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Abstract—Resource usage prediction in cloud data centers is
critically important. It can improve providers’ service quality
and avoid resource wastage and insufficiency. However, the time
series of resource usage in cloud environments is characterized by
multidimensional, nonlinear, and high-volatility characteristics.
Achieving high-accuracy prediction for time series with such
characteristics is necessary but difficult. Traditional prediction
methods based on regression algorithms and recurrent neural
networks cannot effectively extract non-linear features from
datasets. Besides, many deep learning models suffer from gradi-
ent explosion or gradient vanishing during the training stage.
Current commonly used prediction methods fail to uncover
some vital information about the frequency domain features
in the time series. To resolve these challenges, we design a
Forecasting method based on the Integration of a Savitzky-
Golay (SG) filter, a Frequency Enhanced Decomposed Trans-
former (FEDformer) model, and a Frequency-Enhanced channel
Attention mechanism named FISFA. It adopts the SG filter to
reduce noise and smooth sequences in the raw sequences of
resources. Then, we develop a hybrid transformer-based model
integrating FEDformer and the frequency-enhanced channel
attention mechanism, effectively capturing the frequency domain
patterns. Besides, a meta-heuristic optimization algorithm, i.e.,
genetic simulated annealing-based particle swarm optimizer, is
proposed to optimize key hyperparameters of FISFA. Then,
FISFA predicts the future needs for multi-dimensional resources
in highly fluctuating traces in real-life cloud environments.
Experimental results demonstrate that FISFA achieves higher
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accuracy and performs more efficient prediction than several
benchmark forecasting methods with realistic datasets collected
from Alibaba and Google cluster traces. FISFA improves the
prediction accuracy on average by 32.14%, 25.49%, and 27.71%
over vanilla LSTM, Transformer, and Informer methods, respec-
tively.

Index Terms—Cloud computing, time series prediction, deep
learning, frequency enhancement, SG filter

I. INTRODUCTION

As companies and organizations increasingly rely on cloud
computing infrastructure, cloud data centers (CDCs) are grow-
ing popular due to their high availability and flexibility [1],
[2]. These CDCs provide a variety of software and hardware,
including computing, storage, and network resources in a
pay-as-you-go way [3]. Individuals or organizations can rent
computing resources as cloud services according to their
needs. Cloud service providers [4] can avoid wasting resources
and save the cost of managing infrastructure. Current famous
Internet companies like Google, Microsoft, and Amazon have
almost countless computing devices. To maximize the utiliza-
tion of these computing resources, they have established their
CDCs. Their computing tasks generate resource usage time
series, including CPU, memory, disk, network, and I/O [5].
However, the high volatility and nonlinearity of the time series
may result in over or under provisioning of resources [6]–[8].
For example, simultaneously, a large influx of tasks can easily
cause resource shortages [9]. During periods with a few tasks,
such as midnight, idle server clusters can result in resource
wastage. According to [10], the mean CPU utilization of the
whole servers in Alibaba CDCs varies between 5% and 85%,
showing considerable fluctuations. Thus, designing an accurate
prediction method that can effectively extract relationships and
features among multi-dimensional resource usage time series
is critically important.

Time series prediction has attracted a considerable number
of studies [11]. Traditional prediction approaches include
linear regression [12] and AutoRegressive Integrated Moving
Average (ARIMA) [13]–[15]. Nevertheless, when the regular-
ity of the time series is not obvious, most of them cannot
achieve the accurate prediction. In addition, these approaches
fail to extract complicated characteristics and patterns of time



series datasets efficiently. Unlike the abovementioned meth-
ods, recurrent neural network (RNN) models have stronger
sequence processing capabilities. Their variants [16]–[20] have
been thoroughly employed for the time series prediction in
the past few years. For example, long short-term memory
(LSTM) is adopted to predict future short-term wind power
in [16]. Gupta et al. propose a sparse Bidirectional LSTM
(BiLSTM) network for future resource usage prediction. Saha
et al. choose the LSTM-based encoder and decoder for the
multi-step Internet traffic prediction.

