
SLA-based Resource Allocation for Software as a Service Provider (SaaS) in Cloud
Computing Environments

Linlin Wu, Saurabh Kumar Garg and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{linwu,saurabh, raj}@csse.unimelb.edu.a

Abstract— Cloud computing has been considered as a solution
for solving enterprise application distribution and
configuration challenges in the traditional software sales
model. Migrating from traditional software to Cloud enables
on-going revenue for software providers. However, in order to
deliver hosted services to customers, SaaS companies have to
either maintain their own hardware or rent it from
infrastructure providers. This requirement means that SaaS
providers will incur extra costs. In order to minimize the cost
of resources, it is also important to satisfy a minimum service
level to customers. Therefore, this paper proposes resource
allocation algorithms for SaaS providers who want to minimize
infrastructure cost and SLA violations. Our proposed
algorithms are designed in a way to ensure that Saas providers
are able to manage the dynamic change of customers, mapping
customer requests to infrastructure level parameters and
handling heterogeneity of Virtual Machines. We take into
account the customers’ Quality of Service parameters such as
response time, and infrastructure level parameters such as
service initiation time. This paper also presents an extensive
evaluation study to analyze and demonstrate that our proposed
algorithms minimize the SaaS provider’s cost and the number
of SLA violations in a dynamic resource sharing Cloud
environment.

Keywords- Cloud computing; Service Level Agreement
(SLA); Resource Allocation; Scheduling; Software as a Service.

I. INTRODUCTION
Traditionally the shrink-wrapped software sales model

dominated the market. This model requires customers are
required to purchase per petual or subscription-based license
and manage the deployment themselves, including
transitioning between different versions. Hence, customers
need technical expertise and high initial investment for
buying software. They also need to pay for upgrades as
annual maintenance fee. With the emergence of Software as
a Service (SaaS), applications are moving away from PC-
based or ownership-based programs to web delivered hosted
services [19]. The software services are provisioned on a
pay-as-you-go basis to overcome the limitation of the
traditional software sales model. Using the SaaS model,
providers gain steady, on-going revenue from their
customers. In exchange for the on-going charges, the
customers get the benefit of continuously maintained
software. Hence, there is no additional license fee for new
versions and the complexity of transitioning to new releases
is managed by SaaS providers. Due to the SaaS model’s

flexibility, scalability and cost-effectiveness, it has been
increasingly adopted for distributing many enterprise
software systems, such as banking, e-commerce business
software [7][9]. SaaS providers such as Computer Associates
(CA) [16] derive their profits from the margin between the
operational cost of infrastructure and the revenue generated
from customers. Therefore, SaaS providers are looking into
solutions that minimize the overall infrastructure cost
without adversely affecting the customers. Hence, the focus
of this paper is on exploring policies to minimize the
required infrastructure to meet customer demand in the
context of SaaS providers offering hosted software services.

Customers

3. Allocate resource
for customer requests

2. Decision

Scheduling

Software Service

PaaS

Application Layer

Platform Layer

Software Service

SaaS
Provider

Mapping

1. Request Software Service

IaaS

Infrastructure Layer

4. Provide Access Information

Data
Centre

A SaaS model for serving customers in Cloud is shown

in Fig. 1. A customer sends requests for utilizing enterprise
software services offered by a SaaS provider, who uses three
layers, namely application layer, platform layer and
infrastructure layer, to satisfy the customer’s request. The
application layer manages all application services that are
offered to customers by the SaaS provider. The platform
layer includes mapping and scheduling policies for
translating the customer’s Quality of Service (QoS)
requirements to infrastructure level parameters and allocating
Virtual Machines (VMs) to serve their requests. The
infrastructure layer controls the actual initiation and removal
of VMs. The VMs can be leased from IaaS providers such as
Amazon EC2 or private virtualized clusters owned by the
SaaS provider. In both cases, the minimization of the number
of VMs will deliver savings. The savings are greater when
SaaS providers use the third party IaaS providers since no
capital expenditure is required.

Figure 1. A system model of a SaaS layer structure

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE

DOI 10.1109/CCGrid.2011.51

195

Currently, SaaS providers such as Compiere ERP provide
an individual VM for each customer [17] to maintain service
level requirements in terms of response time and capacity.
However, this causes wastage of hardware resources which
results in high infrastructure cost since customers may not
use complete VM capacity which is reserved to serve their
requests. A multi-tenancy approach can reduce the needed
infrastructure, but care must be taken in providing access to
resources so that Service Level Agreements (SLAs) are not
violated.

The current works in Cloud computing [13][10][2] are
focused mostly on maximizing the profit of IaaS providers,
but works related to the SaaS provider considering SLAs are
still in their infancy. Many works do not consider the
customer driven management, where resources have to be
dynamically rearranged based on customers’ demands. Thus,
in this paper, we examine the resource allocation strategies,
which allow a cost effective usage of resources in Clouds to
satisfy dynamically changing customer demands in line with
SLAs.

Therefore, in order to achieve the SaaS provider’s
objective to maximize profit and customer satisfaction levels,
our work proposes cost effective mapping and scheduling
policies which minimize cost by optimizing the resource
allocation within a VM. These policies also take into account
QoS parameters, and infrastructure heterogeneity regarding
multiple types of VMs and various service initiation times.
To satisfy customer’s request in order to enlarge market
share and minimize cost, the following questions have to be
addressed:

• How to manage the dynamic change of customer
requests? (such as upgrade from Professional to
Enterprise product, add more user accounts for the
same product)

• How to map customer requirements to infrastructure
level parameters?

