

Automated SLA Negotiation Framework for Cloud Computing

Linlin Wu, Saurabh Kumar Garg and Rajkumar Buyya

Cloud Computing and Distributed Systems Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

{linwu, saurabh, raj} @csse.unimelb.edu.au

Chao Chen and Steve Versteeg

 CA Technologies

Melbourne, Australia

{chao.chen28, steve.versteeg}@ca.com

Abstract—A Service Level Agreement (SLA) is a legal

contract between parties to ensure the Quality of Service (QoS)

are provided to the customers. A SLA negotiation between

participants assists in defining the QoS requirements of critical

service-based processes. However, the negotiation process for

customers is a significant task particularly when there are

multiple SaaS providers in the Cloud market, as service cost

and quality are constantly changing and consumers have

varying needs. Therefore, we propose a novel automated

negotiation framework where a SaaS broker is utilized as the

one-stop-shop for customers to achieve the required service

efficiently when negotiating with multiple providers. The

automated negotiation framework facilitates intelligent

bilateral bargaining of SLAs between a SaaS broker and

multiple providers to achieve different objectives for different

participants. To maximize profit and improve customer

satisfaction levels for the broker, we propose the design of

counter offer generation strategies and decision making

heuristics that take into account time, market constraints and

trade-off between QoS parameters. Our negotiation heuristics

are evaluated by extensive experimental studies of our

framework using data from a real Cloud provider.

Keywords- SLA negotiation; Software-as-a-Service; market-

oriented; Cloud computing; resource allocation;

I. INTRODUCTION

 A service level agreement (SLA) is a legal contract

between providers and consumers that defines the Quality of

Service (QoS), which is achieved through a negotiation

process [1]. Negotiation processes in Cloud are essential

because participating parties are independent entities with

different objectives and QoS requirements. Through

negotiation, players in the Cloud marketplace [16] are given

the opportunity to maximize their return-on-investment.

 Currently, SLAs are defined by service providers without

providing customers with sufficient negotiation opportunity.

Moreover, current preliminary research work [15] on

automated SLA negotiation frameworks in Cloud is

minimal and generally does not consider, in combination,

the following two factors: 1) the dynamic nature of the

Cloud, as service cost and quality are constantly changing

and consumers have varying needs, and 2) time and market

oriented resource allocation, as any delay incurred in

waiting for a resource assignment is perceived as an

overhead [2]. These two factors make answering the

following questions in design of a negotiation framework

for Cloud a challenging task: 1) how to balance trade-off

between multiple QoS parameters; 2) which provider offer

to accept; and 3) how to make a decision to accept or how to

generate a counter offer?

 To address these questions, our proposed negotiation

framework integrates the following: 1) multiple QoS

parameters are balanced through prioritization, which is

based on customer preferences, and 2) to choose the best

provider, a SaaS broker is introduced on behalf of customers

to negotiate with multiple providers simultaneously in order

to select the best offer. The best offer is selected based on

different objectives of the parties involved in the

negotiation. Moreover, our decision making system

considers the current Cloud market situation, time

constraints and multiple QoS parameters. In the dynamic

Cloud market, opportunities and competitions between

providers can have a considerable impact on strategies and

the decision making processes. For example, when the

competition increases or the opportunity decreases, the

counter offer generation strategy is to concede faster.

A. Motivation

Our work is motivated by: 1) the emergence of the SaaS

broker model [12], and 2) the lack of automated negotiation

frameworks along with decision making systems and

strategies to maximize profit and improve CSL in Cloud.

The broker model has been used mainly in utility markets.

Due to lack of detailed information about different providers

and current market, customers prefer using brokers, which

provide fast, economical solutions. Similarly, in Cloud,

customers face the problem of identifying the best provider,

when the number of providers is dramatically increasing.

Therefore, the SaaS broker model in Cloud provides a one-

stop-shop for guaranteed customer service.

Currently, in the Cloud market, brokers such as ViTLive

[12] only provide a portal listing of different providers.

However, they do not select or negotiate with providers to

maximize profit and improve customer satisfaction. If

negotiation is required, specialist knowledge is sourced to

manage the process which incurs additional direct costs. In

addition, the existing negotiation framework may not be

automated [6], or suitable for Cloud specific negotiations

[11].

We propose an automated Cloud negotiation framework,

counter offer generation strategies, and decision making

heuristics considering time and market factors to achieve

various objectives for different parties. In this way, the

broker can set up the parallel negotiation process to

mailto:raj%7d@csse.unimelb.edu.au

maximize profit or the CSL. Our proposed negotiation

framework can be extended for any layer (e.g. Platform-as-a-

Service, and Infrastructure-as-a-Service) in both private and

public Cloud. For public Cloud, SaaS providers can use

brokers‟ strategies and Infrastructure providers can use

providers‟ strategies. For private Cloud, the resource user

could use broker‟s strategies and resource venders could use

provider‟s strategies.

B. Contributions

 The key contributions of this paper are: 1) a novel

negotiation framework for Cloud along with decision

making heuristics to achieve different objectives and

strategies considering both time and market factors for

counter offer generation, and 2) a prototype of our

framework which is implemented proposed decision making

heuristics and strategies, and compared with the latest best

approach proposed by Zulkernine and Martin [9]. The

experimental results demonstrate that our approach

generates up to 50% increased profit and about a 60%

customer satisfaction level (CSL) improvement for brokers

over the base heuristic.

II. AUTOMATED NEGOTIATION FRAMEWORK

In order to design an automated negotiation framework in

Cloud, it is important to define negotiation objectives,

processes, and strategies.

