Effect of strategies and negotiation parameters on
negotiation outcome

The designed negotiation settings consists of one broker (which
represent clients) and one data center (cardinality of negotiation
for cloud service providers and clients is one-to-one), with nego-
tiation parameters (CF and K) equally set for both parties. We
consider the first scenario and, as shown in Eq. (20), we use the
inequality index (II) to test the fairness of negotiation strategies.
We have used Eq. (1) to calculate the utility value of each party
to measure II. The closer the values of II gets to ‘0’ the higher the
fairness of the strategy. Not surprisingly, when lower values are
given to Consensus Factor and initial offer, the ratio of success-
ful negotiation decreases (Fig. 4b). In contrast, higher values for
CF and initial offer increase the chance of reaching an agreement
(Figs 4d, f, 5d and f). However, when they are set to extreme
values (as shown by Fig. 4e when the K factor reaches 0.8), the
offers received from a data center are accepted in a first round of
negotiation and there is no time for a broker to concede. There-
fore, the broker has comparatively higher utility value in this
case and II increases drastically.

II =
∣∣∣∣ UVBR

UVDC + UVBR
− UVDC

UVDC + UVBR

∣∣∣∣ (20)

In addition, as illustrated in Fig. 5, when the polynomial
function is used, the chance of reaching an agreement, even if
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FIGURE 4. Impact of initial offer on II and negotiation success rate.
In the dot plots P and E refer to polynomial and exponential tactics. (a)
II for initial offer = 0.2, (b) deals made for initial offer = 0.2, (c) II for
initial offer = 0.4, (d) deals made for initial offer = 0.4, (e) II for initial
offer = 0.8 and (f) deals made for initial offer = 0.8.

the initial offer and CF is set to lower values, increases. Nev-
ertheless, as depicted in Fig. 5e, in a majority of the cases,
when CF is set to the highest value (50), the exponential func-
tion reaches lower II. Moreover, adoption of CF of 5 (and 0.5
although it is not depicted in Fig. 5) or K of 0.4 and 0.2 (as
depicted in Figs 4 and 5) results in a lower inequality. This
means that if the objective of the negotiation is to achieve
higher fairness as described in the first scenario, initial offers
should be set at maximum below the half of the overall con-
cession that one party is going to make, and then it should not
concede either very quickly or too slowly.

7.2. Impact of change in deadline on the ratio of deals
made

In this experiment, one broker (which represent clients) and a
data center participate in the first negotiation scenario (cardi-
nality of negotiation for cloud service providers and clients is
one-to-one). The request generator builds negotiation messages
based on a given deadline-type probability. For the majority of
cases illustrated in Fig. 6, when probability of a request having
tight deadline increases, the ratio of agreements made decreases
until no or a few deals are achieved. However, when CF and K
leastwise set to 0.5 and 0.1 for polynomial function and 5 and 0.2

FIGURE 5. Impact of CF on II and negotiation success rate. In the
dot plots P and E refer to polynomial and exponential tactics. (a) II for
CF = 0.05, (b) deals made for CF = 0.05, (c) II for CF = 5, (d) deals
made for CF = 5, (e) II for CF = 50 and (f) deals made for CF = 50.

for exponential function, the deadline has no impact on the num-
ber of deals made, and both strategies reach 100% of consen-
sus rate. This shows the dominance of the polynomial function
in reaching higher number of deals when the deadline is tight.
Therefore, for the first scenario, and if users have tight deadlines,
it is best for the negotiation system to set its strategy to polyno-
mial to achieve the goal of maximizing the number of deals.

7.3. Performance of the negotiation strategy

This experiment can be considered in the context of the second
scenario where a data center owns an NS to maximize its utility
function. However, we will still investigate the impact of our
strategy on the whole system (including brokers) utility. The
experiment was designed with four brokers and one data cen-
ter (cardinality of negotiation for cloud service providers and
clients is one-to-one). The reason for having four brokers is to
increase the chance of having parallel negotiation between data
centers and brokers. Therefore, we can examine whether our
negotiation strategy can act as an efficient load balancer (refer
to Section 3.2). For the data center in this experiment, the profit
is calculated based on the number of VMs allocated and the
achieved price in the negotiation. All parties adopted the afore-
mentioned polynomial function. The data center first adopted a
pure time-dependent function and concurrently negotiated with
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FIGURE 6. Impact of deadline on the success rate of negotiation. By ‘0.05-0.01-E’, we mean CF, K and time-dependent function are set to 0.05,
0.01 and exponential, respectively.

four brokers (which use pure time-dependent function), then
we repeated the experiment with the same configuration but this
time we replaced the strategy with ours. For this experiment,
we generated the workload in such a way that it is more likely
to cause resource fragmentation if there is no load balancing
in place. Then, we utilize our economy-based negotiation strat-
egy (giving more discount when resources are available) to
investigate its effects on achieved profit for data centers. The
main objective is to investigate whether we can achieve more
effective approach for distributing requests among data centers.

