
Software-Defined Cloud Computing: Architectural
Elements and Open Challenges

Rajkumar Buyya∗, Rodrigo N. Calheiros∗, Jungmin Son∗, Amir Vahid Dastjerdi∗, and Young Yoon†

∗Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computing and Information Systems

The University of Melbourne, Australia
Email: {rnc@, jungmins@student, rbuyya@}unimelb.edu.au

†Samsung Electronics, Korea
Email: young77.yoon@samsung.com

Abstract—The variety of existing cloud services creates a
challenge for service providers to enforce reasonable Software
Level Agreements (SLA) stating the Quality of Service (QoS)
and penalties in case QoS is not achieved. To avoid such penalties
at the same time that the infrastructure operates with minimum
energy and resource wastage, constant monitoring and adaptation
of the infrastructure is needed. We refer to Software-Defined
Cloud Computing, or simply Software-Defined Clouds (SDC),
as an approach for automating the process of optimal cloud
configuration by extending virtualization concept to all resources
in a data center. An SDC enables easy reconfiguration and
adaptation of physical resources in a cloud infrastructure, to
better accommodate the demand on QoS through a software
that can describe and manage various aspects comprising the
cloud environment. In this paper, we present an architecture for
SDCs on data centers with emphasis on mobile cloud applications.
We present an evaluation, showcasing the potential of SDC in
two use cases—QoS-aware bandwidth allocation and bandwidth-
aware, energy-efficient VM placement—and discuss the research
challenges and opportunities in this emerging area.

Keywords-Software-Defined Networks, Cloud Computing,
Software-Defined Clouds, Virtualization, and Data Centers.

I. INTRODUCTION

Cloud computing [1] evolved as a successful utility comput-
ing paradigm for Information and Communication Technology
(ICT) resources delivery as a service over the Internet. The
adoption of cloud computing spans across industry, govern-
ments, and academia alike.

With the growing adoption of cloud, the number of
cloud providers and services also has increased. Hundreds of
providers are offering services in either of the three service
models—Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS). Furthermore,
there is a a wide array of products offered by each provider
for each service model, and each product can be configured
with many different parameters.

This variety of services creates a challenge for service
providers to enforce reasonable Service Level Agreements
(SLAs) stating the Quality of Service (QoS) and penalties in
case it is not achieved. Since SLA establishment is legally
required for compliance and has potential impact on revenue,
meeting these SLAs is a primary concern of service providers.

One elementary approach to guarantee SLA compliance
is over-provisioning of resources for a given service: by
committing more resources than the service actually requires,
a provider can meet acceptable level of QoS even in the
presence of failures of one or more resources. Nevertheless this
approach is not economically viable, i.e., over-provisioning
increases the cost of running the service.

An alternative approach involves constant monitoring and
adaptation of the infrastructure, in such a way that the mini-
mum amount of resources required to meet the SLA (promised
to a particular group of users) is committed to the service, and
constant monitoring guarantees that whenever resources are
under-performing, an appropriate corrective action is taken.
Corrective actions include network reconfiguration (so delays
can be reduced or bandwidth between resources can be in-
creased), virtual machines (VMs) migration or reconfiguration,
and storage commitment. Manual solutions cannot enable such
actions to be taken in able time to mitigate the effect of under-
performing resources in services violating their SLAs, because
they require intervention of operators that need to understand
the cause of under-perfomance and then react to it. Automatic
approaches, on the other hand, can carry out the same activities
more effectively, reducing the time to action.

An approach for creating effective cloud environments
by extending virtualization notion to all resources (includ-
ing compute, storage, and networks) of a data center is
Software-Defined Cloud Computing, or simply Software-
Defined Clouds (SDC). SDCs enable easy reconfiguration and
adaptation of physical resources in a cloud infrastructure to
better accommodate the demand on QoS. An SDC allows
each aspect that comprises the cloud environment—from the
networking between virtual machines to SLAs of hosted
applications—to be managed via software. This reduces the
complexity related to configuring and operating the infrastruc-
ture, which would ease the management of cloud infrastructure
that tends to be very large scale, commonly composed of
thousands of servers and network elements supporting tens
of thousands of virtual machines, virtual networks, and appli-
cations. Furthermore, the awareness of the huge carbon and
energy footprint of cloud data centers has become a crucial



cloud system design criteria. Thus, every aspect of SDCs needs
to operate efficiently in terms of energy consumption.

In this paper, we propose an architecture for SDCs target-
ing Web, compute-intensive, data-intensive, and mobile cloud
applications. The proposed architecture is built upon recent
advances in many areas: server virtualization [2], software-
defined networks (SDNs) [3], software-defined middlebox
networking [4], and network virtualization [5]. This paper
describes how these disparate concepts can be combined to
deliver SDCs, discusses challenges arising from the emerging
concept of SDC, and presents some early empirical insights
into the new concept.

The rest of this paper is organized as follows. Section II
discusses the concepts and technologies that are the foundation
for SDCs. Section III presents related works. Section IV
introduces the application scenario we explore in the paper,
as well as requirements for SDCs. Section V introduces the
proposed architecture and its components in detail. Section VI
discusses the evaluation of the proposed architecture. Sec-
tion VII discusses open challenges and opportunities in the
emerging field of SDCs. Finally, Section VIII concludes the
paper.

II. BACKGROUND

Software-Defined Cloud Computing is enabled by a number
of concepts and technologies that we briefly introduce in this
section.

A. System Virtualization

System virtualization [6] enables multiple operating systems
to run in isolation on a single host. The technology was
first introduced in the 60’s with the objective of increasing
the utilization of mainframes [7] and, after a hiatus during
the emergence of the personal computing era, gained traction
again in the 2000’s when PCs became powerful enough to
accommodate multiple operating systems [2], [8].

Isolation among OSs is enabled by a special software called
hypervisor, which also coordinates the resource sharing among
VMs. The hypervisor is installed on top of the bare hardware
and it is loaded on server initialization. It then provides
management capabilities that enable client operating systems
(referred to as guests) to be started, paused, or destroyed on
the server, as well as to experience variation in the amount of
resources assigned to each machine (e.g., RAM).

Each guest runs one or more virtual NICs that are connected
to a virtual switch [9]. Different approaches can be taken to
connect the virtual switch to the physical network, varying
from connecting it to the physical NIC of the server to
connecting it directly to a physical switch [9].

System virtualization is a building block for other tech-
nologies of relevance for this work, such as cloud computing
and Software-Defined Middleboxes Networking, which are
explored later in this section.