A. Framework Components

The main components in our negotiation framework are:

Customer Agent (CA), Broker Coordinator Agent (BCA),

Provider Agent (PA), IaaS Provider, SLA Generator,

Directory, Policy Database (PD), and Knowledge Base (KB).

Customer Agent: Represents a customer that submits

requests for software services and registers their QoS

requirements into PD.

Figure 1: Negotiation Framework High Level Architecture

Broker Coordinator Agent: Represents the broker by

receiving customer requests and negotiates with providers to

achieve business objectives. It includes Negotiation Policy

Translator (NPT), Negotiation Engine (NE), and

Decision Making System (DMS).

Negotiation Policy Translator: Maps customer‟s QoS

parameters to provider level parameters.

Negotiation Engine: Includes workflows which use

negotiation strategies during the negotiation process.

Decision Making System: Uses decision making heuristics

to update the negotiation status.

Provider Agent: Represents the provider. PA could include

the third party monitoring system to update the provider‟s

dynamic information. Although out of the scope of this

paper, systems and processes can be implemented to

monitor and measure provider capabilities.

The SLA Generator: When the negotiation has been

successfully completed, the SLA Generator creates an SLA

between the customer and the provider using templates

retrieved from the KB. The template includes specified

Service Level Objectives (SLOs) according to the QoS

(SLA excludes any general legal terms and conditions).

The Directory: The repository stores the providers‟

registered service information.

The Policy DB: The repository stores QoS terms that both

providers and customers understand.

The Knowledge Base: The repository stores negotiation

strategies and SLA templates.

This paper focus on two main components: the NE, by

proposing strategies considering both time and market, and

the DMS, by proposing heuristics for different objectives.

B. System Scenario

We consider three entities: consumers, SaaS brokers and

SaaS providers. Each consumer c submits a service request

to the SaaS broker, who leases software services from SaaS

providers. The customer c requests services with the

following attributes:

 Budget Bc: the maximum price a customer can afford.

 Software service set SRb: the service editions.

 The service start time tss: the latest service available

time for a customer c.

 The contract length indicates the period of service

usage conLength, so that customer c must be able to use

software service within the contract term.

 The service refresh time tr: time it takes a query

operation to be executed in a software service.

 The service process time tp: the maximum time for a

consumer c to wait for completing a transaction.

 The service availability avai: the minimum availability

that the customer requires.

 The expected discount percentage for budget σ: the

percentage a customer can save from their actual budget.

 The preference level of each QoS parameter γ: the

absolute importance level which varies (0, 1].

The broker receives the customer request and calculates

the expected budget, expected refresh time, process time,

and availability. These expected values are the best values

that the broker expects to provide to the customer and they

will be proposed to providers in the quote request process. If

providers cannot fulfil these expected values, the broker will

adjust the expected value up to the customer requested value

during the negotiation process. The broker always seeks to

secure the expected value from provider.

Each provider offers the same or different types of

services. The provider can host or lease infrastructure

services from 3
rd

 party IaaS providers.

C. Negotiation Objectives

 In sophisticated markets, the negotiation objective is not

only price but also other elements such as quality, reliability

of supply, or the creation of long-term relationships. We

consider multiple objectives including cost, refresh time,

process time and availability. The main objectives for a

customer, a SaaS broker and a provider are:

 Customer: minimize price and guaranteed QoS within

expected timeline.

 SaaS Broker: maximize profit from the margin

between the customer‟s budget and the providers‟

negotiated price.

 SaaS Provider: maximize profit by accepting as many

requests as possible to enlarge market share.

1) Mathematical Models

a) SaaS Broker

 The broker‟s actual budget maxBc for serving a

customer c depends on the customer‟s budget Bc and the

customer expected discount percentage σ for budget.

maxBc =)1(cB (1)

 The initial budget proposed to all providers is the expected

budget expBc, which is based on the maxBc and the broker‟s

expected margin marginc:

 expBc=)1(max cc maginB (2)

The profit of broker b gained from serving customer c

depends on the Bc and the best provider‟s price pricep.

Profb = maxBc - pricep (3)

 In the following sections, a QoS parameter shall also be

referred to as an “Issue”. The δi represents the expected

improvement percentage for an issue. Therefore, the CSL is

reflected by these Issues, which are service refresh time,

process time and availability.

The expected refresh time expTr depends on the customer

requested refresh time tr and the improvement percentage

for refresh time δr. The expTr changes during the negotiation

process up to tr.

expTr =)1(rrt (4)

The customer requested service process time tp and the

improvement percentage for process time p impact the

expected process time expTp and varies during the

negotiation process up to the tp.

expTp =)1(ppt (5)

 The expected availability expAvai depends on the

customer requested service availability avai and the

improvement percentage of availability a .

expAvai =)1(aavai (6)

The CSL of an individual Issue icsl depends on the

variation between the current proposed value from provider

icurrentV and the broker expected value iVexp . The

parameter is a value to guarantee that csli lies in the

interval [0, 1].

i

ii
i

V

VcurrentV
csl

exp

exp

(7)

The total customer satisfaction level CSLc, where i

represents the individual issue, I indicates all Issues, γi

indicates the importance level of the Issue i, and the csli.

