
Service Level Agreement(SLA) based SaaS Cloud
Management System

Linlin Wu1, Saurabh Kumar Garg2, and Rajkumar Buyya1
1Cloud Computing and Distributed Systems (CLOUDS) Lab

Department of Computing and Information Systems
The University of Melbourne, Australia

Email: rbuyya@unimelb.edu.au
2School of Engineering and ICT, University of Tasmania

Hobart, Tasmania, Australia
Email: skgarg@utas.edu.au

Abstract—Cloud computing has emerged as a new computing
paradigm which has revolutionized the IT industry. It has
particularly transformed the licensing of software products which
are now being offered as a Service on pay-as-you-go basis. This
has tremendously increased the complexity for software providers
as they now have to not only manage their resources on which
software are hosted but also they need to provide expected Quality
of Service for customers. The Quality of Service (QoS) required
by customers is guaranteed using a legal document SLA (Service
Level Agreement). Current, resource management systems do not
cater to the needs of a Software as a Service (SaaS) provider
who requires to provide flexible and low cost services while not
affecting their profit and market share. Most of them focus either
at infrastructure level or at platform level. This work fills this gap
by proposing a novel SLA based resource management system
designed after analysing requirements of SaaS in Clouds. The
proposed system is implemented using latest technologies and can
scale in and out depending on updates in the user demand. We
present the architectural design and evaluate the implementation
with a real case study in a real Cloud environment.

I. INTRODUCTION

Cloud computing is a solution for addressing challenges
such as licensing, distribution, configuration, and operation of
enterprise applications associated with the traditional IT infras-
tructure, software sales and deployment models[1]. Migrating
from a traditional model to the Cloud model reduces the
maintenance complexity and cost for enterprise customers, and
provides on-going revenue for Software as a Service (SaaS)
providers. One can find that more and more complex applica-
tions are being delivered in Software as a Service (SaaS) model
on Cloud[2]. With this development, these applications hosted
under SaaS model have complex provisioning, configuration,
and deployment requirements.

In real business environment, resource requirements keeps
changing based on various factors such as customers demand
and new services. SaaS providers also need to allocate infras-
tructure resources on the fly according to consumers dynamic
Quality of Service (QoS) requirements written in the form
of Service Level Agreement (SLA)[3]. Even though efforts
have been made by several projects, still most do not offer
capabilities such as support for adapting dynamic customer
demands using Cloud resources. Given Cloud resources are
elastic in nature, it seems trivial to adapt number of resources
based on user requirements, however it becomes challenging

when SaaS providers have to maximise the customer satis-
faction level simultaneously with their profit. Therefore, there
are efforts needed that focus on design, development, and
implementation of software systems based on novel SLA-
based resource allocation models exclusively designed for
SaaS providers.

In the case of SaaS provider, to enable crucial business
operations of customer companies, there are several critical
QoS parameters that are needed to be consider in a service
request provisioning, such as response time. Service provi-
sioning becomes challenging when QoS requirements cannot
be static and need to be dynamically updated over time due
to continuing changes in business operations and operational
environments of the customer[4]. To have competitive ad-
vantage, SaaS providers need to pay greater importance on
customers since they pay for accessing services in data canters.
In other words, any resource management system that focuses
on SaaS Clouds should also be customer driven[5]. Therefore,
to fill this gap, this paper presents the design of a novel SLA-
based resource allocation system adapting dynamic customer
demands using cloud infrastructure resources. A prototype of
the customer requirements driven SLA-based resource man-
agement system is implemented taking care of the changes in
customer requirements and resource side heterogeneity using
SharePoint platform and .Net technologies.

This paper presents first various SLA based customer re-
quirements of SLA driven resource management system. Then,
the proposed architecture of a SaaS management system with
the details of design in subsequent section. In the following
sections, the realization of SLA-based resource management
system (SLARMS) is presented with evaluation of a prototype
system in an operational data centre.

