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Abstract: A constellation of Content Delivery Networks (CDNs), termed as peering CDNs, endeavors to guarantee 
adequate delivery performance when the incoming request load is overwhelming for a single provider alone. Each user 
is served by an optimal Web server in terms of network cost, even under heavy load conditions. Before it could be 
comprehended, appropriate resource discovery and request-redirection mechanisms, coupled with an optimal server 
selection strategy, should be in place to perform the distribution of highly skewed loads. In this paper, we devise an 
effective load distribution strategy by adopting distributed resource discovery and dynamic request-redirection 
mechanisms, taking traffic load and network proximity into account. The load distribution strategy reacts to overload 
conditions, at a time instance, in any primary CDN server(s) and instantly distributes loads to the target servers, 
minimizing network cost and observing practical constraints. In this context, we exercise an asynchronous resource 
discovery protocol, reminiscent of the public/subscribe notion, and formulate the resulting redirection scheme. 
Extensive simulation analyses demonstrate the novelty of our approach. In particular, we show that our approach is 
effective to handle high load skews by preserving locality, and thus achieve service “responsiveness”. We also perform 
a sensitivity analysis to reveal that our redirection scheme outperforms other alternatives to handle peak loads. 

1. Introduction 
Content Delivery Networks (CDNs) [6][19] evolved as a solution of Internet service degradations such as congestions 
and bottlenecks due to the large end-user demands posed on Web access services. To operate effectively, often a CDN 
is required to break down system silos to increase utilization rates, either through over-provisioning its capacity or 
harnessing external resources on demand. The requirements for providing high quality service through global coverage 
can be fulfilled through a constellation of CDNs, termed as ‘peering CDNs’ [20]. Such collaboration, leveraging 
existing infrastructures, is not only important from a reachability perspective but also from quality and performance 
perspective. Peering between CDNs can be observed for a short or long-term duration to handle workload variations. 

The success of peering and the effectiveness of operations for content delivery in a peering CDNs system depend on 
its ability to perform resource discovery, server selection and dynamic request-redirection under degenerated load 
conditions (e.g. flash crowds). The resource discovery process specifies how external resources offered by disparate 
CDNs are discovered. An effective server selection strategy determines the optimally underloaded edge server(s) that is 
best suited to serve user requests. The server selection phase typically chooses the “nearest” optimal server to the 
requesting user. A dynamic request-redirection mechanism assists in directing user requests to the target edge server(s), 
so as to alleviate imbalanced load situations. These phases may be interleaved to collectively perform load distribution 
by reacting to overload conditions in a multi-provider peering CDNs system and thus endeavor to achieve scalability. 

Many previous research [7][8][10][11][16][17][25][26][30] have focused on devising resource discovery and 
redirection algorithms for distributed Web servers, overlay networks, Internet, large-scale Grids, and Peer-to-Peer 
(P2P)-based systems. However, they can not be directly applied for load balancing in peering CDNs, due to the 
necessity for handling dynamic circumstances, thus requiring up-to-date information about widely-distributed 
resources. In addition, providers should learn about available resources quickly, without using an inordinate amount of 
communication, and the resource discovery and redirection algorithms may be used repeatedly to obtain updated 
resource status information. There are also other challenges, which include virtualization of multiple providers and 
offloading requests from the overloaded provider to its underloaded peers, based on cost, performance and load. In such 
a cooperative multi-provider environment, requests are directed to sets of servers deployed across multiple CDNs as 
opposed to individual servers belonging to a single entity. Therefore, resource discovery and request-redirections must 
occur over distributed sets of servers spanning multiple CDNs, without having complete state information.  

In this paper, we present distributed resource discovery and dynamic request-redirection algorithms for an effective 
load distribution strategy. Our aims are: i) to perform dynamic load distribution under traffic surges by redirecting 
excess requests to optimally underloaded Web server(s), thus binding users to optimal replicas (timeliness); (ii) to 
exhibit acceptable throughput under overload conditions (e.g. during flash crowds); iii) to scale to distributed inter-
CDN resources scattered across the globe (dynamic lookup); and iv) to maintain administrative control over local 
resources and their states (resource encapsulation). 

Specifically, the communication protocol to aid resource discovery conservatively implements the public/subscribe 
paradigm. The use of the public/subscribe notion endeavors to perceivescalability and full decoupling from other 
system operations; a possibly “offline” approach due to the asynchronous nature of resource discovery; and indirect 
addressing for load balancing. At the heart of the load distribution strategy lies the redirection scheme that takes traffic 



load and network proximity into account. In our approach, load indices of distributed inter-CDN servers are obtained 
through an asynchronous feedback mechanism and network proximity is measured using a pinger logic with low 
messaging overhead. A simulation model, capturing key system components, is developed to evaluate the performance 
of our approach. Experiment results reveal that an acceptable level of throughput can be achieved, even under heavy 
load, and the proposed redirection scheme outperforms other alternatives. The main contributions of this paper are: 

• An asynchronous resource discovery algorithm without any central coordinating authority to identify resources 
from disparate CDNs.  

• A load and proximity-aware request-redirection algorithm that reacts to overloaded server conditions in multi-
provider peering CDNs by steering excess user requests to optimally underloaded servers. 

• A comparison-based simulation analysis to evaluate the performance and perceived benefits of our approach, and 
a sensitivity analysis of the proposed redirection scheme using critical system parameters. 

The rest of the paper is structured as follows. In Section 2, a brief description of the peering CDNs is provided. It is 
followed by the proposed resource discovery and request-redirection algorithms. Simulation methodology is described 
in Section 4 and results are presented in Section 5. A comparative analysis of our approach to the existing work is 
followed next. Finally, Section 7 concludes the paper.  

2. Peering CDNs: Overview 
A peering arrangement is a conceptual layer, i.e. overlay, over the physical CDN networks, which play the main role by 
establishing agreements to share peers’ resources, and by cooperating to create a rich computational environment for 
effective content delivery. The initiator of a peering negotiation is called a primary CDN; while other CDNs who agree 
to provide their resources are called peering CDNs or peers. Resources belonging to a peering arrangement of CDNs 
are scattered over the globe, with the primary CDN having the authoritative right. 

 
Figure 1: Abstract view of peering CDNs. 

Figure 1 presents an abstract view of the peering CDNs [20], where a provider serves requests as long as it can 
handle the load internally. If load exceeds its capacity, the excess requests are offloaded to its peers. From the figure, 
we see that a given peering arrangement consists of Web servers from disparate CDNs at different geographical 
locations across the Internet. Each CDN has its own user request stream and a set of Web servers, but delegates only a 
subset of them, i.e. virtual CDN or subCDN, to take part in the peering arrangement. In the peering CDNs overlay, 
Peering Agent (PA) performs external resource discovery; Mediator performs policy-driven authoritative operations on 
behalf of the primary CDN; Policy Repository (PR) virtualizes all policies within the peering arrangement, and Service 
Repository (SR) encapsulates the status of CDN servers. The PA, Mediator, SR and PR collectively act as a “conduit” 
for a given primary CDN, and assist in external resource discovery. User requests for content are made to the Request 
Routing System (RRS) of the primary. These requests are then forwarded either directly to its server(s), or to a peer. 