However, they cannot efficiently capture long-term de-
pendencies and association information among different di-
mensions in the time series. Currently, some studies [21],
[25]–[28] have used transformer-based models to achieve the
prediction. For example, a variant named multi-size patched
spatial-temporal transformer is presented to achieve the urban
crowd prediction in [21]. A non-autoregressive transformer-
based model is designed for vehicle trajectory prediction. A
variant that combines the transformer and the Markov-chain
Monte Carlo algorithm is designed to predict electrical energy
consumption. However, these studies cannot effectively extract
the frequency domain information in the series. To solve the
abovementioned challenges, we design a Forecasting method
based on the Integration of a Savitzky-Golay (SG) filter [22], a
Frequency Enhanced Decomposed Transformer (FEDformer)
model [23], and a Frequency-Enhanced channel Attention
mechanism (FECAM) [24], named FISFA for short. FISFA
first adopts the SG filter to reduce noise and smooth the raw
time series of resources. Then, FISFA adopts the FEDformer
model to accurately predict resource usage time series by
capturing their global features. In addition, FISFA adopts
the FECAM module to improve the capability for extracting
frequency features. Our key contributions are summarized as:

1) This work innovatively applies a noise reduction method
of the filter of SG. It can smooth extreme points in the
time series, highlight critical features of the data, and
facilitate subsequent learning and extraction of features.

2) This work designs an improved transformer-based model
integrating FEDformer and FECAM to achieve higher
forecasting accuracy of resource usage series. The pro-
posed method can learn frequency domain information
and relationships among the multi-dimensional time se-
ries of resources.

3) This work designs a new hybrid metaheuristic algorithm,
i.e., Genetic Simulated annealing-based Particle Swarm
Optimization (GSPSO) to optimize the setting of hy-
perparameters. GSPSO integrates quick convergence of
particle swarm optimization (PSO), global search ability
of simulated annealing (SA), and diversity of genetic
algorithm (GA).

The rest of the paper is structured as follows. Section II
discusses the related work. Section III describes the framework
of FISFA. Experimental results are presented in Section IV.
Section V concludes the paper along with a discussion on
future work..

II. RELATED WORK

Recent studies have proposed predicting computing re-
sources. These prediction methods mainly include two kinds:
classical and deep learning-based prediction methods.

A. Classical Time Series Prediction Methods

Traditional statistical analysis and regression methods are
employed in resource usage forecasting in cloud computing.
Gyeera et al. [29] adopt a Boosted Decision Tree (BDT) re-
gression method in a realistic testbed in the Azure cloud. BDT
performs better than other machine learning algorithms, such
as stochastic gradient descent and ordinary least square linear
regression. However, as an iterative algorithm, BDT requires
a long training time. Zhang et al. [30] propose an XGBoost-
based lane change prediction method with the realistic series
data collected from autopilot vehicles. It has higher forecasting
accuracy than adaptive boosting, gradient boosting trees, and
random forest. However, the dataset used in this work is less
volatile than the sequence of resources in CDCs. An integrated
prediction method that combines Seasonal AutoRegressive
Integrated Moving Average (SARIMA) and gradient BDT is
designed in [31]. However, SARIMA suffers from significant
errors in long-term prediction. Besides, it performs poorly
in capturing non-linear characteristics of the sequence data.
Shen et al. [32] present a support vector machine (SVM)-
based transfer method for predicting rolling bearing remaining
useful life. Yet, its dataset shows lower fluctuation than the
resource usage series in real-life large-scale CDCs. Wang et al.
[33] introduce an enhanced linear regression algorithm for the
prediction of real-time CPU temperature of servers. However,
it fails to capture certain potential features in the data, mainly
when dealing with highly non-linear and non-stationary series.
To achieve an online workload prediction framework, Kim et
al. [34] propose an ensemble model using several traditional
prediction methods, including linear regression, linear SVM,
ARIMA, etc. It achieves higher accuracy than a single tradi-
tional forecasting method.

Above all, most classic time series forecasting models are
based on statistical or regression models. These methods
require apparent trends in the time series and perform poorly
in long-term prediction. Unlike these methods, this work
employs an improved transformer-based model, which can
extract features from cloud environments’ highly non-linear
and variable computing resource usage data.

B. Deep Learning-based Prediction Methods

With the improvement of the computing power of servers,
many studies utilize deep learning models for addressing
time series prediction problems. Kumar et al. [35] propose
a workload forecasting approach for requests for the indus-
trial Internet of Things (IoT). This approach adopts deep
autoencoders (DAEs) to predict the CPU cycles of cloud
servers. However, DAEs train each layer individually in a
layer-wise manner. It suffers from long training time and high
computational complexity. Li et al. [36] introduce a Tem-
poral Convolutional Network (TCN)-based prediction model



