
J. Parallel Distrib. Comput. 71 (2011) 1388–1399
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Use of run time predictions for automatic co-allocation of multi-cluster
resources for iterative parallel applications
Marco A.S. Netto a,∗, Christian Vecchiola a, Michael Kirley a, Carlos A. Varela b, Rajkumar Buyya a

a Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia
b Rensselaer Polytechnic Institute, USA

a r t i c l e i n f o

Article history:
Received 16 July 2010
Received in revised form
12 April 2011
Accepted 19 May 2011
Available online 26 May 2011

Keywords:
Rescheduling
Resource co-allocation
Grid Computing
Metascheduling
Parallel computing
Performance prediction
Run time estimates
Quality-of-service
Asynchronous communication

a b s t r a c t

Metaschedulers co-allocate resources by requesting a fixed number of processors and usage time for
each cluster. These static requests, defined by users, limit the initial scheduling and prevent rescheduling
of applications to other resource sets. It is also difficult for users to estimate application execution
times, especially on heterogeneous environments. To overcome these problems, metaschedulers can
use performance predictions for automatic resource selection. This paper proposes a resource co-
allocation technique with rescheduling support based on performance predictions for multi-cluster
iterative parallel applications. Iterative applications have been used to solve a variety of problems in
science and engineering, including large-scale computations based on the asynchronous model more
recently. We performed experiments using an iterative parallel application, which consists of benchmark
multiobjective problems,with both synchronous and asynchronous communicationmodels onGrid’5000.
The results show run time predictions with an average error of 7% and prevention of up to 35% and
57% of run time overestimations to support rescheduling for synchronous and asynchronous models,
respectively. The performance predictions require no application source code access. One of the main
findings is that as the asynchronous model masks communication and computation, it requires no
network information to predict execution times. By using our co-allocation technique, metaschedulers
become responsible for run time predictions, process mapping, and application rescheduling; releasing
the user from these burden tasks.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Gathering the computing power of multiple clusters is funda-
mental for large-scale computations. Even users with small and
medium size computations can aggregate resources from multi-
ple clusters that would be otherwise wasted due to fragmenta-
tion in scheduling queues [17]. Applications with inter-process
communication andworkflows require coordinated access to these
resources, a problem known as resource co-allocation [12]. Bag-of-
tasks applications may also require co-allocation as users need the
completion of all tasks to post-process or analyze the results [28].

Co-allocating resources from multiple clusters is difficult for
users, especially when resources are heterogeneous. Users have
to specify the number of processors and usage time for each
cluster. Apart from being demanding to estimate application run
times, these static requests limit the initial scheduling due to
the lack of resource options given by users to metaschedulers.

∗ Corresponding author.
E-mail addresses: marco.netto@gmail.com, netto@csse.unimelb.edu.au

(M.A.S. Netto).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.05.007
In addition, static requests prevent rescheduling of applications
to other resource sets; applications may be aborted when
rescheduled to slower resources; unless users provide high run
time overestimations. When applications are rescheduled to faster
resources, backfilling [26] may not be explored if estimated run
times are not reduced. Therefore, performance predictions play an
important role for automatic scheduling and rescheduling.

The use of performance predictions for scheduling applications
have been extensively studied [32,34,20,19]. However, predictions
have been used mostly for single-cluster applications and require
access to the user application source code [33,4,41]. Parallel
applications can also use multiple clusters and performance
predictions can assist their deployment. One application model
for multi-cluster environments is based on iterative algorithms,
which has been used to solve a variety of problems in science
and engineering [1,3,39,11,25,8], and has also been used for large-
scale computations through the asynchronous communication
model [22,15].

This paper proposes a resource co-allocation technique with
rescheduling support based on performance predictions for multi-
cluster iterative parallel applications. Iterative applications with
regular execution steps (i.e. those with uniform computation

http://dx.doi.org/10.1016/j.jpdc.2011.05.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:marco.netto@gmail.com
mailto:netto@csse.unimelb.edu.au
http://dx.doi.org/10.1016/j.jpdc.2011.05.007


M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399 1389
workload in each iteration) can have run time predictions
by observing their behavior with a short partial execution.
This paper also proposes two scheduling algorithms for multi-
cluster iterative parallel applications based on synchronous and
asynchronousmodels. The algorithms can be utilized to co-allocate
resources for iterative applications with two heterogeneity levels:
the computing power of cluster nodes and process computing
requirements.

We performed experiments using an iterative parallel applica-
tion, which consists of benchmark multiobjective problems, with
both synchronous and asynchronous communication models on
Grid’5000. The results using our case study application and seven
resource sets show run time predictions with an average error of
7% and prevention of up to 35% and 57% of run time overestima-
tions to support rescheduling for synchronous and asynchronous
models, respectively. The performance predictions require no ap-
plication source code access. In addition, an interesting result is
that as the asynchronous model masks communication and com-
putation, this model requires no network information to predict
execution times. By using our co-allocation technique, metasched-
ulers become responsible for run time predictions, process map-
ping, and application rescheduling; releasing the user from these
difficult tasks. The use of performance predictions presented here
can also be applied when rescheduling single-cluster applications
among multiple clusters.

2. Related work

Extensive research has been carried out on scheduling/load
balancing [5,35,23,19], performance predictions [32,34,41,20,24],
and resource co-allocation [9,12,29], which are the main areas
related to our work.

Process remapping for iterative parallel applications have been
investigated for dynamic load balancing purposes [35,23]. The sup-
port for dynamic load balancing requires application modifica-
tion, which is an approach that we avoid in this paper. Moreover,
our work uses process remapping for applications waiting for
resources in the scheduling queues. He et al. [19] addressed the
problem of dynamic scheduling for parallel jobs in multi-cluster
systems using performance predictions. In order to obtain run time
predictions, they relied on the PACE (Performance Analysis and
Characterization Environment) tool-kit [20], which requires appli-
cation source code access. Berman et al. [4] from AppLeS project
have also proposed the use predictions but for using in dynamic
and adaptive scheduling decisions, and similar to the previous
works, users have to modify the application source code.

