
Failure Management for
Reliable Cloud Computing:
A Taxonomy, Model, and
Future Directions

Sukhpal Singh Gill and Rajkumar Buyya

Cloud Computing and Distributed Systems

Laboratory,

School of Computing and Information Systems,

The University of Melbourne

Abstract—The next generation of cloud computing must be reliable to fulfil the end-user

requirements, which are changing dynamically. Presently, cloud providers are facing

challenges to ensure the reliability of their services. In this paper, we propose a

comprehensive taxonomy of failure management in cloud computing. The taxonomy is

used to investigate the existing techniques for reliability that need careful attention and

investigation, as proposed by several academic and industry groups. Further, the existing

techniques have been compared based on the common characteristics and properties of

failure management as implemented in commercial and open-source solutions.

A conceptual model for reliable cloud computing has been proposed, along with a

discussion on future research directions. Moreover, a case study of astronomy

workflow is presented for reliable execution in the cloud environment.

& THE CLOUD COMPUTING paradigm delivers

computing resources residing in providers’ data-

centers as a service over the Internet. The

prominent cloud providers, such as Google,

Facebook, Amazon, and Microsoft, are providing

highly available cloud computing services using

thousands of servers, which consists of multiple

resources, such as processors, network cards,

storage devices, and disk drives.1 With the grow-

ing adoption of the cloud, cloud data centers are

rapidly expanding their sizes and increasing

Digital Object Identifier 10.1109/MCSE.2018.2873866

Date of publication 9 October 2018; date of current version

27 April 2020.

Feature Article: Cloud ComputingFeature Article: Cloud Computing

52
1521-9615 � 2018 IEEE Published by the IEEE Computer Society Computing in Science & Engineering

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

complexity of the systems, which increases the

resource failures. The failure can be service level

agreement (SLA) violation, data corruption, and

loss and premature termination of execution,

which can degrade the performance of cloud ser-

vice and affect business.2 For next-generation

clouds to be reliable, there is a need to identify

the failures (hardware, service, software, or

resource) and their causes and manages them to

improve their reliability.2 To solve this problem,

a model and system is required that introduces

replication of services and their coordination to

enable reliable delivery of cloud services in cost-

efficient manner.

The rest of the paper is organized as follows:

First, a systematic review of existing techniques

for reliable cloud computing is presented, and

then, a failure management-based comprehensive

taxonomy is proposed. Further, based on the

taxonomy, techniques have been compared. Next,

the failure management in open-source tech-

nologies and then the fault tolerance resilience in

practice are presented, respectively. Later,

approaches for creating reliable applications

using modular microservices and cloud-native

architectures have been covered. Then, the resil-

ience on Exascale systems, the conceptual model

for reliable cloud computing, the fault tolerance

for scientific computing applications along with a

case study of astronomy workflow, and the future

research directions are presented, respectively.

Finally, the last section concludes the paper.

RELIABLE CLOUD COMPUTING:
A JOURNEY AND TAXONOMY

Reliability in cloud computing is defined as

“the ability of a cloud computing system to per-

form the desired task or (provide a required ser-

vice) for stated time period under predefined

conditions”.4 The reliability of the cloud comput-

ing system depends on the different layers of the

cloud architecture, such as software, platform,

and infrastructure.

State-of-the-Art

This section briefly describes the existing

paper of reliable cloud computing. Deng et al.11

proposed a reliability-aware resource manage-

ment (RRM) approach for effective management

of hardware faults in scientific computation,

which improves the reliability of cloud service.

Further, it has been proved that the RRM is effec-

tive in providing reliability and fault-tolerance

against the malicious attacks and failures. Lin and

Chang3 proposed amaintenance reliability estima-

tion (MRE) approach for the cloud computing net-

work to measure the maintenance of data transfer

with nodes failure and time constraints. Further,

sensitive analysis has been done to improve the

transmission time and data transfer speed by

selecting shortest and reliable paths. Dastjerdi

and Buyya4 proposed an SLA-based autonomous

reliability-aware negotiation (ARN) approach to

automate the negotiation process between cloud

service providers and requesters. Moreover, an

ARN can evaluate the reliability of proposals

received from service providers. The proposed

approach reduces the underutilization of resour-

ces and enables the parallel negotiation with

many resource providers simultaneously. Xuejie

et al.5 developed a hybrid method-based reliabil-

ity evaluation (HMRE) model, which combines

continuous-time Markov chain (CTMC) and mean

time to failure metrics to measure the effect of

physical-resource breakdowns on system reliabil-

ity. The HMRE model can be used to design a reli-

able system for cloud computing.