B. Cloud Computing

Cloud computing [10] is a paradigm that enables the acqui-
sition of computational resources on demand in a pay-per-use
model. Consumers of cloud computing resources can provision
their own resources when they are needed, and can release
them quickly once they are not required. Resources are kept
in large pools, giving the consumers the notion of an infinite
amount of available resources. Resource utilization is metered
by the cloud service provider.

There are three service models typically associated with
cloud computing. Software as a Service (SaaS), offers to
consumers ready to use applications. Thus, consumers neither
need to install the application on their own infrastructure nor
need to acquire licenses for the software. The cost of licensing
(if any) is included in the hourly (or monthly) cost of the
software service. Platform as a Service (PaaS) is a model that
offers platforms where applications can be easily deployed.
Consumers of PaaS services do not need to handle any intri-
cacy of the underlying platforms, and deployment of whole
web application stacks is as simple as pushing code to the
system hosted by the service provider. Finally, Infrastructure
as a Service (IaaS) offers virtual machines and other low
level features for consumers, which are also responsible for
managing the operating system on the VM and the entire
software stack installed on it.

In this paper, we focus on IaaS when we refer to cloud
services, as it offers the biggest flexibility to consumers and
also can be a building block for the other service models.

C. Mobile Cloud Computing

Mobile cloud computing deals with the problem of enhanc-
ing the capacity of mobile devices by offloading resource-
intensive applications to components external to the device
itself [11]. Such external devices can be cloud servers [12],
other mobile devices [13], or cloudlets (powerful servers that
are spread around the mobile’s coverage area to provide
extra capacity or to offload workload to the cloud) [14]. The
motivation for offloading CPU-intensive tasks is to enable
mobile devices to perform activities that otherwise would not
be possible because of the limitations in resources on the
device (e.g., energy, CPU, network bandwidth) [11].

In this paper, we are particularly interested in the approach
of offloading of tasks to a cloud data center. This reason is
because other mobile devices in the same network are subject
to a similar restriction in resources than the first device, and
thus outsourcing the load to another device does not solve
the problem of limited capacity—it just transfers the problem
to someone else’s device. Besides that, mobile device owners
might have concerns about privacy and security of the data
on their devices, which may discourage them to share their
resources with unknown third parties. Finally, we chose the
cloud approach over the cloudlet approach because it enables
the vast amount of resources from existing data centers to
be promptly leveraged for supporting mobile applications and
enabling rapid elasticity of applications using a huge pool of
resources.



D. Software-Defined Networks

Software-Defined Network (SDN) is a technology that pro-
poses the isolation between the control and forward planes
from networks. This enables higher level software to configure
the control plane of network packets on demand, enabling
the infrastructure to quickly adapt to new application require-
ments [3]. This is achieved with a new control layer between
applications and the infrastructure that receives instructions
from applications and emits configuration actions to the equip-
ment in the infrastructure layer.

Such a new layer performs operations that previously were
ingrained in the routing hardware. Prior to the development of
this new layer, configuration of routing hardware was labor-
intensive and error-prone, as it would require manual access
to each piece of hardware.

Network devices are still responsible for the forwarding
plane, where data packets from application transit from source
to destination hosts. This happens with consideration for
routing and priorities configured by the control layer to meet
the demand faced by the network.

E. Software-Defined Middleboxes Networking

Middleboxes comprise of networking elements that perform
specialized tasks, including security, load balancing, network
address translation, and performance improvement. Each of
these specialized operations is implemented in a hardware
device and then is inserted in the network. Some of these
operations can be CPU-intensive and may process a vast
number of packets arriving at the devices. A recent trend
in this area is the virtualization of such middleboxes, either
via outsourcing such services to the cloud [15] or by the
application of techniques similar to those from SDNs [15],
[16].

Regarding the latter approach, it requires the middlebox
functionality to be implemented in a virtual machine and then
having this VM deployed and executed in the network. Given
the CPU-intensive nature of middleboxes, virtualization of
such services consume CPU resources that are also used by the
virtual machines hosting the cloud applications. Therefore, it
adds complexity to the general management of the virtualized
system. Besides this issue, software-defined middleboxes net-
working shares some benefits of SDNs, including centralized
management of components.

F. Network Virtualization

Network virtualization enables multiple virtual networks to
be established over one or more physical networks [17]. It has
been widely adopted for enabling features such as virtual local
area networks (VLANs), virtual private networks (VPCs), and
overlay networks [17]. Recent proposals focused on aspects of
network virtualization that target multi-tenant data centers [5],
and thus they are relevant to cloud data centers.

The focus of such recent works is on ensuring that virtual
machines on the same physical network (or even on the same
host) are securely isolated at the network level from machines
that share the same physical networking resources.

III. RELATED WORK

Grandl et al. [18] proposed a system called Harmony
that manages aspects of compute, storage, and networks for
Software-Defined Clouds. Our architecture considers these
element and also considers aspects of SDN and virtual mid-
dlebox networking to achieve the vision of SDCs. Baset et
al. [19] discussed how the concepts that compose SDCs can
be leveraged to achieve efficient fault recovering and enhanced
understanding of what constitutes regular system operation—
a feature authors call “operational excellence”. The proposed
architecture focuses on high level features that enable oper-
ational excellence, and therefore it complements the features
proposed by our architecture that enable the realization of the
concept of SDCs.

Recent research on system virtualization focused on op-
timizing the technology for cloud data centers, in order to
improve its security [20], or providing scalable management
systems for the VMs in the data center [21]. Network virtual-
ization has been extensively studied to augment the standard
network technologies stack, which is hard to modify [17].
Chowdhury and Boutaba [17] present an extensive survey
in the area. More recently, a survey by Jain and Paul [9]
focused on the challenges of network virtualization and SDNs
in the specific context of cloud computing. Koponen et al.
[5] presented a system enabling network virtualization in
multi-tenant data centers such as cloud data centers. The
technology is based on the concept of network hypervisor and
it provides one of the possible building blocks for our proposed
architecture.

Software-Defined Networking [3] is a core emerging con-
cept enabling SDCs. In this field, Koponen et al. [22] proposed
a system, called Onix, that operates as a control platform in
large-scale data centers. Monsanto et al. [23] proposed an
approach enabling composition of SDNs. This can be seen as
an important step towards component-based SDNs and SDN
elements, which in turn will enable reuse of infrastructures
and easier description of networks by users (which will be
able to use “network templates” to describe their networking
requirements).