Sadjadi et al. [33] proposed a modeling approach for estimat-
ing execution times of single-cluster long-running scientific appli-
cations for multi-cluster environments. Their approach relies on
modeling resources, execution parallelism, and application input
parameters, along with a set of previous application executions.
The applications can access multiple resources, but those have to
be homogeneous. Sanjay and Vadhiyar [34] developed a set of per-
formancemodeling strategies to predict execution times of parallel
applications for single-cluster applications. As their target platform
comprises non-dedicated clusters, their strategies requiremultiple
and long application executions and rely on several configuration
parameters. Yang et al. [41] introduced a performance translation
method based on relative performance between two platforms for
single-cluster applications. Predictions are generated based on a
short execution of applications in each target platform and require
source code access. Romanazzi and Jimack [32] proposed a predic-
tion performance model for parallel numerical software systems
on multi-cluster environments. Predictions for large-scale exper-
iments are generated based on executing applications with fewer
processors for short time periods, and require source code modi-
fication. Tsafrir et al. [36] introduced an algorithm for generating
run time predictions that require no application source code. How-
ever, it is for single-cluster applications and relies on previous ap-
plication executions. Xu et al. [40] proposed a stochastic method
for predicting execution times of bulk synchronous computations.
Although their research focuses on a similar type of application
presented in this paper, their evaluation is based on simulations
and on homogeneous resources, whereas our work is evaluated on
a large-scale environment with heterogeneous resources. Similar
limitations were found in a work developed by Casanova et al. [10]
who investigated performance predictions for iterative algorithms
in distributed systems.

One of the resource co-allocation policies investigated by Bucur
and Epema [9] considers metascheduler flexibility in defining the
number of processors in each cluster automatically. However, the
policy does not consider heterogeneous platforms, impact of run
time estimates, and rescheduling. Czajkowski et al. [12] proposed
fault tolerance mechanisms for resource co-allocation requests.
Although one of their mechanisms considers process remapping
when resources become unavailable, Czajkowski et al. have
not considered application run time predictions and scheduling
issues. Our previous work on resource co-allocation details the
benefits of two rescheduling operations: start time shifting
and process remapping [29]. We showed that rescheduling co-
allocation requests increases system utilization and reduces user
response time. In this paper, run time predictions can assist the
metascheduler when remapping processes to new resource sets,
avoiding user run time overestimations and application abortions
due to underestimations.

Themain difference between our work and existing ones is that
we use performance predictions to co-allocate resources formulti-
cluster applications and predictions are based on short partial
executions requiring no access to the application source code.Most
of existingwork focuses on single-cluster applications and requires
source code access or historical data of previous application
executions to generate run time predictions. For resource co-
allocation, most existing solutions rely on users defining the
number of processors and run time estimates for each cluster
and have no rescheduling support. Our mechanism leaves these
responsibilities to the metascheduler and supports application
rescheduling.

3. Iterative parallel applications

Iterative algorithms have been used in a large class of
scientific and engineering problems, especially using optimization
techniques such as genetic algorithms, particle swarm and ant
colony optimization algorithms. These algorithms consist of a set
of computations inside a loop, which can be partitioned to execute
in parallel.

We define an iterative parallel application as a set of processes
p, each processing i iterations independently, that exchange infor-
mation at time intervals called stages. The information exchange
can follow synchronous or asynchronous communication mod-
els. The second model is becoming popular since it opens the op-
portunity for another parallel application model for large-scale
systems [35,22,1,15]. The reason is that asynchronous model can
handle inter-process communication on high latency environ-
ments. The next sections present the two execution models.

3.1. Synchronous model

In thismodel, application processes are distributed tomachines
and results are merged once they have completed the number of
iterations specified by the user. For this mode, a stage is fixed by
the number of iterations defined by the user followed by amerging
process or data exchange phase (Fig. 1). When a stage finishes, its
results are redistributed to the machines, which execute the next



1390 M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399
Fig. 1. Deployment of iterative parallel applications in multiple clusters following synchronous and asynchronous models.
processes. The execution completeswhen all processes achieve the
total number of iterations specified by the user. Processes may
finish at different times due to heterogeneity in the system and
application. In order to avoid idle processor time, depending on
the application, it is possible to keep iterating all processes in a
stage until they reach theminimumnumber of required iterations.
For evolutionary-based optimization applications, keep iterating
processes only improves the results, without negative side effects.
Therefore, processes running on faster machines and/or using
parameters that require less computing power iterate more than
the others.

There are several approaches to synchronize data among the
application processes. One of them is to have a master node for
each cluster involved in the execution, responsible for merging the
results of nodes in its cluster. This master node can be randomly
selected inside a cluster since all nodes have the same computing
power. This node sends the results to the master node with better
aggregate CPU, called global coordinator, which merges all the
results and sends the merged result to all clusters. After that,
processes start the new stage. Hierarchical data exchange inside
a cluster can also be used to optimize the synchronization phase.

3.2. Asynchronous model

For this model, when a process finishes, it distributes its results
to other processes asynchronously, merges its results with the
last results from other processes, and continues its execution
(Fig. 1). Therefore, the stage in this model has a flexible number of
iterations. This prevents any idle time, and provides better support
for heterogeneous machines and processor fault tolerance. Note
that as processes execute in multiple clusters, the impact of wide-
area communication has to be minimized as much as possible [2].
Indeed, asynchrony masks communication and computation, and
therefore minimizes this impact.

The application following the asynchronous model can use
similar approaches from the synchronous model to distribute data
among processes. The difference is that a process does not wait to
receive data fromother processes. The choice of themodel depends
on the application. Applications that have little data dependency
canmakeuse of the asynchronousmodel; for instance, applications
in which the more processes exchange data the better the final
result is. In this case, if processes cannot exchange data several
times, the final result will still be correct, but not better if more
data were exchanged.

3.3. Importance of resource co-allocation

Resource co-allocation guarantees that all resources for ex-
ecuting the application are available at the same time. This is
important for both models since: for the synchronous model, it
prevents processes from being idle and thus completes the exe-
cution faster; whereas for the asynchronousmodel, it increases in-
teraction among results of the application processes.

4. Resource co-allocation based on performance predictions

The metascheduler, responsible for co-allocating resources
from multiple clusters, relies on four components to enable
automatic process selection and rescheduling support. Here we
present the sequence of steps to co-allocate resources using
performance predictions and an overview of the metascheduler
components (component details are presented in the next
sections), as illustrated in Fig. 1:

• User input (Step 1): users only need to specify the total number
of processes and a script to determine application throughput
on a resource automatically. Section 4.1 details how to provide
the script.
• Performance predictions (Step 2): the metascheduler executes

the script to collect application throughput on multiple
resource configurations. Section 5 details an example of how to
generate predictions.
• Machine list (Step 3): the metascheduler contacts system

schedulers to obtain a list of resources that can be used by the
user application. Section 4.3 describes the interaction between
metascheduler and system schedulers.
• Application scheduler (Step 4): uses the machine list, perfor-

mance predictions, and user preferences to generate a schedule
of the application processes. This component generates a set of
scripts used to deploy the application. Section 4.2 presents two
application schedulers for iterative parallel applications.