• How to deal with the infrastructure level
heterogeneity?

The key contributions of this paper are as follows:
• It defines SLA with customers based on QoS

parameters.
• It describes the mapping strategy by interpreting

customer request requirements to infrastructure level
parameters.

• It designs and implements scheduling mechanisms to
maximize an SaaS provider’s profit by reducing the
infrastructure cost and minimizing SLA violations.
The scheduling mechanism determines where and
which type of VM has to be initiated by
incorporating the heterogeneity of VMs in terms of
their price, dynamic service initiation time, and data
transfer time. In addition, it manages to reduce
incurred penalties for handling dynamic service
demands when customers are sharing resources.

This paper also presents a performance analysis of the
proposed algorithms based on the customer’s perspective: (i)
arrival rate, (ii) proportion of upgrade requests; from SaaS

providers’ perspective: (i) service initiation time, (ii) penalty
rate. The experimental results show that the proposed
algorithms provide better solutions in terms of total profit
and number of VMs when compared with base algorithm in
most of the scenarios.

The rest of the paper is organized as follows. In Section
II, we discuss prior works related to SLA-based and profit
driven resource allocation in Cloud computing contexts. We
also identify how our work differs from related works.
Section III presents the detailed scenario and outlines the
SLA supporting QoS parameters. Section IV describes a
reference and two proposed algorithms, which are
ProfminVio, ProfminVmMaxAvaiSpace and
ProfminVmMinAvaiSpace. Section V firstly presents the
experimental methodology including test bed and evaluation
metrics; secondly, discusses the overall comparison of the
performance evaluation results; thirdly, compares the
algorithms by providing insights on when each algorithm
should be used. Finally, Section VI concludes the paper by
summarizing the comparison results and future work
proposals.

II. RELATED WORK
Research on market driven resource allocation was

started in early 80s [8][5]. Most of the market-based resource
allocation methods are either non-pricing-based [10] or
designed for fixed number of resources, such as FirstPrice
[3] and FirstProfit [6]. Our work is related to user driven
SLA-based profit maximization resource allocation for SaaS
providers.

Reig G. et al [11] contributed on minimizing the resource
consumption for serving requests and executing them before
its deadline with a prediction system. Their prediction
system enables the scheduling policies to discard the service
of a request if the available resource capability is not able to
complete the request before its deadline. However, in our
work, we consider the enterprise applications which are
different from compute and scientific applications.

Fu Y. et al [21] proposed an SLA-based dynamic
scheduling algorithm (Squeeze) of distributed resources for
streaming. Moreover, Yarmolenko V. et al [22] evaluated
various SLA-based scheduling heuristics on parallel
computing resources using resource (number of CPU nodes)
utilization and income as evaluation metrics. Nevertheless,
our work focuses on scheduling enterprise applications on
VMs in Cloud computing environments. (The minimum unit
of resources in our work is the number of VMs).

Popovici et al. [6] mainly considered QoS parameters on
the resource provider’s side such as price and offered load,
but did not focus on the user side. However, our proposed
work differs on QoS parameters from both the customer’s
and the SaaS provider’s point of view and focuses on user
driven scenarios.

Lee et al. [2] investigated the profit driven service request
scheduling for workflow. In contrast, our work a) focuses on
SLA driven QoS parameters on both user and provider sides,
and b) solves the challenge of dynamic changing customer
requests to gain profit and improve reputation.

196

In the context of the resource allocation algorithms for
enterprise applications, Song et al. [18] presented the genetic
algorithms in virtualized environments. However, the genetic
algorithms generally require a long execution time. The long
execution time increases the probability of SLA violation in
the Cloud computing environments, where customers need to
be served immediately.

In summary, this paper is unique in the following
aspects:

• It manages the customer satisfaction level based on
customer QoS requirements in minimizing the SLA
violation and cost to increase the revenue, which is
absent from most previous works in Cloud
computing environments.

• The utility function is time-varying by considering
dynamic VM deployment time (aka initiation time).

• It adapts to dynamic resource pools and consistently
evaluates the cost of adding a new instance or
removing instances, while most previous work deal
with fixed size of the resource pools.

III. SYSTEM MODEL
We consider the customers’ requests for the enterprise
software services from a SaaS provider by agreeing to the
pre-defined SLA clauses and submitting their QoS
parameters. Customers can dynamically change their
requirements and usage of the hosted software services. The
SaaS provider can use their own infrastructure or outsourced
resources from public IaaS providers. For instance,
“Saleforce.com” provides CRM software as a service using its
own infrastructure, and “Force.com” offers this software using
third party infrastructure [15]. The SaaS provider’s objective
is to schedule a request such that its profit is maximized
while the customers’ (QoS) requirements are assured. The
platform layer of a SaaS provider uses mapping and
scheduling mechanisms to interpret and analyze the
customers’ QoS parameters, and allocates respectively.

In this section, we explain the detailed system model
from both the customers’ and the SaaS providers’
perspective and also describe the related mathematical
models.