Regardless the specific approach for realization of virtual
networking in a cloud data center (network hypervisors or
SDNs), the problem of mapping computing and network
elements to physical resources, as well as mapping virtual
links into physical paths, needs to be addressed. A survey on
this problem—Virtual Network Embedding (VNE)—has been
proposed by Fisher at al. [24].

Another emerging concept that combines features of SDNs
and system virtualization is virtual middlebox virtualiza-
tion [4]. Sherry et al. [15] proposes that middleboxes op-
erations are outsourced to the cloud. The proposed system,
called APLOMB, was able to delegate most of middleboxes
tasks to the cloud, although there is a small proportion
of operations that cannot be effectively migrated or require
utilization of Content Delivery Networks to operate efficiently.
Qazi et al. [16] proposed SIMPLE, an approach that applies



SDN to facilitate the management of middleboxes. Gember et
al. [25] proposed Stratos, which shares some of the objectives
of SIMPLE but with extra features to better manage the
dynamicity of cloud environments. Hwang et al. [26] proposed
NetVM, an approach that combines middlebox virtualization
and network virtualization to extend functionalities of SDNs.

Mobile cloud computing is an emerging research area. Hon-
eybee [27] is a framework to enable mobile devices to offload
tasks, utilize resources from devices, and perform human-aided
computations. Huerta-Canepa [28] proposed an architecture to
offload computation to nearby devices using P2P techniques.
Flores and Srirama [29] proposed an approach for mobile
cloud by exploring a middleware component between the
devices and the cloud. Chun et al. [30] proposed an approach
to offload parts of a computation to the cloud to reduce energy
consumption on the device.

In relation to the problem of energy-efficient cloud comput-
ing, recent research investigated the utilization of migration
and consolidation to this goal [31]–[33]. These approaches
disregard applications running on VMs, and thus they do not
consider the impact of the consolidation and the migration
on the performance of particular applications inside the VMs.
Chetsa et al. [34] developed a white box approach targeting
HPC applications where applications’ characteristics are in-
ferred at runtime and measures for energy savings are applied
based on the application characteristics.

In our previous research, we presented the initial exploration
of many of the issues discussed in this paper, including
mobile cloud computing [35], [36], energy-efficient cloud
computing [33], [37]–[39], and dynamic provisioning and
scheduling [40]–[42]. This previous research constitutes the
building blocks for more advanced aspects not considered in
previous work, including: (i) how to utilize heterogeneous
VM types for more efficient provisioning and application
scheduling (as the previous work is based on homogeneous
VM types or address unrelated programming models such
as workflows); (ii) support for emerging programming mod-
els such as stream programming; and (iii) how to leverage
software-defined networks to enable software defined clouds.

IV. SYSTEM REQUIREMENTS AND APPLICATION MODELS

Cloud data centers are composed of thousands of servers
and hundreds of switches connecting the servers. Each server
can host up to tens of virtual machines, which can belong
to multiple customers. Depending on the applications running
on the VMs, they can have different requirements in terms
of CPU, network, and storage access. VMs belonging to a
single user can be organized on one or more VLANs to better
accommodate applications’ demands.

As the number of customers increase, the management of all
these aspects inevitably becomes complex. A software-defined
cloud enables the configuration of the underlying infrastructure
to be managed by a layer that coordinates the often conflicting
configuration needs of different requests for cloud resources.

In particular, the identified requirements for a system en-
abling Software-Defined Cloud Computing are:

• Support for high level description of user requirements
and SLAs in terms of performance and needs of the
mobile application, computing platform, and the network;

• Scalability to support multiple simultaneous users with
conflicting requirements and a large number of physical
resources;

• Capacity to quickly and dynamically modify previous
configurations of the infrastructure to accommodate new
demands;

• Efficient utilization of cloud data center resources,
achieving the required SLAs with the minimum possible
resource utilization;

• Efficient utilization of electricity to operate the infras-
tructure, so that all the aforementioned requirements
are met with the highest energy efficiency. The highest
energy efficiency requires a heavy consolidation of both
computing and network resources; and

• Efficient support for mobile cloud applications. This
means that a balance needs to be achieved between
energy expenditure in the device and in the data center,
under certain resource constraints. The balancing task is
challenging because many factors need to be considered,
such as amount of data transfer, mobile’s energy and
resources utilization incurred by each possible decision.

A. Application Models

There are many types of applications that can benefit from
the proposed infrastructure. In this section, we discuss some
of them in more details.

Independent applications: The most trivial application of
distributed architectures for computation are embarrassingly
parallel applications. This class of applications are composed
of tasks that execute independently from the others, and thus
the tasks that compose the application can execute in any
order and the failure of one task does not affect the others.
A well-known application model that follows this pattern is
Bag of Tasks (BoT) applications. Tasks in BoT are completely
independent, and thus can execute even a different binary file.
Execution time between tasks can vary significantly, especially
when tasks execute different code. Parameter sweep is another
application model that falls in this category. In this model,
the application is constituted by the execution of the same
binary subject to different input parameters on each task.
Thus, it tends to be more homogeneous than BoT. Aneka’s
Thread and Task programming models [43] follow a similar
execution paradigm, however they differ from conventional
parameter sweep by providing also a programming environ-
ment where software developers only need to describe the
application logic, while all the aspects of the application that
handle distribution and execution of tasks in the platform are
abstracted away from developers.

MapReduce: As large scale data centers with thousands
of hosts became popular, new programming models that can
take advantage of them arose. MapReduce [44] is one such
paradigms. A MapReduce job is composed of two types
of tasks: Mappers and Reducers. Mappers receive data as



input and generate intermediate (key, value) pairs that are
consumed by Reducers, which generate the output as a result.
MapReduce is becoming the programming model of choice for
Big Data analytics, and thus one can expect that the popularity
of this programming model will increase as the popularity of
Big Data analytics increases.

Stream and IoT applications: Another class of applications
that are rapidly growing is streaming-related applications. The
challenge here is being able to process a large, continuing
stream of data. Sources of streams can be social networks (for
example, Twits), or data from sensors, such as surveillance
cameras. Given that the volume of data generated by these
sources can be huge, it cannot be kept in the working storage
area that is available for query processing. Therefore, decision
is needed, as the streams arrive, on whether it should be
processed or stored [45]. Also, because of the context in which
streams are applied, along with the need for fast answers,
approximate answer to queries related to streaming tend to be
acceptable [45]. Streaming processing is strongly related to the
emerging IoT paradigm [46], where there is a constant flow
of information between sensors, web sites, and other sources
and consumers of information.

