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A B S T R A C T

The execution of data intensive analysis workflows in a multi-cloud environment, such as the World Large
hadron collider Computing Grid (WLCG) at CERN, requires a large amount of input data, which is stored
in multiple storage elements. The turnaround time taken by an individual analysis workflow running on an
edge machine is mostly affected by the data reading time. Minimizing the data reading time can improve
the overall efficiency of the data analysis process. To overcome this problem, we have used Speculative
Scheduling to optimize the multi-cloud analysis workflows by intelligently streaming data before a task arrives
for execution at the edge machine. We propose an Event System (ES) which is an in-memory Serverless process
responsible for proactively providing input data to the workflow processes. It prefetches the data from the
storage elements to the memory of the edge machine, which executes the workflow. Using locality aware
scheduling and prefetching algorithms, it performs Speculative Scheduling on the basis of the evaluation of
historic execution logs using the Bayesian Inference model. The Serverless ES learns about the incoming jobs
ahead of time and makes use of intelligent data streaming to supply data to these jobs, thus reducing the overall
scheduling and data access latencies and leading to significant improvements in the overall turnaround time.
We have evaluated the proposed system using a large analysis workflow from High Energy Physics (HEP)
by emulating the WLCG infrastructure in a controlled environment. The results have shown that by using
speculative and locality aware scheduling techniques, significant improvements (i.e. over 30%) can be achieved
in the execution of data intensive workflows in the cloud environment.
1. Introduction

Today’s world is becoming more instrumented and digitally en-
hanced, leading to the production of vast amount of data. This data
needs to be rapidly processed to produce key insights and forecasts
in a timely manner. The scale of the data is so big that no single
data centre or computational infrastructure is adequate enough to cope
with the storage and data analytics challenges. Massive computational
infrastructures are spreading all around the world to store, stream,
and process this data in the shortest possible time. These decentralized
infrastructures cooperate and coordinate to offer ubiquitous compu-
tational facilities; however, those need to be optimized, intelligently
scheduled, and proactively exploited to produce the lowest possible
turnaround times.

For example, the ALICE experiment at CERN records around 50
PB of data every year in its multi-cloud storage environment [1]. The
total storage requirement only for proton–proton (pp) and lead-lead
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(pb-pb) collisions has become 15 PB [2]. This data is used by the
High Eenergy Physics (HEP) users to perform analysis tasks such as
particle identification, which requires data events as input data [3].
The input data contains multiple attributes of the particles, such as
velocity, energy loss, and total energy. The measurement of the particle
velocity is further based on the time of flight, Cherenkov angle, and
transition radiation. A job contains multiple pattern matching tasks,
for example, matching the time of flight for a specific particle and
the cherenkov angle of a required particle. A single task performs
pattern matching with reference to the preexisting values of a particular
particle. The analysis tasks follow a workflow that enables a user
to perform classification, regression, and function fitting to generate
multi-dimensional histograms for producing novel physics insights [4].
The HEP data analysis is the least efficient of all the workloads in ALICE
because it is massively I/O intensive [2,5].

Thousands of HEP users are analysing the experimental data si-
multaneously by performing the analysis tasks. These analysis tasks
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Table 1
Example of a Lego workflow [6].

Wagon State Mem
total

Mem
/evt

Time
ms/evt

Total
time ms

I/O
wait ms

Baseline OK 250 MB 0.182
KB/evt

34.10 – –

Wagon 1 OK 591 MB 0.158
MB/evt

1.02 3815 3051

Wagon 2 OK 892 MB 0.113
MB/evt

1.04 8209 6567

Wagon 3 Fail – – – – –

Full train Fail – – – – –

require a large number of events as input data. This data, generated
from the Large Hadron Collider (LHC) experiments, is stored in a multi-
loud environment. Analysis tasks can be performed individually or
ollectively by using an analysis workflow system [6]. such as LEGO
Lightweight Environment for Grid Operators).

The LEGO workflow system was created to improve the efficiency of
he analysis process in the ALICE experiment [6]. The users can submit

their analysis tasks either individually or by using the LEGO workflow
system. The LEGO workflow consists of different wagons containing
various analysis jobs. It collects multiple analysis tasks that require the
same dataset and runs them as one analysis job. During this process, the
data is read once and then it is used for multiple analysis tasks in the
Lego workflow. The workflow is managed by the workflow operators,
who define the dataset and configure the jobs within the workflow.
Table 1 shows an example of the Lego workflow run, containing
measurements such as status of the test, memory consumption in total
and per event, and the time used by each event.

The execution of a workflow, on an edge machine that runs from
tart to end is known as turnaround time and this is the most crucial
arameter in terms of efficiency. The turnaround time is a combination
f various time parameters, such as queue time, reading time and
xecution time. 70%–80% of this time consists of the I/O time based
n waiting and data reading time. Table 1 shows that wagon 1 of
he analysis workflow consumes 591 MB of total memory, has an
vent size of 0.158 MB/evt, consisting of 3740 events in total for
he analysis job. The time taken by each event to execute is 1.02 ms
nd the total turnaround time for the job is 3815 ms. The waiting
ime and the reading time for this particular job are 3051 ms and
136 ms respectively. Reading time comprises more than 70% of the
otal turnaround time. Reading a large number of events and executing
housands of jobs ultimately leads to a massive increase in turnaround
ime.

Data reading is the most time-consuming process in the whole
cheduling process in a multi-cloud environment because of the number
f events that are present in different storage places [7]. The analysis

process, either performed by an individual user or by using LEGO
workflow for an organized analysis, needs an efficient and intelligent
data reading Serverless system to reduce data access times. The aim
of this research is to design an efficient and optimized Serverless data
reading system which reduces I/O activity and increases scheduling
efficiency. We propose a speculative Serverless Event System (ES) which
improves the efficiency of the data reading process by increasing the
overall throughput of HEP data analysis process. ES is a novel model
which has an efficient data scheduling and prefetching algorithm based
on the locality of input data. It also performs task speculation and
prefetches the input data for these tasks. A Serverless monitoring sys-
tem on the edge machines records tasks execution logs based on their
execution history. These logs are intelligently evaluated to speculate the
upcoming tasks, on the basis of their arrival patterns, and the insights
are used to stream data in advance, leading to reduced data access time
for the upcoming tasks.
2 
To optimize the overall efficiency of the scheduling process in
Serverless edge computing environment, the system needs to know the
capacity as well as the capability of the edge machine that executes the
tasks. The system also needs to know how many jobs may be coming
and what their requirements are. Then matchmaking is performed
to allocate the best resources that can efficiently execute these jobs.
Execution of these jobs becomes complex and time consuming due
to the large input data sets. Multiple users generate multiple analysis
jobs, which require multiple input events, resulting in increased data
access latencies and scheduling delays. Studies [8,9] show that a single
analysis job has to wait for 5 min on average before it starts execution.

This paper addresses the problem of a large turnaround time in the
ata analysis process using a Serverless Event System. The data analysis

process requires a large amount of input data, which is stored in the
torage elements. Reading the large amount of input data requires more
ime, which increases the total turnaround time of the analysis process.

The main contributions of this paper can be summarized as follows:

• Serverless Event System (ES): We introduce a novel ES that
leverages serverless computing to dynamically manage resources
and optimize the execution of data-intensive workflows.

• Locality Aware Scheduling (LAS): We develop a locality aware
scheduling algorithm that prioritizes tasks with similar data re-
quirements, reducing data load and unload cycles and improving
memory usage efficiency.