A resource co-allocation request based on performance predic-
tions can use different resource sets automatically. This is par-
ticularly important when rescheduling applications on multiple
clusters. Note that rescheduling is allowed when requests are still
in the waiting queues, and hence is different from migrating pro-
cesses at run time. Moreover, once the metascheduler receives the
performance predictions in a given set of resources, it does not
need to allocate exactly the same resources for the actual applica-
tion. This minimizes the chances of the actual application to wait
in the job queue of clusters.

The system scheduler uses the application scheduler to obtain
the application estimated run time. This estimation can be used
for both the initial scheduling and the rescheduling (Step 5). As
observed in Fig. 1, there are two types of network communication,
the system communication, which is the data transfer among the
system components, and the inter-process communication, which
is the data transfer among the application processes.



M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399 1391
(a) multi-sweep method (b) single-sweep method

Fig. 2. Methods for generating run time predictions without using application’s source code.
4.1. Generation of run time predictions

Run time predictions are obtained automatically by executing
an application process until the throughput (iterations/second)
becomes steady. There are at least two methods to obtain the
throughput of the application on a given resource (Fig. 2).

Let n be the total number of iterations in an execution and k
be the iteration i where the throughput becomes steady; in the
worst case scenario, k = n. The first method requires a script that
runs the application process from iteration i = 0 until i = j,
where j is a counter from 0 to k. Counter j can be incremented
by one for each sweep; which would require k sweeps of length k
maximum. Thus, the execution time complexity for this algorithm
is O(n2). However, as the difference between execution time of
neighbor iterations may be minimum, it is possible to select a
list of increments that follows a power increment. Therefore, it is
possible to perform the multi-sweep method with a complexity of
O(n ∗ ln(n)).

The second method is to ask the application (if it supports) to
write output files for each iteration executed and then check the
time interval between iterations. The verification could be done
for each iteration or for each group of iterations; for both cases
this method would require the processing of iterations just once;
resulting in a complexity O(n).

In a system composed of m resource configurations, the
complexity of obtaining the throughputs are:

O(m ∗ n ∗ ln(n)) for the Multi-sweep method
O(m ∗ n) for the Single-sweep method.

For both methods, no application source code is required. This
is an interesting property of complex scientific applications as they
usually generate intermediate output files, which can be used for
understanding applications’ behavior without accessing internal
data structures. In our case, we used these intermediate output
files to predict run times, however they can also be used for
application-level scheduling, as showed by one of the co-authors
of this paper in a previous work [27].

The time to obtain the throughput depends on the application
and its input parameters. The more node configurations the script
is executed, the more schedule options can be granted. The
metascheduler can ask system schedulers to use the otherwise
wasted time of queue fragments to execute the script (similar
strategy proposed by Netto et al. [30]) or submit it as a processor
request to each cluster before the actual application execution.
The evaluation section of this paper presents a detailed example
of times to generate throughputs in comparison with total
application execution time. Fig. 3 illustrates an example of amulti-
sweep based python script used to obtain the throughput of a
machine for a given application. In this example, k is incremented
by a factor of 1.15 for each attempt and the throughput is
considered stabilized when the difference of the current and
previous throughput is less than or equal to 5%.

Once the throughput is available, the application scheduler can
calculate the execution time of each process by multiplying the
Fig. 3. Example of python script for generating run time predictions.

throughput with the number of iterations specified by the user.
The application scheduler determines the process locations and
the overall execution time, which is described in the following
section. Remark that, depending on user parameters, performance
predictions can be reused for a given application, thus reducing
prediction execution time.
Network cost. For the synchronous communicationmodel, network
cost can also be included in the overall execution time. This cost
can be estimated by the amount of data to be transferred among
application processes, which comes from the user knowledge
about the application, and the network latency among clusters,
which comes frompopular tools such as ping or traceroute, ormore
advance solutions such as King [18] and distributed binning [31].

4.2. Application schedulers

We developed two application schedulers, one for each
communication model. These schedulers are frameworks for
iterative parallel applications with two heterogeneity levels:
computing power of cluster nodes and process computing
requirements. The latter level is used for applications that have
processes with different computing power requirements. The
algorithms are based on the minimum completion time (MCT)
algorithm [7], which performs well for heterogeneous tasks and
resources. These algorithms are just an example onhow the system
can schedule tasks; i.e. other algorithms can be used for this
purpose.

In order to map application processes to cluster resources, the
scheduler considers the list of resources, number of iterations per
process, number of processes, process requirements, performance
predictions for computation and inter-process communication. For
simplification reasons, we assumed that each CPU requirement
contains the same number of processes.



1392 M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399
Synchronous model’s scheduler. For the synchronous model (Algo-
rithm 1), the scheduler sorts resources by their computing power,
which is determined during the performance prediction phase
(Line 1) and assigns processes according to their process require-
ments (more CPU consuming ones first) for each stage (Lines 6–12).
The number of stages is determined by the total number of re-
sources and total number of processes specified by the user (Line
3). As resources and process requirements make the process exe-
cution times vary, more iterations can be added to processes that
would be waiting for slower processes (Lines 14–15).
Asynchronous model’s scheduler. For the asynchronous model
(Algorithm 2), the scheduler assigns one process of each process
CPU requirement to the resource with the earliest completion
time (Lines 3–6). The scheduler gives priority to longer processes
(Line 1), however each group of processes with the same CPU
requirement receives one resource per round (Line 4). Note that
this algorithm is simpler than Algorithm 1 because the constraint
of when the results of processes get mixtured is removed.

Algorithm 1: Pseudo-code for generating the schedule using
the synchronous model.
1 Sort resources by decreasing order of computing power
2 Sort processes by decreasing order of CPU demand
3 numberOfStages← numberOfProcesses / numberOfResources
4 numberOfProcesssesPerProcessRequirement←

numberOfResources / numberOfRequirements
5 maxCompletionTime← 0
6 for 0 to numberOfStages do
7 r← 0 (r: resource id)
8 for each processRequirement do
9 for 0 to numberOfProcessesPerProcessRequirement do

10 Schedule a process of this processRequirement to
resource r

11 Update MaxCompletionTime
12 r← r + 1

13 /* optional /*
14 for each resource r do
15 Make last process on this resource complete at

MaxCompletionTime by increasing the number of iterations

Algorithm 2: Pseudo-code for generating the schedule using
the asynchronous model.
1 Sort processes by the decreasing order of their CPU requirement
2 n← 0
3 while n < numberOfProcesses do
4 for each process CPU requirement do
5 Select resource r with earliest completion time
6 Schedule process to resource r
7 n← n + numberOfProcessRequirements

4.3. Scheduling and rescheduling

The application scheduler algorithms presented in previous
section schedule processes. These processes require a certain
amount of time to be executed on give set of resources. To be able
to execute these processes, the application scheduler generates
requests to the system scheduler, which represent the number of
resources (e.g. machines) and the estimated usage time.