II. REQUIREMENTS OF SAAS

For SaaS Cloud providers to host software as a commercial
offering and to enable seamless execution of crucial business
operations of companies, there are many critical QoS parame-
ters that SaaS management system needs to take into account.
In particular, as Cloud computing environment is considered
to be dynamic and elastic, customers QoS requirements cannot
be static and need to be dynamically updated over time with
business requirements. For example, just imagine if ebay



service would have been hosted on Clouds, then with the
number of their end users, resource needs of ebay will also
change. Another good examples are consulting or service based
companies such as Accenture, which may need SaaS resources
depend on their current client. The approach for realization of
customer based or SLA based SaaS management system, the
following requirements should be included:

1) Support for customer-driven service management
based on customer QoS requirements;

2) Incorporation of autonomic resource management
models that effectively self-manage changes in ser-
vice requirements to satisfy both new service de-
mands and existing service obligations;

3) Leverage of Virtual Machine (VM) technology to
dynamically deploy, configure and assign resources
according to service requirements; and

4) Implementation of developed resource management
strategies into a real computing server in an opera-
tional data centre.

III. ARCHITECTURE OF A SAAS CLOUD

In order to fulfil the aforementioned requirements, a SaaS
model for serving customers in Cloud is shown in Figure 1.
A customer sends a request for software services offered by a
SaaS provider, who uses three layers, namely application layer,
platform layer and infrastructure layer, to satisfy the customers
request. The application layer manages all application services
that are offered to customers by the SaaS provider. In the
platform layer, the request monitor is used to monitor requests
including new and upgrade requests. Whenever a customer
changes QoS requirements, the mapper and decision maker
are invoked. The mapper is responsible for translating the
customers’ QoS requirements to infrastructure level parameters
and the decision maker is used to make decision that whether
a the request can be accepted or not and where to schedule
the acceptable request. In addition, the resource allocator is
responsible for initiating or allocating Virtual Machines (VMs)
to serve the request. Moreover, the SLA manager is used to
track SLA violations according to actual resource information.
Based on SLA terms, the market manager updates the final cost
and profit accordingly. The infrastructure layer includes data
centres where VMs are hosted.

IV. DESIGN OF SLA BASED SAAS MANAGEMENT
SYSTEM

In this section, we provide finer details related to funda-
mental classes of the SLA-based resource allocation system,
which are also the building blocks of the system. The overall
Class, Sequence, and States design diagrams are shown below.

A. Class Diagram

The main components of class diagram (shown in Figure
2) is described below:

• (QoS) Request Monitor: When a customer submits a
new request or changes an existing request for the
service, this class monitors changes and then invokes
Mapper and DecisionMaker classes to reschedule the
request.

• Mapper: This class maps customer QoS requirements
to a suitable type of resource by method getVMType-
byServiceType(servType).

• SLA Service Setting: This class provides functions to
access and operate the SaaS providers predefined ser-
vice characteristics. For example, getServiceRespon-
seTime(servType) is used to retrieve the predefined
service response time.

• Decision Maker: This class invokes the admission
control and scheduling classes to make decision on
whether to admit the customer request and how to
assign resource to the customer.

• Admission Control: This class is used to interpret and
analyse customers QoS requirements and receive the
pre-scheduling result from scheduler, and then it uses
admission control criteria to decide whether to accept
or reject the request.

• Scheduler: This class is responsible for pre-scheduling
the request with scheduling strategies and returning
where the request can be scheduled.

• SLA Manager: SLA Manager is the class that keeps
track of SLAs fulfilment between customers and ser-
vice providers. It also detects the penalty delay and
updates the market manager.

• Market Manager: It is responsible for calculating and
updating the cost and profit according to the actual
resource usage. When there is a SLA violation, penalty
cost is calculated and final profit is adjusted by the
market manager.

• Data Centre: Characteristics and related functions of
data centres are represented in this class.