An overload condition occurs when incoming load to the primary CDN exceeds a given alarm threshold, as reported 
by its server(s).When this occurs, the server sends an alarm signal to the primary’s mediator. Upon receiving it, the 
primary takes measure to redirect the excess requests to other optimally underloaded Web server(s) of peers. The 



primary CDN directly manages the resources it has acquired, insofar that it determines what content is served and what 
proportion of the incoming traffic is redirected. At any time, a given CDN may be either in the role of a primary or a 
peer, i.e. the roles are fluid. From Figure 1, we observe that some user requests of CDN 1 are served by its local servers 
or the origin server (on cache miss), whereas others are being served by the external servers of a peer, CDN 2. It is 
important to note that depending on the load any CDN can act as a primary in a peering relationship. For instance, CDN 
1 is a primary when its users are served by the peers’ servers. Again, in the same peering relationship, CDN 2 acts as a 
primary CDN when its users are served by external Web servers from CDN N. 

2.1. Resource Discovery 
The candidate resource discovery algorithm for peering CDNs realizes a distributed nature, since there is no central 
control in the system. CDNs operate independently of each other; making local queries within its domain and 
transferring global information about part or all to the peering CDNs system. An SR instance, local to each CDN 
domain, contains local resource information. Once a peer delegates its resources for use by the primary, gateways of the 
participating CDNs interact to register the offered resources to the global SR, which is a distributed SR implementation 
(Section 4.1.2), containing information of all resources in the peering arrangement. The list of registered resources in 
the global SR is updated periodically. Thus, the membership management for resource discovery realizes a soft-state 
protocol. Contact address of the gateways can be learned through out-of-band information. The communication 
protocol is reminiscent of the public/subscribe paradigm. However, it differs from the public/subscribe system in terms 
of its functionality. While the latter deals with resource publishing and message dissemination; our main focus is on 
efficient resource discovery for peering CDNs. In addition, a publish/subscribe system is intended to find all potential 
participants who are capable of serving user requests. In contrast, the redirection strategy in peering CDNs, followed by 
the resource discovery, attempts to find the “optimal” participant, not all of them. As a consequence, a smaller fraction 
of the whole system is traversed and communicated. 

2.2. Server Selection and Request-Redirection 
An effective request-redirection mechanism to perform load distribution in peering CDNs could be devised by 
examining two alternatives. In the first case, all peers belonging to a "virtual CDN" or "subCDN" could provide a real-
time load status of each surrogate in the global subCDN using standard metrics. The primary CDN (or an authoritative 
entity belonging to it) can compare these load indices with its metrics and choose whether requests have to be 
redirected to a peer. Practical constraints could be put in place to ensure that redirection cost is minimized and peers’ 
servers are not overloaded. Alternatively, an independent third party could supervise and manage all the CDN peers for 
load distribution. However, security, trust, and proprietary issues make it unlikely that a CDN would agree to have an 
external party to make allocations of its resources according to some load distribution policy. Therefore, we follow the 
first approach by interleaving server selection and request-redirection to perform load distribution in peering CDNs. 
Our approach seeks to prevent wide oscillation in the load distribution decisions by selecting optimal server(s) through 
cost minimization, taking traffic load and network proximity into account. 

3. Algorithms 
In this section, we describe the workings of the resource discovery protocol in peering CDNs. We also provide the 
description of the load and proximity-aware request-redirection strategy, coupled with optimal server selection, in order 
to perform dynamic load distribution in peering CDNs. 

3.1. Resource Discovery Formulation 
Let M be the set of all possible resources from participating CDNs, with N users spreading across the system. Content 
request from user i is denoted as ri∈R, which is a constraint on the set of available resources. Let match(ri) ∈ M be the 
set of Web servers that satisfy ri. A primary CDN A, which receives the incoming request ri is expected to provide the 
set of resources match(ri). However, under peak load, CDN A may not be able to serve ri, and therefore, searches for 
other peers to serve the request on its behalf. Let us consider a peering CDN B, which can provide resources match(ri'), 
satisfying user request ri'. We say that ri and ri' overlap iff match(ri) ∩ match(ri') ≠ ∅ and there exists at least one 
resource that satisfies both ri and ri'. Therefore, optimally underloaded servers from CDN B can be utilized by CDN A 
to satisfy the content request. 

3.1.1. Distributed Resource Discovery Algorithm 
Figure 2 and Figure 3 respectively present the pseudocode for service request and service response procedures, which 
are required during resource discovery. The principle of resource discovery in peering CDNs is as follows. Upon 
receiving user requests for content, the primary CDN finds suitable Web servers to serve them (Figure 2: Lines 1 to 3). 
In order to preserve locality, the primary issues local queries to the local SR instance, to find the potential local 
resources that are able to serve the incoming requests. Under traffic surges, incoming load of a primary CDN exceeds a 
given alarm threshold. When this occurs, an alarm_flag is set to indicate that no optimal resource is found within the 
local domain. The primary uses a lookupMethod to contact peers and populate a list WSList of available resources from 
participating providers (Figure 2: Lines 4 to 8). The primary sends a ServiceRequest message to peer(s), containing the 



required service requirements, and receives the ServiceResponse from the peers’ servers (Figure 2: Lines 9 to 13). 
When a peer’s server receives a ServiceRequest message, it chooses the requests that it accepts to serve and the ones 
that it refuses to serve, based on whether it can meet the service requirements. It then sends a ServiceResponse message 
containing the lists of acceptable and rejected requests (Figure 3: Lines 1 to 8). Upon receiving the response from the 
peer(s), excess requests are redirected from the primary CDN to the optimally underloaded peer(s), using the 
redirection mechanism outlined in the next section. 

The lookupMethod during service request determines the way peer selection is performed. It depends on whether the 
peers share/advertise partial information about their services, i.e. topology, connectivity information, dynamic link 
properties (link weight, background traffic, and congestion level), and dynamic node properties (bandwidth and 
processing power that can be shared by peers’ servers). The lookupMethod may follow broadcast or selective mode. 
The first mode of operation is the only choice when a CDN does not possess an SR instance, containing its local 
resources information. With the presence of an advertising mechanism and the existence of an SR instance at each local 
CDN domain, peer selection could be performed selectively. In our approach, we exploit dynamic status and 
availability information of offered resources from peers, by searching the global SR. We seek to preserve locality, since 
the attempt is to find local resources first, thus realizing dynamic lookup and increasing resource encapsulation within 
the primary CDN’s domain. 