The interaction between system and application schedulers
takes place during the initial scheduling and rescheduling of a
request. The initial scheduling is triggered when a metascheduler
requests for machines, whereas the rescheduling is triggered when
a system scheduler wants to update its queue. For both cases,
interaction between system and application’s scheduler comprises
three steps:

1. The application scheduler asks the system scheduler for the
earliest nmachines available.

2. The application scheduler generates a schedule containing the
application estimated execution time.

3. The metascheduler, or a system scheduler, verifies with the
other system scheduler(s) whether it is possible to commit
requests.

4. Step 1 is repeated if it is not possible to commit requests. A
maximum number of trials can be specified.

Note that by using this algorithm, resource providers can keep
their schedules private [16]. Alternatively, in Step 1, the application
scheduler could ask system schedulers for all free time slots
(i.e. available time intervals for resources) and then minimize
interactions between themetascheduler and the system scheduler.
Details on rescheduling. Rescheduling of an application frequently
occurs when other applications finish before the estimated
time, since this event can generate fragments in the scheduling
queue [29]. Rescheduling can be also necessary when resources
fail or users modify/cancel requests. Whenever one of these events
arise, the system scheduler triggers the rescheduling process. This
process may change the number of resources used in each cluster,
or simply change the starting time of the resource requests. For
the first case, the partitioning of iterations may be changed by the
application scheduler, as it generates a new schedule. The requests
in each scheduling queue of each cluster have to be configured
to start at the same time. When rescheduling the requests on
each cluster, the algorithm presented in this section optimizes the
application starting time.

5. Evaluation

This section describes the experiments we performed to
show how much time the metascheduler requires to generate
application throughputs, the accuracy of prediction run times, and
the impact of these predictions on the rescheduling.

We used an iterative parallel application based on evolutionary
algorithms, which consists of benchmarkmultiobjective problems,
with both synchronous and asynchronous communicationmodels.
We conducted the experiment in Grid’5000, which consists of
clusters across France dedicated to large-scale experiments [6].
The clusters are space-shared machines shared by multiple
applications. From these clusters, we selected seven resource
sets to execute the application. These sets are examples of
resources that are dynamically chosen by the metascheduler to
execute our case study application. Experiments on how the
metascheduler selects resource sets, when it reschedules multi-
cluster applications, and the impact of rescheduling them can be
found in our previouswork [29]. Before describing the experiment,
we provide an overview of the benchmark application.

5.1. Case study of iterative parallel application

EMO (Evolutionary Multiobjective Optimizer) is an iterative
benchmark application based on Genetic Algorithms [13] and uses
the concept of topology to drive the evolutionary process [21,38]. A
topology is a graph interconnecting individuals of a population and
is characterized by: (i) the node degree representing the average
number of connections for each individual; and (ii) the path line
defining the number of hops to be crossed on average to connect
individuals. Individuals are chosen to exchange their information
according to the topology links; process that determines how the



M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399 1393
Fig. 4. Topologies of EMO application.

current solutions of the approximation sets are selected to produce
a new generation of solutions.

The use of topologies provides better solutions in general
but requires a large number of elements in the approximation
sets, which becomes compute intensive for non-trivial problems.
Moreover, topologies have impact on the execution time: sparsely
connected topologies imply faster execution times than fully
connected ones, but propagate more slowly the updates in the
approximation set. In this work we use four topologies: Regular
2D, Scale-Free, Small-World, and Random [21]. Fig. 4 illustrates
each topology. We chose these topologies since they represent the
various ways the individuals can be interconnected.

EMO is an application that runs from the operating system shell
and can be controlled by a set of 25 command line parameters. The
main input parameters for our case study are: the topology used to
produce the new solutions, the number of iterations, the size of the
approximation set, and the optimization multiobjective function.
As execution outcome, EMOproduces: the final solution set (Pareto
Front) and the approximation set that generated this solution.
For the distributed version of EMO, we introduced a coordination
layer that reiterates EMO processes by feeding themwith updated
information on the approximation set. An additional component,
called EMOMerge, merges and partitions the approximation sets
generated at each stage of the execution for synchronous model.
For the asynchronous model, EMOMerge uses the last results
received from the other processes.

Epsilon indicator. Multiobjective functions identify a multi-
dimensional space whose properties are difficult to visualize
effectively. It is then necessary to adopt synthetic measures that
generally aggregate information about the quality of a solution into
one number called indicator. In our case study, we use a quality in-
dicator called Epsilon [42], which is based on the distance between
a reference solution and the Pareto front.

5.2. Experimental configuration

We used seven clusters located in three cities in France
with heterogeneous computing capabilities. Table 1 presents an
Table 1
Overview of the node configurations.

Cluster Location CPUs’ configuration

Paradent Rennes Intel xeon L5420 2.5 GHz
Paramount Rennes Intel xeon 5148 2.33 GHz
Paraquad Rennes Intel xeon 5148 2.33 GHz
Sol Sophia AMD opteron 2218 2.6 GHz
Bordemer Bordeaux AMD opteron 248 2.2 GHz
Azur Sophia AMD opteron 246 2.0 GHz
Bordeplage Bordeaux Intel xeon EM64T 3 GHz

Table 2
Seven resource sets, from the clusters in Grid’5000, selected by the metascheduler
to execute user applications.

Clusters/resource sets 1 2 3 4 5 6 7

Paradent 32
Paramount 04 20 04
Paraquad 04 20
Sol 12 12 20 20 12
Bordemer 02 08 20 08 06 20
Azur 06 06 10
Bordeplage 06 08 20

overview of the node configurations for these clusters.1 Machines
in the same location share the same file system, which simplifies
file transfer between nodes of clusters in the same site. The inter-
site communication is over a 1 Gbps Ethernet network, whereas
the intra-site communication varies for each site (Myrinet and 10
Gbps Ethernet).
Application configuration. In order to test the performance and
behavior of multiobjective evolutionary algorithms (MOEA), Deb
et al. [14] have proposed a set of functions designed to evaluate
different aspects of these algorithms. The functions are named
DLTZn where n ranges from 1 to 9. These functions are designed
incrementally and are useful tests for checking the ability of
algorithms to converge to a hyperplane (DLTZ1), to scale up their
performance in a large number of objectives (DLTZ2), to converge
to the Pareto optimal front (DLTZ3), and so on. We decided to use
the DLTZ6 function that both evaluates the ability to converge to a
curve and constitutes a good test for the computational complexity
of a MOEA. We configured EMO to solve the DTLZ6 function with
a setup of 10 objectives as suggested by Deb et al. We have used
four topologies and 1024 individuals (also known as candidate
solutions) for each process with a minimum of 200 iterations for
process. The application was deployed on 40 cores using 480 EMO
instances, i.e. 120 instances per topology in order to find the best
solutions for DLTZ6.
Resource sets. We configured the metascheduler to access seven
resource sets in Grid’5000. Table 2 presents the list of clusters and
number of cores used in each resource set. These resource sets are
examples of resources chosen dynamically by the metascheduler
for the EMO application. The clusters are space-shared machines,
and hence the resource sets are dedicated to the application, which
is a common set up for existing HPC infrastructures.
Inter-process communication overhead. Communication is based
on file transfer between processes during the merging phases.
The files transferred among the sites are 500 kbytes on average.
Therefore, the cost of transferring the files is minimum compared
to the total application execution time, which takes minutes.
However, file transfer, performed by the metascheduler, relies
on secure copy (scp) command, which requires authentication.
Therefore, we used inter-site file transfer as 800 ms (in a