Chowdhury and Tripathi6 proposed a security-

based reliability-aware resource scheduling (RRS)

technique to measure the reliability of the cloud

datacenter. Moreover, the RRS updates the reli-

ability of cloud resources continuously for further

scheduling of resources for the execution of user

workloads. Cordeschi et al.7 developed an adap-

tive resource management (ARM) model to

improve the reliability of cloud services in cloud-

based cognitive radio vehicular networks. The

ARM manages the resources effectively and pro-

vides the energy-efficient cloud service to perform

traffic offloading. The distributed and scalable

deployment of the ARM offers the hard reliability

guarantees to transfer data using wireless sensor

network. Zhou et al.8 proposed a cloud service reli-

ability enhancement (CSRE) technique to improve

the storage and network resource utilization.

CSRE uses service checkpoint to store the state of

all the virtual machines (VMs), which are cur-

rently processing user workloads. Further, a node

failure predicator is developed to reduce the net-

work resource consumption.

May/June 2020 53
Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

Li et al.9 proposed a convergent dispersal-

based multicloud storage (CDStore) solution to

provide the cost-effective, secure, and reliable

cloud service. CDStore provides deterministic-

based deduplication to improve storage and

bandwidth savings, which further protects the

system from malicious attacks using two-stage

deduplication. Azimzadeh and Biabani10 pro-

posed a multiobjective resource scheduling

(MORS) mechanism to reduce execution time

and improve reliability of cloud service. Further,

a tradeoff between execution and reliability has

been established for the execution of high per-

formance computing (HPC) workloads.

Calheiros and Buyya13 proposed a task repli-

cation-based resource provisioning (TRRP)

algorithm for execution of deadline-constrained

scientific workflows. TRRP utilizes the extra

budget and free time of resources to execute

workflows within their deadline and budget.

Poola et al.14 proposed a spot and on-demand

instances-based adaptive and just-in-time (AJIT)

scheduling algorithm to offer fault tolerance.

AJIT minimizes execution cost and time through

resource consolidation and experimental

results prove that AJIT is an effective in execute

workloads under short deadlines. Qu et al.15 pro-

posed a heterogeneous spot instances-based

autoscaling (HSIA) fault tolerant system for exe-

cution of web applications, which effectively

reduces the cost of execution and improves the

availability and response time. Liu et al.16 pro-

posed a replication-based state management

system (E-Storm) for execution of streaming

applications. E-Strom uses multiple state back-

ups on different worker nodes to improve reli-

ability of the system and performs better the

existing techniques in terms of latency and

throughput. Abdulhamid et al.21 proposed a

dynamic clustering league championship algo-

rithm (DCLCA) based fault management

technique, which schedule tasks on cloud

resources for execution and focuses on fault

reduction in task failure. The experimental

results show that DCLCA performs better in

terms of makespan and fault rate. Figure 1 shows

the evolution of existing techniques for reliable

cloud computing and their focus of study.

Failure Management

To offer reliable cloud services, there is a

need for an effective management of failures.

The literature has14-20 reported that various fail-

ure management techniques, and policies have

been proposed for reliability assurance in cloud

computing. A failure is defined as “when a cloud

computing system fails to perform a specific

function according to its predefined conditions.”

We have identified four types of failures (service

failure, resource failure, correlated failure, and

independent failure) and classified these failures

in into two main categories: architecture based

and occurrence based. Table 1 describes the

classification of failures and their causes.

TAXONOMY. Based on failure management techni-

ques and policies for reliability assurance in

cloud computing, the components of the taxon-

omy are 1) design principle, 2) QoS, 3) architec-

ture, 4) application type, 5) protocol, and 6)

mechanism (see Figure 2).

Design Principle. Three different types of

design principles are proposed for reliable cloud

service such as design for recoverability, i.e., the

recover system with minimum involvement of

human, design for data integrity, i.e., to ensure the

accuracy and consistency of data during transmis-

sion, and design for resilience, i.e., the enhance

system resilience and reduce the effect of failure

to there is lesser interruption to cloud service.

Figure 1. Evolution of reliable cloud computing.

Cloud Computing

54 Computing in Science & Engineering

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

Quality of Service (QoS). Three QoS param-

eters are considered to measure the reliability of

cloud service:12 serviceability, resource utiliza-

tion, and security. Serviceability is defined in (1),

while resource utilization is defined in (2). Secu-

rity in cloud computing is a deployment of tech-

nologies or policies to protect infrastructure,

applications, and data from malicious attacks2

Serviceability

¼ Service Uptime

Service Uptimeþ Service Downtime

(1)

Resource Utilization

¼ Actual Time Spent by a Resource to Execute Workload

Total Uptime of a Resource
:

(2)

Architecture. There are four types of

architecture: homogenous, heterogenous, central-

ized, and decentralized. A homogenous architec-

ture has the same type of configuration, such as

operating systems, networking, storage, and pro-

cessors, while a heterogeneous datacenter com-

bines different type of configurations of operating

systems, networking, storage, and processors to

process user applications. In centralized architec-

tures, there is a central controller, which manages

all the tasks that are required to be executed, and

further, it executes the task using scheduled

resources. The central controller is responsible

for the execution of all tasks. In decentralized

architectures, resources are allocated indepen-

dently to execute the tasks without any mutual

coordination. Every resource is responsible for its

own task execution.