Web applications: One of the most prominent application
classes in cloud computing is multi-tier web applications.
These applications are usually composed of a presentation
tier, which in clouds is handled by web servers and is
responsible for returning http content to users; an application
tier, which implements the business logic of the application
and is processed by application servers or containers; and a
database tier that stores persistent data used by the application.
Well-engineered web applications allow each layer to scale
independently to accommodate user demand. Unlike previous
models that are usually batch processing activities, user re-
quests for web applications tend to be short-lived, should be
answered in a fraction of second, and tend to present bursty
behavior.

Mobile applications: The growing interest for smartphones
also motivated the development of new applications for these
devices. Mobile applications should be able to outsource large
computations to the cloud, reducing the energy consumption
of the device. Mobile applications also can make use of
multiple cloud services to built “rich applications”. However,
a challenging aspect of mobile applications is the fact that
mobile devices may not be all the times in an area under
coverage of networks; in this case, the application must be
able to undertake on the device itself some of the activities
that otherwise would be carried out on the cloud.

V. SYSTEM ARCHITECTURE

To enable a cost-efficient realization of user-defined virtual
infrastructures in the cloud, we propose an architecture for
Software-Defined Cloud Computing environments that is com-
posed of four distinct layers, as depicted in Figure 1.

The first layer, user layer, runs on user devices, such as
mobile devices and browsers from workstations. It provides
an interface between the end user and the resources on the

cloud, forwarding requests to the latter to complete certain
tasks that can be better completed in the cloud rather than in
the device itself. The second layer, the application layer, is the
level that decides whether requests can be executed or not and
also schedules them. The next layer is the control layer, where
the logic that controls the SDC cloud is implemented. The
bottommost layer, the infrastructure layer, is the portion where
the management actions from the layer above are applied,
generating two distinct views: the the physical plane, which
contains the physical resources that compose the data center,
and the virtual plane, where the virtual infrastructure defined
by users are realized.

In the rest of this section, we discuss each component of
the proposed architecture.

a) Mobile Scheduler (MS): The Mobile Scheduler oper-
ates on mobile devices from users. It decides which activities
from the request will be performed in the device and which
activities will be delegated to the cloud. Such a decision is
based on two key factors: capacity of the end-user device and
energy-efficiency. The scheduler also submits to the cloud the
tasks it decided to outsource.

b) Admission Control: On the top layer, user requests are
received by the cloud infrastructure by the Admission Control
component. This component decides whether the request can
be accepted or not based on a number of factors such as user’s
identity (whether the user is authorized to use application),
users’ credit, load of the system, etc.

c) Planner: The Planner is the component responsible
for deploying the SDC on behalf of the customer. It receives
the requirements and decides the placement of the elements
in the infrastructure. It includes the following activities:

• Deciding the host where each user virtual machine will
be deployed;

• Deciding in which host each virtual middlebox will be
deployed;

• Deciding the virtual routes connecting the VMs and
virtual middleboxes.

d) Performance Modeler: This module applies previous
knowledge about the infrastructure and the current resource
usage from running VMs to present an estimate of what is
going to affect the performance of hosts and the network upon
a particular VM placement decision made by the Planner.

e) Energy Modeler: This module implements an energy
model that provides to the Planner information about the
current energy usage of the infrastructure and about the impact
that particular placement decisions will have on the energy-
efficiency of the infrastructure.

f) Network Manager: The Network Manager executes
the different networking operations necessary to realize the
virtual networks calculated by the Planner. The activities
performed by this component include bandwidth reservation,
subnetwork configuration, definition of routes in the network
elements, and so on. It also monitors the status of the network
to ensure that the required behavior is being achieved and
maintained.



Fig. 1. An architecture for Software-Defined Cloud Computing environments.

The allocation of physical paths and bandwidth to virtual
routes is known as Virtual Network Embedding (VNE) [24].
It consists in mapping a series of graphs (representing the
virtual topologies) into a larger graph representing the physical
topology. This problem is complex because it requires many
aspects to be considered, in particular:

• When composing the physical path, the aggregated la-
tency added by each hop cannot exceed the maximum
latency required by the virtual link. Thus, each virtual
network will have a maximum number of switches that
can compose the virtual link;

• The maximum bandwidth of a virtual link is limited to
the smallest bandwidth available among the physical links
that compose the virtual network;

• As new requests for embeds arrive in the system, previous
embeds might need to be reconfigured to make room for
the new requests;

• As the VNE is an NP-Hard problem [24], optimal solu-
tions for large instances of the problem (as found in cloud
data centers) are infeasible. Therefore, heuristic solutions,
able to find a suitable solution in reasonable amount of
time, is required for the problem;

• Current solutions for the VNE problem ignore the prob-

lem of energy-efficient embedding. Thus, energy-efficient
algorithms for the VNE problem need to be developed.

To achieve the above, the Network Manager implements
two subcomponents. The Network Monitor checks the status
of all the network elements and links and reports the results
to the Planner, so the Planner can consider this information
when making decisions (e.g, avoiding routing traffic through
a specific switch if it seems to be malfunctioning). The
second component, the VNE Deployer, is responsible for the
realization of the VNE. To achieve this, it interacts with third-
party SDN control software to expose the infrastructure request
or interacts directly with the infrastructure layer using standard
control plane interfaces such as OpenFlow [47].

Besides the networking aspects of SDC, the overall com-
position of the SDC also needs to look at the computing
part of the problem, i.e, the mapping of VMs and virtual
middleboxes to hosts. This is the task of the Computing
Manager component of the architecture, which is discussed
next.

g) Computing Manager: The Computing Manager is the
counter part of the Network Manager that is responsible for
the realization of VM management operations on the physical
infrastructure. Tasks from this module include creation, de-



struction, and migration of virtual machines, as well as their
reconfiguration if required. This module also monitors the
status of the computing infrastructure (physical and virtual)
to ensure the required behavior is achieved and that there are
no problems with the physical infrastructure.