for utility-scale photovoltaic forecasting. It captures spatial-
temporal correlations to improve prediction accuracy for enor-
mous intra-hour photovoltaic power. Wang et al. [37] design
a prediction model that consists of a TCN layer and a Graph
Convolution Network (GCN) layer for traffic datasets of geo-
distributed data centers. Nevertheless, it mainly focuses on
the temporal dependencies of the extracted series. A deep
concatenated multi-layer perceptron [38] is proposed in an
IoT network for fog sensor data prediction. However, the
multi-layer perceptron network often yields inferior prediction
outputs than standard LSTM models. Ruan et al. [39] present
a feature-enhanced LSTM approach to extract the crucial
sequence patterns in the cloud environment. However, LSTM
[40] is an RNN-based model that fails to handle the gradient
vanishing issue during the training process effectively. Its
performance is unsatisfying for long-term prediction. The
emergence of the transformer model has revolutionized the
conventional use of RNN structures for processing sequence
data. The model employs an encoder-decoder architecture and
depends on an attention mechanism. Gao et al. [41] introduce a
dual transformer model to predict both lane change intentions
and trajectory projections of target vehicles. However, the
trajectory dataset exhibits lower volatility than the workload
data from CDCs. Furthermore, many variants of transformer-
based models have been introduced and utilized in time series
forecasting. Zhang et al. [42] propose an improved informer by
a data augmentation approach for forecasting the deterioration
of aircraft engines. However, the transformers perform better
than RNNs in capturing long-term dependency in the time
domain. These methods cannot effectively investigate the
patterns in the frequency domain. Yet, the frequency domain
information is crucial in forecasting data points in time series.

In summary, current deep learning methods mainly adopt
RNNs and transformers for forecasting the time series. RNN-
based methods fail to solve the problems of gradient vanishing
and long-term prediction. Most transformer-based methods
primarily focus on the temporal information within the time
series while disregarding the crucial frequency domain infor-
mation. Unlike previous studies, our work proposes a new
method named FISFA that integrates the SG filter, FEDformer,
and FECAM module for multi-dimensional prediction of the
resource usage time series in CDCs. During the data prepro-
cessing stage, the SG filter eliminates noises and outliers in
the raw data. Then, the FEDformer with FECAM effectively
captures the frequency domain information in the time series
data, leading to a more accurate prediction.

III. MODEL FRAMEWORK

The section describes the details of FISFA. First, our
problem definition is shown in subsection III-A. Furthermore,
we present the filter of SG in subsection III-B. Then, we
describe FISFA in detail in subsection III-C. Finally, we
present the details of the GSPSO used to optimize FISFA’s
hyperparameter setting. For clarity, Table I summarizes the
main abbreviations in this work.

A. Problem Definition

This work chooses I to represent a multi-dimensional
computing resource usage series in a CDC and
I=(I1, I2, . . . , It−1, It). Previous t time slots are used
to predict the values of computing resource usage at t+1.
ŷt+1 denotes the final prediction value, which is obtained as:

ŷt+1=f (I1, I2, . . . , It−1, It) . (1)

The proposed method aims to reduce errors between the
ground truth values and the predicted ones.

TABLE I
ABBREVIATION LIST

Abbreviation Definition
CDCs Cloud Data Centers

ARIMA AutoRegressive Integrated Moving Average
SVM Support Vector Machine
BDT Boosted Decision Tree
RNN Recurrent Neural Network

LSTM Long Short-Term Memory
DAE Deep AutoEncoder
GCN Graph Convolution Network
TCN Temporal Convolutional Network
SG Savitzky-Golay filter

FEB Frequency-Enhanced Block
FEA Frequency-Enhanced Attention
DFT Discrete Fouier Transform
DCT Discrete Cosine Transform

FECAM Frequency-Enhanced Channel Attention Mechanism
PSO Particle Swarm Optimization

GSPSO Genetic Simulated annealing-based PSO

B. Savitzky-Golay (SG) Filter

The SG filter [22] can decrease the noise of the time series
through the least square polynomial smoothing method. Thus,
we adopt it to extract the primary information in the pre-
processing phase. It is processed by fitting successive subsets
of each single-dimensional resource usage series with a low-
degree polynomial.
It is the value (CPU or memory usage) in time slot t.

Pk=(pk−b, . . . , pk, . . . , qk+b), k∈[b+1, t−b], which is a sub-
sequence of I . Its width is 2b + 1. The SG filter adopts the
following polynomial to fit it.

O(n)=

R∑
r=0

arn
r n∈[−b, b]. (2)

where ar denotes coefficient r of the polynomial, and R de-
notes a polynomial order. The fitting is achieved by minimiz-
ing the mean-squared error ϵ for each subsequence centered
at 0. ϵ is defined as:

ϵ=

b∑
n=−b

(O(n)−pk+b)
2=

b∑
n=−b

(

R∑
r=0

arn
r−pk+b)

2. (3)

The smoothed value is yielded by O(n) at the central point
n=0 and O(0)=a0. The process above is iterated for each
time slot.