• VM: This class represents actual VMs and includes
their related data, such as VM initiation time.

• VM Setting: This class includes characteristics of
VMs, which are average values based on history
records.

• Resource Coordinator: This class assigns existing
resource or initiating new resources for customer
requests according to the decision. It includes VM
Initiator, VM Assigner, VM Monitor, and VM Cleaner.

◦ VM Initiator: It takes the responsibility of
creating, deploying and configuring VMs using
VM templates in an appropriate data centre.

◦ VM Assigner: It is responsible for configuring
software on the appropriate VM.

B. Sequence Diagram

1) Internal interaction among system entities: Figure 3
shows how different entities interact at system level. When
the system receives a request from a customer, the QoS
request monitor invokes the class mappers function called
getVMTypebyServType(servType), which returns a suitable
VM type. Following this, the QoS request monitor invokes
the function MakeDecision() in class DecisionMaker to get



Fig. 1: SLA-based resource management system high level architecture

Fig. 2: Class Diagram

decision whether this request can be accepted. Next, the De-
cisionMaker class invokes the function AdmissionControlPro-
cess() in class AdmissionControl, which includes two stages:
the first stage AdmissionControlAnalysis() calls the sched-
ulers SchedulingAnalysis() function, which checks current
resource availability and capability using scheduling strategies
and returns where the request can be scheduled. The sec-
ond stage,AdmissionControlDecisionMaking(), checks if the
request can be accepted regarding to the admission control
criteria and returns the result to Decision Maker. Finally, the
request monitor receives the decision.

2) Internal interaction at resource level: Figure 4 shows
how resource level entities interact with each other. The
resource coordinator detects the decision made by the deci-

sion maker. If the decision result is accept and scheduling
result is initiateNewVM, then the request state goes into
provisioning and resource coordinator calls the initiateVM()
function in VMInitiator class to create and deploy a suitable
VM image. If the scheduling result is Wait or Insert, then
the resource coordinator calls the assignRequest() function
in class VMAssigner to assign the request to an appropriate
existing VM by configuring the software service. The status
of the request becomes inserting or waiting. Following that,
the monitorVMIni() function in class VMMonitor detects the
actual VM initiation time and then updates the VMinitiation
time by calling theupdateVM() function in the class VM. When
all requests are finished on a VM, the VMCleaner invokes
function PowerOff() to power off the VM.



Fig. 3: Interaction between System Entities

Fig. 4: Interaction between Resource level Entities

Fig. 5: State Diagram

C. State Diagram

Figure 5 illustrates diverse states that a customer QoS
request can experience during its lifetime. When a request

is submitted to the system, the new request goes to the new
state and the upgrade request goes to the upgrade state. Both
new and upgrade requests can go to the rejected state if a
SaaS provider cannot gain the expected profit. If service start
deadline is achievable with available resources, the request
goes to the inserting state. If there is no resource available
immediately but some existing requests will finish before the
service start deadline, then the request goes to the waiting
state. When the Scheduler detects that a new resource needs
to be initiated for the request, either because there is no
existing resource available before the service start deadline,
but new resource can be initiated for the request, then the
request goes to the provisioning state. For inserting, waiting
and provisioning requests, after the request has been assigned
to the VM, the states goes to the running state, which means a
customer starts to use the service for enterprise software as a
service or a task starts to execute for bag of task service. Also,
changes in state may happen every time a request contract
expires and then the resource capability is recalculated. For
both new and upgrade requests, the finished state is reached
in three different situations: (i) contract expires; (ii) system
failure; and (iii) the customer cancelled the request

V. SYSTEM IMPLEMENTATION TECHNOLOGIES

The SLARMS has been implemented by leveraging the
following key technologies using C# on .Net platform: (1)
SharePoint 2010, which is a secure, manageable, and web-
based platform supporting application development. (2) Pow-
erShell for creating, managing, and configuring VMs hosted
on private and public cloud (such as Azure[6]).