I

i

iic cslCSL
0

(8)

b) SaaS Provider

 The provider‟s service price is based on the provider‟s

cost costp and expected margin expMaginp. Different

providers calculate price differently. The general equation

for a provider to calculate price is proposed below.

ppp Magintprice expcos (9)

The costp depends on the base cost baseCostp (such as

infrastructure cost, admin cost, software cost) and the

relevant cost of satisfying each Issue i, where i I. Take

availability as an example. To provide a higher availability

than what currently exists, it may cost extra for the provider

to buy another server as a mirror server. This extra cost is

the relevant cost for satisfying availability.

costp=

I

i

p itbaseCost

0

)(cos

(10)

D. Negotiation Process

 The negotiation process includes the Negotiation Policy

Specification and the Negotiation Protocols used in our

framework which are detailed in Appendix A. The

negotiation policy specifications used to specify QoS

parameters are briefly discussed below.

a) QoS Model: Various participants using different

terms is one of the critical challenges in SLA negotiation

[14]. In our framework, a QoS model defines a set of QoS

dimensions, which represent specific quality aspects of a

service (e.g. availability is a QoS dimension). The QoS

model is shared among service consumers and providers.

Thus, they have a common understanding of the QoS

attributes in relation to how these attributes are defined and

measured. For existing service providers and consumers

using different terms, transformations are necessary and can

be challenging in practice due to overlapping semantics,

which is out of the scope of this paper. In this paper, we

consider the following QoS dimensions – price, refresh

time, process time and availability. These dimensions are

widely used and domain-independent. Our QoS model can

be easily extended to include other QoS dimensions.

b) Negotiation Protocol: The negotiation protocol refers

to a set of rules, steps or sequences during the negotiation

process, aiming at SLA establishment. It covers the

negotiation status (propose offer, accept/reject offer, and

terminate negotiation), which can be updated during the

negotiation process. It is common to characterize

negotiations by their settings: bilateral, one-to-many, or

many-to-many. In this paper we focus on the one-to-many

bargaining scenario, where we consider three types of

agents (customer agent, broker coordinator agent and

provider agent). A broker agent negotiates with many

provider agents in a bilateral fashion.

E. Decision Making System

 In the negotiation process, the action that a participant

performs is determined by a decision making system. In the

decision making system, three main questions need to be

answered: 1) how to evaluate the offer; 2) what actions to

take: accept, reject or generate counter offer; and 3) how to

generate counter offer? We design negotiation heuristics to

answer them from the broker and provider‟s perspectives.

a) Broker

 After BCA requests quotes from all PAs, each PA

proposes an initial offer to the BCA, which selects the best

offer and makes a decision. If the decision is to propose a

counter offer, then the new counter offer will be proposed to

all PAs. The best offer is selected based on different

objectives. We consider cost-benefit objectives as follows:

 Minimum cost: selects the offer with the lowest price

first and then the highest cumulative CSL for all QoS.

 Maximize CSL: selects the offer with the highest

cumulative CSL for all QoS first and then the lowest

price.

 Table 2. The Mincost Heuristic

Conditions Within BCA’s expB Exceed BCA’s expB

All QoS

parameters

are satisfied

If deadline condition

is urgent, agree.

Otherwise decrease

expB.

If expB is less than actual

budget, then increase expB.

Otherwise reject.

Not all QoS

are satisfied

Satisfy all parameters

and reduce expB.

Satisfy all parameters by

negotiating on minimal (not
desired) values.

Table 3. The Maxcsl Heuristic

Conditions Within BCA’s expB Exceed BCA’s expB

all QoS

parameters

are satisfied

If deadline condition is
urgent, agree.

Otherwise decreases the

least preference
parameter to decrease

expB.

Decreases the value of
parameters, which are better

than expected to decrease

price.

Not all QoS

are satisfied

Satisfy all parameters
and increases expB.

Increases expB.

 After selecting the best offer, the broker needs to decide

how to deal with the selected best offer. One of three actions

can be adopted: accept, reject or generate counter offer

according to negotiation heuristics. We design two broker

negotiation heuristics (mincost heuristic and maxcsl

heuristic) to decide which action to take according to

different objectives.

 In these two heuristics (Table 2, 3), cost and other Issue

values are calculated using negotiation strategy functions,

where the most desired and the minimal acceptable values

for each Issue are considered for the broker.

In both decision making heuristics, two criteria is used to

evaluate the offer: 1) weather offer is within BCA‟s

expected budget: whether the service price offered by

provider pricep is less than the broker‟s expected budget

expB, and 2) whether all QoS parameters are satisfied.

The above two criteria generate four combined conditions.

For each condition, the decision making heuristics guide the

broker to make different decisions on which Issue requires

adjustment. There are two factors that require consideration

when making adjustments. Firstly, trade-off between cost

and QoS parameters depends on the objective. Secondly,

when the broker must concede on QoS parameters, it always

adjusts the least preferred parameter. After the broker

decides which Issue to adjust, the new value of the Issue is

calculated. The time complexity of these heuristics is O(CPI)

depending on the number of customers (C), the number of

providers (P) and the number of Issues (I).

b) Provider

The provider‟s objective is to maximize profit by

accepting as many requests as possible. Therefore, the

provider does not reject requests but continues to negotiate

with each broker until negotiations have ended. Table 4

shows the provider‟s decision making heuristic.

Table 4. Provider‟s Decision Making Heuristic

Conditions Within BCA’s expB Exceed BCA’s expB

All QoS

parameters are

satisfied

If deadline condition is
urgent, agree.

Otherwise decrease the

least preference parameter
to decrease expB.

If expB is less than
actual budget,

increase expB.

Otherwise decrease
the QoS value.

Not all QoS are

satisfied

Satisfy all parameters and

increase price.