• Speculative Aware Scheduling (SAS): Using historical execution
logs and Bayesian inference, our ES predicts the arrival and type
of future tasks, prefetching necessary data in advance to minimize
data access latencies.

• Performance Improvement: Our proposed system demonstrates
significant improvements in reducing the turnaround time for
data-intensive workflows, with an observed reduction of up to
37%.

• General Applicability: While evaluated on ALICE workloads, our
framework is adaptable to various data-intensive and computa-
tionally demanding applications, such as machine learning, big
data analytics, and real-time data processing.

The rest of the paper is structured as follows: Section 2 surveys
state-of-the-art scheduling and prefetching algorithms relevant to this
work and identifies performance gaps in existing research. Section 3
defines the proposed architecture along with the design of Locality
Aware Scheduling (LAS) and Prefetching. It also explains the concept of
Speculation Aware Scheduling (SAS) on the basis of the arrival pattern
f the tasks.

Section 4 presents the performance evaluation and the details about
the experimental system. Finally, Section 5 concludes the paper along

ith the future directions.

2. Related work

An Analysis process, either performed by an individual user or by
using a LEGO workflow in any multi-cloud environment [28], has to
access a large amount of data. During task execution, a significant
amount of time is taken by the data reading process due to the limited
size of the host memory. Due to limited memory, a task has to wait
for input data during execution. This waiting time can be reduced by
using an efficient and intelligent data reading process. The data reading
process consists of data scheduling and prefetching algorithms.

Anjum et al. [12,29] describe a Data Intensive and Network Aware
cheduling Algorithm (DIANA) and federated systems, which specifi-
ally addresses the problem of bulk jobs in an analysis environment.
t mainly caters the network performance and the computation capa-
ility in the global job scheduling process. DIANA achieves efficient
erformance by considering the network latencies. ES on the other
and performs the scheduling on the basis of the locality of the input

data which is required by the upcoming task in a queue. Ibrahim
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Table 2
Logical division of scheduling and prefetching algorithms.

Scheduling technique Strengths Limitations Category Remarks

CTC [10] Proposes an innovative scheduling
algorithm considering both execution
time and cost.

Complexity may pose
implementation challenges.

Cost optimization Limited scalability; complexity
may hinder adaptability.

CMWSL [10] Novel approach leveraging clustering
for task scheduling.

Effectiveness may vary depending
on workloads.

Load balancing Adaptability to varying workloads
suggests scalability.

CE-FT [11] Fault-tolerant scheduling strategy for
real-time tasks.

Balancing cost-effectiveness with
fault tolerance can be challenging.

Cost optimization Scalability, but may incur higher
costs.

DIANA [12] Optimizing scheduling for
data-intensive and network-aware
applications.

Requires significant network
insights.

Network and data intensive Limited scalability due to network
requirements.

MAS [13] Emphasizes memory considerations
in scheduling.

Focus on memory may overlook
comprehensive resource
management.

Memory optimization Scalability with adaptable
memory management techniques.

RAS [14] Significant improvement in execution
throughput and resource utilization.

Does not address compatibility
issues.

Attribute-based scheduling Attribute selection suggests
scalability potential.

Priority in MS [15] Optimizing memory usage in
scheduling.

Specific focus on memory. Memory optimization Memory optimization critical for
scalability in HPC environments.

FCFS, SJF [16,17] Better performance in small clusters,
higher throughput.

No pre-emption, Longer processes
have to wait more.

Basic scheduling Higher throughput for simple
scheduling scenarios.

DS [18,19] High for small clusters, based on
data locality.

Higher probability of job
starvation.

Data locality Improved data access
performance.

CTC [20] Instance-intensive cost-constrained. Limited to cloud computing
platform.

Cost optimization Effective for cloud resource
management.

RAFLOW [21,22] Chain Reaction across multiple
layers, short-long sequential reads.

High Latency because of
retransmissions, Less I/O
acceleration.

Prefetching Efficient for sequential read
operations.

AMP, SARC [23,24] High throughput for multiple data
streams, dynamic cache management.

Limited to sequential workload,
naive, limited to sequential
prefetching.

Cache management Improved throughput for multiple
data streams.

STEP [25] Avoid disc thrashing. Limited scope for input stream. Prefetching Reduces disc thrashing for
sequential workloads.

FAST [22] Overlap CPU time with I/O. Limited to SSDs. Prefetching Efficient start-up for applications.

LYNX [26] Prediction of future workload. Limited size of meta data.
Limited to SSDs.

Predictive scheduling Efficient for SSD-based storage
systems.

VICTREAM [27] Extended locality aware scheduling. Limited to GPU, naive. Locality-aware scheduling Effective for GPU workloads.

SAS (This paper) Efficient data reading process,
Speculation by using locality aware
scheduling and prefetching.

Lacks machine learning
techniques for increased
efficiency.

Speculative scheduling Improved data reading through
speculation and prefetching.
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et al. [30] discusses various task scheduling algorithms in cloud com-
puting environment such as ERAS [31] which ensures reliability and
erformance during resource allocation. Zhao et al. [14] proposed a
esource Attribute Selection (RAS) scheduling algorithm by keeping

n mind the attributes of the available resources. It schedules a task
n a node on the basis of the compatibility and the fitness functions
uch as computing capability, storage space and network bandwidth.
n comparison to this, ES does caters the compatibility of the tasks and
he available resources but on the basis of its data locality. Kanemitsu

et al. [10] proposed Clustering for Minimizing the Worst Schedule
ength (CMWSL) concept of task clustering, in which every task in a
ask cluster is assigned to the same processor for execution to minimize
he cost of scheduling. ES combines the tasks on the basis of their data
equirements so that all of them can execute on the same resource
olding the data.

In prefetching, the key problems are ‘‘what to prefetch’’ and ‘‘when
to prefetch’’. There are various prefetching algorithms available, for
example Zhang et al. [22] discuss various data prefetching algorithms
uch as RA ReadAhead, Linux prefetching, SARC [24] and AMP [23].

ReadAhead also known as sequential prefetching is a technique to
bridge a gap between the data present in storage and the application
which requires it for processing. SARC, Sequential prefetching in Adap-
tive Replacement Cache, is based on two algorithms, prefetching and
cache management. These prefetching algorithms are based on sequen-
tial data access and are not intelligent in terms of data prefetching.
 i

3 
Our proposed algorithm performs task speculation and performs the
refethcing on the basis of execution logs.

Laga et al. proposed a prefetching mechanism called Lynx [26].
Lynx can pre-fetch data in both a sequential and random manner. It
uses a mechanism to learn I/O patterns from applications and stores
hese patterns by using a machine learning technique based on Markov
odel. Lynx improved the Linux ReadAhead efficiency by 50% on

xecution time. Wu et al. [] introduced a hybrid scheduling algo-
ithm that combines data locality and task prioritization, leveraging
loud elasticity to dynamically allocate resources and improve overall
orkflow efficiency

Jun et al. proposed Victream, a new framework for memory in-
ensive processing on multiple GPUs [27]. It uses a novel scheduler

which minimizes the data swapping between the GPU memory and
a host memory. The idea is to extend the Locality Aware Scheduler,
which uses the greedy approach to minimize the movement of input
and output data. When the scheduler schedules a task, it optimizes
his process by prioritizing tasks from the queue, which reuse the data
lready residing within the GPU and thus minimizes the amount of
ata swapping required. As an extension to the Locality Aware Sched-
ler, Victream performs prefetching of input data. This is performed
synchronously to task execution, so that prefetching can be done for
pcoming tasks. The Victream is a naive algorithm as it only performs
ocality aware scheduling limited to GPUs. The proposed algorithm
n the paper contains speculation based scheduling and prefetching
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Fig. 1. Event system.

algorithm which speculates the tasks on the basis of their execution
frequency and is more efficient than the existing techniques.