A. Actors
The actors involved in our system model are described

below along with their objectives, activities and constraints.
1) SaaS Providers

SaaS providers lease enterprise software as hosted
services to customers. They are interested in maximizing
profit and ensuring QoS for customers to enhance their
reputation in the marketplace. In our context, an example of
the business process between a SaaS provider and a customer
is where a service provider (SaaS X) offers CRM or ERP
software packages, which are offered as three types of
products (for example, Standards, Professional and
Enterprise) and accounts (for example, Group, Team and
Department). When a customer (Company X) submits its first
time rent request with product type (Standards), account type
(Group), and the required number of accounts (m), the

provider will allocate resources to serve this customer. At
anytime, Company X may require an upgrade in the service
by adding more accounts or software editions. Customers
can request an upgrade of services dynamically at any time
in practice. Thus a SaaS provider has to handle these
requests intelligently in line with the requirements as set out
in the SLA.

From a SaaS provider’s point of view, there is a legal
contract-SLA with any customer and if any party violates
SLA terms, the defaulter has to pay for the penalty according
to the clauses defined in the SLA. The SLA properties
include SaaS provider pre-defined parameters and the
customer specified QoS parameters.

The properties defined in the SLA are as follows:
• Request Type (reqType): It defines the customer

request type, which is ‘fist time rent’ or ‘upgrade
service’. ‘First time rent’ means the customer is the
customer who is renting a new service from this
SaaS provider. ‘Upgrade service’ includes two types
of upgrade, which are ‘add account’ and ‘upgrade
product’.

• Product Type (proType): The software product
offered to customers. For example, SaaS X offers
Standard, Professional, and Enterprise product. The
Standard product includes Order and Sales
functions. The Professional contains all functions of
Standard plus Accounting function. The Enterprise
includes all features of Professional plus Report
functions.

• Account Type (accType): It constrains the
maximum number of accounts a customer can
create. For example, SaaS X offers three types of
account: Group, Team, and Department, which
allows each customer to create up to m, 2m and 5m
number of accounts respectively.

• Contract Length (conLen): How long the software
service is legally available for a customer to use
(minimum is one month).

• Number of Accounts (accNum): The actual number
of accounts that a customer wants to create. (Must be
≤ the maximum number of accounts for particular
account type). For example, a customer Company X
wants to rent Standard software and Group account
type, then it can request [1, m] number of accounts.

• Number of Records (recNum): The maximum
number of records a customer is able to create for
each account during the transaction and this will
impact the data transfer time during the service
upgrade. (The value of this parameter is predefined
in SLA).

• Response Time (respTime): It represents the
elapsed time between the end of a demand on a
software service and the beginning of a service.
Violation occurs when actual elapsed time takes
longer than pre-defined response time in SLA. We
consider three types of response time: (i) response
time for the first time renting of the service -
respTime(ftr), (ii) response time for adding new

197

accounts - respTime(upSev,addAcc) and (iii)
response time for upgrading the product -
respTime(upSev,upPro). (The value of each type of
response time is different and predefined in SLA).

The platform layer (Fig. 1) of a SaaS provider uses VM
images to create instances according to the mapping
decision. Therefore, it is important to identify the following
properties for the resource allocation mechanisms to assure
the SLA is adequately drafted:

• VM types (l): How many types of VM can be used
and what are they? For example, there are three
types of VM, which are large, medium and small.
The capacity of large VM equals to two medium
VMs or four small VMs.

• Service Initiation Time (iniTimeSev): How long it
takes to initiate a VM, which is deployed with a type
of software product.

• VM Price (PriVM): How much it costs to a SaaS
provider for using a VM to serve the customer
request per time unit? It includes the physical
equipment, power, network and administration price.

• Data Transfer Time (dataTrafT): How long does it
take to transfer a Gigabyte data from one VM to
another?

• Data Transfer Speed (dataTrafSpeed): It depends
on the location distance and the network
performance.

2) Customers
When a customer agrees with pre-defined SLA properties

(such as response time), a request for an enterprise
application is sent to the SaaS provider’s application layer
with the customer’s QoS requirements (including request
type, product type, account type, contract length, and
number of accounts).

B. Mapping Strategy: Mapping of customer QoS
requirements to resources
The way of interpreting customer requirements to

infrastructure level parameters depends on the resource
capability. In our work, the infrastructure layer focuses on
the VM level but not the host level. To be practical, we use
the same record model as ‘Saleforce.com’ to restrict each
account so as to create the maximum N number of records.
An example of the mapping strategy between VM type,
service product type, and the maximum and minimum
number of accounts for each account type is described in
Table I.

TABLE I. THE SUMMARY OF MAPPING BETWEEN RQUESTS
AND RESOURCES

VM
Type

Product
Type

Account
Type

Max
Account #

Min
Account #

Small Standard Group m 1

Medium Standard,
Professional

Team. 2m m+1

Large Standard
Professional,
Enterprise,

Department 5m 2m+1

C. Mathematical Models
1) Profit Model

Let C be the number of customer requests and c indicates
customer request id. Let at a given time instance t, a
customer c submits a service request to the SaaS Provider.
The customer specifies a product type, account type, contract
length (conLen), number of accounts after agreeing with the
pre-defined SLA clauses (response time). After the
agreement, based on the SLA, the SaaS provider will reserve
the requested software services which are translated at the
infrastructure level as VM capacity.