Formally, the problem of mapping VMs to physical hosts
can be modeled as a bin packing problem, where the resources
required by all the virtual resources (machine or middlebox)
assigned to a host cannot exceed its capacity. As in the bin
packing problem, the challenge is how to build the mapping
that minimizes the number of hosts (bins) in order to reduce
the energy consumption. However, other challenges not faced
in traditional bin packing problems arise:

• The application performance within virtual machines
should be taken into account whenever it is known. This
is because the performance of the hosted system can be
degraded if there are interferences from other VMs on the
same host. In particular, VMs that are known to demand
the same type of resources should be mapped to different
hosts to avoid contention for resources such as I/O and
cache;

• Virtual middleboxes tend to be CPU-intensive, and they
are not necessarily defined as a fixed amount of resources
to be allocated, as in the case of VMs allocated on users
behalf;

• The bin packing problem is an NP-Hard problem. In the
context of Software-Defined Cloud Computing, it needs
to be solved together with the VNE problem, which is
also an NP-Hard problem. Thus, automatic deployment
of SDCs is a very complex problem that needs to be
solved in a reasonable amount of time for large instances
(as data centers commonly contain thousands of physical
resources) and potentially for many requests.

The Computing Manager is also composed of two sub-
components. The Cloud Monitor checks and processes the
status and performance of all the computing elements and
virtual machines and reports relevant information back to the
Planner. The second component, the Cloud Deployer, manages
the virtual machines and virtual middleboxes by creating,
destroying, and migrating them as required. This requires
interaction with the particular cloud management software
used in the data center, or alternatively via direct interaction
with hypervisors.

VI. EVALUATION

The initial evaluation of the proposed framework is con-
ducted via simulation. We utilize the CloudSim toolkit [48].
CloudSim is a simulator of cloud computing environments that
allows the description of data centers, as well as users work-
loads, to enable evaluation of new scheduling and provisioning
policies in terms of energy efficiency, performance of hosted
applications, and cost. The simulator has been extended to
support modeling and simulation of SDCs.

We start the section by detailing the extensions we devel-
oped for modeling of SDCs, and then we present two use
cases for SDCs. The first use case addresses the issue of

differentiated services via QoS-aware allocation of bandwidth
for requests and the second use case addresses bandwidth-
aware VM placement.

A. CloudSim Extensions for SDCs

The class diagram of the main classes of the SDC-related
extensions of CloudSim is shown in Figure 2. Firstly, new
classes for modeling of the network infrastructure were de-
signed1 to represent the different types of switches present
in data centers [50]. The infrastructure layer also contains an
SDNHost object, which is able to send and receive packets
and forward them to the VMs and middleboxes running on the
host. Both SDNHost and Switch implement a Node interface
that contains methods that allow routing to be specified.

The NetworkOperatingSystem class coordinates resource
sharing at the network level. It creates virtual channels that
represent a QoS guarantee for an application in terms of
allocated bandwidth for a specific application and the max-
imum latency between VMs running the application. It also
configures the routing tables of all the classes that implement
the Node interface. The PhysicalTopology is associated to the
NetworkOperatingSystem and contains a description of the
infrastructure (its switches, hosts, and network links). The
NetworkOperatingSystem is associated to an SDNDatacenter
that extends CloudSim’s Datacenter.

Middleboxes are modeled as a composition of one VM and
extra attributes. The operation is modeled as a short-duration
CPU intensive computation that, on completion, modifies
the underlying request (by changing packet’s sender and/or
destination and/or size). This is an abstract class that needs to
be extended to implement policies that represent the operation
of specific middleboxes functions (e.g., load balancing, NAT,
etc).

A user request (in the class Request) is modeled as a
sequence of activities (modeled via an interface Activity) that
can be either computation (class Processing) or communica-
tion (class Transmission) that model respectively the execution
of a user request on the host and the flow of communication
between different servers (e.g., a request to a database server
originated from the web server’s execution of a http request
received from the user).

Both the physical infrastructure (hosts, switches, and the
links between them) and the virtual topologies (VMs, virtual
middleboxes, and the required connectivity between them) are
supplied to the simulator via JSON files.

Finally, all the network elements in the new SDN exten-
sion support dynamic routing, whereas routing was statically-
defined when elements were created in previous versions. This
ensures that network simulations in CloudSim conform to the
expectations of software-defined networks.

1Although some of these classes have the same name as in some
classes of NetworkCloudSim [49], they are different classes that lie
in different Java packages—org.cloudbus.cloudsim.network.datacenter and
org.cloudbus.cloudsim.sdn.



Fig. 2. Class diagram of the proposed CloudSim extension for simulation of Software-Defined Clouds.

B. Use Case 1: QoS-Aware Bandwidth Allocation

The main purpose of this experiment is to show how SDCs
(specifically controllers in SDN) can be used to serve users
with different QoS requirements (response time). For this use
case, we consider an environment with the physical topology
depicted in Figure 3. It comprises a data center with 3 hosts
via a fat-tree topology with 2 edge switches and 1 core
switch. Each edge switch connects two physical hosts as its
leaves. A virtual environment is deployed to host a 3-tier web
application (front end web server, application server, database
server), which was modeled following the model proposed by
Ersoz et al. [51]. As each VM is configured to utilize the
full resources of a physical machine, each physical machine
hosts only one VM. In this way, we can ignore impacts of
VM placement policies on final results. At the same time,
this configuration provides flexibility of simulating various
network traffic conditions, as some network routes use only
edge switches, while others may use core and edge switches.

In the simulation environment, via a controller, we can
create separate virtual channels for different data flows. The
idea is to allow priority traffic to consume more bandwidth
than normal traffic. For evaluation purposes, virtual channels
between VMs are dynamically segmented to two different
channels, priority channel and standard channel. By default
(when SDC is not used) a standard channel is used to transfer
data between VMs where the bandwidth is evenly shared
among all packets in the same channel. In contrast, a specific
amount of bandwidth is exclusively and dynamically allocated
for the priority channel, and thus such a bandwidth becomes
unavailable for other channels.

Figure 4 shows the virtual channels between VMs. Channel
1 and Channel 2 are configured as standard channels, whereas
Channel 3 and Channel 4 are set up first as standard and then
as priority channel.

Network traffic is generated synthetically based on a typical
web application model [51]. Table I shows the characteristics
of the data used for the evaluation. Each request has a
submission time and a list of processing and transmission

Core Switch

Edge Switch Edge Switch

Physical machine Physical machine Physical machine

Controller

VM1 VM2 VM3

Fig. 3. Physical topology of the simulated data center utilized in the
experiments.