A. Implementation Considerations

The design consideration of the SLARMS are the follow-
ing:

• Support for dynamic customer requests: When
there is a customer updating the request, the request
monitor will be triggered to detect request changes
and go through the decision making process.

• Support for scalable infrastructure resources: To
allow easy utilization of using different types of Cloud
infrastructures,SLARMS is designed to use C# in
.Net platform to execute PowerShell command on
remote VMs. PowerShell has been chosen because
the most popular private VM infrastructure provision
technology, VMWare, has a PowerShell based API
(PowerCML). In addition, two of the most popular
public infrastructure providers - Azure and Amazon,
support PowerShell VM provision and configuration.

• Fault tolerance: SLARMS can handle failures at two
stages: during decision making, and during resource
provisioning. Failures during resource provisioning
(initiation or allocation) can occur due to various
reasons, such as network problems. In this case, the
failed resource will be re-provisioned in the next
resource allocation cycle.

• Scalability: Most of the SLARMS’s components work
independently and interact through a database, which
facilitates the scalable implementation of SLARMS



as each component can be distributed across different
servers accessing a shared database.

B. Implementation Details

The Implementation design as shown in Figure 6 follows
the three layer design pattern containing data layer, business
logic layer and presentation layer. The main system entities
are implemented using the following technologies:

• Custom web parts and web pages: In the presentation
layer, custom web parts and web pages are used to
provide an easy to use portal for customers to add or
update their requests.

• Workflow: Workflow technology in SharePoint is used
to implement QoS Request Monitor. The workflow
can be triggered when there is a new request or any
field of an existed request is updated. The background
technology to support SharePoint workflow is the .Net
workflow foundation.

• Event Handler/Event Receiver: SharePoint Event Han-
dler/ Event Receiver technology is used to implement
VMMonitor. Whenever there is any change happens
on VM, such as actual VM initiation time is updated
in the list, then the event handler will detect the change
and invokes the SLA manager to calculate the penalty
delay.

• Class: Standard C# classes are used to implement
other components, such as main components decision
maker, which includes admission control and sched-
uler.

• Timer job: SharePoint timer job is used to implement
VMCleaner. The timer job runs every minute to detect
if any VM does not have requests allocated and then
the VM will be powered off in one hour.

• PowerShell: is used for most of resource coordinator
related operations, such as VM initiation, because
PowerCLI (based on PowerShell) is the easiest API
to operate VMware Vsphere virtualized Cloud infras-
tructures (and for the extension of future work it is
the common way to access Azure and Amazon EC2).
In addition, for guestOS operation, the PowerShell is
one of the most powerful technologies to configure the
guestOS and install the software.

• Linq and CAML(Collaborative Application Markup
Language): To implement the Data Access Layer, both
Linq and CAML data access technologies are used
because of some issues with Linq. For example, when
disposing the data context, there is an error which is a
known issue. Therefore, traditional CAML is used for
insert operation and keep Linq for the rest data access
operations.

• All data tables are presented using SharePoint Column
and List technologies, which are more readable and
give user friendly ways to structure the information,
and all table structures and data are stored in SQL
Server 2008.

• Internet Information Services (IIS): IIS for Windows
Server is a flexible, secure, and manageable Web

server for hosting anything on the Web. From media
streaming to web applications, IIS’s scalable and open
architecture is ready to handle the most demanding
tasks.

VI. CASE STUDY: CA (COMPUTER ASSOCIATES)
DIRECTORY

This section describes how the SLARMS prototype is
implemented using a private enterprise Cloud. This private
Cloud is within an enterprise to increase the productivity of
their users, hence in other words, it increases the amount of
computing resources available within an enterprise to accel-
erate application performance. The decision making process
includes two main components: scheduling and admission
control, in this case study, we implemented the algorithms that
were introduced in our previous work[4][7].