Table 2 explains the logical division of various existing data schedul-
ing and prefetching algorithms. This comparative analysis has been
done on the basis of their strengths and weaknesses. Few of the al-
gorithms, such as RA, RAFLOW [21] and LYNX were implemented
and embedded into the Linux kernel, while others like AMP, SARC,
STEP [25], FAST [22], FLASHY [32], FLAP [33] and VICTREAM were
carried out at user level applications. We have simulated the proposed
algorithms and achieved the significant improvement in terms of la-
tency in the data analysis process. The proposed system is a user level
application but can be further embedded into the Linux kernel.

The prefetching algorithm in the Event system has the same ob-
jectives as RAFLOW, VICTREAM or any other prefetching algorithm;
i.e. to efficiently read the data ahead of time. Its combination with
locality aware scheduling to perform task speculation makes it effective
and more efficient. It minimizes the amount of data swapping between
the storage and memory of the node which makes the overall analysis
process more efficient.

3. Proposed approach: An serverless event system

We propose a Serverless Event System (ES) for carrying out the
workflow analysis. The ES is implemented in a serverless computing
environment as an in-memory process on a host machine. The manage-
ment and operations of the ES are handled by one or more CPUs of
the host machine, while the ES focuses on rapidly providing input data
in the form of events to tasks. The Serverless Event System includes
an efficient scheduling algorithm that takes into account the locality of
input data, as well as a prefetching algorithm responsible for delivering
input data to analysis tasks ahead of their scheduled arrival. Moreover,
the ES uses task execution logs to perform task speculation, thereby
optimizing task execution based on historical data. This implementa-
tion utilizing serverless computing techniques offers advantages such
as automatic resource management, scalability, and reduced server-side
management, which contribute to the analysis workflow’s efficiency
and performance.

The Event System (ES) employs a speculative execution mechanism
that uses historical execution logs and Bayesian inference to predict
the arrival patterns and requirements of future tasks. This predictive
approach allows the ES to prefetch data before the tasks are formally
scheduled, optimizing data access times. Additionally, the scheduler
utilizes this prefetched data to efficiently manage the sequence of tasks
that are currently in the queue, ensuring seamless and rapid execution.

Fig. 1 shows the general working of the ES and its interaction with
the analysis workflow, storage and main memory of the host machine.
The main memory accommodates multiple processes simultaneously,
such as operating system and its applications. The ES interacts with the
main memory and reserves the unused memory slot for its operations.
4 
Fig. 2. Locality Aware Scheduling.

The size of the reserved memory slot is assigned dynamically and
is dependent on the available memory and the requirements of the
analysis task.

The analysis workflow contains multiple tasks in a task queue which
are defined as 𝑇1, 𝑇2, . . .𝑇𝑁+1 as shown in the workflow in Fig. 1.
Each task requires several events which are defined as 𝐸11, . . . .𝐸𝑁 𝑛
as an input data. For example, 𝑇1 needs 𝐸11, 𝐸12, 𝐸13 and 𝐸14. The
ES schedules the tasks, prefetches the respective data events from the
storage and subsequently makes them available for the upcoming tasks.
The ES already has the information about the upcoming tasks, so the
prefetching algorithm prefetches the required events for subsequent
tasks. When the previous task is in the execution phase, the ES starts
prefetching the events for upcoming tasks.

The data prefetching mechanism in the Event System (ES) is de-
signed to operate seamlessly without requiring any modifications to the
existing applications. The ES leverages historical execution logs and a
Bayesian inference model to predict and prefetch the necessary input
data from storage. This data is proactively loaded into the memory of
edge machines before the tasks are scheduled, ensuring that data is
readily available when needed.

The ES contains a task scheduler which is based on the locality
of the input data, as described in Section 3.1. Section 3.2 describes
the event prefetching algorithm for tasks at the local queue level. To
increase the efficiency of the analysis process, Section 3.3 describes
an intelligent speculative prefetching mechanism that is adopted by
classifying the historical execution logs from the monitoring machine
in the computing environment.

3.1. Locality Aware Scheduling (LAS)

An analysis workflow interacts with the ES to read data, and then
the ES sends the query to storage to obtain the required events. The ES
contains a novel scheduler which performs locality aware scheduling,
based on both the task and the locality of input data. Tasks require
input data from storage. The ES downloads the required data and stores
it in memory until all the tasks with the same input data requirement
successfully finish executing. It selects the tasks from the scheduling
queue that reuse the data residing in memory, as much as possible. This
technique reduces the number of data loading and unloading iterations,
which ultimately reduces the input data reading time.

Fig. 2 shows the working model of the scheduling based on the
locality of the task and the required input data. The task queue contains
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multiple tasks, along with a list that contains the input requirements for
all the tasks. When 𝑇1 arrives for execution, ES downloads its respective
input events 𝐸1𝑁 and executes the task. After the completion of 𝑇1, the
scheduler checks the input requirements of the next task in the queue. If
the input data requirement for 𝑇2 differs from the previous task 𝑇1, the
scheduler checks the next task 𝑇3 for its requirements. Having similar
input requirements as 𝑇1, 𝑇3 gains priority over 𝑇2 in the updated queue
as shown in Fig. 3. The proposed scheduler schedules the tasks in such
a manner that all the tasks in the task queue, which require similar
input data events for execution, are prioritized. Algorithm 1 explains
the scheduling process on the basis of the locality of the task. The
ES checks the input requirements of the upcoming tasks 𝑇𝑁 + 𝑖 and
executes them if their input data events are present in the memory. As
the task has to wait for the resources before the start of its execution,
the Locality Aware Scheduling process reduces the I/O activity between
the memory and the storage so that the task gets its required data in
an efficient manner. The updated task queue reduces the I/O activity,
which ultimately decreases the total turnaround time of the analysis
task.

3.2. Locality Aware Scheduling and Prefetching (LASP)

To improve I/O performance, the ES uses a forward read or also
known as prefetching mechanism. The key problems in prefetching are
what to prefetch and when to prefetch. This mechanism fetches the
data from storage and moves it into the memory, which is available for
the task, ahead of time. That is, when the task requires the data, the
data is already present in the memory. The ES contains a prefetching
algorithm, as explained in Algorithm 1, which reduces the I/O time and
thus improves the efficiency of the analysis process.

The algorithm begins by initializing the Particle Identification (PID)
task, reading the sample data (𝑆𝑉 and 𝑆𝐴) that will be used for
comparison with upcoming tasks. It then iterates over each task in
the task queue to determine if the required input data (𝐺𝑉 and 𝐺𝐴)
matches the given parameters. This helps in identifying tasks that can
be prefetched and scheduled together. Next, the algorithm retrieves the
available memory information and reserves the required memory slots
for prefetching data, ensuring that sufficient memory is allocated for
the upcoming tasks. For each task, the algorithm checks if the necessary
data is already available in memory. If the data is present, the task
is updated with the prefetching information, and PID is set for the
task. The algorithm continues prefetching data for subsequent tasks if
their input requirements match the available data in memory. The task
queue is then updated to prioritize tasks with similar data requirements,
reducing the number of data load and unload cycles. This step optimizes
the scheduling process by ensuring tasks with the same input data are
executed consecutively. Finally, the algorithm ensures efficient memory
utilization by prefetching only the necessary data for the upcoming
tasks, maintaining an optimal balance between memory usage and
data access times. The overall time complexity of Algorithm 1 is O(n),
where n is the number of tasks in the task queue. This complexity
arises from the steps involving iterations over the task queue, including
input requirements evaluation, data prefetching, task queue update,
and memory optimization. Each of these steps involves a linear pass
over the tasks, making the algorithm efficient for handling large task
queues.