VM1

(Web

Server)

VM2

(Application 

Server)

VM3

(Database 

Server)

Channel1 Channel2

Channel3Channel4

Fig. 4. Virtual channels between VMs.

descriptions. Requests are modeled as a sequence of activities
from the web server to application server and then to the
database server and all the way back to the web server. For
each request, we measure response time to verify whether we
can improve the QoS for the priority requests.

We consider three different network congestion levels: low,
medium and high. For each case, requests for the normal
traffic were sent at different rates to the standard channel: 100,
250 and 500 requests per second for low, medium, and high
congestion respectively. At the same time, priority requests



TABLE I
CHARACTERISTICS OF REQUESTS USED FOR EVALUATION. REQUESTS ARE

BASED ON THE MODEL PROPOSED BY ERSOZ ET AL. [51].

Distribution Parameters

Request inter-
arrival times

Log-normal Dist. µ=1.5627, σ=1.5458

Packet sizes Log-normal Dist. µ=5.6129, σ=0.1343 (Ch1)
µ=4.6455, σ=0.8013 (Ch2)
µ=3.6839, σ=0.8261 (Ch3)
µ=7.0104, σ=0.8481 (Ch4)

Workload
sizes

Pareto Dist. location=12.3486, shape=0.9713

were sent at a fixed rate, 100 requests per second.
Figure 5 shows average response times for normal and

priority requests under different network conditions. For all
the cases, initially one channel is shared between all the
requests and then SDC is used to dynamically allocate a
priority channel for priority requests. In the case of low
congestion, response times of both normal traffic and priority
requests are close when priority requests used the standard
channel and priority channel. However, when requests are
sent at higher rates, the traffic using a priority channel had
a significant improvement on the response time. For example,
in the medium congestion case with 250 requests sent per
second as normal traffic, the average response time for priority
requests decreased from 6.176 sec to 1.990 seconds when
priority channel is available for priority traffic. Similarly, when
the normal requests are sent at the rate of 500 requests per
second on the standard channel, the priority channel enabled
priority requests to be served within 2.589 seconds, while for
the priority traffic that uses a standard channel response time
increased to 15.389 seconds.

With this use case, we show how cloud providers can use
SDC to offer services with various QoS levels. As demon-
strated, there is a certain amount of bandwidth reserved for
the priority channel that allows priority requests to be served
in much shorter time. Although response times for the normal
traffic became slightly longer, almost constant response time
can be obtained for requests using priority channel. Using this
feature of QoS, providers can assure higher QoS for customers
that pay a higher cost for receiving better levels of service (e.g.
a paid version of mobile application) or have more critical
requirements.

C. Use Case 2: Network-Aware VM Placement

Our second set of experiments aim at showing how SDCs
can help in reducing energy consumption of cloud infrastruc-
tures by enabling consolidation of VMs during placement,
enabling network elements connecting unused hosts to be shut
down. In this case, we consider both general-purpose VMs and
virtual middleboxes. We simulated a data center with 40 hosts.
Each host has 16 cores, each core with capacity of 4000 MIPS,
connected to a Gigabit switch.

We generated 100 VM creation requests where the types
of VMs are randomly selected among the configurations

0

2

4

6

8

10

12

14

16

18

Standard

channel /

Low

congestion

Priority

channel /

Low

congestion

Standard

channel /

Mid

congestion

Priority

channel /

Mid

congestion

Standard

channel /

High

congestion

Priority

channel /

High

congestion

R
es

p
o
n

se
 T

im
e 

(s
ec

) 

Normal Traffic

Priority Traffic

Fig. 5. Average response time of normal and priority requests for different
network traffics

described on Table II. Each request also has a different start
time and a life time following exponential distribution and
Pareto distributions respectively [52], thus the VM is destroyed
after the set life time expires. As VM placement is a bin
packing problem, we compared two widely utilized heuristics
for this purpose, namely Best Fit and Worst Fit. Because the
packing problem described in this use case has two dimensions
(bandwidth and CPU power), normalized requirements in
terms of CPU (product between number of cores and required
power per core) and bandwidth (in terms of the host capacity)
are used. The Best Fit algorithm selects the most utilized host
with enough resource to serve the VM request, so VMs can
be consolidated in the smaller number of hosts. On the other
hand, the Worst Fit algorithm selects the least loaded host
to maximize computation power. For both cases, idleness is
calculated based on the available area of the 2-dimensional
space that represents available resources.

Table III shows the results for this experiment. Energy
consumption is calculated based on the linear power model
presented by Pelley et al. [53]. As the result shows, the data
center can save up to 26% of its energy consumption by using
SDC techniques along with the Best Fit algorithm for placing
a VM. Moreover, at any given time a maximum of 25 hosts are
in use, which means 15 hosts are idle throughout the whole
experiment. Those 15 hosts can be turned off to save more
energy. SDNs also enable network devices to be turned off by
the controller [54]. Thus, when network elements only connect
those 15 off-lined hosts, they could be turned off to save
energy, which results in further savings in energy consumption.

VII. CHALLENGES AND OPPORTUNITIES

Achieving the vision of Software-Defined Cloud Computing
requires extensive research and development in key topics,
discussed in the rest of this section. As the area of SDC
matures and the topics below start being addressed, more
research questions are likely to be identified.

A. Mobile Cloud Computing

There are important open questions in the area of Mobile
Cloud computing that need to be addressed. The first one
concerns the decision of where mobile applications should be
executed. First, the whole computation could be outsourced
to the cloud to reduce the energy consumption of mobile



TABLE II
VIRTUAL MACHINE CONFIGURATIONS USED FOR THE VM CONSOLIDATION EXPERIMENTS.

VM Type Web Server App Server DB Server Proxy Firewall
Mips 2000 3000 2400 2000 3000
Cores 2 8 8 8 8

Bandwidth 100 Mbps 100 Mbps 100 Mbps 500 Mbps 500 Mbps

devices. A second approach concerns deployment of cloudlets
that are placed between the devices and data centers. They
provide an approach with smaller communication latency for
the outsourced computation. Computation can also be split and
performed partially on the device and partially on the data
center or cloudlet. Each decision has implications in terms
of latency, performance, and energy consumption. Finally,
another approach for outsourcing computation is distributing
computation among nearby mobile devices that form an ad
hoc network of volunteer devices, a concept that utilizes
elements from established research in the area of volunteer
computing [55].

Another open problem is a programming model optimized
for mobile applications. Appropriate programming models can
help in generating more efficient partitioning of applications,
and can accelerate the adoption of the technology by providing
standard frameworks that could be incorporated to currently
available platform-specific mobile application development
environments.