As Fig. 7 shows, when the percentage of unbalanced requests
(PUR) increases, the revenue difference between strategies
presented in works such as [12, 24] (purely time-dependent
Eq. (4)) and our work grows. The results show that for the cases
where only a small percentage of incoming requests are unbal-
anced (20%), data centers can still increase their profits by
almost 10% on average. In addition, if the chance of a request
to be unbalanced is 50%, then the profit growth increases to
20% on average. For the case that PUR is set to 100, our strat-
egy can dominate previous works’ strategies by nearly 27%.
This is because, via a economy-based load balancing strategy,
we can map requests to data centers in a way that causes less
resource fragmentation. For example, consider a request which
requires more CPU units and less RAM, it is best to send it to
a data center which has more CPU available, compare with the
one which has less CPU and more RAM available. This way
clients acquire the least-expensive resources and cause less
resource fragmentation. If opposite happens, it causes resource
fragmentation and then the data center with more RAM is
less capable of hosting a new request. The proposed strategy
not only increases the revenue of the data center, but also, as
demonstrated in Fig. 8, increases the combined utility of the

FIGURE 7. Impact of request type on the performance of the strat-
egy. Workloads are built with different percentage of unbalanced
requests (PUR).

whole system (as mentioned earlier the utility of each party in
the negotiation is calculated based on Eq. (1)). This means the
strategy increases profit of the data center and the utility of the
whole system (including brokers).

7.4. Effect of DSR and consensus desirability on data
centers revenue

To show how our proposed strategy can increase its compe-
tency when another data centers participate in the negotiation,
this experiment is designed with four brokers and two data
centers (cardinality of negotiation for clients and cloud service
providers is one-to-many and clients terminate pending negoti-
ations processes once they reach a consensus with a provider).
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FIGURE 8. Impact of request type on the combined utility of the
strategy.

FIGURE 9. Impact of consensus desirability (COD) of data center on
the data center profit when DSR is <1.

The polynomial function is adopted for all parties except a
data center, which uses our strategy. We investigated the per-
formance of the proposed strategy under different market
conditions by varying DSR.

DSR is a single numerical measure of the gap in supply and
demand for resources in the market. Fairly precise estima-
tion of DSR can be calculated by a methodology proposed by
Macias and Guitart [39]. When DSR is <1, competition among
providers increases, and they try to win a larger share of mar-
kets by attracting as many VM requests regardless the request
specification. Therefore, conceding faster by rising consen-
sus desirability (COD) of data centers increases the chance
of attracting more requests, and hence improves the revenue.
The experiment results (Fig. 9) show that when DSR is <1,
data centers have higher revenue if COD is set to higher value.
However, after a certain point (COD = 0.6), increasing COD
of data centers results in no gain, but a slight loss in revenue. In
contrast, as illustrated in Fig. 10, when DSR is >1, data centers
with lower COD earn higher revenue.

FIGURE 10. Impact of consensus desirability (COD) of data center
on the data center profit when DSR is >1.

Furthermore, the gap between data center revenue increases
when DSR is low, because a failure in reaching an agree-
ment means those providers have permanently lost a chance
of increasing their data centers utilization to other providers.
However, when DSR is high, even if providers do not win an
agreement at the beginning, their chances increase as the other
providers utilization increases and there is no room for new
requests.

8. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a time-dependent negotiation strat-
egy capable of assessing the reliability of offers to fill the gap
between decision-making and bargaining. To select an appro-
priate configuration for different negotiation objectives (e.g.
number of deals made), we investigated the consequences
of modification of parameters such as deadline, initial offer
and type of time-dependent tactic (polynomial or exponen-
tial). Although many of the works in the literature apply the
same pattern of concession for all clients when negotiating in
parallel, we argued that discriminating regarding the pattern
of concession helps cloud providers to accommodate more
requests and thus increase their profit. Our approach was tested
against purely time-dependent approaches, and it shows its
dominance in generating more profit for providers. Further-
more, we show how providers could dynamically and based on
market condition increase or decrease the COD to raise their
revenue.

Future research can investigate effects of considering het-
erogeneous strategies on the achieved profit, II and ratio of
deals made. Besides, consequences of variation in reliability
constraints on the number of successful negotiations can be
examined. Applying a combination of fuzzy similarity and
time-dependent function is another area that can be explored.
The current research is mainly designed for on-demand
instances. However, investigating profitability of a third party
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NS that operates on top of spot markets and offers resources
with different reliability and prices is yet another promising
research topic.
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