Increase price.

F. Negotiation Strategy

The negotiation strategy underpins the counter offer

generation process using various strategy functions which

guide to what degree the agent concedes or bargains

considering time and market factors.

The strategy functions control whether an agent concedes

on certain Issues, or in the alternative, negotiates very hard

in each negotiation until the deadline is reached.

The new value
i

aanewv proposed by agent a (e.g.

broker) to opponent ^a (e.g. provider) for Issue i depends on

the current value of Issue i proposed by the opponent agent
i

acv , the best expected value
i
abestv and a strategy

function.

))(...,(21
i

a
i
an

i
a

i
a

i
aa cvbestvcvnewv (11)

The strategy function)...,(21 n
i
a guides the speed

of adjustment, where n indicates different factors (such as

time, market related factors), which will be explained below.

Opportunity: At time t, the probability that an agent is

ranked as the most preferred candidate is defined using the

condition of opportunity Co (ct, pt). At time t, ct indicates the

number of competitors, and pt indicates the number of

partners[14], e.g. for a broker, competitors are other brokers

and partners are providers.

Co (ct, pt) = tp

t

t

c

c
)

1
(1

(12)

Competition: At time t, the competition Cc (ct, pt) in the

market depends on the demand and supply ratio (equation

13). At time t, ct indicates the number of customers, and pt

indicates the number of providers. The resource/market

competition has the largest effect on the equilibrium price

[14].

Cc (ct, pt)=
t

t

p

c

(13)

Time: At time t the negotiation deadline condition Cdl(t) of

an agent depends on the deadline tnd and negotiation start

time tns.

Cdl(t) =

nstndt

nstt

 (14)

The negotiation period is the variation between

negotiation start time tns and negotiation deadline tnd. As

deadline is a time-based condition, the well-adopted time-

dependent functions, such as Linear (L), Boulware (B) or

Conceder (C) are generally used to model how an agent

varies its offer with time. These time-based functions are

often used in negotiation systems because of their simplicity

[10][11]. In this paper, we use a similar model and consider

time, market (opportunity and competition) conditions to

design new strategy functions for negotiation.

For the broker, we propose the strategy function for a

particular issue by considering opportunity, competition and

time constraints in equation 15:

kepct
t

p
t

ccC

t
p

t
coC

dl tC

tt ln),,,(
))((

)
),(

),(
(

(15)

For the provider, we propose strategy function for a

particular issue by considering opportunity, competition and

time constraints in equation 16:

kepct
t

p
t

ccC

t
p

t
coC

dl tC

tt ln),,(
))((

)
),(

),(
(

(16)

 In equations 15 and 16, the function α(.) varies from 0 to

1 and guides the changes in the values of an Issue in the

subsequent counter offers from its current value to the

maximum allowable value within the negotiation deadline.

The k is a constant value to make sure the value of α(.)

varies from 0 to 1.

 In equation 15, indicates the preference of the Issue

considered by the customer. The degree of compensation

depends on a parameter β and reflects the conceding nature

of the broker. The higher value of β (>1) results in a steeper

curve, i.e., faster increment in α with time indicating a more

conceding attitude of the negotiating party. The lower value

of β (<1) represents the restrictive attitude. The reason for

us to design our strategy using exponential and not

polynomial models is because the polynomial concedes

faster at the beginning than the exponential one, even

though both behave similarly on a whole level. For a small

value of β the exponential waits longer than the polynomial

model before it starts conceding. The objective of broker is

to maximize profit by waiting as long as possible to start

conceding.

III. PERFORMANCE EVALUATION

We present the performance results obtained from an

extensive set of experiments by comparing our proposed

heuristics with the most recently proposed heuristic

(referred as base) [9]. The performance of each proposed

heuristic depends on three factors: time, cost and market

constraints. Therefore, to analyse how these heuristic can

achieve customer, broker and provider‟s objectives, the

following experimental scenarios are considered

 Impact of negotiation deadline (time factor): The

impact of 4 sets of negotiation timeframes from the

customer‟s perspective is observed; we use number 1 to

4 to represent the variation from „very urgent‟ to „very

relaxed‟.

 Impact of broker expected margin (cost factor): The

impact of 4 sets of initial broker expected margins

(varying from 20% to 50% over budget), are observed.

 Impact of market factor: The impact of 4 sets of

market factors (varying the ratio in relation to the

number of providers and customers from less than 10%,

30%, 70%, and more than 90%), are observed.

Numbers 1 to 4 are used to represent each set.

A. Experimental Methodology

We implemented a prototype of the framework

considering both time and market factors using real data

shared with us by cloud provider CA Technologies. CA

Technologies offers a number of enterprise software

solutions to customers delivered as SaaS. The data provided

included the response, refresh and processing times of an

enterprise solution hosted on VMs, as measured by the

quality assurance team. As SaaS availability depends on the

infrastructure availability, this information is collected from

CloudHarmony benchmarking system [13], which provides

real data from Cloud providers. These data are collected

over 4 days including weekdays, weekends and Easter

public holiday.

 Availability: Varies from 98.654% (Colosseum) to 100%

(Amazon EC2) as derived from Cloud Harmony.

 Process Time: The mean 5.243 (2.043) s.

 Refresh Time: The mean 1.581 (1.383) s.

 Cost: Cost is considered similar to Windows VMs from

3rd party IaaS providers, which varies from $0.34 per

hour (VCloud Express) to $0.46 per hour (Amazon

EC2).