Other complimentary selective modes could be: controlled anycast, greedy random and greedy ordered. Controlled 
anycast employs a route controller [28][29] to which the Web servers of the peering CDNs advertise the anycast 
address. As such, the route controller can influence the route selection to peers using some external intelligence [1].  In 
the greedy random mode, one peer is selected that can serve the content request on behalf of the primary, chosen 
uniformly at random. The greedy order mode chooses a peer according to some predefined criteria, such as network 
factors and QoS. We leave the full development of these mechanisms for future work. 

 begin ... 
1: for all r ∈ R do 
2: if alarm_flag = false && match(r) ≠ ∅ then 
3: Serve content request r from primary CDN’s Web servers 
4: else if alarm_flag = true || match(r) = ∅ then             
5: if WSList = null then 
6: Populate  n, WSList from p peers using lookupMethod 
7: end if 
8: end if 
9: for i =1 to n do 

10: Send ServiceRequest(r) to i.WSList 
11: Receive ServiceResponse(AcceptedReqList, RejectedReqList) from i.WSList 
12: end for 
13: end for 

 ... 
 end 

Figure 2: Service request from primary CDN during resource discovery. 

 begin ... 
1: for all s ∈ S do 
2: if s can be serviced && s is not already accepted then 
3: Add s to AcceptedReqList 
4: else if s can not be serviced then 
5: Add s to the RejectedReqList 
6: end if 
7: end for 
8: Send ServiceResponse(AcceptedReqList, RejectedReqList) to the primary CDN 

 ... 
 end 

Figure 3: Service response from a peer’s server during resource discovery. 

Table 1 summarizes the properties of the resource discovery algorithm. This annotation avails to analyze our 
approach and assists in making the right system design choice. The first property specifies the basic notion of resource 
discovery and the domain within which it is initiated. The next property focuses on the implementation, specifying the 
granularitytask unit that the system can support; distributionparticular design choice; data integration 
schemehow to gain access to necessary data of interest; and peer selectionhow locality is preserved for effective 
resource discovery. The last property delineates the perceived scalability of our approach by stating the primary means 
for supporting resource discovery, instrumentation of user access pattern, and identification of available resources. 



Table 1. Annotation of the resource discovery algorithm. 

Properties Parameters Description 
Notion Fully decoupled “offline” approach (asynchronous) Methodology 
Interconnection topology Peering CDNs (system under consideration) 
Granularity End-user requested content 
Distribution Distributed query-based approach 
Data integration scheme Gateway (information exchange and request-redirection) 

Implementation 

Peer selection Resource encapsulation and dynamic lookup (searching 
within local domain first) 

Data volume or index 
representativeness 

Scalable content-based searching upon user requests 

Traffic intensity or user base Incoming traffic for replicated content 

Scalability 

Resource identification Request mapping (accepted and rejected requests lists) 

3.2. Request-Redirection Formulation 
Since request-redirection is critical to our load distribution strategy, we first formulate the redirection problem and then 
present the devised algorithm. We define a metric, redirection cost Rc, for serving requests through redirection in 
overload conditions. RC depends on a server’s traffic load and network proximity (in terms of round-trip response time). 
The cost of serving requests varies with different servers of the peers. Specifically, Rc is defined as: 
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where lij is the incoming traffic load from user i on server j, and pij is the network proximity between them. It is known 
that a server’s response load indicates the potential load assigned to it, since request and response loads on a CDN 
server are linearly correlated [1]. Therefore, the request load lij (traffic volume) can be calculated based on the server 
load. A Web server j’s load is expressed as the product ujSj, where uj is the server utilization in [0, 1] as reported by the 
load monitoring apparatus (mediator and SR) and Sj is its capacity, specified by the maximum number of serviced 
requests/second as reported in the CDN server’s configuration specifications. 

The delay caused by inter-CDN redirection is denoted as pij and it is defined as in the following: 





+
=

Dij

ij
ij Irt

rt
p

      
  

server  WebCDN-interan  is  if
server  WebCDN-intraan  is  if

j
j  

where rtij is the response time from user i to server j and ID is the delay. 
In order to minimize redirection cost during load distribution, the redirection problem is formulated as follows: 
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where aij is an indicator variable to determine whether the Web server j is in the same CDN as user i; aij = 1 iff server j 
is an inter-CDN server, and aij = 0 otherwise. 

Table 2. Significant properties of the request-redirection scheme. 

Properties Parameters Description  
Activation trigger (when) Asynchronous (on CDN server request) Activation 
Activation decision 
(where) 

Distributed (Gateway redirection upon requests from 
distributed servers) 

Implementation Status information Traffic load (correlated 
with server response load = 
utilization * capacity) 

Alarm (Asynchronous 
feedback) 

Server selection (how) Minimize redirection cost from available server list 
(mapping of overloaded and underloaded server lists) 

Redirection policy 

Redirected entities (what) End-user requests 

Table 2 summarizes the properties of the redirection scheme, according to the classifications presented by Cardellini 
et al. [8]. The first property specifies the mechanism in which redirection is activated and where the activation decision 
process is made. The next property focuses on the implementation, specifying the status information used for 



redirection. The last property delineates the redirection policy by stating the server selection strategy and the entities 
that are redirected. We describe these properties in more detail in later sections. 

 begin … 
1: for all r ∈ R do 
2: Obtain the list of available servers n, WSList from peers    // Resource discovery 
3: for i = 1 to n do 
4: Populate o, OWSList and u, UWSlist    //Overloaded and underloaded server lists 
5: end for  
6: for j = 1 to u do 
7: Calculate incoming traffic load based on loadmetric 
8: Measure network proximity 
9: Calculate redirection cost Rc 

10: end for 
11:    do 
12: Select optimal server opWS minimizing Rc 
13: Add opWS to targetWSList 
14: Redirect request to opWS 
15:    while alarm_flag = true 
16: if |targetWSList| > 1 then 
17: if targetWSList.avgLoad <= alarm_threshold/2 then 
18: Remove least loaded server in targetWSList 
19: end if 
20: end if 
21: end for 

 ... 
 end 

Figure 4: Load distribution algorithm (LD_minCost). 

3.2.1. Dynamic Load Distribution Algorithm 
Figure 4 presents the pseudo-code for the proposed load distribution algorithm, named LD_minCost, which integrates 
the resource discovery, server selection and request-redirection phases. It does not attempt to perform load distribution 
when the Web servers of a primary CDN are working under an acceptable load. At a given time, if an overload 
condition exceeding an alarm threshold is reached, as reported by a primary CDN server, servers’ status (response load) 
is assessed and a list of lightly loaded servers is generated from each participating CDNs (Lines 1 to 5), making use of 
the resource discovery algorithm stated in previous section. The traffic load and network proximity for each 
underloaded server are measured and the redirection cost, Rc is calculated in Lines 6 to 10. The optimal server from the 
underloaded server list is selected such that Rc is minimized upon redirection and the server does not get overloaded 
due to steered traffic. This optimal server opWS is added to a set of usable server list targetWSList, which is maintained 
by the primary CDN to satisfy its content requests. Thus, a mapping is maintained between the requests and a set of 
suitable servers to serve those requests. As long as there is an overloaded primary CDN server, a new server 
minimizing Rc (except the optimal server selected earlier) is added to this list (Lines 11 to 15). By using our load 
distribution strategy, we prevent a Web server from going into an overloaded state and multiple servers can serve a 
peak demand or a flash crowd situation. Moreover, if targetWSList contains several Web servers and their average load 
decreases significantly, one Web server is removed at a time from the list (Lines 17 to 21). It ensures that the degree of 
replication for serving requests does not remain unnecessarily high when requests relinquish over time. Moreover, it 
also guarantees that sufficient underloaded resources are always available in the peering CDNs system so as to utilize 
them during load distribution. 