C. FISFA Model

In addition to using the SG filter in the data preprocessing
stage, FISFA combines the FEDformer model and the FECAM
block. The details of the two modules are given below.

1) FEDformer: FEDformer [23] follows the encoder-
decoder structure, which includes four modules: Frequency-
Enhanced Block (FEB), Frequency-Enhanced Attention
(FEA), Mixture of Experts Decomposition block (MOEDe-
comp), and a feed-forward layer. The encoder is defined as
χl
en=Encoder(χl−1

en ). χl
en is the output in the encoder layer

l, l∈{1, ..., N}. N denotes the number of layers in encoder.
χ0
en∈RI×D denotes the embedded result of the historical time

series. D denotes the dimension of the embedding layer.
Encoder(·) is defined as:

Sl,1
en, =MOEDecomp(FEB(χl−1

en )+χl−1
en )

Sl,2
en, =MOEDecomp(FeedForward(Sl,1

en)+Sl,1
en)

χl
en=S

l,2
en.

(4)

where Sl,i
en, i∈{1, 2} is the seasonal component after decom-

position block i in layer l. The symbol means the eliminated
trend part. FEB is implemented based on Discrete Fourier
Transform (DFT). It can effectively replace the self-attention
block in traditional transformer models. Given a series of
numbers, Xn, in the time domain, FEB processes it with
the Fourier transform and the inverse Fourier transform. In
this way, the conversion between the time domain and the
frequency domain is realized. Xς is a complex series in the
frequency domain, and 1≤ς≤ς̂ where ς̂ denotes the sequence
length of complex numbers in the frequency domain. Xn is
the value of time point n (n=0, 1, . . . , t−1) in the time series
of real numbers in the time domain. Xς and Xn are defined
as:

Xς=
∑t−1

n=0
Xne

−iςωn (5)

Xn=
∑ς̂−1

ς=0
Xςe

iςωn (6)

where i denotes the imaginary unit and ω denotes the angular
frequency.

The output of decoder layer l includes Γ l
de and χl

de, which
are the results of Decoder(χl−1

en , Γ l−1
de ). The Decoder(·) is

defined as:

Sl,1
de , Γ

l,1
de=MOEDecomp(FEB(χl−1

de )+χl−1
de )

Sl,2
de , Γ

l,2
de=MOEDecomp(FEA(Sl,1

de , χ
N
de)+Sl,1

de)

Sl,3
de , Γ

l,3
de=MOEDecomp(FeedForward(Sl,2

de)+Sl,2
de)

χl
de=S

l,3
de

Γ l
de=Γ

l−1
de +Wl,1Γ

l,1
de+Wl,2Γ

l,2
de+Wl,3Γ

l,3
de .

(7)

where Sl,i
de and Γ l,i

de, i∈{1, 2, 3}, denote the seasonal and
trend components after the decompoition block i in layer l,
respectively. Wl,i is the projector. FEA is also implemented
based on DFT with an attention mechanism. It can replace
the cross-attention block. MOEDecomp is a progressive de-
composition architecture. Traditional fixed-window averaging

pooling struggles to extract trends effectively. Thus, it com-
prises a set of average filters with varying sizes designed
to extract multiple trend components in the input signal.
Additionally, it utilizes many data-dependent weights to merge
these components as the ultimate trend, X́trend, which is a
time series decomposed by the MOEDecomp operation and
X́trend includes Γ l,1

de , Γ l,2
de , and Γ l,3

de . X́trend is defined as:

X́trend=Softmax(Linear(ψ)G(ψ)) (8)

where ψ denotes the input of the MOEDecomp operation
in (7), Linear(ψ) denotes the linear operation on ψ, G(ψ)
denotes the average pooling filtering operation on ψ, and
Softmax(Linear(ψ)) is the weighted result for mixing ex-
tracted trends, which is the final X́trend.