B. Accurate Modeling and Prediction of the Infrastructure’s
Energy Consumption and Performance

One important aspect of achieving SDCs is the ability
to answer what-if questions about potential virtual resource
placement and its impact on energy consumption. This will
enable the Planner to optimize the placement and minimize
resource and energy wastage to operate the infrastructure.

To achieve the above goals, research towards accurate
modeling of energy consumptions by applications, virtual re-
sources, and physical resources is required. The model should
be able to operate both as a “black box” model of virtual re-
sources (i.e., without knowledge about the applications hosted
by the user’s virtual infrastructure) and “grey box” model
(where some knowledge about the application is available).
The need for supporting both models goes beyond more
accurate energy modeling: because techniques for reduction
of energy consumption can impact application performance.
More aggressive energy reduction techniques could be applied
if one can be confident about the real performance impact on
the application.

In parallel with the previous need for energy consumption
modeling, the Planner needs to be able to estimate the per-
formance impact that its placement decisions can incur on
the system. The same discussion about black or gray boxes
modeling also applies in this case.

C. Market and Pricing Models for SDCs

Better market and pricing models than “one size fits all” are
necessary to enable SDCs. For example, the provider could

TABLE III
ACCUMULATED ENERGY CONSUMED BY PHYSICAL HOSTS AND THE

MAXIMUM NUMBER OF SIMULTANEOUSLY UTILIZED HOSTS FOR
DIFFERENT VM PLACEMENT ALGORITHMS.

Algorithm Energy consumption by hosts (Wh) Max Hosts

Best Fit 164025 25

Worst Fit 221841 40

offer better prices if the user request could be slightly adapted
to enable more efficient and/or balanced use of physical
resources. Incentives could also be present to help in driving
workloads out of peak time to times where there are more
free resources. This could be achieved with the application
of negotiation techniques where requests from users would
be replied with counter-offers from providers proposing one
or more potential different configurations and the discount
price to be applied to each of the options. This change in
configuration could be on “time” (i.e., delaying the request
to a point in the future) or on “space” (i.e., changing the
specification of the required virtual infrastructure). Users could
accept one of the suggestions of the providers or go ahead with
the initial requested configuration at the provider’s full price.

Moreover, because knowledge about the user workload can
help in increasing the resource and energy efficiency, providers
of SDCs should offer incentives for users that disclose infor-
mation about the general type of applications to be executed in
the infrastructure (e.g, CPU-intensive, I/O-intensive, parallel,
MapReduce, and so on).

D. Combined VNE and VM Placement Problems

As discussed previously, both problems of finding an op-
timal virtual network embed for the virtual links from user’s
requests and the problem of optimal location of virtual re-
sources (both virtual machines and virtual middleboxes) are
NP-Hard problems. Therefore, to be solved in feasible time,
heuristics and meta-heuristics need to be applied.

More research is necessary in order to understand better
the interplay between these two placement problems and
to determine how the goal of energy- and resource-efficient
solution to the problems can be achieved while performance
of applications is guaranteed.

E. Energy-Efficient Middlebox Virtualization

Most of the research in energy-efficient cloud computing has
so far focused on reducing energy usage of CPUs for general
purpose VMs. Virtual middleboxes provide an extra challenge
in the field as they are CPU-intensive VMs whose performance
can affect the speed of the network traffic and thus impact



the performance of applications in unpredictable ways. How
to reduce energy consumption of virtual middleboxes without
impacting the network traffic is an open research challenge.

F. Language for Description of SDCs

Research on how to provide to users intuitive and simple
ways of describing all their requirements are needed. In this
sense, focus could be on ontologies for description of SDCs
or on Domain Specific Languages (DSLs) that capture all the
intricacies of an SDC.

Furthermore, user requirements could be described in dif-
ferent abstraction levels, and simultaneous support for all of
them is required in order to expand the user base of SDCs.
Ideally, users could range from engineers with clear idea of
the virtual infrastructure they want (number and types of VMs
and network topology and middleboxes between them) to
managers with a high level view of the system demands.

The language should also cater for the elasticity of the
cloud, so simpler ways to describe how the system should scale
up and down with the demand must be part of the solution.

G. Autonomic Cloud Computing

Finally, the view of Software-Defined Cloud Computing
can only be fully implemented with research and development
towards autonomic cloud computing. The first reason for this
is that cloud data centers are composed of thousands of
hardware elements that can fail at any time. Thus, to enforce
SLAs, failures of components need to be detected as early
as possible (self-management) and corrective steps needs to
be automatically performed in order to speed up the recovery
(self-healing). Second, clouds are elastic per nature, and the
demand of users, as well as number of SDC requests, can
vary along the time. The Planner needs to react to changes in
number and types of requests to achieve the system’s goals of
resource and energy efficiency (self-optimization).

Finally, security of all these processes is an intrinsic part of
the system for users to trust the SDC provider and utilize it
(self-protection).

VIII. CONCLUSIONS

Software-Defined Cloud Computing is emerging as a result
of advances in the areas of cloud computing, system virtualiza-
tion, software-defined networks, software-defined middleboxes
networking, and network virtualization. Before SDCs become
a reality, however, many challenges need to be overcome.

In this paper, we presented an architecture enabling SDCs
focusing on variety of applications including compute and
data-intensive applications in Web, mobile, and enterprise en-
vironments. We discussed the different elements that comprise
the architecture and evaluated through simulation the potential
of SDCs in two use cases—QoS-aware bandwidth allocation
and bandwidth-aware, energy-efficient VM placement. We also
discussed the open challenges and opportunities arising from
this emerging area.

As SDCs and the enabling technologies progress, we expect
new challenges to arise and new application scenarios to

emerge that will make SDCs a mainstream technology with
applications in all the industry sectors.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, Jun. 2009.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles, 2003.

[3] Open Network Foundation, “Software-defined networking: The new
norm for networks,” https://www.opennetworking.org/images/stories/
downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf, 2012.

[4] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward software-
defined middlebox networking,” in Proceedings of the 11th ACM Work-
shop on Hot Topics in Networks, 2012.

[5] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, 2014.

[6] J. E. Smith and R. Nair, Virtual Machines: Versatile platforms for
systems and processes. San Francisco: Morgan Kauffmann, 2005.

[7] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7,
no. 6, pp. 34–45, June 1974.

[8] S. W. Devine, E. Bugnion, and M. Rosenblum, “Virtualization system
including a virtual machine monitor for a computer with a segmented
architecture,” US Patent 6397242, May 2002.