1 More details about the machines in Grid’5000 can be found at https://www.
grid5000.fr.

https://www.grid5000.fr
https://www.grid5000.fr
https://www.grid5000.fr
https://www.grid5000.fr


1394 M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399
Table 3
Throughput (iterations/s) for each machine configuration and topology.

Cluster/top. Regular 2D Scale-Free Small-World Random

Paradent 10.87 11.36 3.57 3.29
Paramount 10.00 10.42 3.33 3.05
Paraquad 10.00 10.42 3.33 3.05
Sol 9.26 9.62 3.09 2.81
Bordemer 7.81 7.81 2.60 2.38
Azur 7.14 7.35 2.34 2.14
Bordeplage 5.81 6.10 1.89 1.68

Table 4
Time in seconds to obtain the throughputs for each machine configuration and
topology.

Cluster/top. Regular 2D Scale-Free Small-World Random

Paradent 23 14 42 46
Paramount 25 15 45 49
Paraquad 25 15 45 49
Sol 27 16 49 54
Bordemer 32 19 58 63
Azur 35 21 64 70
Bordeplage 43 26 80 90

1 Gbps Ethernet network), which is taken into account by the
metascheduler to calculate the run time prediction.
Metrics. To evaluate co-allocation based on performance predic-
tions and their importance on rescheduling, wemeasured the time
to generate predictions and analyze the difference between the actual
and the predicted execution times. The prediction for each resource
set assists schedulers to know whether they can reschedule the
new subrequests into the scheduling queues of other schedulers.
Therefore, we measured the impact of predictions for the applica-
tion rescheduling. To understand the application output on differ-
ent resource sets, we alsomeasured execution times and the Epsilon
indicator, which indicates the quality of the solutions inside the ap-
plication, for both synchronous and asynchronous models.

5.3. Results and analysis

Performance predictions generation. Themetascheduler executed an
independent process in six nodes with different computing power
and the throughputs became steady before 250 iterations for all
processes. Table 3 presents the throughputs for each cluster and
topology. We observe that sparsely connected networks, such as
theRegular 2Dand the Scale-Free networks, imply a faster iteration
time thanmore connected networks, such as the Random topology.
For the Random topology, the value of the path linewas around five
times smaller than the path line of the Regular 2D. Thismeans that,
on average, the selection of the individual to exchange information
requires traversing a list five times smaller than for the Random
topologies; and this reflects the execution time difference. Table 4
shows the time spent to obtain the throughput for each node
configuration and topology. Most of the throughput values took
less than oneminute to be obtained. The total CPU time to generate
the predictions is only 5% and 10% of the overall CPU time of the
longest and shortest experiment respectively. As the predictions
can be re-utilized or used by longer executions or executions with
more processes, the cost for generating predictions tends to be
zero. It is important to remark that users with long experiments
have more benefits than those with short ones due to the trade-
off between total application execution time and performance
prediction time.
Regular behavior. In order to show the regularity of the throughput,
we configured the metascheduler to collect the throughput data
until 1500 iterations. As we can see in Fig. 5, which shows the
execution times as a function of the topologies and number
of iterations for three machine configurations in Grid’5000 (for
exemplification purposes, we included only three configurations),
EMO has a regular throughput over the iterations. This happens
because EMO processes the similar amount of work in each
iteration, which is common for several iterative applications.
Fig. 6 represents the throughput (iterations/second) of an EMO
execution using Regular 2D and Random topologies on a single
core of seven machine configurations as a function of number of
iterations.Weobtained similar results for the other two topologies.
Accuracy of predictions. Fig. 7 presents the predicted and actual
execution times for synchronous and asynchronousmodels. Actual
execution times are averages of five executions for each resource
set. We observe that the execution time for the asynchronous
model is shorter than the synchronous model for all resource
sets. For the asynchronous model, all EMO processes execute
the minimum required number of iterations, whereas for the
synchronous model, EMO processes may execute more iterations
in order to wait for processes that take longer. In addition, the
difference between actual and predicted execution is on average
8.5% for synchronous and 7.3% for the asynchronous model. These
results highlight that it is possible to reschedule processes on
multiple clusters since schedulers can predict the execution time
for different resource sets. Note that the predictions for the
asynchronous model is slightly better than for the synchronous
model. This reason is that the asynchronous model requires
less accurate inter-process communication predictions than the
synchronous model since the network overhead impact in the first
model is minimum.

For the quality of the predictions (Fig. 7), resource sets 2 and
3 present more accurate predictions (distance between predicted
and actual execution times) compared to the other sets for the
synchronous model. This happens because the merging phase is
split by sites (locations in France). For these sets, three sites are
used, and therefore the load for merging results is well balanced.
Resource set 6 also comprises three sites, but only four resources
in the site that has the best computing power compared to the
other two. Thus there in an unbalance in processing power among
the sites generating a bottleneck in the merging phase. For the
asynchronous model, the worst prediction is for resource set 7
since 20 resources from the worst cluster (bordeplage) are used,
which makes the merging process slower.
Importance of predictions to rescheduling. When remapping pro-
cesses from one resource set to another, the application run time
may remain the same, increase or decrease. When it remains the
same, schedulers just have to redefine the number of resources
in each cluster; which can be performed by the metascheduler or
by the system schedulers themselves. This is the case for remap-
ping processes from, for example, resource set 1–2 and 2–3 or
4 for synchronous and asynchronous model respectively. When
the run time increases, the prediction generated by the applica-
tion scheduler may avoid the application to be aborted due to un-
derestimations. A rescheduling from a shorter to longer execution
time is desired when the application can start earlier than the ini-
tial schedule predicted. This is the case for remapping processes
from resource set 1–7. Fig. 8 shows that overestimation is required
to avoid the application to be killed when rescheduling from re-
source set 1 to the other resource sets without the use of predic-
tions (the higher the value the more useful is our metascheduler
based on predictions). For the synchronous model, 35% of over-
estimation is required, whereas for the asynchronous model 57%.
When rescheduling a request from a longer to shorter run time,
predictions assist schedulers to increase the chances of backfilling
subrequests [26]. This happens because longer jobs tend not to fill
the fragments in the scheduling queues [37]. This is the case when
rescheduling processes from resource set 7–1 for synchronous and
asynchronous model.