We conducted experiments considering 50 concurrent

users based on the CA provided data, which is designed

according to their customer historic data. The summary of

customer data is:

 Availability: uniformly distributed and varies from

99.95% to 100%.

 Process Time: normally distributed mean 1.5 (±1) s.

 Refresh Time: normally distributed mean 2 (± 1) s.

Software service set: consists of 3 editions.

 The expected discount percentage: normally

distributed with mean value 30% (variation ± 20%).

 The preference level of each QoS parameter:

uniformly distributed between 0 and 1.

 Budget: normally distributed with mean $40 (± $10).

B. Reference Heuristic

For comparing our proposed heuristics, we used the most

recent work related to our context on automated negotiation

proposed by Zulkernine and Martin [9]. They developed a

time-based Sigmond function in their negotiation process

for generating counter offers. We however, consider both

time and market functions in Clouds. To compare their

negotiation strategy, we have implemented their heuristics

and Sigmond function with the objective of cost

minimization.

C. Result Analysis

The following performance metrics are considered for

evaluation based on the objectives of the negotiating parties:

 Average broker’s profit: The broker‟s average profit

from accepted customers.

 CSL improvement: The average CSL improvement

over base.

 Average provider’s profit: The average provider's profit

for accepting customers.

 Average round of negotiation: The average number of

negotiations conducted during the negotiation process

to reach mutual agreement.

 Number of successful negotiations: The number of

successful negotiations reaching mutual agreement.

(a) Average Broker Profit ($) (b) Average Provider Profit ($)

(c) Average Round of Neg. (d) Number of Successful Neg.

Figure 4: Impact of Deadline Variation

a) Variation of negotiation deadline: The experiment is

designed to evaluate mincost and maxcsl during negotiation

deadline variations.

 The bar chart in Fig. 4a represents average broker profit

while the line chart represents the CSL improvement over

base heuristic. For all the negotiation deadline variations,

mincost generates the highest profit (up to 400%) for the

broker over maxcsl and base. The reason for such a trend is

that the broker concedes less or bargains harder for more

profit. In terms of CSL improvement, maxcsl results in the

highest improvement (up to 15%) over base, since it is

designed to sacrifice profit for a higher CSL.

 From the providers' perspective (Fig. 4b), on average

maxcsl generates more profit for providers, because the

maxcsl aims at satisfying all Issues within the broker‟s

budget, which leaves more profit for providers.

 Fig. 4c shows the average negotiation round for base

increases dramatically when deadlines are varied (as base is

only time dependent), whereas our proposed heuristics

increases slightly (less than 2 rounds), as market factors also

impact on the negotiation process. In terms of the number of

0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

300

350

1 2 3 4A
v
g

 B
ro

k
e
r

P
ro

f
($

)
Variation of Deadline

base maxcsl mincost
maxcsl mincost

C
S

L
Im

p
ro

v
e
 (

%
)

0

20

40

60

80

100

120

140

160

1 2 3 4A
v
g

 P
ro

v
id

e
r

P
ro

f(
$
)

Variation of Deadline
base maxcsl mincost

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4A
v
g

 R
o

u
n

d
 o

f
N

e
g

o

Variation of Deadline
base maxcsl mincost

0

5

10

15

20

25

30

35

40

1 2 3 4

#
 o

f
S

u
c
c
e
s
s
.

N
e
g

.

Variation of Deadline
base maxcsl mincost

successful negotiations (Fig. 4d), when the deadline

becomes relaxed, our proposed heuristic performs better and

increases in trend, as there is more bargening time.

 In summary, mincost generates more broker profit while

maxcsl generates improved CSL and increased provider

profit by increasing the number of successful negotiations

with similar negotiation rounds.

(a) Average Broker Profit ($) (b) Average Provider Profit ($)

(c) Average Round of Neg. (d) Number of Successful Neg.

Figure 5. Impact of Variation in Expected Margin

b) Variation of initial expected margin: As increase in

expected margin leads to reduced initial broker budget

(cost), the experiment is designed to evaluate mincost and

maxcsl heuristics during the varition of broker costs. The

expected margin varies from 20% to 50%, since after 50%

the observed trend is similar.

 Fig. 5a bar chart depicts that the mincost generates the

highest profit for the broker, which is up to 200% more than

the base. The line chart shows that the maxcsl has improved

CSL by up to 15% over the mincost. Fig. 5b shows that the

maxcsl generates a higher profit for providers when the

broker negotiates for higher levels of CSL.

 Generally, the average round of negotiations increases for

all heuristics when the expected margin increases (Fig. 5c),

because when time and market factors are constant, the

broker is required to negotiate more rounds with less budget

to achieve the objectives and reach agreement.

 In summary, during expected margin variations, the

mincost generates more profit for the broker, whereas

maxcls achieves more profit for the provider as the broker

sacrifices cost for securing improved CSL.

c) Variation of the market factor: The experiment is

conducted to evaluate the proposed heuristics during the

variation of market factors. When market factors vary from

1 to 4, which represents an increase in market competition,

the mincost generates up to twice the profit than the base

(Fig. 6a bar chart) and the maxcsl improves up to 4 times

more CSL compare to mincost (Fig.6a line chart). The

broker‟s profit generated by base only changes slightly

during market factor variations, as base does not consider

market conditions. When the market factor is 2, the profit

and CSL are less due to less rounds of negotiation.

 Fig. 6b illustrates that the provider‟s profit decreases due

to an increase in market competition. The maxcsl generates

more profit for providers than mincost and base, as maxcsl

considers the CSL as the highest priority, which leaves more

profit for providers.