Let I be the number of initiated VMs, and i indicates the
VM id. Let L indicate the types of VMs, where for a
particular VMi with type l (VMil) has PriVMil price. Let
iniTimeSevil be the time taken for initiating service using
VMil.

Let PriServc be the SaaS provider’s final charge from
customer c per month, which is subject on the product type,
and account type. Let P indicates all product types. Let
Costil

c be the cost incurred to the SaaS provider by serving
the customer c with VMil. The Profilc indicates the profit for
serving customer request c using VMil . Then, the total profit

∑
=

C

c

c
ilof

1
Pr gained by the SaaS provider for serving total C

number of customer requests is defined in Eq.(1)

∑∑∑∑
====

−×=
C

c

c
il

C

c

C

c

c
C

c

c
il CostconLeniServof

1111
PrPr

where, CcLlIi ∈∈∈∀ ,, (1)
For a customer request c, the final service price PriServc

is subjected to the product type and account type. Let Costil c
indicate the cost for serving request c with VMil and it
depends on the VM cost (VMCostilc) and penalty cost
(PenalytCostil

c
.).

c
il

c
il

c
il tPenaltyCosVMCostCost +=

where, CcLlIi ∈∈∈∀ ,, (2)
The VM cost depends on the VM type l, the price of VM

i with type l (PriVMil), the service initiation Time
(iniTimeSevil) and service length (or contract length conLen)
of customer request c. Eq. (3) defines the VM Cost.

()cc
ilil

c
il

conLeniniTimeSeviVMVMCost ××= Pr

 where, CcLlIi ∈∈∈∀ ,, (3)
The SLA violation penalty (Penalty) model is similar to

other related works [1][3][4] and is modeled as a Linear
function. In Eq. (4), β is the penalty rate and DT is delay
time.

DTPenalty ×+= βα (4)
The penalty function penalizes the service provider by

reducing the utility (profit). According to the penalty model,

)()(reqTypedelayTimereqTypetPenaltyCos c
il

c
il ×+= βα

 where CcLlIi ∈∈∈∀ ,, (5)

198

The penalty cost depends on the penalty delay time
delayTimeil

c, penalty rate (β) and a constant number (α). The
delay time and rate are subjected to the request type.
The delay time is the time variation between the response
time specified in SLA and the actual time taken for
customers to wait for the service response.

TABLE II. THE SUMMARY OF PENALTY DELAY TIME ACCORDING TO
REQUEST TYPES

Table Head

First
Time
Rent

Upgrade Service

Add account Upgrade product

SLA pre-
defined
response time

respTime
(ftr)

respTime(upSev,
addAcc)

respTime(upSev,
upPro)

Actual Time

Service
initiation
time(iniT
imeSev)

Service initiation
time
(iniTimeSev)
Data transfer
time(dataTrafT)

Service initiation
time(iniTimeSev)
Data transfer
time(dataTrafT)

=c
ildelayTime

There are three situations in which penalty delay can

occur (Table II). If the request type is ‘first time rent’, the
delay (violation) can occur due to long service initiation
time. If the request type is ‘upgrade service’, the delay may
be caused in adding accounts which may lead to service
initiation time and data transfer time (if there is available
initiated VMs), or caused by upgrade service product type
which depends on service initiation and data transfer time for
the total number of records created by previous request c’
from the same company.

The service initiation time varies subjected to the
physical machine’s capability. The total data transfer time
depends on the records data created by previous request c’
of the same company. More specific, number of account
created by previous request c’- ('caccNum), number of
records created per account ('crecNum), the total record

size (∑
=

N

n
crecSize

1
') (GB) and data transfer time per GB

(dataTranfT). N indicates the total number of records and n
is the record id.

dataTrafTrecSizerecNumaccNumdataTrafT
N

n
cccN

n
×∑××=∑

== 1
'''

1

 where CcNn ∈∈∀ ', (8)

IV. ALOGORITHM
The main objective of our work is to maximize the profit

for a SaaS provider by minimizing the cost of VMs using
effective platform layer resource allocation strategies. As
noted earlier, the current SaaS providers such as Compiere

ERP provide an individual VM for each customer [17] to
maintain service level requirements in terms of response time
and capacity. We implemented this scenario as a base
algorithm by initiating a new VM for each individual
company in order to minimize the SLA violation
(ProfminVio). To optimize the profit further, we propose two
SLA-based profit maximization algorithms.

A. Base Algorithm: Maximizing the profit by minimizing
the number of SLA violations (ProfminVio)
A SaaS provider can minimize SLA violations by serving

each individual company with a new VM involving the two
main request types: a) first time rent and b) upgrade service.
The algorithm first checks the request type, if the request
type is ‘first time rent’ service then it finds the most suitable
VM type l by using mapping strategy described in Table I,
and afterwards calculates and records the profit for initiating
a new VM using Eq. (1) and (2). Otherwise if the request
type is ‘upgrade’, then check which type of upgrade is
requesting. If upgrade type is ‘add account’, then the
company’s permissions are updated by allowing access to
more users on VMi which is serving this company. If the
upgrade type is ‘upgrade product’, then first it finds the most
suitable VM type l (Table I) and assigns request c to it, then
calculates and record the profits.