Finally, the prediction results are obtained by the sum of
two decomposed components, i.e., WχM

de+Γ
M
de . M denotes

the number of layers in the decoder. W is used to convert the
seasonal component χM

de to the target dimension.
2) FECAM block: Current methods mainly adopt the

Fourier transform to extract frequency information from the
time series. If the values of the two ends of the sequence differ
greatly, the Fourier transform introduces high-frequency noise.
It causes an error for boundary information called the Gibbs
phenomenon. To address this problem, FECAM [24] based on
discrete cosine transform (DCT) is proposed. FECAM adopts
DCT to extract the frequency information. This method avoids
the Gibbs issue and the operation of inverse transformation.
The features are divided by FECAM into d sub-groups, i.e.,
[κ1, κ2, . . . , κd] according to the dimension of the input. Each
sub-group is processed by the component of DCT from low
frequency to high one. F z denotes the zth frequency channel
vector, which is obtained as:

F z=DCTj(κ
z), z∈{0, 1, . . . , d}. (9)

where DCTj denotes the frequency component corresponding
to κz . The stack operation obtains the complete frequency
channel vector F .

F=stack(F 0, F 1, . . . , F d−1). (10)

Finally, critical temporal information from the frequency
domain of each channel feature is obtained. Therefore, as
illustrated in Fig. 1, the filter of SG is adopted to denoise
the raw data. Then, we use the FEDformer model to analyze
the context information in the time series. Besides, we add
a FEACM module between the encoder and the decoder.
It additionally boosts the capacity to extract the frequency
information in the time series.

D. GSPSO

Deep learning-based models typically have many hyperpa-
rameters that highly affect the performance of the FISFA.
For example, they involve the number of train epochs, batch
size, the layer numbers in the encoder and decoder, learning
rate, and dropout rate. Tuning these hyperparameters is a
time-consuming task. Particle Swarm Optimizer (PSO) [43],
[44] can be used to determine the optimal hyperparameters
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Fig. 1. Structure of FISFA.

effectively. Our work designs an improved version of PSO
[45] to accomplish the optimal hyperparameters.

Similar to social behaviors of bird or fish swarm [46],
[47], PSO involves a population of particles moving through
a search space. These particles adjust positions based on
their individual experiences and those of neighboring par-
ticles to find the optimal solution, and therefore, they can
converge quickly. However, it often converges towards local
optima when applied to address constrained problems with
sophisticated solution spaces. Besides, SA employs the rule
of Metropolis acceptance, thus enabling moves that might
deteriorate the search. This capability allows SA to converge
towards the global optima using the optimal cooling rate.
Nevertheless, it is worth noting that SA converges slowly.
Besides, in GA, genetic operations yield diverse individuals,
enhancing the global search capability. Therefore, GSPSO
combines the strengths of three algorithms by integrating the
rule of Metropolis acceptance, genetic operations, and PSO.

Algorithm 1 exhibits GSPSO’s pseudo-codes. Line 1 ran-
domly sets the position and velocity of each particle. Line 2
calculates each particle’s fitness value ϕ̌. Line 3 updates x̌i and
x̂. x̌i means particle i’s locally optimal position. x̂ means the
globally optimal position in the population. Line 4 sets GA’s
mutation possibility θ5, SA’s initial temperature θ14 and its
cooling rate θ7, and PSO’s parameters including θ̌2, θ̂2, θ3, θ̂1,
θ̌1, θ̂6, ĝ, and |x|. θ̌2 means an individual coefficient. θ̂2 means
a social acceleration coefficient. θ3 means the coefficient of
acceleration for a superior particle. θ̌1 denotes the inertia
weight. ĝ denotes the total iteration number. θ̂6 means the
percentage of particles with identical ϕ̌. |x| is the size of
population. Line 6 means the while loop stops if g>ĝ or
θ6>θ̂6. Line 7 executes GA’s crossover on x̌i and x̂ with the
single-point crossover to yield an offspring x̌i. Line 8 executes
GA’s mutation on each bit of offspring x̌i with a probability θ5.

Algorithm 1 GSPSO
1: Initialize particle information randomly
2: Update ϕ̌ of particles
3: Select x̌i and x̂
4: Set GA’s θ5, SA’s θ14 and θ7, and PSO’s parameters,

including θ̌2, θ̂2, θ3, θ̂1, θ̌1, θ̂6, ĝ, and |x|
5: g ← 1
6: while θ6 ≤ θ̂6 and g ≤ ĝ do
7: Execute crossover of GA on x̌i and x̂ to yield an

offspring x̌i
8: Execute mutation of GA on each bit of x̌i with a

probability θ5
9: Execute selection of GA for particle i

10: Calculate velocities of particles with (11)
11: Calculate positions of particles with (12) and (13)
12: Calculate ϕ̌ of particles
13: Change x̌i of particle i, and x̂
14: θg4 ← θg4 · θ7
15: θ1 ←