 When competition increases, more negotiation rounds are

required to reach agreement (Fig. 6c), as participants

bargain harder and the number of opportunities to reach

agreement increases (Fig. 6d).

 To conclude, the experiment demostrates that mincost

produces more profit while the maxcsl achives better CSL

for the broker and more profit for providers.

(a) Average Broker Profit ($) (b) Average Provider Profit ($)

(c) Average Round of Neg. (d) Number of Successful Neg.

Figure 6. Impact of Market Factor Variation

IV. RELATED WORKS

With the advancement of web technology, various

approaches of resource allocation have been developed for

distributed systems [17]. Current literature indicates that

research focusing on resource allocation is rapidly growing.

However questions remain as to whether multi-agent systems

can be adopted in the domain of resource allocation. In this

context several multi-agent approaches were developed to

leverage the wide applicability and efficient adoption of

multi-agent systems for the heterogeneous domain [18].

However, these approaches have some limitations when

applied to Cloud. For example, most popular strategies such

as Game theory [19], Reinforcement Learning [20] and

Markov Decision Process (MDP) [21] require either

expensive storage of each status or that every agent is

required to expose tactics to opponents. Therefore, these

approaches are not applicable for Cloud where private

information such as the number of utilized resources is not

0
5
10
15
20
25
30
35
40
45
50

0
50

100
150
200
250
300
350
400
450

20% 30% 40% 50%A
v
g

 B
ro

k
e
r

P
ro

f
($

)

Expected Margin Variation
base maxcsl mincost
maxcsl mincost

C
S

L
Im

p
ro

v
e
 (

%
)

0

20

40

60

80

100

120

140

160

20% 30% 40% 50%A
v
g

 P
ro

v
id

e
r

P
ro

f(
$
)

Expected Margin Variation
base maxcsl mincost

0

0.5

1

1.5

2

2.5

3

20% 30% 40% 50%A
v
g

 R
o

u
n

d
 o

f
N

e
g

o

Expected Margin Variation
base maxcsl mincost

0

5

10

15

20

25

30

35

20% 30% 40% 50%

#
 o

f
S

u
c
c
e
s
s
.

N
e
g

.

Expected Margin Variation
base maxcsl mincost

0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

300

350

1 2 3 4A
v
g

 B
ro

k
e
r

P
ro

f
($

)
Market Factor Variation

base maxcsl mincost
maxcsl mincost

C
S

L
Im

p
ro

v
e
 (

%
)

0

20

40

60

80

100

120

140

160

1 2 3 4A
v
g

 P
ro

v
id

e
r

P
ro

f(
$
)

Market Factor Variation
base maxcsl mincost

1.6
1.65

1.7
1.75

1.8
1.85

1.9
1.95

2
2.05

2.1

1 2 3 4A
v
g

 R
o

u
n

d
 o

f
N

e
g

o

Market Factor Variation
base maxcsl mincost

0

5

10

15

20

25

30

35

1 2 3 4
#
 o

f
S

u
c
c
e
s
s
.

N
e
g

.
Market Factor Variation

base maxcsl mincost

advertised. Other approaches such as fuzzy similarity and

adaptive fuzzy logic [22], lead to inaccurate negotiation, and

thus, result in failed negotiations.

Faratin et al. presented a formal model of negotiation

between autonomous agents in service-oriented

environments [3]. Chhetri, et al. proposed an agent-based

negotiation architecture for coordinated negotiation in

service composition [4]. Comuzzi and Pernici proposed a

negotiation broker framework to support semi-automated or

fully automated negotiation of QoS for service selection

[10]. Similarly, Zulkernine et al. proposed a policy based

negotiation broker framework for automated negotiation of

SLA‟s [9]. Dastjerdi and Buyya proposed negotiation

strategies for infrastructure layer in Cloud which depends on

provider resource capabilities [24]. These approaches have

not considered elements such as CSL objectives, broker's

profit, and market factors in their algorithms.

V. CONCLUSIONS AND FUTURE WORK

In Clouds, SLA is a legal contract between the consumer

and provider to guarantee the QoS. Negotiation is essential

for both participants to feel comfortable about meeting their

objectives prior to SLA finalization. In this paper, we

proposed a novel negotiation framework which included

strategies and decision making heuristics by considering

factors such as time, market constraints and trade-offs.

Our two proposed algorithms have been evaluated by

using real data from a cloud-hosted enterprise software

solution provided by CA Technologies. Results show that

our proposed heuristics minimize cost or maximize CSL in

comparison to the most recently proposed base heuristic.

In the future, we plan to evaluate additional issues in the

context of SaaS in Cloud by considering trade-off between

cost and CSL. Moreover, the penalty for negotiation failure

from the consumer's perspective (e.g. no service offered for a

consumer request) will be considered. We will also

investigate the renegotiations by considering the dynamic

changes of customer needs.

ACKNOWLEDGMENTS

This work is supported by the Australian Research

Council (ARC) via Discovery/Linkage Project grants. We

thank our colleagues Rodrigo Calheiros and Bevan Mailman

for their comments on improving the paper, Shanshan Wu

for implementing and testing part of the system.

REFERENCES

[1] K. Chao, R. Anane, J. H. Chen, and R. Gatward, (2002).

Negotiating Agents in a Market-Oriented Grid. In Proceedings of

the 2
nd

 IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID 2002), Berlin, Germany.

[2] K. M. Sim, (2006). A Survey of Bargaining Models for Grid

Resource Allocation. ACM SIGECOM:E-Commerce Exchange,

5(5), pp. 22–32.