This algorithm reduces the number of violations by using
a new VM for each company to guarantee the response time.
However, it is costly because a large number of VMs are
initiated.

B. Proposed Algorithms
We propose the following two algorithms:
• Maximizing the profit by minimizing the cost by

reusing VMs, which have maximum available space
(ProfminVmMaxAvaiSpace).

• Maximizing the profit by minimizing the cost by
reusing VMs, which have minimum available space
(ProfminVmMinAvaiSpace).

1) Algorithm 1: ProfminVmMaxAvaiSpace
A SaaS provider can maximize the profit by minimizing

the resource cost, which depends on the number and type of
initiated VMs. Therefore, this algorithm is designed to
minimize the number of VMs by utilizing already initiated
VMs. Algorithm 1 describes the ProfminVmMaxAvaiSpace
algorithm, which involves two main request types: a) first
time rent and b) upgrade service. Let the request of a
customer c includes request type (reqType), product type
(proType), account type (accType), number of accounts
(accNum). The algorithm checks the request type, if the
request type is ‘first time rent’ then it finds the VMi with
type l (VMil) that matches to the service request parameters
using mapping table similar to Table I. Then, it checks
whether there is already initiated VMil and deployed with
same type of product as customer c requested. If there is an
initiated VMil where product proType has been deployed as
customer c requested, then the algorithm checks whether this

)(ftrrespTimeiniTimeSev −
where, reqType is first time rent (6)

)(
1

upSevrespTime
N

n
dataTrafTiniTimeSev −∑

=
+

where, reqType is upgrade service (7)

199

VMil has enough space to place the request of customer c
according to his/her requested number of accounts (accNum)
and the available space on this VM. If there are more than
one VMil with enough available space to place the request c,
then the request c is assigned to the machine with maximum
available space (Worst-fit manner) as illustrated in Fig. 2.
(The gray space indicates unavailable space, x axis indicates
the id of VM with same type and deployed with same type of
product as customer c requested; y axis indicates number of
accounts a VM can hold). If there is no initiated VM with
type l, then check the next type of VM - VMi(l+1) which is
deployed with the same software product type as request c
specified, repeat step (2 to 13)

If the request type is ‘upgrade’, then the type of upgrade

is checked. If upgrade type is ‘add account’, then it first
checks VMi, which has placed the previous request c’ from
the same company. If VMi is not capable to place new
request without exceeding the number of account limitation,
then the suitable type l of VM is found that has the
maximum available capacity to place request c. Then move
the previous data from VMi to new VM and release the space
occupied by old request from VMi. On the other hand, if
upgrade to more advanced product edition, the new request
is placed to the suitable VM by using the MaxAvaiSpace
Strategy (Fig. 2) and then the customer data is migrated to
new VM and release the space occupied by old request from
VMi.

Algorithm 1. Pseudo-code for ProfminVmMaxAvaiSpace
Input
Output
Functions:

request (c) with QoS parameters , VMi
Boolean

First Time Rent (c){
1 If (there is initiated VMi with type l matches to the VM type
requested by c) {
2 If (VMi deployed the same product type as c required) {
3 For each initiated VMi with type l (VMil){
4 If (VMi has enough space to place c){
5 put VMi into vmList
6 }
7 }
8 Sort(vmList) according to the available space
9 Schedule to process c on VMmax, which has maximum
available space
10 }
11 Else {
12 Initiate new VM with type l and deploy the product
type as request c required
13 }

14 }
15 Else While (l+j<=L) loop {
16 If (there is initiated VM with next type l+j, where type
l+j matches to the VM type required by request c) {
17 Repeat from Step 2 to 13
18 j++
19 }
20 }
21}
Upgrade(c) {
1 If (upgrade type is ‘add account’) {
2 get Id i and type l of VM, which processed the previous
request from same company as c
3 If (VMi has enough space to place c){
4 Schedule to process c on VMi.
5 }
6 Else {
7 Repeat step 1 to 21 of First Time Rent(c)
8 Transfer data from old VM to new VM
9 Release space in old VM
10 }
11 }
12 If (upgrade type is ‘upgrade service’){
13 Repeat step 7 to 9 of Upgrade(c)
14 }
15}

Figure 3. Example of disadvantage of MaxBlankSpace Strategy

This algorithm minimizes the number of initiated VMs in

order to optimize profit. Moreover, it minimizes number of
violations caused by service upgrade because the request c is
scheduled to the VM, which has the maximum available
space. In such a way, it reduces the penalty caused by
upgrading service. However, the disadvantage of this
algorithm is that it can decrease the profit in some cases;
particularly when the maximum available space is occupied
by small number of accounts and lead to requests (required
large number of accounts) have to be served by a new VM.
For example, in Fig. 3, VM 6 is a new VM initiated to serve
request c+1, because VM 1 has been occupied by Request c.

Figure 4. MaxAvaiSpace Stratege

Figure 2. MaxAvaiSpace Strategy

200

2) Algorithm 2 : ProfminVmMinAvaiSpace

To overcome the disadvantages of algorithm 1, we
reduce the space wastage by using minimum available space
(MinAvaiSpace) Strategy (Fig. 4) instead of MaxAvaiSpace
Strategy. When there are more than one VM with type l,
deployed with the same product type as customer request c
required, the VMs with enough available space to serve c
are selected. Then request c is scheduled to the machine
with the minimum available space (Best-fit manner) (Step
9). The rest of steps are the same as Algorithm 1.