(
θ̂1−θ̌1

)
· ĝ−g

ĝ +θ̌1

16: Update θ6 of particles with the same ϕ̌
17: g ← g+1
18: end while
19: return x̂

Line 9 executes GA’s selection to specify x̌i or ẋi is chosen.
ẋi denotes the position of a superior particle for particle i.
Line 10 updates the velocity of each particle with (11).

vi=θ1vi+θ3w3(ẋi−xgi ) (11)

where vi is the velocity of each particle i. xgi means particle
i’s position in iteration g. Line 11 changes the position
of each particle with (12) and (13). More specifically, if
ϕ̃(xg+1

i )≤ϕ̃(xgi ), x
g+1
i is selected; otherwise, it is condition-

ally selected if (13) is met.

xg+1
i =xgi+vi (12)

e
(
ϕ̃(x

g+1
i

)−ϕ̃(x
g
i
)

θ
g
4

)
>w4 (13)

where w4 is a constant randomly selected in (0, 1). θg4 is
current temperature in iteration g.

Line 12 calculates each particle’s fitness value ϕ̌. Line
13 changes particle i’s locally optimal position x̌i and the
population’s globally optimal position x̂. Besides, θ14 is the
initial temperature, and θ7 is its cooling rate. Line 14 reduces
temperature by θ7. θ̂1 and θ̌1 are upper and lower bounds
of inertia weight θ1. Line 15 linearly decreases θ1 from θ̂1
to θ̌1. Line 16 calculates percentage θ6 of particles with
identical ϕ̌. Line 19 returns x̂, including the final setting
of hyperparameters. Fig. 2 shows the flowchart of GSPSO
to optimize the setting of several hyperparameters of FISFA,
yielding the optimal hyperparameter setting that minimizes the
training loss.

Moreover, GSPSO revises the optimal local position for
each particle and updates the globally optimal position within
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the whole population. Additionally, the inertia weight and
current temperature decrease linearly. Eventually, it adjusts
the proportion of particles sharing identical fitness values and
determines whether the termination criterion is satisfied. If it is
met, the globally optimal solution is attained; otherwise, the
single-point crossover of GA and the following procedures
continue to iterate until the termination criterion is satisfied.

E. Complexity Analysis

The most time-consuming operation of FISFA lies in the
training stage. t is also the length of the input series. The
time complexity O(t2) of Transformer mainly comes from
the self-attention mechanism. FISFA replaces the self-attention
mechanism with the discrete Fourier transform with a time
complexity O(t(logt)) [23] for the frequency domain feature

extraction. Meanwhile, GSPSO performs ĝ iterations. There-
fore, the time complexity of FISFA is O(ĝt(logt)).

IV. PERFORMANCE EVALUATION

We assess FISFA with realistic datasets and compare its
performance with transformer-based prediction models and
other traditional methods.

A. Dataset and Experimental Setup

To confirm the efficacy of FISFA, we adopt two het-
erogeneous real-world datasets collected from Alibaba and
Google clusters, respectively. The former dataset includes
runtime information on machine resource usage from 4,000
machines in eight days. The log of Cluster-trace-v2018 of
Alibaba provides seven cluster data tables. The machine usage
table includes CPU utilization, memory utilization, memory
bandwidth, cache miss per thousand instructions, incoming
and outgoing network traffic, and disk I/O. We select five
key resource metrics for the prediction. The time interval is
one minute. Tasks are categorized based on the machines with
IDs 649 and 1932. Finally, the resource usage time series is
obtained and shown in Figs. 3 and 4. Google cluster traces
provide information about CDCs in eight regions in May 2019.
We choose one dataset with a timezone located in New York,
USA. It includes information about CPU usage and alloc sets
(shared resource reservations used by jobs). We split 31 days
into 14,880 3-minute time slots. Finally, the time series of CPU
and memory resources requested for the instance are shown
in Fig. 5.
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Fig. 3. Resource usage time series of machine ID 649 in the Alibaba cluster
dataset

B. Evaluation Metrics

We utilize three metrics including i.e., Root Mean Square
Error (RMSE) [48], Mean Absolute Percentage Error (MAPE)



TABLE II
COMPARISON OF DIFFERENT COMBINATIONS OF HYPERPARAMETERS

Combinations Layer # in encoder (α) Layer # in decoder (β) Batch size (γ) RSME MAE MAPE

Combination 1 1 1 32 2.35794 1.38672 0.07374
Combination 2 2 1 32 2.34254 1.37809 0.07331
Combination 3 2 1 16 2.35916 1.39187 0.07390
Combination by GSPSO 1 2 16 2.33819 1.37100 0.07325
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Fig. 4. Resource usage time series of machine ID 1932 in the Alibaba cluster
dataset
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Fig. 5. Resource usage time series of the Google cluster dataset

[49], and Mean Absolute Error (MAE) [50]. They are calcu-
lated as follows:

RMSE=

√
1

m

m∑
t=1

(yt−ŷt)
2

MAPE=
100%

m

m∑
t=1

∣∣∣yt−ŷt

yt

∣∣∣
MAE=

1

m

m∑
t=1
|yt−ŷt|.