3.2.2. Perceived Benefits 
A major advantage of our approach over traditional DNS-based redirection systems is that the actual end-user requests 
(eyeballs) are being redirected, opposing to the local DNS requests as in DNS-based redirection. Therefore, we can 
achieve a finer grain redirection. Since load distribution is performed dynamically, any redirection changes take effect 
instantly. In contrast, due to the IP-address caching in the intermediate name server, the DNS dispatcher loses direct 
control on subsequent requests for a Time-To-Live (TTL) period following address resolution, and thus causes some 
delay before redirection changes have an effect [10]. We also seek to achieve high locality with good load balancing, 
since requests targeted to the primary CDN stay within its domain as much as possible and are redirected to optimally 
underloaded peers only during peak load conditions. In this way, our solution does not produce widely oscillated 
outcomes due to load distribution through request-redirection, and thus we seek to achieve service “responsiveness”. 
Finally, our approach endeavors to neutralize any load imbalance in the system, since participating CDNs have 
dynamic nature to act in primary or peering roles. The performance results of our approach and the simulation analysis 
in Section 5 support these claims. 



3.3. Time Complexity 
Let us consider a peering arrangement of one primary and P peers, with N users generating R requests in the system. 
Let n be the number of available resources, which are found during the lookup process. The time complexity for 
populating an available resources list from P peers is O(P). Further, O(n) is the worst case complexity for contacting n 
available resources by the primary to identify the servers which can serve the given content requests. Then the 
complexity for requesting service for one request from the available resources of the peers is O(P+n). Therefore, the 
time complexity of the algorithm in Figure 2 is O(PR+nR). 

A peer’s server receives S service requests from the primary. A worst case scenario gives S = R, thus producing a 
time complexity of O(nR) for all the n available servers to be used by the primary. Hence, the resultant complexity of 
the service request and response during resource discovery is also O(PR+nR). 

Let us consider that load distribution is performed among u number of optimally underloaded servers, from the list 
of n available servers. Given an overloaded condition remains for a constant time T, the complexity of the load 
distribution algorithm LD_minCost is O(nR+uR+T). By omitting the constant, the resultant complexity is given by 
O(nR+uR). However, the resource discovery, server selection and request-redirection are integrated to perform load 
distribution in the peering arrangement. Therefore, the overall time complexity is O(PR+nR+uR). 

4. Methodology 
Measurement based performance studies could be advantageous and suitable when a real system testbed or prototype is 
available. However, they may not reproduce the problems and scenarios for which the solutions are designed, since in 
real testbeds several important parameters, such as server and network load conditions, can not be controlled. In 
addition, it is extremely difficult to have a significant amount of geographically dispersed end-users simultaneously to 
generate traffic causing a flash crowd. In contrast, a simulation analysis could provide a detailed representation of key 
system parameters. Therefore, we have developed a simulator, based on Independent Replication Method, using the 
CSIM/Java1 simulation toolkit. It assists to conduct repeatable and controlled experiments that would otherwise be 
difficult to perform in real CDN testbeds. 

4.1. Simulation Environment and Parameters 
In our simulation model, we provide an approximate representation of the environment, yet representative of the key 
system attributes. Our simulation model is based on a reference scenario [21], which consists of four CDNs with their 
sets of Web servers placed at different geographical locations across the Internet. Each CDN has a set of servers and a 
pool of users to generate own request stream. Users request content via their own browsers and make use of a proxy 
server according to the same client-side policy. In order to take part in peering, each CDN defines a virtual CDN or 
subCDN with a subset of its resources. To provide an accurate characterization of the scenario, we have simulated the 
main system entities: (i) Web servers, (ii) mediator, (iii) distributed SR, (iv) network congestions, and (v) end-users. In 
our simulations, PA and PR have limited functionality. Exploitation of their full functionalities [20] for Service Level 
Agreement (SLA)-based negotiation, policy classifications and policy enforcement are left as future work. 

Table 3. Parameters of the system model. 

Parameter Value 
SR update frequency 30s 
Size of load index dissemination message 11bytes 
Size of proximity measurement query 18bytes 
Timeout period for proximity measurement 1000ms 
UDP packet loss rate 0.3 
Average network delay 100ms 
Average inter-CDN delay 200ms 
Alarm threshold 80% of a server’s utilization 
Traffic (end-user) distribution kxkxkxf ≥>= −−  ,0 , ,)( 1 αα αα  

Table 3 reports the system parameters used in our analysis. The parameter values, indicative of the simulation 
model, are chosen as follows. Each server calculates its utilization and updates the SR every 30s by sending an 11byes 
load index dissemination message. An alarm signal is sent if this value exceeds 80% of the server’s utilization, i.e. 
alarm threshold. We use Transmission Control Protocol (TCP) for disseminating reliable and valid load index and User 
Datagram Protocol (UDP) for network proximity measurement. The reason for using UDP in the proximity 
measurement is because there are devices which will prioritize ICMP traffic (in case of TCP) over other traffic, which 
if there is congestion along the way, could skew things a bit. In addition, some service setups such as firewalls and 

                                                            
1 It creates process-oriented discrete-event simulation models. Please check: http://www.mesquite.com/. 



routers limit ICMP traffic because of various denial of service threats. Since our goal is to measure proximity under 
"realistic" traffic, using something closer is deemed more significant. UDP also does not require acknowledgement of 
packets received, which causes less messaging overhead than TCP. Specifically, we used an 18bytes proximity 
measurement query with a timeout period of 1000ms. To capture the unreliable nature of UDP, we model 30% packet 
loss rate. Finally, in order to reflect the effects of network congestions in our model, we use 100ms average network 
delay and 200ms average inter-CDN delay. 

4.1.1. CDN Web Servers 
We have implemented the CDN servers as a set of facilities2 that provide services to user requests. We have configured 
the servers according to the specifications from Fourth Quarter 2006 SPECweb2005 Results3. Detailed description of 
the server configuration, along with the used service distributions, their Probability Distribution Functions (PDFs) and 
associated properties could be found in [21]. 

The response load of a Web server (LoadMetric) is expressed as a product of its utilization in [0, 1] at a given time 
during simulation and the maximum number of served requests/second (capacity). We use an asynchronous feedback 
mechanism, which assists the Web servers to trivially measure their actual loads and periodically update them in the 
SR. If a server’s load exceeds a given alarm threshold, it signals the mediator to perform load distribution. A normal 
signal is sent when the load returns below the threshold. The use of such an asynchronous feedback mechanism suffices 
to consider a server as a candidate for receiving requests only if that server has not declared itself critically loaded. 