[3] P. Faratin, C. Sierra, and N. R. Jennings, (1998). Negotiation

Decision Functions for Autonomous Agents. Rototics and

Autonomous System 24 (3-4), pp. 159-182.

[4] M. Chhetri, et. al., (2006). A Coordinated Architecture for the

Agent-based Service Level Agreement Negotiation of Web

Service Composition. In Proceedings of Australian Software

Engineering Conference. (ASWEC), Sydney, Australia.

[5] M. Comuzzi, and B. Pernici, (2005). An Architecture for Flexible

Web Service QoS Negotiation. In Proceeding of the 9
th
 IEEE

International Enterprise Computing Conference, The Netherlands.

[6] F. Zulkernine, et al., (2009). In A Policy-Based Middleware for

Web Services SLA Negotiation. IEEE International Conference on

Web Serivce (ICWS), pp. 1043-1050.

[7] J. Akhani, S. Chaudhary, and G. Somani, (2011). Negotiation for

Resource Allocation in IaaS Cloud, In Proceedings of the 4th

Annual ACM Bangalore Conference, Bangalore, India.

[8] J. Brzostowski and R. Kowalczy, (2006). Adaptive Negotiation

with On-Line Prediction of Opponent Behaviour in Agent-Based

Negotiations. In Proceedings of the IEEE/WIC International

Conference on Intelligent Agent Technology, HongKong, China.

[9] F. Zukernine and P. Martin, (2011). An adaptive and intelligent

SLA negotiation system for web services. IEEE Transactions of

Service Computing, vol. 4, no. 1, pp. 31-43.

[10] M. Shell, M. Comuzzi, and B. Pernici, (2007). An Architecture for

Flexible Web Service QoS Negotiation. In Proceedings of the 1
st

IEEE International Enterprise Distributed Object Computing

(EDOC) Conference, Maryland, USA.

[11] H. Li, S. Su, and H. Lam, (2006). On Automated e-Business

Negotiations: Goal, Policy, Strategy and Plans of Decision and

Action, Journal of Organizational Computing and Electronic

Commerce, vol. 13, no. 1, pp. 1-29.

[12] http://vitlive.com/, accessed on 10
th
 April 2012.

[13] http://www.cloudharmony.com/, accessed on 6
th
 April 2012.

[14] M. Comuzzi, and B. Pernici, (2009). A Framework for the QoS-

Based Web Service Contracting, ACM Transaction on the Web,

vol. 3, no. 3.

[15] http://sites.google.com/site/gistcloudresearchgroup/automated-sla-

negotiation, accessed on 10
th
 April 2012.

[16] S. K. Garg, C. Vecchiola, and R. Buyya, (2012). Mandi: A Market

Exchange for Trading Utility and Cloud Computing Services. The

Journal of Supercomputing, DOI: 10.1007/s11227-011-0568-6.

[17] K. Czajkowski, I. Foster, and C. Kesselman, (1999). Resource Co-

Allocation in Computational Grids. In Proc. 8th IEEE Symp. On

High Performance Distributed Computing.

[18] J. W. Cao, D. P. Spooner, and G. R. Nudd, (2002). Agent-based

Resource Management for Grid Computing. In Proceedings of 2nd

Intl. Symposium on Cluster Computing and the Grid, Germany.

[19] K. Binmore, and N. Vulkan, (1997). Applying Game Theory to

Automated Negotiation. Paper prepared for DIMACS Workshop

on Economics, Game Theory and the Internet.

[20] S. Arai, K. Sycara, and T. Payne, (2000). Experience-Learning in

based Reinforcement Learning to Acquire Multi-Agent Domain.

The Sixth Pacific Rim International Conference on Artificial.

Intelligence, Springer-Verlag.

[21] F. Teuteberg, and K. Kurbel, (2002). Anticipating Agents'

Negotiation Strategies in an E-marketplace Using Belief Models.

In Proceedings of 5th Intl. Conference on Business Information

System, Poland.

[22] P. Faratin, et. al., (2000). Using Similarity Criteria to Make

Negotiation Trade-Offs. In Proceedings of 4th International

Conference on Multi-Agent Systems, pp.d119-126, Boston, USA.
[23] M. Comuzzi and B. Pernici, (2009). A Framework for the QoS-Based

Web Service Contracting, ACM Transaction on the Web, 3(3) pp.1-10,

[24] A. V. Dastjerdi and R. Buyya, (2012). An Autonomous Reliability-

Aware Negotiation Strategy for Cloud Computing Environments. In

Proceedings of the 12th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing (CCGrid), Ottawa, Canada.

[25] http://www.cordys.com/cordys-for-cloud-brokers, access on 10th April

2012.

http://people.eng.unimelb.edu.au/rnc/
http://vitlive.com/
http://www.cloudharmony.com/
http://sites.google.com/site/gistcloudresearchgroup/automated-sla-negotiation
http://sites.google.com/site/gistcloudresearchgroup/automated-sla-negotiation
http://www.cloudbus.org/papers/RNCloud-CCGrid2012.pdf
http://www.cloudbus.org/papers/RNCloud-CCGrid2012.pdf
http://www.cordys.com/cordys-for-cloud-brokers

Appendix A

1.1. Negotiation Policy Specification

The negotiation policy specifications are used to specify

QoS parameters, which are to be negotiated and the

acceptable range of them to reach the mutual agreement. In

this section, we propose the QoS model and policy

specification.