[9] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: A survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, Nov. 2013.

[10] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Gaithersburg, USA,
Special Publication 800-145, Sep. 2011.

[11] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, Jan. 2013.

[12] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-
based augmentation for mobile devices: Motivation, taxonomies, and
open challenges,” IEEE Communications Surveys & Tutorials, vol. 16,
no. 1, Feb. 2014.

[13] N. Fernando, S. W. Loke, and W. Rahayu, “Dynamic mobile cloud
computing: Ad hoc and opportunistic job sharing,” in Proceedings of
the 4th IEEE International Conference on Utility and Cloud Computing
(UCC’11), 2011.

[14] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” Pervasive Computing, vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[15] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, Oct. 2012.

[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in Proceed-
ings of the ACM SIGCOMM 2013 conference on SIGCOMM, 2013.

[17] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862–876, Apr.
2010.

[18] R. Grandl, Y. Chen, J. Khalid, S. Yang, A. Anand, T. Benson, and
A. Akella, “Harmony: Coordinating network, compute, and storage in
software-defined clouds,” in Proceedings of the 4th Annual Symposium
on Cloud Computing, 2013.

[19] S. A. Baset, L. Wang, B. C. Tak, C. Pham, and C. Tang, “Toward
achieving operational excellence in a cloud,” IBM Journal of Research
and Development, vol. 58, no. 2/3, Mar. 2014.

[20] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested vir-
tualization,” in Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, 2011.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus open-source cloud-computing
system,” in Proceedings of the 1st workshop on Cloud Computing and
its Applications, 2008.



[22] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX conference on
Operating systems design and implementation, 2010.

[23] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” in Proceedings of the 10th USENIX
conference on Networked Systems Design and Implementation, 2013.

[24] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 14, no. 4, pp. 1888–1906, Oct. 2013.

[25] A. Gember et al., “Stratos: A network-aware orchestration layer for
virtual middleboxes in clouds,” Available at http://arxiv.org/abs/1305.
0209, 2014.

[26] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High perfor-
mance and flexible networking using virtualization on commodity plat-
forms,” in Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation, 2014.

[27] N. Fernando, S. W. Loke, and W. Rahayu, “Honeybee: A programming
framework for mobile crowd computing,” in Mobile and Ubiquitous
Systems: Computing, Networking, and Services, ser. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, K. Zheng, M. Li, and H. Jiang, Eds. Springer
Berlin Heidelberg, 2013, vol. 120, pp. 224–236.

[28] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services, 2010.

[29] H. Flores and S. N. Srirama, “Mobile cloud middleware,” Journal of
Systems and Software, vol. 92, pp. 82–94, June 2014.

[30] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the 6th Conference on Computer Systems (EuroSys), 2011.

[31] L. Tsai and W. Liao, “Cost-aware workload consolidation in green cloud
datacenter,” in Proceedings of the 1st International Conference on Cloud
Networking (CLOUDNET), 2012.

[32] G. A. Geronimo, J. Werner, C. B. Westphall, C. M. Westphall, and
L. Defenti, “Provisioning and resource allocation for green clouds,” in
12th International Conference on Networks (ICN), 2013.

[33] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2013.

[34] G. L. T. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, and G. D. Costa,
“A runtime framework for energy efficient HPC systems without a
priori knowledge of applications,” in Proceedings of the 18th IEEE
International Conference on Parallel and Distributed Systems (ICPADS),
2012.

[35] J. Huang, R. Zhang, R. Buyya, and J. Chen, “MELODY-Join: Efficient
earth mover’s distance similarity join using MapReduce,” in Proceedings
of the 30th IEEE International Conference on Data Engineering, 2014.

[36] H. Flores, S. N. Srirama, and R. Buyya, “Computational offloading or
data binding? bridging the cloud infrastructure to the proximity of the
mobile user,” in Proceedings of the 2nd IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering, 2014.

[37] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[38] M. A. Salehi, R. K. Pisipati, K. S. Deepak, and R. Buyya, “Preemption-
aware energy management in virtualized datacenters,” in Proceedings of
the 5th International Conference on Cloud Computing, 2012.

[39] A. Beloglazov and R. Buyya, “OpenStack Neat: A framework for
dynamic and energy-efficient consolidation of virtual machines in Open-
Stack clouds,” Concurrency and Computation: Practice and Experience,
vol. to appear.

[40] M. Mattess, C. Vecchiola, and R. Buyya, “Managing peak loads by
leasing cloud infrastructure services from a spot market,” in Proceedings
of the 12th International Conference on High Performance Computing
and Communications, 2010.

[41] R. N. Calheiros and R. Buyya, “Cost-effective provisioning and schedul-
ing of deadline-constrained applications in hybrid clouds,” in Proceed-
ings of the 13th International Conference on Web Information Systems
Engineering (WISE’12), 2012.

[42] ——, “Meeting deadlines of scientific workflows in public clouds

with tasks replication,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 7, pp. 1787–1796, July 2014.

[43] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for elastic
applications on hybrid clouds,” Future Generation Computer Systems,
vol. 28, no. 6, pp. 861–870, June 2012.

[44] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[45] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. Cam-
bridge: Cambridge University Press, 2011.

[46] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[47] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[48] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
Jan. 2011.

[49] S. K. Garg and R. Buyya, “An environment for modelling and simulation
of message-passing parallel applications for cloud computing,” Software:
Practice and Experience, vol. 43, no. 11, pp. 1359–1375, Nov. 2013.

[50] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Computer Communication
Review, vol. 38, no. 4, pp. 63–74, Oct. 2008.

[51] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network
traffic in a cluster-based, multi-tier data center,” in Proceedings of
the 27th International Conference on Distributed Computing Systems
(ICDCS’07), 2007.

[52] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement al-
gorithms for on-demand clouds,” in Proceedings of the 3rd International
Conference on Cloud Computing Technology and Science, 2011.

[53] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Under-
standing and abstracting total data center power,” in Proceedings of the
Workshop on Energy-Efficient Design, 2009.

[54] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and
N. Pissinou, “Joint host-network optimization for energy-efficient data
center networking,” in Proceedings of the 27th International Symposium
on Parallel & Distributed Processing (IPDPS), 2013.

[55] D. P. Anderson, “Public computing: Reconnecting people to science,” in
Proceedings of the 1st Conference on Shared Knowledge and the Web,
2003.