CDN servers (facilities) have no queuing delay, since they are configured to have high capacity and large 
bandwidth. This approach leads to the logical implication that servers in the simulation can handle any size of load. 
This assumption is necessary to deal with request arrivals with very large processing requirements [1]. The load 
distribution algorithm deployed in the mediator decides, upon receiving an alarm signal, whether a server is overloaded 
or not, depending on its load information from the global load table maintained by the distributed SR implementation. 

4.1.2. Distributed Service Registry 
There is a distributed implementation of the SR in our simulation, wherein each CDN has an SR instance to get the load 
status of its Web servers. Once a peer delegates a set of its servers to define the subCDN, the real-time state of each 
surrogate is passed to a global load table of the SR using standard load metrics (LoadMetric). The global load table 
stores the overall state of the servers in the peering arrangement using a tuple 

(Web Server, LoadMetric) 

Two key data structures are maintained to realize the distributed SR implementation. First, each SR instance in a 
peering CDN is responsible for keeping a local copy of the load status of its servers. This load information is not 
necessarily propagated straightaway to the peering CDNs system. Second, the primary CDN maintains the global load 
table to perceive the global load information of the peering CDNs system. Therefore, it must globally communicate 
load information amongst the peers so that intelligent load distribution decisions may be made. The asynchronous 
feedback by the Web servers is used for consistency of global load information. Such best-effort data consistency 
mechanism allows proceeding with the operations without querying the servers for updated load information. In this 
way, the servers are made to decide on the tradeoff between serving requests and updating load information. 

Maintaining a data structure for the global load table in the primary CDN may seem infeasible with regard to 
security and fault tolerance. However, assuming a set of trustworthy participants, mendacious behavior from a provider, 
posing security threats, is not expected to be usual. This assumption could be justified by the fact that a given peering 
arrangement is likely to contain a handful of providers. The overhead of load update messages could be high if a large 
number of Web servers from the participating CDNs are present in the system. Nevertheless, at an instant it is unlikely 
to have more than a few hundred or thousand nodes in a peering arrangement from a small number of participants. The 
other mitigating factor is that load information is updated periodically and the only data that needs to be sent is a few 
bytes of load index. For example: a total number of 1000 servers in a given peering arrangement, 30s update frequency 
and 11bytes of data transfer for each load table entry “WebServer_ID LoadMetric” would lead to only about 22KB/min, 
or less than 0.5KBps for the messaging overhead due to the asynchronous feedback by the servers to the SR. 

4.1.3. Mediator 
Figure 5 illustrates the workings of the mediator, which is simulated to act as an authoritative entity in a given peering 
arrangement. It monitors the global load table to get Web servers’ status and uses the pinger logic to get their network 
proximity information, in terms of round-trip response time (in milliseconds), assuming that they are directly 
correlated. The pinger logic uses the User Datagram Protocol to send an 18bytes proximity measurement query (as 
UDP packet) of the format “PING Time CRLF” to each Web server for the network proximity measurement. Time 
represents the timestamp when query is sent and CRLF represents the carriage return and line feed characters that 
terminate the query message. We also set a timeout period of 1000ms to check whether the servers are reachable. Thus, 
along with the proximity measurement, the pinger logic tests a Web server’s ability to respond to a proximity 
measurement query, as well as its level of responsiveness under the current load. 

                                                            
2 Each facility is a simulated resource with a single server and a queue for waiting requests. 
3 Standard Performance Evaluation Corporation. http://www.spec.org/ 



 
Figure 5: Operations of the mediator 

The evaluation of network proximity among end-users and edge servers is a function of network topology and 
dynamic link characteristics. Therefore, the pinger logic is deemed to be located close to the users so that the mediator 
ideally can have the same view of the network status as the user’s browser (Figure 6). This approach allows estimating, 
reasonably accurately and possibly offline, the network proximity between the user and CDN Web servers. It may 
appear that this approach leads to a load distribution system that does not scale enough as it requires an instance of 
pinger logic to be placed close to each of the numerous number of users in the Internet. However, in practice, it is 
observed that most of the end-users make use of a proxy server which filters Web accesses through caching. Content 
which are not available in the proxy server are retrieved from the origin server(s) and stored locally in a cache. 
Additional requests for the same content are served by the proxy until the expiration time after which the content is 
considered ‘stale’. Therefore, the scalability problem can be solved by placing the pinger logic in the proxy server. This 
solution is feasible because the pinger logic is activated by the mediator for network proximity measurement only when 
the requested content is not in the proxy cache. 

 
Fig. 6. Network proximity measurement 

4.1.4. Network Congestions 
In order to consider the impact of network congestions on load distribution strategies, we model two types of networks 
delays, namely, inter-CDN and intra-CDN delays. In addition, for network proximity measurement we have simulated 
the UDP packet loss (LOSS_RATE = 0.3) due to network congestions. Intra-CDN delays have three components: (i) 
minimum round-trip time between server and the user browser, (ii) queuing delays at the mediator4, and (iii) packet 
transmission time for each link on the user browser and CDN Web server path. While (i) and (ii) are measured through 
simulation, (iii) is modeled as average network delay of 100ms. Inter-CDN delays are random variables that model 
communication latency between different geographical CDN domains. The Inter-CDN delays are 200ms in average. 
Within the simulation model, we do not characterize the delays spent for address resolution of Web servers. 

4.1.5. End-Users Traffic 
User requests are implemented as CSIM processes5. We assume that end-users request content via their own browsers 
to the CDN, according to the same client-side policy. The hidden load weight [10] is implicitly taken into account 
through the user distribution to CDNs, as requests to different CDNs are properly weighed and are distributed to the 
servers in a given peering arrangement. 

Alike the Internet access workloads, user requests show self-similarity. A self-similar process has observable bursts 
in all time scales. It exhibits long-range dependence, where values at any instance are typically correlated with all 
future values. This self-similar nature can be described by using a heavy-tailed distribution [12][13]. Therefore, user 
requests to each CDN Web server follow a highly variable Pareto distribution with Probability Density Function (PDF), 

kxkxkxf ≥>= −−  ,0 , ,)( 1 αα αα  
where the weight of the tail of the distribution is determined by α < 2. 

                                                            
4 The queuing delay at the mediator occurs for any possible congestion during load distribution in the peering CDNs system. 
5 CSIM processes are objects, based on Java threads, which make use of simulated resources. 



Table 4. List of performance indices. 

Performance Index Description 
Concurrent flows Number of ongoing requests at each server. A desirable scheme should keep 

the number below the capacity limit of each server all the time. 
Completions Number of completed requests at each server. It is used to evaluate the 

performance of the proposed resource discovery mechanism. 
Rejection rate Number of dropped requests due to service unavailability. It is used to 

investigate the service disruptions in each scheme. 
Utilization A server’s utilization in [0, 1] as reported by the load monitoring apparatus It 

is used to demonstrate the performance of the proposed redirection scheme. 
Maximum utilization Highest utilization at a given instant among all primary CDN servers. It is 

used to emphasize the impact of redirection on load distribution of primary 
CDN servers. 