(14)

where n is the sample number, ŷt is the average of the ground
truth values, and yt is the predicted result in time slot t.

C. Hyperparameter Setting

To determine the optimal hyperparameter setting, compre-
hensive experiments are conducted systemically. Table III

displays the final hyperparameter tuning results. The rate of
learning is 0.001. The model dimension is 256. The function of
loss is Mean Square Error (MSE), and the early stopping pa-
tience is 9. Besides, we utilize GSPSO to optimize several key
hyperparameters in our model. Three crucial hyperparameters
are chosen, including the layer number of encoder (α), the
layer number of decoder (β), and the batch size (γ). Finally,
α, β, and γ are set to 1, 2, and 16, respectively. Table II
illustrates experimental results after selecting four different
combinations of hyperparameters. The results show that the
hyperparameter configuration yielded by GSPSO produces the
highest prediction accuracy. The parameter configurations for
FISFA are outlined in Table III.

TABLE III
SETTING OF FISFA PARAMETERS

Parameters Values
Dimension of model 256

Learning rate 0.001
Activation gelu

Layer number in encoder 1
Layer number in decoder 2

Batch size 16
Early stopping patience 9

Loss function MSE

D. Analysis of Prediction Results

We allocate 70% of the time series for the training, 10%
for the validation, and the remaining 20% for the testing. To
evaluate FECAM in the prediction, comparison experiments
of FEDformers with and without the FECAM block are
conducted. Table IV shows the results of three evaluation
metrics. The odd and even rows represent metric values for
FEDformer and FEDformer with FECAM, respectively. The
results prove that the FEDformer with FECAM outperforms
its vanilla version.

We choose several benchmark methods to compare our
FISFA with its other state-of-the-art peers comprehensively.
For example, LSTM is based on the gated cell and is com-
monly used for time series prediction. However, it suffers from
the gradient explosion problem during training and cannot
effectively extract the correlation among multi-dimensional
data. Informer is an improved transformer model with low
time complexity and memory utilization. However, it cannot
effectively extract frequency domain features.

Furthermore, Tables V–VII show the performance compari-
son between FISFA and various prediction methods including
LSTM and transformer-based models, e.g., transformer and



TABLE IV
COMPARISON OF FEDFORMER AND FEDFORMER WITH FECAM

Dimension of model RMSE MAE MAPE

8 3.11518 1.79656 0.09408
3.11257 1.79477 0.09400

16 3.07927 1.78386 0.08947
3.07812 1.78276 0.08943

32 3.03130 1.72264 0.09138
3.03113 1.72250 0.09138

64 2.99807 1.69626 0.09013
2.99768 1.69571 0.09008

128 2.99799 1.69064 0.08947
2.99805 1.69059 0.08947

256 2.99309 1.68770 0.08900
2.98965 1.68498 0.08886

Informer. The abbreviation FEC signifies that forecasting mod-
els employ FECAM. SG- means thatthe SG filter is adopted.
Table V shows the transformer-based models achieve higher
performance than LSTM in the multi-dimension prediction.
FECAM and the SG filter improve the evaluation metric
values, and FISFA achieves the highest accuracy among all
these methods.