A. System Setup Details

1) Customer Related Details: A Customer requests CA
Directory services. This component is constituted by a simple
Web Service client that generates all resource requests to
SLARMS with the following QoS:

• Request Type (reqType): It defines the customer re-
quest type, which is new or upgrade service. A new
request will get one hour free service usage, while
an upgrade service is for an existing customer, who
wants to upgrade from a lower service edition to
an upper service edition (According to the customer
usage, there may be a customer loyalty level).

• Product Type (proType): The software products of-
fered to customers. It can be Standard, Silver, and
Gold service. The Standard product includes CA Di-
rector. The Silver service package contains all func-
tions of Standard plus JExplorer component. The Gold
service includes all features of Silver plus dxgrid
component.

• Account Number (accNum): It constrains the max-
imum number of concurrent users from the same
organization can use the software service.

• Contract Length (conLen): How long the software
service is legally available for a customer to use
(minimum is one hour).

• Records storage (recNum): The maximum storage
capability for each DSA period and it will impact
the data transfer time during the service upgrade (The
value of this parameter is predefined in SLA).

• Response Time (respTime): It represents the elapsed
time between the end of a demand on a software
service and the beginning of a service. Violation
occurs when actual elapsed time is longer than the
pre-defined response time in the SLA.

2) SaaS Provider Related Details: Application Layer: pro-
vides CA Directory services. The CA directory provides a
high-performance directory foundation for online applications.
It allows customer organizations to meet the needs of new and
future dynamic business applications and improve operational



Fig. 6: Implementation Technologies

Fig. 7: Mapper Details

efficiency by consolidating islands of data into a single infor-
mation backbone.
Platform Layer: SharePoint 2010 platform and PowerShell
are two main technologies used in this layer. SharePoint is
used to implement most platform layer components except the
resource allocator, which is implemented in PowerShell. The
SharePoint platform and PowerShell scripts are integrated with
CSharp language on .Net platform. Details are described in the
next section.
Infrastructure Layer: In CA Lab, the internal operable Cloud
infrastructure is built using VMware VSphere, which is the
industry leading virtualization platform. This layer can be
extended into public clouds.
The platform layer of a SaaS provider uses VM images to
create instances according to the mapping (Table in Figure 7)
and decision. (Table in Figure 7, m is 5, n is 10). Therefore,
it is important to identify the following properties for resource
allocation mechanisms to ensure that the SLA is adequately
drafted:

• VM types (l): How many types of VM can be used and
what they are. For example, there are three types of
VM, which are large, medium, and small. The capacity
of one large VM equals to that of two medium VMs

or four small VMs.

• VM Service Initiation Time (iniTimeSev): How long
it takes to initiate a VM, which is deployed with the
service appliance.

• VM Price (PriVM): How much it costs to a SaaS
provider for using a VM to serve the customer request
per time unit. It includes the physical equipment,
power, network, and administration price.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

The evaluation of mechanisms within SLARMS has been
carried out entirely in CA Lab VMware Vsphere Cloud in-
frastructure environment. The experimental setup consists of
three types of dynamic resources: small instance (1 GB of
memory, 1 CPU core, 50G of local instance storage, Windows
OS); medium instance(2 GB of memory, 2 CPU core, 50G
of local instance storage, Windows OS); and large instance (4
GB of memory, 4 CPU core, 50G of local instance storage,
Windows OS). An enterprise application CA directory is
used for experiments. SLA is defined in terms of response



(a) (b)

Fig. 8: Variation in Request Arrival Rate

(a) (b)

Fig. 9: Variation in User Request Number

times. The experiment evaluation is designed based on the CA
CloudMinder test strategy and plan. CloudMinder is an online
application that uses CA Directory as the directory foundation.
In this set of experiments the total profit, number of accepted
users and number of SLA violations are evaluated as follows
during the variation of request arrival rate from 20 to 200
requests per second. Up to 200 concurrent user requests are
considered because 1) The test strategy provided by CA is
designed using 200 user requests, which has been analysed
through their customer usage data and 2) The capability of the
private data centre allocated to this research work is limited,
which does not allow a very large number of user requests.