Fig. 3 shows the generic workflow of the ES execution. An analysis
workflow containing multiple tasks interacts with the ES and requests
for certain data events. The task queue contains multiple tasks (𝑇1, 𝑇2,
etc.) and their input data requirements. The first task starts execution
at time t as shown in Fig. 3. It requires input data from the storage
element in the form of events. The ES knows the schedule of upcoming
tasks and their requirements from the task queue. From here, the ES
interacts with the storage and starts prefetching data. The efficient
prefetching algorithm brings the events, required by the respective task,
5 
Fig. 3. Workflow execution flowchart.

Fig. 4. Locality Aware Scheduling and Prefetching (LASP).

into memory ahead of its execution time. For example the first task
executes at time t, it requires its respective input events at t−1.

As discussed previously, the locality aware scheduler schedules the
tasks as per their input data requirements. All tasks with the same
requirements get precedence over others. When a new task in the queue
(with different input requirements) is about to start execution, the
proposed prefetching algorithm starts downloading its required events
in memory, parallel to the execution of previous tasks.

By implementing LASP within a serverless environment, the system
can efficiently prefetch and manage data in memory, reducing the I/O
wait time. The serverless model supports rapid provisioning of memory
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Algorithm 1 Locality Aware Scheduling and Prefetching (LAS/LASP)
Input: Task Queue 𝑇𝑄, Input Data Events 𝐸𝑛𝑁 (sample_velocity 𝑆𝑉 ,

sample_angle 𝑆𝐴), Tasks 𝑇𝑁 , given_angle 𝐺𝐴, given_velocity 𝐺𝑉
Output: Updated Task Queue, PID TRUE/FALSE
1: function ParticleIdentificationTaskin𝑇𝑄(PID)
2: PID = AssignRandomID
3: 𝑅𝐸 𝐴𝐷(𝑆𝑉 , 𝑆𝐴)
4: 𝐸𝑛𝑁 = 𝑆𝑉 + 𝑆𝐴
5: for (𝑒𝑎𝑐 ℎ 𝑡𝑎𝑠𝑘 𝑇𝑁 𝑖𝑛 𝑇𝑄) do
6: if (𝑆𝑉 == 𝐺𝑉 && 𝑆𝐴 == 𝐺𝐴 ) then
7: PID TRUE
8: else
9: PID FALSE
0: end if
1: end for
2: end function
3: READ 𝑇𝑄
4: 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒 ← 𝑚𝑒𝑚_𝑖𝑛𝑓 𝑜
5: ES reserves the memory
6: for (𝑒𝑎𝑐 ℎ 𝑡𝑎𝑠𝑘 𝑇𝑁 𝑖𝑛 𝑇𝑄) do
7: 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒 ← 𝐸𝑛𝑁
8: if (𝑑 𝑎𝑡𝑎 𝑟𝑒𝑞 𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑇𝑁 == 𝑒𝑣𝑡𝑠 𝑖𝑛 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒) then
9: 𝐸𝑛𝑁 = mem_free
0: PID for 𝑇𝑁
1: i=1
2: if (𝑑 𝑎𝑡𝑎 𝑟𝑒𝑞 𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑇𝑁 + 𝑖 == 𝑒𝑣𝑡𝑠 𝑖𝑛 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒) then

23: PID for 𝑇𝑁 + 𝑖
24: i=i+1
25: else
26: discard 𝐸𝑛𝑁
27: end if
28: 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒 ← 𝐸𝑛+𝑖𝑁+𝑖
29: Check for next task: 𝑇𝑁 = 𝑇𝑁 + 𝑖
30: Discard 𝐸𝑛+𝑖𝑁+𝑖
31: end if
32: if (𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒 > 0) then
33: if (𝑠𝑖𝑧𝑒(𝐸𝑛+𝑖𝑁+𝑖) == 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒) then
34: 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒 ← 𝐸𝑛+𝑖𝑁+𝑖
35: PID for 𝑇𝑁 + 𝑖
36: end if
37: end if
38: end for

resources needed for prefetching data, which is vital for handling the
large datasets involved in ALICE analysis. Fig. 4 shows the extension of
the locality aware scheduler so that it can execute data prefetching for
upcoming Particle identification (PID) tasks. To perform data prefetch-
ing as described in Algorithm 1, the schedule of the upcoming tasks in
the Task Queue 𝑇𝑄 must be determined. Task 𝑇2 has a different input
data requirements as compared with 𝑇1, 𝑇3 and 𝑇4. During the execution
of 𝑇4, the algorithm prefetches the data for 𝑇2 in the available free
memory (mem_free). This means that when 𝑇𝑁 + 𝑖 arrives, its required
events are already present in the memory. This technique significantly
cuts down the data access time for the upcoming tasks with different
input requirements and ultimately improves the efficiency of the task
xecution process.

3.3. Speculation Aware Scheduling (SAS)

As discussed in Section 3.2, a prefetching algorithm is based on
emporal locality of the tasks. To further enhance the efficiency and
ffectiveness of the prefetching mechanism, we propose a distributed
peculation-Aware Scheduler (SAS) capable of optimizing the data
eading process in a multi-cloud environment. In this approach, the
6 
Event System speculates tasks that are due for local execution by
analysing historic execution logs. It proactively loads their respec-
tive input data into memory before they are scheduled for execution.
Speculation-Aware Scheduling (SAS) involves predicting the routine
and type of upcoming tasks based on their probability of occurrence
by using Bayesian inferencing. The Event System anticipates tasks due
or local execution by analysing historical execution logs, preemp-
ively loading their corresponding input data into memory prior to
heir scheduled execution. This concept, known as Speculation-Aware
cheduling (SAS), involves predicting the course of upcoming tasks,
asing this anticipation on their execution frequency and input data
equirements, using Bayesian inference.

Bayesian inference enables an understanding of the probability of
future events based on evidence provided by the past. Its advantage lies
in its ability to continuously update the prediction model as more data
becomes available, making it an ideal choice for the dynamic nature of
task prediction in a computing environment.

A monitoring node in the computing environment maintains histor-
ical logs which includes system logs, event logs, and execution logs.
The execution logs carry crucial parameters such as date, time, site
information, execution frequency of tasks, and input data requirements.

The Bayesian inference model operates by updating our understand-
ing of the task arrival rate based on new evidence (task arrivals) as they
are observed. This model allows for more adaptability as it can accom-
modate shifts in task arrival patterns over time. Using historical logs as
evidence, SAS predicts task arrival patterns, preemptively fetching data
for upcoming tasks according to these predictions. Consequently, data
analysis is expedited, and overall system performance enhanced. The
Bayesian inference model deployed by SAS augments task scheduling,
boosts data analysis speed, and enhances precision.

By analysing past execution logs and using Bayesian inference to
interpret the evidence, SAS can discern patterns and trends in task
arrivals. This enables SAS to accurately predict future task arrivals.
Armed with this predictive ability, SAS can prefetch the necessary
input data into memory before scheduling the tasks for execution. This
proactive approach minimizes data reading time, optimizes resource
utilization, and significantly improves the efficiency of the data analysis
process.