Cumulative frequency of 
maximum utilization 

The probability that the maximum utilization of the primary CDN is below a 
certain value. It is a major performance criterion which determines whether 
the primary CDN is overloaded or not, by focusing on the highest utilization 
among all primary CDN servers. 

4.2. Schemes and Metrics for Comparison 
Traditional use of DNS scheduler for load balancing generally takes the Round-Robin (RR) algorithm to map requests 
to servers [10]. Therefore, we use an RR-based and a probabilistic version of this policy to assess the effectiveness and 
to evaluate the performance of our approach. We also use a simple deterministic scheme for comparison purposes. 
Specifically, we experiment with the follow policies: LD_RR, LD_PRR, and LD_LL. When incoming load exceeds the 
alarm threshold, the LD_RR policy uses a Round-Robin (RR) approach to redirect excess requests to all available 
underloaded servers in a cyclic order. The LD_PRR policy is a variant of the LD_RR policy. The basic idea is to make 
probabilistic round-robin type assignment to the servers. The probability is based on the residual capacity of servers in 
a given peering arrangement using the latest server load index. For this purpose, we generate a random number υ (0 ≤ υ 
≤ 1) and, under the assumption that i–1 is the last chosen server, we assign the new requests to server i with loadmetric 
(utilization) ui, only if υ ≤ ui. Otherwise, we skip the server i and consider i+1 repeating the same process. The LD_LL 
policy uses a trivial approach that performs load distribution by redirecting excess requests to the least loaded server. 
Just for comparison purpose, we also consider no redirection which tries to assign requests to the closest server, without 
considering the load. Table 4 lists the performance indices that are used in the experimental evaluation. 

5. Experimental Evaluation 
In this section, simulation results are presented to evaluate the performance and to provide critical assessment of our 
approach. We run our experiments for the reference simulation model of Section 4, with one provider as primary 
(CDN 1) and others as peers. Results are obtained from ten simulation runs, where each run is for duration of 10000s 
(approx. 3 hours) of the peering CDNs system activities. While our simulations are designed to converge to the “true 
solution” of the model, running the experiments for a finite amount of time may not provide the exact true solution. 
However, choosing the right length of a simulation run is not obvious. Overly short simulation runs result in highly 
inaccurate performance statistics, whereas too long simulation runs unnecessarily waste computing resources and delay 
the completion of the simulation study. This problem can be address by estimating a confidence interval, which is a 
range of values in which the true answer is believed to lie with a high probability. Therefore, we have calculated 
confidence intervals in order to show the accuracy in the results of simulation output. In our case, confidence interval 
with 95% confidence level is estimated to be within 4% of the mean. 

5.1. Traffic Load on Servers 
Figure 7 shows the number of connections at each server in different schemes. By keeping track of the concurrent flows 
at each server, we examine the performance of load distribution. These results indicate whether a scheme can keep the 
number of active connections (requests) to each server below respective capacity limit. For the clarity of presentation, 
we plot samples after each simulation run, using two scalesScale 1 and Scale 2to show the concurrent flows at 
servers of primary and peering CDNs, respectively. 

Server load is not taken into account in the no redirection policy and user requests are sent to the closest server. 
Hence, from Figure 7(a) we observe that the load at a few servers, in the primary CDN domain, grow significantly. For 
example: throughout the simulations, Server 1 and Server 2 receive more requests than their capacity. Unless they are 
provisioned with enough capacity to serve more concurrent connections, they will end up dropping many requests. In 
Figure 7(b), we see that LD_RR performs some load distribution by sending extra requests to the underloaded servers 
from primary and peering CDNs. However, it does not take cost (in terms of traffic load and proximity) into account 
and can potentially lead to high redirection cost. 



Figure 7(c) presents the performance of LD_PRR. Since it assigns some probability to the underloaded servers based 
on their residual capacity, it redirects more requests to the server(s) with high probability. Therefore, it performs some 
load distribution but may cause sudden surge to a particular server and thus lead to imbalance load situations. For 
example: during simulation time 8 and 10 (x10000s), Server 1 receives many more requests than its capacity. LD_LL 
does not perform well as it fails to distribute loads to multiple servers. As for instance, from Figure 7(d), we observe 
that as simulation time passes, Server 1 receives more requests than its capacity, specifically, during simulation times 2, 
4, 6, and 8 (x10000s), and Server 7 constantly receives extra requests than what it can handle. 
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(a) No Redirection 
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(b) LD_RR 
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(c) LD_PRR 
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(d) LD_LL 
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(e) LD_minCost 
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Figure 7: Number of concurrent requests for each scheme. 

In Figure 7(e), we present the performance of LD_minCost. The main objective of LD_minCost is to redirect extra 
requests in an imbalanced load situation, minimizing the redirection cost in terms of traffic load and network proximity, 
without violating the (practical) server capacity constraints. We observe that none of the primary CDN servers operate 
beyond their capacity during simulations. In order to prevent wide oscillation in the load distribution decisions, 
incoming requests to the primary CDN stay within its domain as much as possible and only cross the inter-CDN barrier 
during excessive load imbalance. Since redirection cost is taken into account, requests are served by the optimally 
underloaded servers, in terms of network cost. As a result, a few primary CDN servers receive only relatively few 
requests, while other better located servers run close to their capacity. In addition, request rejections are minimized as 
LD_minCost leads to optimal server selections. Moreover, any dynamic load changes, e.g. sudden load increase in 
Server 9 at simulation time 5 (x10000s), are also taken into account and load is distributed in a timely fashion. 
Therefore, our approach performs well even under high traffic surges as flash crowds. 
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Figure 8: Number of completed requests at each server in different schemes. 
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Figure 9: Total completions in each scheme. 

5.2. Number of Completions 
Now we evaluate the efficiency of our approach in terms of request completions. Figure 8 presents the average number 
of completed requests at each server over the simulation runs. It is found that in comparison to other alternatives, our 
approach is susceptible to handle more requests during load imbalance. LD_LL shows the worst performance among all 
the schemes. With no redirection, each CDN server attempts to serve the incoming requests to it, without any provision 
to redirect the request to a peer’s server. Although servers are over-utilized during load imbalance, it does not perform 
well to serve all the incoming requests. Notably, LD_RR and LD_PRR show almost similar performance in terms of 
the number of completions at each server. While it is expected that LD_RR and LD_PRR would exhibit better 
performance than no redirection, they perform as poorly as the no redirection policy. This is because many requests are 
dropped due to service disruptions. We further elaborate on this aspect with supporting results in the next section. 