V. PERFORMANCE EVALUATION
We present the performance results obtained from an

extensive set of experiments. We have compared our
algorithms with the scheduling strategy used by current SaaS
providers such as Compiere, i.e., ProfminVio. In following
sections, we first describe our experiment methodology,
followed by performance metrics and detailed QoS
parameters description. In subsequent sections, we present
the analysis of the results showing the impact of the
customer-side QoS parameters - (i) request arrival rate, (ii)
proportion of upgrade request; and SaaS providers’ side
parameters - (i) service initiation time, (ii) penalty rate.

A. Experimental Methodology
CloudSim [11] is used to simulate the cloud computing

environment that utilizes our proposed algorithms for
resource allocation. We observe the performance of the
proposed algorithms from both customers’ and SaaS
providers’ perspectives. From customers’ perspective, we
observe how many SLAs are violated. From SaaS providers’
perspective, we observe how much cost reduced and how
many VMs are initiated. Therefore, there are three
performance measurement metrics: total cost, number of
initiated VMs, and percentage of SLA violations. All the
parameters used in the simulation study are given in
following sections.

1) Customers’ Side
We examine our algorithms with 1000 customers. From

customer side, two parameters (arrival rate and number of
company upgrade) are varied to evaluate their impact on the
performance of our proposed algorithms. Since there is no
available workload specifying these parameters, we use
normal distribution (standard deviation = (1/2)x mean) to
model all parameters, except request arrival rate, which
follows Poisson distribution.

• Five different types of request arrival rate are used
by varying the mean from 200 to 650 customers per
second.

• Five different sets of company request types are used
by varying the mean from 20% to 80% of companies
request upgrade service in order to vary the portion
of service request type.

2) SaaS Providers’ Side
The SaaS provider offers three types of software service

products, and also three types of account types (Table 1).
The cost per hour for using a VM (PriVM) in self-hosted VM
follows the price schema of Amazon EC2 [14], because it is
easier for SaaS provider to extend to public Cloud and actual
cost of self-hosted VMs is less expensive than the price
schema we are using. Resource price which are used for
modeling VMs are shown in Table III.

• The five different types of average service initiation
time are used in the experiment, and the mean
service initiation time varied from 5 minutes to 15
minutes. The mean of initiation time is calculated by
conducting real experiments of 60 samples on
Amazon EC2 [14] done for four days (2 week days
and 2 weekend days) by deployed different edition
of products. The service initiation time is varied
using normal distribution.

• The penalty cost (the same as in Eq. 5) is modeled
by Eq. (5) (6) (7). It depends on the request type,
product type and account type. The mean of Penalty
Rate (β) is varied from value 2 (very low) to value
15 (very high).

TABLE III. THE SUMMARY OF VM PRICE

VM Type Price($/hour)
Small 0.085

Medium 0.34
Large 0.68

B. Impact of QoS parameters
We compare our proposed algorithms by examining the

impact of QoS parameters on the performance metrics. All of
results present the average obtained by 5 experiment runs. In
each experiment, we vary one parameter, and the rest
parameters are given constant mean value. The constant
mean values are: arrival rate=1000 requests/sec, other
parameters, and penalty rate factor (r) =10. In the following
sections, we examine various experiments by varying both
customer and SaaS provider side’s SLA properties to analyze
the impact of each parameter. The mean response time which
is used to measure the violation equals 5 if the request type is
‘first time rent’, equals 10 if the request type is ‘upgrade
product’ and 3 when the request type is ‘add account.’

1) Impact of arrival rate variation

To observe the impact of arrival rate in our algorithms,
we vary the arrival rate factor, while keeping all other factors
as the same. All experiments are conducted with 1000
customers’ requests. It can be seen from Fig. 5, in average
the algorithm ProfminVMminAvaiSpace performs best to
reduce about 50% cost by using approximately only 60%
number of VMs compared with ProfminVio. As Fig. 5c
shows, when the request arrival rate varies from ‘large’ to
‘very large’, the number of SLA violations caused by our
proposed algorithms increases because when large number of
concurrent requests comes, delaying the response time for
upgrading services. Similar cost is generated by

201

ProfminVMminAvaiSpace and ProfminVMmaxAvaiSpace,
and the former one is slightly better than the latter one,
because it costs less with similar number of VMs but
generates less number of SLA violations. Therefore, during
the variation of arrival rate, the ProfminVMminAvaiSpace
perfoms best and optimizes the SLA violations in the context
of resource sharing, where it is impossible to avoid SLA
violations.

0

50

100

150

200

250

300

350

very small small medium large very large

To
ta

l C
os

t (
$)

Variation in Request Arrival Rate

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

(a). Total Cost

0
100
200
300
400
500
600
700
800
900

1000

very small small medium large very large

VM
 In

iti
at

ed

Variation in Request Arrival Rate

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

 (b). Number of initiated VMs

2
2.05

2.1
2.15

2.2
2.25

2.3
2.35

2.4

very
small

small medium large very large

Variation in Request Arrival Rate

%
 S

LA
 V

io
la

tio
ns

ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

 (c). Percentage of SLA Violations

Figure 5. Impact of arrival rate variation

2) Impact of company upgrade frequency variation
To investigate the impact of different proportion of

request types (‘first time rent’, ‘upgrade service’) by varying
the customer upgrade number. As it can be seen from Fig. 6,
during the variation of number of customer upgrade, the total
cost of ProfminVio decreases because it reduces number of
VMs (reduced almost 49% on average) by utilizing the
already initiated VMs for serving upgrades.