We have mainly focused on six different types of HEP data analysis
tasks in this study, which were previously discussed in the earlier
sections. These tasks are identified and denoted as follows: Pattern
Identification (PI) is represented as ‘a’, Pattern Comparison (PC) as
‘b’, String Clustering (SC) as ‘c’, String Merging (SM) as ‘d’, String
Identification (SI) as ‘e’, and Pattern Matching (PM) as ‘f’. To organize
these tasks, we have divided them into multiple finite sets, with each
set containing all six different types of tasks.

We modelled the problem domain as a first-order Markov process.
This assumption implied that the probability of an event at a given
point in time ‘‘k’’ was solely influenced by the preceding event at
time ‘‘k-1’’. To denote this, we employed the notation 𝑃 (𝑎𝑘), implying
the probability of event ‘‘a’’ at instant ‘‘k’’. In a similar manner, we
represented 𝑃 (𝑏𝑘), 𝑃 (𝑐𝑘)...𝑃 (𝑓𝑘), where each stood for the probability
of respective events occurring at instant ‘‘k’’.

The main assumption of the first-order Markov was reflected in the
onditional probabilities of these events. For instance, 𝑃 (𝑎𝑘|𝑎𝑘−1) ex-
ressed the probability of event ‘‘a’’ happening at time ‘‘k’’, conditioned
n the fact that the same event ‘‘a’’ occurred at time ‘‘k-1’’. Similarly,
(𝑎𝑘|𝑏𝑘−1) denoted the likelihood of event ‘‘a’’ at instant ‘‘k’’, given that
 different event ‘‘b’’ occurred at the preceding time step ‘‘k-1’’ and so
n.

let 𝑃 (𝑎𝑘|𝑎𝑘−1) = [𝑃 (𝑎𝑘−1)]𝛼 = 𝑃 (𝑎)𝛼

The probability of ‘‘a’’ in ‘‘k’’ is based upon the probability ‘‘a’’ in
‘‘k-1’’.

𝑃 (𝑎𝑘|𝑏𝑘−1) = [𝑃 (𝑎𝑘|𝑐𝑘−1)].... = [𝑃 (𝑎𝑘|𝑓𝑘−1)] = 𝑞𝛼
𝑃𝑎 = 𝑃 (𝑎𝑘) = 𝑃 (𝑎𝑘−1) = 𝑃 (𝑎𝑘+1) for all k
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similarly, 𝑃𝑏 = 𝑃 (𝑏𝑘) = 𝑃 (𝑏𝑘−1) = 𝑃 (𝑏𝑘+1) for all k
𝑃 (𝑏𝑘|𝑏𝑘−1) = [𝑃 (𝑏𝑘−1)]𝛼 = 𝑃 (𝑏)𝛼

𝑃 (𝑏𝑘|𝑎𝑘−1) = [𝑃 (𝑏𝑘|𝑐𝑘−1)]....[𝑃 (𝑏𝑘|𝑓𝑘−1)] = 𝑞𝛽

and so on for c, d, e and f.
Now the total probability theorem is:

𝑃 (𝑎𝑘) = 𝑃 (𝑎𝑘|𝑎𝑘−1)𝑃 (𝑎𝑘−1) + 𝑃 (𝑎𝑘|𝑏𝑘−1)𝑃 (𝑏𝑘−1)....

...𝑃 (𝑎𝑘|𝑓𝑘−1)𝑃 (𝑓𝑘−1) = 𝑞𝛼

So in general,

𝑃𝑎 = (𝑃𝑎)𝛼+1 + 𝑞𝛼[1 − 𝑃𝑎]

therefore,

𝑞𝛼 =
𝑃𝑎(1 − (𝑃𝑎)𝛼)

1 − 𝑃𝑎

Similarly, we can find the expressions for all the types b, c, d, e,
and f. All the probabilities have been parameterized using a variable 𝛼
which was extracted from the historical logs. If the value of 𝛼 is greater
than 1, then the probability of 𝑃𝑎 is less and if the 𝛼 is less than 1, the
probability of 𝑃𝑎 is higher. If the probability of the 𝑃𝑎 is equal to 1
then all the tasks have similar probability of occurrence and there is
no preference given to any tasks. The system executes the workflow by
using traditional first come first serve algorithm. In case of 𝛼 > 1 for
any given task, the Event System will prefetch the input requirements

The Event System processes monitoring logs and compiles the daily
task queue based on the probability of occurrence of the tasks and
their input data requirements. It constructs a Speculated Queue 𝑆𝑄 by
examining the 𝛼 values and probabilities. The Event System compares
the 𝑆𝑄 which has the speculated tasks, with the local task queue. If
𝑆𝑄 aligns with task queue, the Event System executes Algorithm 1,
engaging locality-aware scheduling and prefetching. Alternatively, if
𝑆𝑄 does not align with 𝑇𝑄, the Event System applies the traditional
First Come First Serve scheduling algorithm.

SAS in the ES involves predicting the arrival and type of future tasks
using historical execution logs and Bayesian inference. The 𝑆𝑄 antic-
ipates upcoming tasks based on their execution frequency, type, and
input data requirements. The local task queue 𝑇𝑄 contains tasks that
have been submitted for execution. The comparison between 𝑆𝑄 and
𝑇𝑄 is performed by matching significant task characteristics, including
task type and input data requirements. When a match is found, the ES
formulates a prefetch plan, identifying the data elements to be loaded
into memory. The ES then proactively prefetches the required data,
ensuring it is available in memory just before the tasks are scheduled
for execution. This prefetch plan is dynamically adjusted in real-time
based on the actual arrival of tasks, ensuring efficient data management
and reduced wait times. By integrating speculative scheduling with
proactive data prefetching, the ES optimizes the overall efficiency and
performance of the data-intensive workflows.

Fig. 5 shows the workflow of the multi-cloud aware Event System
operations. The monitoring logs are used to speculate the upcoming
tasks for the Event System. The speculation is based on the arrival
pattern i.e. execution frequency, probability of occurrence and the
input requirements of the tasks. This technique eventually targets the
data reading time which ultimately reduces the total turnaround time
of the whole analysis process by prefetching data for upcoming tasks.

4. Performance evaluation

4.1. Experimental environment

The experiments were conducted in a cloud data centre located at
the university, and the specifications of the data centre are outlined
7 
Fig. 5. Speculation Aware Scheduling (SAS).