B. Summary of Results

1) Evaluation of SLARMS’s Scheduling Algorithms: The
evaluation is designed to test the systems decision making
using different algorithms implemented in the system, specif-
ically our previously proposed algorithms [4]. As expected,
the algorithms perform the similar trend as the simulation

results in the prototype implementation environment. In this set
of experiment the total cost, SLA violations are evaluated in
this section during the variation of request upgrade proportion
varies from very low to very high. It can be seen from Figures
8a and 8b, in average the algorithm ProfminVMminAvaiSpace
reduces about 50% cost compared with ProfminVio. As Figure
8b shows, during the arrival rate variation, the number of SLA
violations caused by ProfminVMminAvaiSpace is less than the
ProfminVio because the ProfminVio has more risk to cause
VM initiation delay due to network-related issues. Therefore,
during the variation of arrival rate, the ProfminVMminAvaiS-
pace performs better and minimize the SLA violations in the
context of resource sharing, where it is impossible to avoid
SLA violations.

2) Evaluation of SLARMS’s Admission Control Algorithms:
The evaluation is designed to test the systems decision making
using different algorithms implemented in the system, specif-
ically our previously proposed algorithms [7]. The evaluation
results show that the algorithms performs similar trend in the



prototype environment. In this set of experiment total profit and
number of accepted users are evaluated during the variation
of user request number from 10(small) to 100(very large).
Figures 9a and 9b shows that the ProfPD achieves (17%)
more profit over ProfminVM by accepting (15%) more user
requests, when number of users changes from small to very
large. When the number of users is increased from medium to
large, the profit difference between ProfPD and ProfminVM
became larger. This is because when the number of requests
increases, the number of users being accepted increases by
utilizing initiated VMs. Therefore, a SaaS provider should use
ProfPD to maximize profit.

VIII. RELATED WORK

There are several previous approaches for resource man-
agement with respect to SLA. Control-theory approach has
been proposed to dynamically adjust resource allocation to
maintain the service differentiation [8]. CPU cycles of single
servers are main concerns of other approaches, which share
resources among multiple customer requests or applications
[9][10]. For example, the Shift adjusts how much and when
CPU resources should be allocated to a VM [11]. In contrast,
SLARMS focuses on sharing at the granularity of whole
VMs and the management of a whole farm of servers. Most
Cloud resource management systems [12][13] only focus on
infrastructure based Cloud computing services. Systems like
IcorpMaker provides isolation via virtual private networks
rather than VM [14]. Oceano attempts to modify the computing
environment (e.g. by installing an operating system) to satisfy
the allocation[11]. Finally, the Galaxy project [15] focuses on
providing tools to build Windows-NT clusters. It does not
consider SLA monitoring. SLARMS provides a unique and
more comprehensive combination of technologies to address a
number of issues ignored by these approaches and focused on
SLA-based customer requirement driven resource provision-
ing.

IX. CONCLUSIONS AND FUTURE WORK

To meet requirements of SLA-based resource management
of Cloud services, this paper is focused on the design, de-
velopment, and implementation of a software system, called
SLA-based Resource Management System (SLARMS), based
on novel SLA-based resource management algorithms exclu-
sively designed for SaaS. The architecture and implementation
of SLARMS is comprehensively described and evaluated.
Through the prototype implementation, we also demonstrated
the usefulness of the design of proposed system using a real
case study. The resource used in this prototype is a private
Cloud, hosted by Computer Associates, who is a Cloud soft-
ware solution provider. The case study used CA Directory as
a service because of the availability of the software. However,
SaaS providers can offer any software as a service using our
algorithms and proposed management systems accordingly.
This prototype can be plugged in with different resource
management strategies to achieve different objectives. SaaS
providers can scale out to use multiple resource providers
including 3rd party resource providers with different resource
APIs. Two sets of experiments are performed to test previously
proposed algorithms implemented as part of the system. In the
experiments, the total cost, SLA violations were evaluated. As

expected, the algorithms perform the similar trend as the sim-
ulation results in the prototype implementation environment.