M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399 1395
(a) Paramount. (b) Bordemer.

(c) Bordeplage.

Fig. 5. Execution times as a function of the topologies for three machine configurations in Grid’5000.
(a) Regular 2D topology. (b) Random topology.

Fig. 6. Throughput for Regular 2D and Random topologies on each machine configuration.
Fig. 7. Predicted and actual execution times for synchronous and asynchronous models.
Synchronous versus asynchronous models. In order to understand
the output produced by the application, we have also compared
the quality of the optimization results between synchronous and
asynchronous models. Fig. 9 shows the Epsilon indicator (the
lower the better) for synchronous and asynchronous models
under three resource sets. The asynchronous model converges
faster and produces better results than the synchronous model.
This happens because the asynchronous model is able to mix
more results from different EMO processes, which might have
different topologies, in relation to the synchronous model. For



1396 M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399
Fig. 8. Overestimation required to avoid application being aborted due to rescheduling from resource set 1 to other sets without co-allocation based on performance
predictions.
(a) Resource set 3. (b) Resource set 5.

(c) Resource set 6.

Fig. 9. Epsilon indicator for three resource sets on both communication models.
resource set 3, the synchronous model produces similar result
for the Epsilon indicator as the asynchronous model, but the
Epsilon values get closer after a considerable execution time.
Fig. 10 illustrates the importance of mixing results from different
topologies. The results show that although Random, which is the
most CPU consuming topology, has the greatest impact on the
Epsilon indicator, the less CPU consuming Scale-Free topology
contributes to the function optimization. Moreover, even for one-
topology executions, asynchronous produces better optimization
results and it converges faster than its synchronous counterpart.
Similar results were obtained for the other resource sets but are
not included due to space constraints. The comparison results
between synchronous and asynchronous model showed here
corroborate the results presented by Desell et al. [15] with
their application in the astronomy field; i.e. asynchronous model
has better convergence rates, especially when heterogeneous
resources are in place.
Other examples of iterative applications. The results presented
so far are from a single application using both synchronous
and asynchronous execution models. Here we show examples
of other three applications that also present regular execution
times. The first application is PEPS (Performance Evaluation Of
Parallel Systems) [3], which aimed at solving numerically very
large Markov Chains. The second application is ABC toolbox [39],
which implements Approximate Bayesian Computations (ABC)
algorithms and is used for analyzing evolutionary history of
biological especies. The third application is Amber [11], which is
a set of molecular mechanical force fields for the simulation of
biomolecules and a package of molecular simulation programs.
All these three applications are iterative and can be executed
in parallel. We performed experiments using three inputs for
each application, varying the Markov Chain, sampling size, and
number of interactions of atoms for PEPS, ABC toolbox, and Amber,
respectively. Fig. 11 presents the throughput behavior for the three
applications for each input parameter. We observed that for the
PEPS application, the throughput for each input is steady from
the beginning of the executions. For the ABC toolbox and Amber
applications, the throughput became steady after a few iterations



M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399 1397
(a) Only Scale-Free topology. (b) Only Random topology.

(c) Four topologies together.

Fig. 10. Epsilon indicator for resource set 1 showing the importance of mixing topologies.
(a) PEPS. (b) ABC toolbox.

(c) Amber.

Fig. 11. Throughput analysis of three iterative applications with three input parameters.



1398 M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399
Table 5
Predicted execution time (in seconds) for PEPS, ABC toolbox, and Amber
applications. The total number of iterations are 300, 5000, and 5000 for PEPS,
ABC toolbox, and Amber respectively. The number of iterations used to define the
throughput are 5, 30, and 30 for these three applications.

Applications PEPS ABC toolbox Amber
Inputs A B C A B C A B C

Predic. time 7959 9350 4574 6410 4165 10,865 3965 2475 8330
Actual time 7968 9479 4713 4820 5445 10,850 4085 2485 8655

complete, which is a similar behavior of EMO (Fig. 6). We executed
the applications using 300, 5000, and 5000 for PEPS, ABC toolbox,
and Amber respectively. As our aim is to be able to predict the
execution time of each application using a few iterations, we
used 5, 30, and 30 iterations to execute the applications. Table 5
presents the predicted and actual execution times using these
number of iterations. Apart from the inputs A and B of ABC toolbox,
all the other executions provided accurate predicted execution
times, showing the viability of the sampling method for four
iterative applications: EMO, PEPS, ABC toolbox, and Amber. For
these applications we were able to use the single-sweep method.

6. Conclusions

Resource co-allocation ensures that applications access pro-
cessors from multiple clusters in a coordinated manner. Current
co-allocation techniques mostly depend on users to specify the
number of processors and usage time for each cluster, which is par-
ticularly difficult due to heterogeneity of the computing environ-
ment.

This paper presented a resource co-allocation technique with
rescheduling support based on performance predictions for
multi-cluster iterative parallel applications. Due to the regular
nature of these applications, a simple and effective performance
prediction strategy can be used to determine the execution time
of application processes. The metascheduler can generate the
application performance model without requiring access to the
application source code, but by observing the throughput of
a process in each resource configuration using a short partial
execution. Predictions also enable automatic rescheduling of
parallel applications; in particular they prevent applications from
being aborted due to run time underestimations and increase
backfilling chances when rescheduled to faster resources.

Fromour experiments using an iterative benchmark parallel ap-
plication with both synchronous and asynchronous communica-
tion models on Grid’5000, we observed run time predictions with
an average error of 7% and prevention of up to 35% and 57% of run
time overestimations for synchronous and asynchronous models,
respectively. A relevant remark is that the asynchronousmodel re-
quires no network information to predict execution times since
this model masks communication and computation. The results
are encouraging since automatic co-allocation with rescheduling
support is fundamental for multi-cluster iterative parallel appli-
cations; in particular because these applications, based on asyn-
chronous communication model, are used to solve problems in
large-scale systems.

Acknowledgments

We thank Alexandre di Costanzo, Marcos Dias de Assunção,
Mukaddim Pathan, and the anonymous reviewers for their
valuable comments on this paper. We also would like to thank
Antonio Lima and Raquel Dias for their assistance with the PEPS,
ABC toolbox, and Amber applications. Experiments presented in
this paper were carried out using the Grid’5000 experimental
testbed, being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several Universities
aswell as other funding bodies (see https://www.grid5000.fr). This
work is partially supported by research grants from the Australian
Research Council (ARC) and Australian Dept. of Innovation,
Industry, Science andResearch (DIISR). It is also partially supported
by USA NSF CAREER CNS Grant No: 0448407.