below. Experiments were conducted in two distinct environments,as
shown in Fig. 6, wherein the memory size of the edge nodes was
systematically manipulated. The Serverless Event Systems is deployed
on a computing infrastructure comprising two nodes, with each node
being equipped with 32 cores. Both nodes are equipped with dual 8-
core Intel Processors operating at a frequency of 2.2 GHz. They possess
a storage capacity of 500 GB, with one node having 128 GB of RAM and
the other node having 64 GB of RAM. The arrangement of the cloud
resources is as follows: The cloud instance is equipped with Scientific
Linux 6 and is currently operating on the OpenStack platform [34]. The
OpenStack platform offers a graphical user interface known as a dash-
board, which facilitates the management and administration of various
resources, including storage, network, and computing resources. The
cloud instance is provisioned with a total of 192 GB of random access
memory (RAM), a storage capacity of 2 terabytes (TB), and a processing
power of 64 cores. The proposed system was evaluated using the Virtual
cloud VC-1, which comprises of a single compute node, one storage
element, and four edge nodes. The compute node is equipped with a
configuration consisting of 16 virtual central processing units (vCPUs)
operating at a frequency of 2.2 GHz. It is accompanied by a random
access memory (RAM) capacity of 32 GB (GB) and a storage capacity
of 500 GB (GB). The storage element is configured with an 8 × 2.2 GHz
VCPU, 64 GB of RAM, and 500 GB of storage capacity, which houses the
input data set. The four edge machines are equipped with two virtual
central processing units (vCPUs) running at a clock speed of 2.2 GHz.
Each machine is allocated 4 GB of random access memory (RAM) and
has a storage capacity of 50 GB. The primary distinction between the
virtual cloud VC-2 and VC-1 lies solely in the variation of the random-
access memory (RAM) capacity of the edge machines. Both the compute
nodes and storage element possess identical specifications, while each
of the four edge machines is equipped with 8 GB of RAM. Every node
is equipped with JAVA version 8 and Eclipse Platform 4.6 Neon, which
are utilized for executing the pattern matching tasks and implementing
the proposed algorithms. Matlab was employed for the analysis and
visualization of the obtained results (see Fig. 6).
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Fig. 6. Experimental environment of serverless for edge cloud configuration.
Our experiments were conducted using High Energy Physics (HEP)
workflows, which are highly data-intensive and representative of large-
scale scientific applications. The HEP workflows involve complex data
analysis tasks such as particle identification, event reconstruction, and
pattern recognition. The workflows used in our experiments are char-
acterized as follows:

• Repetitive and Predictable Data Access Patterns: These workflows
involve tasks such as particle identification and event reconstruc-
tion. These tasks frequently access the same or similar datasets
for analysis, which makes data access patterns predictable.

• I/O-Intensive Operations: Each task typically involves large data
volumes, where the input datasets are several gigabytes or even
terabytes in size. These data-intensive operations benefit from
effective prefetching mechanisms and speculative execution.

• Dependence on Distributed Data Storage: The experiments rely
on distributed storage systems, where datasets are spread across
multiple locations. This makes locality-aware scheduling criti-
cal for minimizing data transfer times and optimizing workflow
performance.

We have designed the particle identification (PID) tasks which
identify the specific patterns in the input data. There are 1000 finite
sets of tasks, each containing 100 tasks of six different types in them.
We have performed experiments with different sizes of input data sets
i.e. 1 GB, 10 GB, and 100 GB.

A single task performs the pattern matching with reference to the
preexisting values of a particular particle. The input data contains
multiple attributes of the particles such as velocity of the particles,
energy loss and the total energy. The measurement of the particle
velocity is further based on the time of flight, cherenkov angle and
transition radiation. There are multiple tasks such as matching the time
8 
of flight for a specific particle and the cherenkov angle of a required
particle. The given angle or the required angle 𝐺𝐴 in a task is compared
with the data events in the sample angle 𝑆𝐴. If there is a match for the
first letter of 𝐺𝐴, it checks if all the letters of 𝐺𝐴 matches the 𝑆𝐴. If the
given angle matches with the sample angle, the result will be TRUE and
vice versa.

Multiple PID tasks arrive in the task queue 𝑇𝑄 at the compute node
and require the respective execution resources i.e. 𝑆𝐴 data from the
storage element. The task queue maintains the input requirements of
all the tasks. The Event System schedules the PID tasks to the edge
machines as per their input requirements in such a manner that the
tasks with the similar requirements get the execution priority. The
memory holds the reusable data events 𝑆𝐴 until all the tasks with
similar requirements get executed. The mem_info process gives the
information about the status of the available memory i.e. mem_free. If
mem_free is greater than zero, the Event System prefetches the sample
angle data for the upcoming tasks into the memory before their arrival.

The monitoring logs contains the information of the previously
executed tasks. The Event System formulates the daily task queue
from the monitoring logs as shown in Table 3, containing information
based on the execution frequency, probability of occurrence and the
input data requirements of the tasks. The daily task queue is divided
into two speculated queues, 𝑆𝑄1 and 𝑆𝑄2. 𝑆𝑄1 and 𝑆𝑄2 are based on
the execution frequency and the input data requirements of the tasks
respectively. The Event System knows the execution frequency of the
tasks so it brings the data events in to the mem_free, before its arrival
in the task queue. When the task arrives, it will not wait for the input
data and can start the execution process immediately. The execution
of a task leads to two outcomes: success or failure. In either of the
outcomes, the execution of a task requires computing resources.

To compare the performance of the Event System, we compared the
performance of our proposed LASP and SAS algorithms against two
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Table 3
Experimental Results for FCFS (10 GB input data set).

No. task_id submit_time start_time end_time exe_time tot_time wait_time read_time

1 5439574 1 235 272 074 1 235 288 925 1 235 289 888 1963 17 814 15 851 9510.6
2 5439579 1 235 272 074 1 235 289 239 1 235 290 212 1973 18 138 16 165 10 022.3
3 5439580 1 235 272 074 1 235 289 888 1 235 290 851 1963 18 777 16 814 10 592.82
4 5439582 1 235 272 074 1 235 290 212 1 235 291 161 1949 19 087 17 138 11 653.84
5 5439594 1 235 272 575 1 235 290 851 1 235 291 752 1901 19 177 17 276 10 883.88
6 5439597 1 235 272 575 1 235 291 161 1 235 292 065 1904 19 490 17 586 10 727.46
7 5439574 1 235 272 074 1 235 291 752 1 235 292 719 1967 20 645 18 678 12 327.48
8 5439579 1 235 272 575 1 235 292 065 1 235 292 946 1881 20 371 18 490 12 758.1
recognized scheduling algorithms: LYNX and FCFS. The selection of
these algorithms for comparison was based on their relevance to our
key research aspects. LYNX, known for its effectiveness in reducing I/O
wait times through data prefetching, serves as a suitable benchmark
to evaluate our prefetching mechanism, demonstrating the additional
benefits of integrating locality awareness and speculative scheduling.
FCFS, a fundamental scheduling algorithm that processes tasks in the
order they arrive, serves as a baseline to highlight the performance
improvements of the proposed algorithms.

s of their arrival order i.e. whichever comes first gets the pri-
ority. The LYNX algorithm performs the read-ahead mechanism and
reads the data ahead of time. We have implemented the proposed
algorithms i.e. Locality Aware Scheduling, Locality Aware Scheduling
and Prefetching and Speculation Aware Scheduling for evaluation and
validation.

4.2. Generalization to other workflows

To demonstrate the generalizability of our approach, in addition
to the ALICE analysis workflow, we applied it to a cosmological data
analysis workflow. In Cosmological Analysis [35], a workflow involves
predicting cosmic structures like galaxies and dark matter distributions.
The process begins with a large dataset of cosmological simulations
(e.g., N-body simulations), representing the evolution of the universe.
The training data consists of snapshots of the universe at different time
steps, including parameters like density fields, velocities, and positions
of particles. The model is trained using mini-batch gradient descent,
where mini-batches of data are iteratively fed into the network. For
each mini batch, the model performs a forward pass to predict cos-
mic structures, followed by a backward pass to adjust weights based
on the error between predictions and true outcomes. This iterative
process continues until the model can accurately simulate cosmolog-
ical phenomena. The proposed approach optimizes this workflow by
prefetching the next mini batch of simulation data while the current
batch is being processed, and speculative execution ensures efficient
use of computational resources, avoiding idle time between data loads.