With given reduction in cost, our proposed algorithms
cause very less number of violations as can be seen from the

Fig. 6c, where the overall percentage of SLA violations is
less than 13%, and only when the company upgrades
percentage is ‘very high’, the percentage of SLA violations is
higher than 8%. When the variation in company upgrade
frequency is low (17% upgrade service requests),
ProfminVMmaxAvaiSpace causes more SLA violations due
to the disadvantage of MaxAvaiSpace Strategy. In the
contrary, when the company upgrade frequency is very high,
ProfminVMminAvaiSpace violates more requests because
space has been occupied by ‘first time rent’ request types,
leading to long upgrade time and even penalty delay.

Therefore, when large numbers of requests are ‘first time
rent’, the algorithm ProfminVMminAvaiSpace and
ProfminVMminAvaiSpace cost less with less number of
VMs, and with a bit more SLA violations compare with
ProfminVio (no violation).

0

50

100

150

200

250

300

350

very low low medium high very high
To

ta
l C

os
t (

$)
Variation in Number of Upgrade Requests

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

(a). Total Cost

0

100

200

300

400

500

600

700

800

900

1000

very low low medium high very high

VM
In

iti
at

ed

Variation in Number of Upgrade Requests

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

 (b). Number of Initiated VMs

0

2

4

6

8

10

12

14

very low low medium high very high

%
 S

LA
 V

io
la

tio
ns

Variation in Number of Upgrade Requests

ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

 (c). Percentage of SLA Violations

Figure 6. Impact of number of upgrade requests

202

3) Impact of initiation time variation

0

50

100

150

200

250

300

350

very short short medium long very long

To
ta

l C
os

t (
$)

Variation in Service Initiation Time

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

(a). Total Cost

0
100
200
300
400
500
600
700
800
900

1000

very short short medium long very long

VM
 In

iti
at

ed

Variation in Service Initiation Time

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

 (b). Number of initiated VMs

0
2
4
6
8

10
12
14
16
18
20

very short short medium long very long

%
 S

LA
 V

io
la

tio
ns

Variation in Service Initiation Time

ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

 (c). Percentatge of SLA Violations

 Figure 7. Impact of initiation time variation

The service initiation time also includes the VM
initiation time for deploying software service as requested.
Fig. 7 shows how the variation in service initiation time after
accepting a company request on the SaaS provider’s cost.
When the initiation time varies from ‘very short’ to ‘very
long’, the total cost of all algorithms increased slightly. The
ProfminVio is impacted more because it initiated more VMs.
The average SLA violation percentage of our algorithms is
less than 13% When the initiation time is ‘very short’ and
‘very long’, the algorithm ProfminVMminAvaiSpace and
ProfminVMminAvaiSpace generate a similar number of
violations, because initiation time delay is the same for both
of the algorithms.

4) Impact of penalty rate variation

0

50

100

150

200

250

300

350

very low low medium high very high

VM
 C

os
t (

$)

Variation in Penalty Rate

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

(a). VM Cost

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

P
en

al
ty

 C
os

t

Variation in Penalty Rate

ProfminVio ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

(b). Penalty Cost

0

0.5

1

1.5

2

2.5

very low low medium high very high

%
 S

LA
 V

io
la

tio
ns

Variation in Penalty Rate

ProfminVmMinAvaiSpace ProfMinVmMaxAvaiSpace

(c). Percentage of SLA Violations

Figure 8. Impact of penalty rate variation

We investigate how penalty rate (β) impacts our
algorithms. It can be observed from Fig. 8 that
ProfminVmMinAvaiSpace and ProfminVmMaxAvaiSpace are
impacted when varying the penalty rate factor because they
schedule customer requests with shared resources. The
penalty cost of algorithms increases during variation of the
penalty rate due to SLA violation increases because of
resource sharing between multiple customers. However,
when the SLA violation is very low the maximum
percentage is less than 2.5%. In conclusion, Fig. 8 a and b
show that our algorithms minimize the cost although penalty
cost is increasing during penalty rate variation.

VI. CONCLUSION AND FUTURE WORK
In Cloud computing environments, primarily three types

of on-demand services are available for customers i.e.
Software as a Service, Infrastructure as a Service and

203

Platform as a Service. This paper focused on scheduling
customer requests for SaaS providers with the explicit aim of
cost minimization with dynamic demands handling. To
achieve this goal, we answered questions raised in the
introduction section by using mapping and scheduling
mechanisms to deal with the customer side dynamic
demands and resource level heterogeneity. Thus, we
implemented three cost driven algorithms which considered
various QoS parameters (such as arrival rate, service
initiation time and penalty rate) from both the customers’
and the SaaS providers’ perspective. Simulation results show
that on average, the ProfminVMminAvaiSpace algorithm
optimized cost savings better when compared to the other
proposed algorithms.