References

[1] J.M. Bahi, S. Contassot-Vivier, R. Couturier, Performance comparison of parallel
programming environments for implementing AIAC algorithms, The Journal of
Supercomputing 35 (3) (2006) 227–244.

[2] H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, R.F.H. Hofman, Optimizing parallel
applications for wide-area clusters, in: Proceedings of the 12th International
Parallel Processing Symposium/9th Symposium on Parallel and Distributed
Processing, IPPS/SPDP ’98, 1998.

[3] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, W. Stewart, The PEPS software
tool, Computer Performance (2003) 98–115.

[4] F. Berman, R.Wolski, H. Casanova,W. Cirne, H. Dail, M. Faerman, S.M. Figueira,
J. Hayes, G. Obertelli, Schopf J.M, G. Shao, S. Smallen, N.T. Spring, A. Su,
D. Zagorodnov, Adaptive computing on the grid using AppLeS, IEEE
Transactions on Parallel and Distributed Systems 14 (4) (2003) 369–382.

[5] C.A. Bohn, G.B. Lamont, Load balancing for heterogeneous clusters of PCs,
Future Generation Computer Systems 18 (3) (2002) 389–400.

[6] R. Bolze, F. Cappello, E. Caron, M.J. Daydé, F. Desprez, E. Jeannot, Y.
Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B.
Quétier, O. Richard, E.-G. Talbi, I. Touche, Grid’5000: a large scale and
highly reconfigurable experimental grid testbed, International Journal of High
Performance Computing Applications 20 (4) (2006) 481.

[7] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.I. Reuther,
J.P. Robertson, M.D. Theys, B. Yao, D.A. Hensgen, R.F. Freund, A comparison
of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems, Journal of Parallel and
Distributed Computing 61 (6) (2001) 810–837.

[8] B. Brooks, R. Bruccoleri, B. Olafson, et al., CHARMM: A program for
macromolecular energy, minimization, and dynamics calculations, Journal of
Computational Chemistry 4 (2) (1983) 187–217.

[9] A.I.D. Bucur, D.H.J. Epema, Scheduling policies for processor coallocation in
multicluster systems, IEEE Transactions on Parallel and Distributed Systems
18 (7) (2007) 958–972.

[10] H. Casanova, M. Thomason, J. Dongarra, Stochastic performance prediction
for iterative algorithms in distributed environments, Journal of Parallel and
Distributed Computing 58 (1) (1999) 68–91.

[11] D. Case, T. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. Merz Jr., A. Onufriev,
C. Simmerling, B. Wang, R. Woods, The Amber biomolecular simulation
programs, Journal of Computational Chemistry 26 (16) (2005) 1668–1688.

[12] K. Czajkowski, I. Foster, C. Kesselman, Resource co-allocation in computa-
tional grids, in:Proceedings of the 8th International Symposium on High
Performance Distributed Computing, HPDC’99, Redondo Beach, USA, 1999,
pp. 219–228, doi:10.1109/HPDC.1999.805301.

[13] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John
Wiley & Sons, 2001.

[14] K. Deb, L. Thiele,M. Laumanns, E. Zitzler, Scalablemulti-objective optimization
test problems, in: Proceedings of the Congress on Evolutionary Computation
(CEC’02), 2002.

[15] T.J. Desell, B.K. Szymanski, C.A. Varela, Asynchronous genetic search for sci-
entific modeling on large-scale heterogeneous environments, in: Proceedings
of the 17th Heterogeneity in Computing Workshop, HCW’08, in: Conjunction
with 22nd IEEE International Symposium on Parallel and Distributed Process-
ing, IPDPS’08, 2008.

[16] E. Elmroth, J. Tordsson, A standards-based grid resource brokering service
supporting advance reservations, coallocation, and cross-grid interoperability,
Concurrency and Computation: Practice and Experience 21 (18) (2009)
2298–2335.

[17] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, A Streit, On
advantages of grid computing for parallel job scheduling, in: Proceedings of the
2nd International Symposium on Cluster Computing and the Grid, CCGrid’02,
Berlin, Germany, 2002, pp. 39–46.

[18] P.K. Gummadi, S. Saroiu, S.D. Gribble, King: estimating latency between
arbitrary internet end hosts, in: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurement, IMW’02, ACM, 2002, pp. 5–18.

[19] L. He, S.A. Jarvis, D.P. Spooner, X. Chen, G.R. Nudd, Dynamic scheduling of
parallel jobs with QoS demands in multiclusters and grids, in: Proceedings of
the International Conference on Grid Computing, GRID’04, 2004.

[20] S.A. Jarvis, D.P. Spooner, H.N.L.C. Keung, J. Cao, S. Saini, G.R. Nudd, Performance
prediction and its use in parallel and distributed computing systems, Future
Generation Computer Systems 22 (7) (2006) 745–754.

[21] M. Kirley, R. Stewart, Multiobjective evolutionary algorithms on complex
networks, in: Proceedings of 4th International Conference EvolutionaryMulti-
Criterion Optimization, EMO’07, in: Lecture Notes Computer Science, vol.
4403, Matsushima, Japan, 2007.

[22] Z. Li, M. Parashar, A decentralized computational infrastructure for grid-based
parallel asynchronous iterative applications, Journal of Grid Computing 4 (4)
(2006) 355–372.

https://www.grid5000.fr
http://dx.doi.org/doi:10.1109/HPDC.1999.805301


M.A.S. Netto et al. / J. Parallel Distrib. Comput. 71 (2011) 1388–1399 1399
[23] K.E. Maghraoui, T.J. Desell, B.K. Szymanski, C.A. Varela, Malleable iterative MPI
applications, Concurrency and Computation: Practice and Experience 21 (3)
(2009) 393–413.

[24] V.W. Mak, S.F. Lundstrom, Predicting performance of parallel computations,
IEEE Transactions on Parallel and Distributed Systems 1 (3) (1990) 257–270.
doi:10.1109/71.80155.

[25] G. Morris, D. Goodsell, R. Huey, A. Olson, Distributed automated docking of
flexible ligands to proteins: parallel applications of AutoDock 2.4, Journal of
Computer-Aided Molecular Design 10 (4) (1996) 293–304.

[26] A.W. Mu’alem, D.G. Feitelson, Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling, IEEE
Transactions on Parallel and Distributed Systems 12 (6) (2001) 529–543.