Figure 9 demonstrates a similar trend, which presents the total completions in the peering CDNs system for different 
schemes. As adverted, LD_minCost assists in serving the highest number of requests collectively in the peering CDNs 
system. LD_RR and LD_PRR, along with no redirection demonstrate almost similar performance in terms of the total 
completions. As expected, LD_LL performs the worst and leads to serving the least number of requests in the system. 
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Figure 10: Service rejection rate for each scheme. 



5.3. Service Disruptions 
In this section, we investigate the impact of service unavailability for each scheme. Our redirection scheme directs 
comparatively more requests during load imbalance [21]. On the contrary, LD_RR, LD_PRR, and LD_LL do not show 
a high redirection percentage under traffic surge. Eventually, many requests are dropped as incoming requests arrive to 
a primary CDN server and find that the server is operating at its highest capacity. Thus, the inability to redirect more 
requests due to limited server capacity leads to significant service disruptions in these schemes. It is evident from 
Figure 10, which presents the percentage of disrupted services for each scheme, in terms of the average service 
rejection rate. In order to compute this performance metric, we first calculate the rejected service ratio as the number of 
requests that yielded a negative response (i.e. the system has not found a resource to serve this request), over the 
number of incoming requests. We then computed the average service rejection ratio as the average value over the 
number of total requests in the system. Figure 10 is obtained with a fixed number of 100000 requests. From the figure, 
we observe that LD_minCost clearly outperforms the other schemes, by exhibiting the lowest service rejection rate. 
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Figure 11: Server utilization for each scheme. 
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Fig. 12. Average utilization of the primary for each scheme. 
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Figure 13: Comparison of the request-redirection schemes. 

5.4. Server Utilization 
We use utilization to determine whether the primary CDN servers operate under an acceptable level of load during high 
traffic surges. Figure 11 presents the utilization of the primary CDN servers for each request-redirection scheme. We 
observe that LD_minCost performs better than the other redirection schemes in order to perform load distribution of the 
overloaded primary CDN servers. With no redirection, most of the primary CDN servers receive excessive traffic and 
utilization stays over the alarm threshold (80% of a server’s capacity). While LD_RR and LD_PRR demonstrate similar 



characteristics to perform some load balancing, none of them reduces utilization of all the primary CDN servers below 
the threshold. LD_LL policy fails to perform load distribution among multiple servers and always overloads Server 1 
and Server 2. On the other hand, LD_minCost exhibits the best performance by reducing all the primary CDN 
utilization below the threshold. Since requests stay within the primary CDN domain as much as possible to minimize 
redirection cost, a better located server, e.g. Server 3 in Figure 11, may show more utilization than its allies. However, 
still the primary CDN operates under an acceptable level of load. It is also evident from Figure 12, which presents the 
average utilization of the primary CDN system in each redirection scheme. LD_RR, LD_PRR, and LD_LL do not 
reduce the average utilization significantly below the threshold. Therefore, with these schemes primary CDN servers 
may be unable to receive more requests during sudden excessive traffic (flash crowds) in future and thus requests may 
have to be redirected outside the domain. With LD_minCost the average utilization of the primary CDN system is 
significantly brought down and makes its servers possible to cope up with succeeding traffic outbursts. 

5.5. Redirection Performance 
We investigate the impact of our request-redirection scheme on avoiding that a primary CDN serve is overloaded. 
Hence, we do not adopt traditional metrics such as the standard deviation of server utilizations for this purpose. We 
rather evaluate the performance of the request-redirection policies through the maximum utilization observed during a 
simulation run. The main performance metric we use is the cumulative frequency of maximum utilization, i.e. the 
probability for each utilization level that all server utilizations stay within that level. This metric provides an indication 
on the relative frequency of overloading. As for instance, a probability value of 0.8 for all servers to be less than 90% 
utilized implies that at least one server exceeds the 90% utilization level with probability 0.2. 

Figure 13 summarizes the performance of the request redirection schemes in terms of cumulative frequency of 
maximum utilization of primary CDN servers. It shows that LD_minCost has a probability of 1.0 of not causing any 
primary CDN server to exceed 80% utilization (alarm threshold). From the figure we can see that other schemes such 
as LD_RR, LD_PRR and LD_LL do not perform well. Specifically, they exhibit a probability of 0.5 of not causing any 
Web server to exceed the threshold. Moreover, as predicted, with no redirection there is very low probability of only 
0.25 that primary CDN servers will operate under the threshold. 
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Figure 14: Sensitivity to utilization. Figure 15: Sensitivity to traffic distribution. 

5.6. Sensitivity Analysis 
The performance of the redirection schemes could also be evaluated as a function of system parameters. We conduct a 
sensitivity analysis for the primary CDN, considering critical parameters such as utilization and traffic distribution. 
Changing other system parameters, such as the average number of requests or total simulation time, does not show 
noticeable differences among the redirection approaches. Therefore, we do not present those results here. 

In Figure 14, we compare the sensitivity to the utilization for the primary CDN in each redirection scheme, using the 
probability that no server in its domain is overloaded as the performance metric. Therefore, we vary the alarm threshold 
from 0.75 to 1. We observe that our redirection scheme, LD_minCost, shows the best result in all the cases. Analogous 
conclusion can be drawn when we vary the distribution of users among the CDN servers, and obtain results based on 
90% of the maximum utilization, i.e. the Prob(Maximum Utilization < 0.9). Figure 15 shows the probability that no 
server has a utilization higher than 90% as a function of the shape parameterα, which is varied from 1 (high variability) 
to 2 (moderate variability). Here, the performance metric (threshold) is changed from 80% to 90% to show the novelty 
of our scheme even under highly variable request pattern. 

6. Related Work 
Resource discovery is a popular topic in large-scale distributed systems; whereas, request-redirection is an 
indispensable enabling cornerstone for CDNs. Many research efforts have focused on these two topics separately in 
different domains, such as Grid computing, P2P-based systems, overlay networks, multi-agent systems, and ad-hoc 
networks. Analyses of previous research efforts, in relation to content internetworking, suggest that there has been only 
modest progress on dealing with resource discovery and request-redirection for peering CDNs. This is mainly due to 



the lack of careful design to realize dynamism, and the presence of common stoppers such as technical complexity, 
operational, legal and business related issues in practical context. 

The Content Distribution Internetworking (CDI) model [14] assumes a federation of CDNs, considering neighboring 
content networks as ‘black-boxes’. It marks the participation in peering as an advertisement of capability, not a 
reservation. While the CDI model lays the foundation for CDN peering, detailing a usable resource discovery 
mechanism and an effective method for request-redirection is unexplored. While it recommends using a supervision 
function or an independent third party to supervise and manage all the CDN peers, the characteristics and implications 
of such supervision is yet to be defined. In addition to the CDI model, Barbir et al. [3] present request-routing 
mechanisms for content networks. Our work is complimentary to the CDI model in that we are aiming at devising 
mechanisms for resource discovery and request-redirection to perform dynamic load distribution in peering CDNs. 