TABLE V
PERFORMANCE COMPARISON OF ALL METHODS WITH THE DATASET OF

MACHINE ID 649 FROM ALIBABA

Methods RMSE MAE MAPE
LSTM 3.46993 2.26280 0.10308

Transformer 3.09399 1.89245 0.10084
Informer 3.19903 2.02076 0.10897

FEDformer 2.99309 1.68770 0.08900
Transformer+FEC 3.08164 1.89849 0.10042

Informer+FEC 3.19222 2.00831 0.10858
FEDformer+FEC 2.98965 1.68498 0.08886

SG-LSTM 3.43238 2.22098 0.10182
SG-Transformer 2.40196 1.45422 0.07335

SG-Informer 2.47797 1.54587 0.07423
FISFA 2.32237 1.34573 0.07271

TABLE VI
PERFORMANCE COMPARISON OF ALL METHODS WITH THE DATASET OF

MACHINE ID 1932 FROM ALIBABA

Methods RMSE MAE MAPE
LSTM 3.97746 2.23827 0.27784

Transformer 3.37595 1.77665 0.10875
Informer 3.53577 1.85022 0.11172

FEDformer 3.33543 1.39523 0.11575
Transformer+FEC 3.41701 1.79651 0.11500

Informer+FEC 3.33480 1.78247 0.10704
FEDformer+FEC 3.31267 1.39752 0.11484

SG-LSTM 3.95284 2.21583 0.27527
SG-Transformer 2.46992 1.28261 0.09220

SG-Informer 2.51991 1.33650 0.08498
FISFA 2.29162 1.01012 0.08320

Table VIII shows the ablation studies of FISFA with three
methods. It is evident that the addition of each method can
bring improvement to the prediction. Fig. 6 shows ground truth
values and the predicted ones of RAM usage, CPU usage,
Network in, Network out, and Desk I/O, respectively. Fig. 7

TABLE VII
PERFORMANCE COMPARISON OF ALL METHODS WITH THE GOOGLE

DATASET

Methods RMSE MAE MAPE
LSTM 491.185 297.653 0.27746

Transformer 481.125 299.474 0.27375
Informer 488.582 306.436 0.27840

FEDformer 476.954 296.782 0.26898
Transformer+FEC 482.027 300.138 0.27428

Informer+FEC 484.144 301.987 0.27642
FEDformer+FEC 476.818 295.825 0.26754

SG-LSTM 396.026 242.718 0.23827
SG-Transformer 400.740 249.598 0.22345

SG-Informer 398.055 250.062 0.22784
FISFA 387.199 239.265 0.21533
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Fig. 6. Prediction curves of resource usage time series of machine ID 1932

compares loss values of Transformer, Informer, Autoformer,
FEDformer, and FEDformer with FECAM for the resource



TABLE VIII
ABLATION STUDIES OF FISFA WITH THREE METHODS

Methods RMSE MAE MAPE

w/o SG filter 2.98965 1.68498 0.08886
w/o FECAM 2.32727 1.34451 0.07337
w/o GSPSO 2.35916 1.39187 0.07390
FISFA 2.32237 1.34573 0.07271
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Fig. 7. Loss values of different methods for resource usage time series of
machine ID 1932.
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Fig. 8. Loss values of different methods after adding the SG filter.

usage time series of machine ID 1932, respectively. Fig. 8
shows the loss values of different methods after adding the SG
filter. After iteration 10, it is evident that FISFA’s loss values
are comparatively smaller than those of other models. This
demonstrates that FISFA possesses superior modeling capabil-
ities compared with other transformer variants. Consequently,
FISFA outperforms other benchmark methods given the same
setting.

V. CONCLUSIONS AND FUTURE WORK

Current cloud providers face a critical but challenging
problem of accurately predicting computing resource usage
in cloud data centers. Resource usage series is often multi-
dimensional and volatile. Each series is characterized by
different trends, increasing the difficulty of forecasting. Most
current forecasting methods cannot effectively extract corre-
lations among multiple series and frequency domain infor-
mation. This work proposes a Forecasting method based on
the Integration of a Savitzky-Golay (SG) filter, a Frequency
Enhanced Decomposed Transformer (FEDformer) model, and

a Frequency-Enhanced channel Attention mechanism (FE-
CAM), named FISFA for short, for forecasting the multi-
dimensional computing resource usage series. FISFA initially
adopts the SG filter to accomplish better noise reduction.
It designs a FEDformer model with a frequency-enhanced
channel attention mechanism to investigate key patterns from
resource usage time series in the frequency domain. In ad-
dition, a hybrid meta-heuristic optimization algorithm called
genetic simulated annealing-based particle swarm optimizer
is proposed to optimize key hyperparameters of FISFA. At
last, experiments with two heterogeneous real-world datasets
from Alibaba and Google demonstrate that FISFA achieves
superior forecasting accuracy than its baseline peers. Against
LSTM, Transformer, and Informer, our prediction accuracy is
improved by 32.14%, 25.49%, and 27.71%, respectively.

As part of future work, we will apply FISFA to more diverse
real-world workload datasets. We also plan to incorporate
novel spatial-temporal graph convolution networks to enhance
performance. In addition, we plan to employ meta-learning
to provide beneficial guidance on learning a more generalized
and adaptive model for predicting resource usage in cloud data
centers.
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