In future, this work will be extended and evaluated for
several other SaaS applications. To make the system more
fault tolerant and scalable, a distributed database will be
implemented.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation computer
systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] S. Dillon and G. Vossen, “SaaS cloud computing in small and medium
enterprises: A comparison between Germany and New Zealand,”
IJITCC, vol. 3, no. 2, pp. 87–107, 2015.

[3] H. N. Van, F. D. Tran, and J.-M. Menaud, “SLA-aware virtual resource
management for cloud infrastructures,” in Proceedings of Ninth IEEE
International Conference on Computer and Information Technology,
Xiamen, China, 2009.

[4] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “SLA-based Resource
Provisioning for Software as a Service Applications in Cloud Comput-
ing Environments,” IEEE Transactions on Services Computing, vol. 7,
no. 3, pp. 465–485, 2014.

[5] L. Wu and R. Buyya, “Service Level Agreement (SLA) in Utility
Computing Systems, Performance and Dependability in Service Com-
puting:Concepts, Techniques and Research Directions.” IGI Global,
2011.

[6] B. Calder, “Inside windows azure: the challenges and opportunities of
a cloud operating system,” in ACM SIGARCH Computer Architecture
News, vol. 42, no. 1. ACM, 2014, pp. 1–2.

[7] L. Wu, S. K. Garg, and R. Buyya, “SLA-based admission control for
a Software-as-a-Service provider in Cloud computing environments,”
Journal of Computer and System Sciences, vol. 78, no. 5, pp. 1280–
1299, 2012.

[8] O. Sukwong, A. Sangpetch, and H. S. Kim, “Sageshift: Managing SLAs
for highly consolidated cloud,” in Proceedings of IEEE INFOCOM,
Orlanda, Florida, USA, 2012.

[9] E. M. Maximilien and M. P. Singh, “A framework and ontology for
dynamic web services selection,” Internet Computing, IEEE, vol. 8,
no. 5, pp. 84–93, 2004.

[10] W. Vogels and D. Dumitriu, “An overview of the galaxy management
framework for scalable enterprise cluster computing,” in Proceedings
of IEEE International Conference on Cluster Computing, Saxony,
Germany, 2000.

[11] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Kr-
ishnakumar, D. P. Pazel, J. Pershing, and B. Rochwerger, “Oceano-SLA
based management of a computing utility,” in Proceedings of 2001
IEEE/IFIP International Symposium on Integrated Network Manage-
ment, 2001.

[12] R. Rajavel and T. Mala, “Slaocms: A layered architecture of sla oriented
cloud management system for achieving agreement during resource
failure,” in Proceedings of the Second International Conference on
Soft Computing for Problem Solving (SocProS 2012), Jaipur, Rajisthan,
2014.

[13] A. Cuomo, G. Di Modica, S. Distefano, A. Pulito, M. Rak, O. Tochio,
S. Veque, and U. Villano, “An SLA-based broker for cloud infrastruc-
tures,” Journal of grid computing, vol. 11, no. 1, pp. 1–25, 2013.

[14] J. L. Bruno, E. Gabber, B. Özden, and A. Silberschatz, “The eclipse
operating system: Providing quality of service via reservation domains.”
in Proceedings of 1998 USENIX Annual Technical Conference, New
Orleans, Louisiana, 1998.

[15] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant, “Automated control of multiple virtualized
resources,” in Proceedings of the 4th ACM European conference on
Computer systems, Nuremberg, Germany, 2009.