A. QoS Model

 Different participants‟ using different terms is one of

the critical challenges in SLA negotiation [23]. In our

framework, a QoS model is used to provide shared

knowledge about QoS attributes among negotiating

participants. A QoS model defines a set of QoS dimensions.

Each QoS dimension represents a specific quality aspect of a

service, such as refresh time, availability, and price. In our

QoS model, a quality dimension is defined using: a title, a

category, a name, a description, and a metric. The QoS

model is shared among service consumers and service

providers. Thus, they have a common understanding on the

QoS attributes about how they are defined, how they are

measured, and so on. In this paper, we consider the following

QoS dimensions – price, refresh time, process time and

availability. These dimensions are the ones that are mostly

used and they are domain-independent. Our QoS model can

be easily extended to include other QoS dimensions.

 Before negotiation, both participants specify the rule of

QoS parameter in a policy specification. The policy usually

refers to a high-level description of goals to be achieved and

actions to be taken in different situations.

B. Policy Specification

Our policy specification is inspired by WS-Policy and

XACML. WS-Policy is a XML-based specification, in which

assertions are basic blocks [25]. Each assertion defines

domain specific constrains, capabilities, and requirements.

However, the WS-Policy framework does not provide any

assertion, and therefore users of this framework need to

develop their own assertions. XACML is a XML-based

language which is standardized by OASIS and has been

successfully used widely as access-control policy languages

[23]. With XACML, the QoS parameter constraints can be

domain-independent, because XACML is based on generic

data type. However, both of them are only machine-readable

but not human-readable, especially for non-IT background

users. Therefore, based on the concept of constraints and

goals in WS-Policy and XACML, we design our domain-

independent policy in a both human-readable and machine-

readable manner by providing web user interface to register

constraints (rules) and goals.

The main concepts of our policy specification are rules

and goals:

 The rules: are used to specify the QoS parameters and

the acceptable range of these parameters (Fig. 2).

 The goals: are non-negotiable rules.

Moreover, in order to take care of different policy rules

from different agents we provide a rule register to extend

policy flexibly.

Figure 2: Negotiation Rule Register Web Form.

In Fig. 2, the rule names are QoS parameters. The lower

value and upper value fields are lower and upper bounds of

the rule value. If a rule does not exist, there is another

interface to register new rule names. Any policy and rule

registered by providers are stored in Policy DB component

of the framework. The NPT component matches these

policies with customer QoS parameters during the

negotiation.

1.2. Negotiation Protocol

The negotiation protocol refers to a set of rules, steps or

sequences during the negotiation process, aiming at SLA

establishment. It covers the negotiation states (e.g. propose

offer, accept/reject offer, and terminate negotiation). It is

common to characterize negotiations by their settings:

bilateral, one-to-many, or many-to-many. In this paper we

focus on the one-to-many bargaining setting, where we

consider three types of agents (CA, BCA and PA). A BCA

negotiates with many PAs in a bilateral fashion.

During the negotiation process, the negotiation status is

updated using negotiation states described in Table1.

Table 1. The Negotiation States and Description Summary

States Description

PROPOSE The agent propose initial or counter offer to the

opponent agent.

REJECT The agent does not accept the offer proposed by the

opponent agent.

ACCEPT The agent accepts the offer proposed by the

opponent agent.

FAILURE System failure, trigger renegotiation.

TERMINATE Negotiation is terminated due to timeout or no

mutual agreement.

 In our framework, the sequential negotiation process is

described as follows and depicted in Fig. 3:

Phase 1: CA submits requests: CA requests services on

behalf of the customer to the Broker.

Phase 2: The BCA requests initial proposals from all

providers, who are registered in the Directory. The values

sent from BCA to PAs are expected values.

Phase 3: PAs propose initial offer: All PAs propose

initial offers based on their current capabilities and

availability to fulfil BCA‟s requirements.

Phase 4: Negotiation Process with PAs:

a). If there are providers who can fulfil all requirements,

then the BCA selects the best vendor.

b). If there is no provider that can fulfil all requirements,

then the BCA starts the negotiation process with PAs.

Step 1: BCA selects the best initial offer from all

offers that are proposed by all providers according to

the objective.

Step 2: BCA adjusts its initial offer according to the

offer selected in Step 1 to generate new counter offer

and propose it to all providers.

Step 3: A PA evaluates BCA‟s counter proposal.

Step 4: If the counter offer proposed by BCA cannot

be accepted, PA proposes a counter offer.

Step 5: Terminate negotiation. There are three

termination conditions: First, when negotiation

deadline expires. Second, when the offer is mutual

agreed by both the CA and the PA. Third, when

BCA is not able to accept any counter offer proposed

by all providers within the negotiation deadline.

 Phase 5: SLA Generation: Initiate SLA creator to generate

SLA for customer and provider respectively using SLA

templates stored in KB.

Phase 6: Send SLA to all participants: The generated

SLA will be sent to the customer and provider

respectively by the SLA creator.

Figure 3. The Interaction between Components During

Negotiation Process.

4. Negotiation

 {Iteration}

CA PABCA SLA CreatorDirectory KB

1. request service

2.1Retrive Providers Info.

2.2 All Providers List

3.1 Request Proposal from All Providers

3.2 Propose Initial Offer

4.1 Validate Offers and Select Best Deal

4.2 Propose Counter Offer to All Providers

4.3 Validate Counter Offer

4.4 Propose Counter Offer

5.1 Triger SLA

5.2 Request SLA Templage

5.3 SLA Template

6. Send SLA

6 Send SLA

4.5 Terminate Negotiation