Previous work, as follow-ups of the CDI initiative, has mostly focused on peering performance evaluation, 
redirection modeling, and the applicability of anycasting as a redirection technique. Specifically, a brokerage system, 
called CDN Brokering [4], is developed and deployed on the Internet on a provisional basis. It presents IDNS, a 
specified request-routing DNS server, with a proprietary routing mechanism. The aim of this work is not to devise an 
optimal load distribution strategy, but to demonstrate the usefulness of brokering. Ercetin et al. [15] model request-
redirection for CDN brokering as a delay-constrained routing problem. Unlike our work, the devised solution could 
only be applied to a snapshot of the system, thus limiting its scalability in peering CDNs domain. Alzoubi et al. [1] 
present a load-aware IP Anycast CDN architecture, incorporated with a route-controller, which takes server and 
network load into account to realize anycasting. This work establishes the applicability of anycasting as a redirection 
technique in CDNs. Our work is in line with this work, as we are aiming at minimizing the cost associated with request-
redirection. However, our work differs by avoiding the use of a centralized route controller and by not following a post-
processing approach to offload overloaded servers. Another notable work in this area is a request distribution system 
for PlanetLab [26], which considers server loads and known proximity information from pre-defined landmarks to 
route requests. The authors rely on a centralized approach for load index dissemination and arbitrary server selections. 
On the contrary, we follow a decentralized approach to improve adaptability to dynamic changes. 

Amongst the work on load distribution strategies across geographically distributed Web servers, efforts by Conti et 
al. [11] and Cardellini et al. [8] could be adverted. The first is targeted to a QoS-based architecture for load distribution 
among replicated Web servers. The latter investigates the impact of redirection algorithms for load sharing. It proposes 
a Web cluster architecture where a DNS dispatcher is integrated with a redirection mechanism based on the HTTP 
protocol. While this approach might be effective to handle highly skewed loads, the focus is particularly on a single 
domain of clustered Web servers. 

In the context of modeling traffic redirection between geographically distributed servers, work of Amini et al. [2] 
and Ranjan et al. [22] can be mentioned. The first presents a model for intelligent server selections over multiple, 
separately administrated server pools. While this work is appealing, it does not show the effectiveness of any particular 
redirection or load distribution policy. The latter presents WARDan architecture for redirecting dynamic content 
requests from an overloaded Internet Data Center (IDC) to a remote replica. It is targeted to IDCs under the control of a 
single administrative entity. 

There are also several representative research initiatives on resource discovery (and request redirection, to some 
extent) in large distributed networks, i.e. non-CDN domains such as Grids and P2P systems. Harchol-Balter [16] 
present a distributed resource discovery algorithm, called name-Dropper, for large distributed networks of computers, 
which is reported to be licensed to Akamai6 for building Internet-wide content distribution system. This algorithm 
achieves near-optimal performance both with respect to time and network communication complexity. However, it may 
lead to the same particular target server selection by multiple originating machines. Lamnitchi et al. [17] study the 
resource discovery problem in a resource-sharing environment that combines the complexity of Grid and the dynamism 
of P2P networks. They propose a Grid emulator for evaluating resource discovery techniques based on request 
propagation. Unlike our work, this work is targeted to a P2P-based Grid system, which does not realize the full 
characteristics of peering CDNs. P2P networks support unstructured (e.g. Gnutella7, Kazaa8) or structured (e.g. CAN 
[23], Chord [27], Pastry [24]) discovery services. In the first approach, hosts and resources are made available on the 
network without a global overlay planning. The latter exploits highly structured overlays, using distributed indexing 
data structure, such as Distributed Hash Tables (DHTs) to route queries over a P2P network. The peer discovery and 
membership services are mainly used for the construction and startup of P2P networks. Nevertheless, with the presence 
of mechanisms for virtualizing multiple providers and realizing request-redirection for dynamic load distribution, P2P 
techniques could be made effective for resource discovery in the context of peering CDNs. 

7. Conclusion and Future Works 
In this paper, we present resource discovery and request-redirection algorithms for a dynamic load distribution strategy, 
which alleviates any load imbalance in a peering CDNs system. Resource discovery in our approach follows a 
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distributed and asynchronous nature, using a communication protocol that conservatively implements the 
public/subscribe paradigm. In addition, request-redirection occurs over distributed sets of servers, minimizing 
redirection cost. Specifically, in our approach, when any Web server in a peering CDNs arrangement reaches an 
overload condition exceeding the alarm threshold, the load distribution strategy reacts to redirect loads by selecting 
available optimally underloaded server(s), while not compromising network proximity. We validate our proposal with 
the aid of simulations, considering practical constraints and significant system parameters; and demonstrate its 
performance using performance metrics such as number of ongoing connections, number of completions, service 
disruptions, server utilization, and the cumulative frequency of maximum utilization. We also perform a sensitivity 
analysis of our redirection scheme by taking critical system parameters into account. 

Our approach is novel as it seeks to perform load distribution in peering CDNs through distributed resource 
discovery and dynamic request-redirection, taking network cost (in terms of load and network proximity) into account, 
and coping up with the practical constraints in the CDN domain. Our approach can alleviate problems with the 
commonly used DNS-dispatching policies for load balancing, which does not provide sufficient control on user 
requests, e.g. it can have as little as 5% of requests in many instances [10]. Moreover, DNS-dispatching is less useful 
for fine-grained server selections. In contrast, we achieve a significant level of granularity, since the actual user 
requests (eyeballs) are redirected during load distribution among the Web servers in peering CDNs. Therefore, it 
endeavors to produce optimal Web server selections, even under degenerated load conditions. 

There is room for further improving our approach in terms of communication cost. While the asynchronous 
feedback mechanism has little communication overhead, it may suffer from unnecessary message passing at periods 
when the traffic load matrix remain stable. As an alternative, we can use a triggered update strategy. In this technique, 
updates are triggered by the CDN servers as soon as they discover a potential change (measurement of old and new 
utilization and check whether it exceeds alarm threshold) in the user request patterns. Consequently, the communication 
overhead in the system is even reduced from periodic update, in order of the number of bytes/second. 

Our approach can also be aided with a market model that takes into account the QoS-oriented aspects (user demand 
and satisfaction) of peer selection for request-redirection and results in tractable solutions. This model could be used to 
analyze the sensitivity of various performance metrics such as welfare and the expected net utility [18] of the involving 
entities with respect to parameters such as initial cost, economic value and popularity of the content, the available 
information, and the network cost. We are currently working on developing an economic model for this market 
managed peering CDNs. In future, we intend to implement this model in a system prototype, called MetaCDN9 [5]. Our 
future work10 also includes performing experiments in the real-world settings, such as PlanetLab11, to validate the 
methodology presented in this paper. As far as the simulation is concerned, we aim to implement the full functionalities 
of the peering CDNs system within the simulator. We also seek to adopt traces of the Internet traffic for load 
characterization purposes. The use of actual CDN traces will help us to obtain reasonable load and network proximity 
estimates, whose accuracy could be improved through refinement, in response to changes in the network over time.  
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