[27] M.A.S. Netto, A. Breda, O.N. deSouza, Scheduling complex computer simula-
tions on heterogeneous non-dedicated machines: a case study in structural
bioinformatics, in: Proceedings of the IEEE International Symposium on Clus-
ter Computing and the Grid, CCGrid’05, vol. 2, IEEE, 2005, pp. 768–775.

[28] M.A.S. Netto, R. Buyya, Offer-based scheduling of deadline-constrained bag-
of-tasks applications for utility computing systems, in: Proceedings of
the 18th International Heterogeneity in Computing Workshop, HCW’09,
in Conjunction with the 23rd IEEE International Parallel and Distributed
Processing Symposium, IPDPS’09, Rome, Italy, 2009.

[29] M.A.S. Netto, R. Buyya, Rescheduling co-allocation requests based on flexible
advance reservations and processor remapping, in: Proceedings of 9th
IEEE/ACM International Conference on Grid Computing, GRID’08, Tsukuba,
Japan, 2008.

[30] M.A.S. Netto, R.N. Calheiros, R.K.S. Silva, C.A.F.D. Rose, C. Northfleet, W.
Cirne, Transparent Resource Allocation to Exploit Idle Cluster Nodes in
Computational Grids, in: Proceedings of 1st International Conference on e-
Science and Grid Technologies, e-Science’05, IEEE Computer Society, 2005,
pp. 238–245.

[31] S. Ratnasamy, M. Handley, R.M. Karp, S. Shenker, Topologically-aware overlay
construction and server selection, in: IEEE INFOCOM, 2002.

[32] G. Romanazzi, P.K. Jimack, Parallel performance prediction for numerical codes
in a multi-cluster environment, in: Proceedings of the 2008 International
Multiconference on Comp. Science and Information Technology, IMCSIT’08,
Wisla, Poland, 2008.

[33] S.M. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran, X.J.
Collazo-Mojica, A modeling approach for estimating execution time of long-
running scientific applications, in: Proceedings of the 22nd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS’08, 2008.

[34] H.A. Sanjay, S.S. Vadhiyar, Performance modeling of parallel applications for
grid scheduling, Journal of Parallel and Distributed Computing 68 (8) (2008)
1135–1145.

[35] O. Sievert, H. Casanova, A simple MPI process swapping architecture for
iterative applications, International Journal of High Performance Computing
Applications 18 (3) (2004) 341–352.

[36] D. Tsafrir, Y. Etsion, D. Feitelson, Backfilling using system-generated predic-
tions rather than user runtime estimates, IEEE Transactions on Parallel and
Distributed Systems 18 (6) (2007) 789–803.

[37] D. Tsafrir, D.G. Feitelson, The dynamics of backfilling: Solving the mystery of
why increased inaccuracy may help, in: Proceedings of the IEEE International
Symposium on Workload Characterization, IISWC’06, San Jose, USA, 2006.

[38] C. Vecchiola, M. Kirley, R. Buyya, Multi-objective problem solving with
offspring on enterprise clouds, in: Proceedings of the 10th International Conf.
on High-Performance Computing in Asia-Pacific Region, HPC Asia’09, 2009.

[39] D. Wegmann, C. Leuenberger, S. Neuenschwander, L. Excoffier, ABCtoolbox: a
versatile toolkit for approximate Bayesian computations, BMC Bioinformatics
11 (1) (2010) 116.

[40] C. Xu, L. Wang, N. Fong, Stochastic prediction of execution time for dynamic
bulk synchronous computations, The Journal of Supercomputing 21 (1) (2002)
91–103.

[41] L.T. Yang, X. Ma, F. Mueller, Cross-platform performance prediction of
parallel applications using partial execution, in: Proceedings of the ACM/IEEE
Conference on High Performance Networking and Computing, SC’05, 2005.

[42] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review, IEEE
Transactions on Evolutionary Computation 7 (2) (2003) 117–132.
Marco A.S. Netto received his Ph.D. in Computer Science
from the University of Melbourne, Australia (2010), and
Bachelor’s (2002) andMaster’s degree (2004) in Computer
Science, both from the Pontifical Catholic University
of Rio Grande do Sul (PUCRS), Brazil. He has been
working with resource management and job scheduling
for high performance computing environments since
2000. Marco’s current research effort is on management
of virtualized resources and SLAs. His work considers
Quality-of-Service in terms of job’s completion time
guarantees and rescheduling aspects.

Christian Vecchiola received his Ph.D. in Computer Sci-
ence from University of Genoa (2007), and his Bachelor
degree from the same institution in 2003. Dr. Vecchiola
is currently a researcher at the University of Melbourne,
Australia. His research interests are Multi-Agent System
and Distributed Artificial Intelligence, Distributed Evolu-
tionary Computation, and Software Engineering.

Michael Kirley received his Ph.D. from Charles Sturt
University (2003), and his Bachelor of Education from
DeakinUniversity in 1988.He is currently a Senior Lecturer
at the University of Melbourne. His interests include
the theory and application of evolutionary computation,
artificial intelligence techniques,multi-agent systems, and
complex systems science.

Carlos A. Varela received his B.S. with honors, M.S.,
and Ph.D. in Computer Science from the University of
Illinois at Urbana-Champaign. Dr. Varela is Associate
Editor and Information Director of the ACM Computing
Surveys journal, and has served as Guest Editor of the
Scientific Programming journal. Dr. Varela is a recipient
of several research grants including the NSF CAREER
award, two IBM SUR awards, and two IBM Innovation
awards. His current research interests include web-based
and internet-based computing, middleware for adaptive
distributed systems, concurrent programmingmodels and

languages, and software development environments and tools.

Rajkumar Buyya is a Professor and Reader of Computer
Science and Software Engineering and Director of the Grid
Computing andDistributed Systems (GRIDS) Laboratory at
the University of Melbourne, Australia. He is also serving
as the founding CEO of Manjrasoft Pty Ltd. He received his
B.E. and M.E. in computer science and engineering from
Mysore and Bangalore Universities in 1992 and 1995, re-
spectively and his Ph.D. in computer science and software
engineering from Monash University, Melbourne, Aus-
tralia, in April 2002. Dr. Buyya has authored/co-authored
over 250 publications. His research interests are in Cloud

Computing, resource management, and general aspects of distributed systems.

http://dx.doi.org/doi:10.1109/71.80155

	Use of run time predictions for automatic co-allocation of multi-cluster resources for iterative parallel applications
	Introduction
	Related work
	Iterative parallel applications
	Synchronous model
	Asynchronous model
	Importance of resource co-allocation

	Resource co-allocation based on performance predictions
	Generation of run time predictions
	Application schedulers
	Scheduling and rescheduling

	Evaluation
	Case study of iterative parallel application
	Experimental configuration
	Results and analysis

	Conclusions
	Acknowledgments
	References