Our approach prefetches data for subsequent tasks and uses spec-
ulative execution to seamlessly process large volumes of repetitive
data with minimal delays. These optimizations demonstrate the sys-
tem’s ability to generalize and enhance performance across diverse
data-intensive workflows.

4.3. Results and analysis

Each task 𝑇𝑁 in a Task Queue 𝑇𝑄 has been assigned a random
ID known as a task_id. The following results are performed on Virtual
Cloud VC-1, which include parameters such as the submission time,
starting time, completion time, turnaround time, waiting time, exe-
cution time and the data reading time. The turnaround time is the
total time taken by the analysis tasks 𝑇𝑁 which includes the execution,
waiting and the data reading time. The reading time is the time taken
by input events 𝐸𝑛𝑁 , which are present in a storage, to move to the
free memory i.e. 𝑚𝑒𝑚_𝑓 𝑟𝑒𝑒 (see Table 3).

Fig. 7 shows the performance evaluation of the first come first serve
scheduling algorithm in terms of its execution, waiting and total time.
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Fig. 7. First come first serve scheduler.

Fig. 8. Performance evaluation: Total time taken by analysis tasks in case of FCFS vs.
LAS vs. LASP vs. LYNX vs. SAS.

The actual execution time of the task is far less than the total time
because it has to wait for the input data and reading the data takes
almost 60%–70% of the time. Table 4 shows the evaluation results and
contains the performance detail of the tasks by using FCFS in the case of
10 GB input data set. The reading time for the task 5439574 is almost
55% of the total turnaround time. The proposed algorithms LAS, LASP
and SAS specifically target the data reading time and reduced it up to
35% as shown in the following results.

We have compared FCFS and LYNX with the proposed algorithms
and the results show significant improvement in the overall turnaround
time. The proposed Locality Aware Schedular schedules the tasks in
such a manner that the tasks with similar input events requirement,
get the higher priority. In this scenario, memory does not load/unload
the same data again and again, which reduces the data reading time.
We have also implemented the scheduling along with prefetching. The
system prefetches the required input events for the upcoming tasks
ahead of time, in the unused part of memory. When the next task
arrives for execution, its required events are already present in the
memory. In Speculative Scheduling, the system predicts the upcoming
tasks on the basis of their arrival patterns by using execution logs.

Fig. 8 shows the comparison of all the proposed algorithms, such as
Locality Aware Scheduling, LAS along with prefetching and Speculative
Scheduling with the FCFS and Lynx. As can be seen in Fig. 8, these
algorithms significantly reduce the turnaround time of the analysis
tasks in the workflow. In comparison to the FCFS, LAS reduced the
turnaround time up to more than 17%. After performing the scheduling
of the tasks on the basis of the locality of their input data, ES performs
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Fig. 9. Performance evaluation: Waiting time of analysis tasks in case of FCFS vs. LAS
vs. LASP vs. LYNX vs. SAS.

prefetching for the upcoming tasks. It forward reads the data for the
upcoming tasks and the results show that this technique reduces the
turnaround time up to 25% in comparison with traditional FCFS and is
around 10% more effective than simple Locality Aware Scheduling. The
Lynx algorithm also performs read ahead and locality based scheduling
so its results are almost same as the LASP.

The Event System speculates the upcoming tasks on the basis of their
historic execution logs. The speculation is based on the arrival pattern,
i.e. execution frequency of the previously executed tasks and the input
data requirements. The monitoring node records tasks execution logs
based on their execution history. The ES makes itself aware about
the upcoming tasks with the help of task execution logs and performs
Locality Aware Scheduling and Prefetching. Table 5 shows a sample
of 5 days monitoring log for a specific task 5439574. According to
this table, ES realizes that task 5439574 follows a specific pattern,
i.e. it arrives every day in the global queue for execution, at 0600 h
and requires almost similar size of the input data. The Event System
performs Locality Aware Scheduling and Prefetching, everyday before
the arrival of 5439574. Similarly, other tasks shown in Table 4, follow
a specific pattern, and the Event System performs Locality Aware
Scheduling and Prefetching on the basis of their requirements.

The speculation based scheduling, significantly improves the effi-
ciency of the analysis process and the results show that it can reduce
the turnaround time up to 37%. Fig. 8 gives the overall idea about
the performance of the proposed algorithms in terms of the total
turnaround time.

Fig. 9 shows the comparison of the proposed algorithms in terms
of the task waiting time. The waiting time is the time for which the
task 𝑇𝑁 has to wait in the task queue 𝑇𝑄 to get suitable resources. In
the case of traditional scheduling algorithm i.e. FCFS, the task 5349574
waits for 15 851 s to get the required input data. The Locality Aware
Scheduler schedules 5345974 with respect to its input data locality,
which reduces its waiting time to 12 839.31 s i.e. almost 3000 s less
than the FCFS. Furthermore, ES prefetches the input requirements of
5345974 before its arrival and this mechanism further reduces the
waiting time to 11 888.25 s i.e. 1000 s less then the LAS. As discussed
earlier, the monitoring logs contain the information of tasks such
as their arrival pattern, input requirements etc. The speculative ES
performs scheduling on the basis of these logs and further reduces the
waiting time for 5345974 to 9827.62 which is almost 6000 s less than
as compared to the FCFS and 2060 s in case of Lynx.

Fig. 10 depicts the comparison of the proposed scheduling and
prefetching approaches along with the Speculation Aware Scheduling
in terms of data reading time. As described before, more than 60% of
the turnaround time is the waiting time which mostly consists of I/O
i.e. data reading time. The proposed algorithm specifically reduces the
data reading time by using the efficient data scheduling and prefetching
mechanisms which ultimately improves the overall performance of the
data analysis process.

Fig. 11 displays the comparative performance analysis of all the
proposed algorithms in terms of total turnaround time. The stacked
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Fig. 10. Performance evaluation: Reading time of analysis tasks in case of FCFS vs.
LAS vs. LASP vs. LYNX vs. SAS.

Fig. 11. Total turnaround time distribution in case of FCFS vs. LAS.

Fig. 12. Total turnaround time distribution for LASP vs. SAS.

bar graphs show the segregation of the time taken by each task when
a particular algorithm is running. For example, task 5439574 in the
figure contains two stacked bar charts, FCFS and LAS respectively. The
combination of execution time (in black), reading time (dark grey)
and waiting time (in light grey) is the total turnaround time taken by
each task in an analysis workflow. The proposed scheduling technique
i.e. LAS, reduces the reading time in the bar chart of task 5439574
which eventually reduces the total turnaround time.

Similarly, in Fig. 12, the stacked bar chart shows that the reading
time is further reduced by LASP. The Prefeching algorithm, in the Event
System, works together with the locality aware scheduler and reads the
input data events for the task 5439574 before its arrival time. It will
keep those events into the unused part of the memory. When the task
543974 arrives, it does not have to wait for its respective input events
and straight away starts the execution. This reduces the waiting time,
specifically the data reading time up to 1300 s in comparison with the
LAS. The speculation based scheduling (SAS) is considered to be the
most efficient among all the proposed algorithms as it further reduces
the data reading time and improves the performance of the analysis
process.

To compare the performance of all the proposed algorithms, we
have designed the percentage improvement graph, shown in Fig. 13.
The LAS algorithm is 19% better than the FCFS because of its efficient
scheduling mechanism based on the locality of data. The combination
of LAS and prefetching further improves the turnaround time of analy-
sis process by 24% which is almost similar to Lynx. As discussed earlier,
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Table 4
A sample of daily monitoring logs for a specific task 5439574.