In building on the research undertaken in this paper in the
future, we will analyze ways to increase the efficiency of the
algorithms in terms of total profit and shall also consider the
SLA negotiation process in Cloud computing environments
to improve customer satisfaction levels. We would also like
to add different types of services and other pricing strategies
such as spot pricing to increase the profit for service
providers. Moreover, investigating the knowledge based
scheduling for maximizing a SaaS provider’s profit to
improve our algorithms’ time complexity. Moreover, we will
look into the penalty limitation by considering system
failures.

ACKNOWLEDGMENT
We thank the anonymous reviewers, colleagues in Cloud

Lab at the University of Melbourne and Mr. Bevan Mailman
who helped us to improve the quality of this paper.

REFERENCES
[1] C.S. Yeo, and R. Buyya, “Service level agreement based allocation of

cluster resources: Handling penalty to enhance utility”. In
Proceedings of the 7th IEEE International Conference on Cluster
Computing (Cluster 2005), Bostan, MA, USA.

[2] Y.C. Lee, C. Wang, A.Y. Zomaya and B.B. Zhou, “Profit-driven
Service Request Scheduling in Clouds”. In Proceedings of the
International Symposium on Cluster and Grid Computing, (CCGrid
2010), Melbourne, Australia.

[3] O. F. Rana, M. Warnier, T. B. Quillinan, F. Brazier, and D.
Cojocarasu, “Managing Violations in Service level agreements”. In
proceedings of the 5th International Workshop on Grid Economics
and Business Models (GenCon 2008), Gran Canaris, Spain.

[4] D.E. Irwin, and L.E. Grit, and J.S. Chase, “Balancing Risk and
Reward in a Market-based Task Service”. In Proceedings of the 13th
International Symposium on High Performance Distributed
Computing (HPDC 2004), Honolulu, HI, USA.

[5] Y. Yemini, “Selfish optimization in computer networks processing”.
In Proceeding of the 20th IEEE Conference on Decision and Control
including the Symposium on Adaptive Processes, San Diego, USA.

[6] I. Popovici, and J. Wiles, “Proitable services in an uncertain world”.
In Proceeding of the18th Conference on Supercomputing (SC 2005),
Seattle, WA.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the 5th Utility, Future
Generation Computer Systems”, 25(6), (pp. 599-616), Elsevier
Science, Amsterdam, The Netherlands.

[8] D. Parkhill, “The challenge of the computer utility”, 1966, Addision-
Wesley Educational Publishers Inc., USA.

[9] M. A. Vouk, “Cloud Computing-Issues, Research and
Implementation”. In Proceedings of 30th International Conference on
Information Technology Interfaces (ITI 2008), Dubrovnik, Croatia.

[10] J. Broberg, S. Venugopal, and R Buyya, Market-oriented Grids and
Utility Computing: The state-of-the-art and future directions, Journal
of Grid Computing, 3(6), (pp.255-276).

[11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F.
De Rose, and Rajkumar Buyya, CloudSim: A Toolkit for Modeling
and Simulation of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms, Software: Practice and
Experience (SPE), Volume 41, Number 1, Pages: 23-50, ISSN: 0038-
0644, Wiley Press, New York, USA, January, 2011.

[12] G Reig, J. Alonso,and J. Guitart, “Deadline Contrained Prediction of
Job Resource Requirments to Manage High-Level SLAs for SaaS
Cloud Providers”. Tech. Rep. UPC-DAC-RR, Dept. d’Arquitectura
de Computadors, University Polit’ecnica de Catalunya, Barcelona,
Spain.

[13] S. K. Garg, R. Buyya, and H. J. Siegel, “Time and Cost Trade-off
Management for Scheduling Parallel Applications on Utility Grids”,
Future Generation Computer Systems,26(8), (pp. 1344-1355).

[14] C. Vecchiola, X.C. Chu, M. Mattess, and R. Buyya, “Aneka—
Integration of Private and Public Clouds”, Cloud Computing
Principles and Paradigms, Willy, USA, 2011

[15] Saleforce.com, Retrived on 6th Dec 2010: http://www.salesforce.com
[16] Computer Associates Pty Ltd. Retrived on 6th Dec 2010:

http://www.ca.com
[17] Compiere ERP on Cloud, Retrieved on 6th Dec 2010: http://

http://www.compiere.com/
[18] Y. Song, Y. Li, H. Wang, Y. Zhang, B. Feng, H. Zang, Y. Sun, “A

Service-Oriented Priority-Based Resource Scheduling Scheme for
Virtualized Utility Computing”, High Performance Computing-HiPC
2008.

[19] T. Gad, “Why Traditional Enterprise Software Sales Fail”. July 2010,
Retrieved on 6th Dec 2010:
http://www.sandhill.com/opinion/editorial_print.php?id=307

[20] Y. Fu, A. Vahdat, “SLA Based Distributed Resource Allocation for
Streaming Hosting Systems”, http://issg.cs.duke.edu

[21] V. Yarmolenko and R. Sakellariou. “ An Evaluation of Heuristics for
SLA Based Parallel Job Scheduling”. In Proceddings of the 3rd High
Performance Grid Computing Workshop (in conjunction with IPDPS
2006). Rhodes, Greece.

204