Date task_id submit_time start_time end_time site TTL 𝑓𝑞 IR run_length Status

20190221 5439574 1 233 723 420 1 233 740 004 1 233 739 041 0 24 0602 788 00:02:95 Success
20190222 5439574 1 233 722 967 1 233 739 551 1 233 738 588 0 24 0601 873 00:03:02 Success
20190223 5439574 1 233 723 872 1 233 740 456 1 233 739 493 0 24 0557 895 00:03:11 Success
20190224 5439574 1 233 722 999 1 233 739 583 1 233 738 620 0 24 0601 923 00:03:18 Success
20190225 5439574 1 233 723 476 1 233 740 060 1 233 739 097 0 24 0558 947 00:03:24 Success
Fig. 13. Percentage improvement comparison among LAS, LASP and SAS.

Fig. 14. Time distribution in case of 1 GB input data set.

Fig. 15. Time distribution in case of 10 GB input data set.

SAS is declared as the most efficient among all the other proposed
algorithms as it predicts the tasks as per their execution pattern and
prefetches the required input data before the arrival of the task. By
using the Speculation Aware Scheduling, we have achieved a significant
performance improvement for the data analysis process by reducing the
turnaround time up to 37%.

As discussed earlier, we have performed experiments by consider-
ing different sizes of input data sets, i.e. 1 GB, 10 GB and 100 GB.
We have submitted the same job, containing eight tasks, with dif-
ferent input data requirements in terms of size i.e. 1 GB. Fig. 14
shows that when the input data size is 1 GB, the task 5439574 takes
around 161.241 s with the existing scheduling technique. The proposed
Locality Aware Scheduling improves its efficiency and reduces the
turnaround time to around 144.734 s. By introducing the prefetching
mechanism, it reduces to little less than 129.522 s and the Speculation
Aware Scheduling further brings it down to around 105.401 s.

Fig. 15 shows that when the input data size becomes 10 GB, the
same task 5439574 takes around 968.241 s with the existing scheduling
11 
Fig. 16. Impact of memory in case of 100 GB input data.

Table 5
Turnaround time comparison of the proposed algorithms on two different experimental
environments.

Mem
MB

Data
MB

FCFS
ms

LAS
ms

LASP
ms

LYNX
ms

SAS
ms

VC-1 1 161.24 144.73 129.52 131 105.40
4 × 4 10 986.24 875.98 734 734.87 653.01

100 17 814 14 802 13 601 13 606 11 410

VC-2 1 104.80 94.07 84.18 85.18 68.51
8 × 4 10 641.05 569.38 477.10 478.10 424.45

100 11 579.1 9621.50 8840.81 8841.76 7416.90

technique. The Locality Aware Scheduling reduces the turnaround time
to around 875.984 s and the prefetching mechanism brings it down
to less than 734.003 s. The Speculation Aware Scheduling is the most
efficient algorithm in this case as well, which further reduces the
turnaround time to around 653.012 s.

We have simulated the analysis process on two different computing
environments, VC-1 and VC-2, which differ from each other on the
basis of memory size of the edge machines. The four edge machines
in VC-1 and VC-2 have 4 GB and 8 GB of RAM, respectively. Table 5
shows the turnaround time of the task 543974 running in two different
experimental environments, VC-1 and VC-2. It also shows the effect of
turnaround time with different size of input data, i.e., 1 GB, 10 GB and
100 GB. We have implemented all the proposed algorithms, and the
two current algorithms, i.e. FCFS and LYNX, in the VC-2 environment
and achieve more than 30% efficiency as compare to VC-1. Fig. 16
shows the turnaround time comparison between the two experimental
environments, VC-1 and VC-2 in case of 100 GB of input data size. There
is a significant decrease in turnaround time when the similar workload
has been simulated on the edge machines with increased memory.

Fig. 17 compares the total execution time for a cosmological work-
flow under two scheduling algorithms: FCFS and SAS. The proposed
SAS was chosen for comparison as it has demonstrated better perfor-
mance in terms of execution efficiency compared to other scheduling
algorithms. The bars represent the time breakdown across three com-
ponents: execution, reading, and wait time. We have compared the
workflow by varying its input data size to 32, 64 and 128 MBs.
The results show that SAS significantly reduces reading time by 24%
compared to FCFS, leading to an overall improvement in total time,
especially as the batch size increases. This highlights the efficiency
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Fig. 17. Turnaround time comparison of cosmological workflow with speculative aware
scheduling algorithm.

of the proposed framework in minimizing I/O delays and optimizing
performance for large-scale workflows.

The above results show that the ES based solution for data reading
process is more efficient than the traditional techniques. The specu-
lative data prefetching, on the basis of task arrival pattern i.e. SAS,
significantly reduces the data reading time and proved to be the most
optimized algorithm for data analysis. It reduces the data reading
latencies i.e. turnaround time, from storage to memory, and improves
the overall efficiency of the analysis process.

5. Conclusions and future work

In this paper, we proposed a Serverless Event System based solution
for optimizing the multi-cloud analysis workflows using Speculative
Scheduling on the edge machines. Our experiments utilized High En-
ergy Physics (HEP) workflows, which are highly data-intensive and
representative of scientific applications requiring significant compu-
tational resources. The predictable access patterns of HEP workflows
allowed us to effectively demonstrate the benefits of our proposed
techniques. By improving the performance of HEP workflows, our
methods have the potential to enhance data processing efficiency in
various scientific domains. The Serverless Event System implements
data prefetching and locality aware scheduling algorithms. It performs
task arrival speculation and intelligently schedules workflows, on the
basis of historic logs for improving the data reading time of analysis
workflows in edge computing enviorment. This approach exploits data
prefetching and locality aware scheduling techniques to reduce the data
reading latencies, which have a major impact on the turnaround time
of an analysis workflow running on the edge machines. To improve
the accuracy of the speculation process, the proposed Serverless Event
System predicts the probability of the upcoming tasks by using Bayesian
Inference model.

This information is then used to improve scheduling and execution
delays for the incoming jobs by reading data ahead of time and allo-
cating the best resources to execute the analysis workflows. The results
have shown that by using locality aware scheduling and prefetching
techniques, significant improvements (i.e. over 25%) can be achieved,
in terms of reducing the turnaround time. Furthermore, the speculative
scheduling based on historic logs and probability of occurrence using
Bayesian inference further reduced the overall turnaround time up to
37% by executing an HEP analysis workflows in a serverless edge
computing environment. The experimental results demonstrate that our
proposed framework is not limited to ALICE analysis workflows and
can be generalized to other data-intensive workflows, such as cosmo-
logical data analysis process. By applying our approach, we observed
12 
significant improvements in turnaround time and resource utilization.
These results confirm that the prefetching and speculative execution
mechanisms are effective in optimizing workflows with repetitive data
access patterns and high I/O demands, making the system highly
adaptable to various domains beyond high-energy physics.

Currently, we have evaluated the proposed algorithms by perform-
ing speculation using the arrival patterns of tasks. In future, we intend
to perform intelligent task speculation by using machine learning al-
gorithms which will intelligently predict the upcoming types of tasks
by using reinforcement learning algorithm and start streaming data
ahead of time so that all data and execution resources are available
before the workflow is scheduled for execution. We will also implement
a decentralized Serverless communication mechanism [36] within the
scheduling engine where a pilot job will trigger the data reading process
in the Serverless Event System and will proactively and intelligently
schedule the jobs when the Event System has the data to run these jobs.
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