Table 1. Classification of failures and their causes.

Figure 2. Taxonomy based on failure management in clouds.

May/June 2020 55
Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

Application Type. For application manage-

ment, there are five types of applications that are

considered for reliable cloud computing: web

applications, streaming applications, compute-

intensive, data-intensive, and scientific workflows.

The applications that can execute anytime but its

execution should be completed before their dead-

line are called compute-intensive such as HPC. Web

applications are those applications which are

required to run all time, i.e., 24 � 7 such as delay

torrent, Internet services, etc. The applications

with lot of data crunching is called data-intensive.

In scientific workflows, real-world activities can be

simulated such as flight control system, weather

prediction and climate modelling, aircraft design

and fuel efficiency, oil exploration, etc., which

requires high processing capacity to execute user

requests. A streaming application is a program,

which downloads the required components

instead of installing components before its use

and it is used to provide virtualized applications.

Mechanism. There are two types of

mechanisms: reactive and proactive. Reactive

management works based on feedback methods

and manages the system based on their current

state to handle faults. There is a need of continu-

ous monitoring of resource allocation to track the

system status. If there is some system error then

corrective actionwill be taken tomanage that fault.

Proactive management manages the system based

on the future prediction of the performance of the

system instead of its current state. The resources

are selected based on the previous executions of

the system in terms of reliability, throughput, etc.

Thepredictions are required tobe identifiedbased

on previous data and plan their appropriate action

tomanage that fault during system execution.

Protocol. The mechanisms are further

divided into different protocols: checkpointing,

replication, logging, and VM migration. To incor-

porate fault tolerance into system, a snapshot of

the application’s state is saved, so that system

can reboot from that point in case of system

crash, this process is called checkpointing. To

improve the reliability of system, information is

shared among redundant resources (hardware

Table 2. Comparison of reliability-aware approaches based on the taxonomy.

Cloud Computing

56 Computing in Science & Engineering

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

or software), is called replication. Logging is

required to save the information related to

cyberattacks, auditing, anomalies, user access,

troubleshooting, etc., to building a reliable

system. Failure can be avoided proactively by

migrating the VM from one cloud datacenter to

another is called VM migration.

The various open-source technologies use by

different reliability-aware approaches are dis-

cussed in the study of failure management in

open-source technologies. Table 2 shows the

comparison of reliability-aware approaches

based on taxonomy of failure management.

FAILURE MANAGEMENT IN OPEN-
SOURCE TECHNOLOGIES

In the literature,5–15 the various types of

open-source technologies are identified for fail-

ure management in reliability-aware approaches

such as Hadoop, Storm, Spark, Kafka, Zookeeper,

Cassandra, Flink, Beam, Ape, and Samza. Table 3

presents the description of open-source technol-

ogies along with their comparison based on dif-

ferent parameters such as type of service, their

features, language used to develop technology,

type of data processing and fault tolerance

mechanism(FTM) by different technologies.

FAULT-TOLERANCE AND RESILIENCE
IN PRACTICE

There are various commercial clouds such as

Amazon Web Services, Window Azure, Google

App Engine, IBM Cloud, and Oracle, which focuses

on fault tolerance to deliver reliable cloud service.

In this section, we have explored the recent

advances of commercial cloud providers based

on eight different types of fault tolerance parame-

ters.5,6,11,13,14,17,18,22 To improve the reliability of

the system, the information is shared among

redundant resources (hardware or software), is

called replication. The capability of a system to

deliver 24�7 service in case of failure—a disk, a

node, or a network is called availability. The capa-

bility of a system to protect against data loss dur-

ing write, read, and rewrite operations on storage

media is called durability. Archiving-cool storage

means lower cost tier for storing data which is

accessed infrequently and long-lived. Backup

Table 3. Comparisons of open-source technologies based on different parameters.

� Cloujure is a dynamic programming language for multithreading and it runs on JVM

May/June 2020 57
Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

offers offsite protection against data loss by allow-

ing data to be backed-up and recovered from the

cloud at later stage. Disaster recovery provides

automatic replication and protection of VMs using

recovery plans and its testing. Relational database

provides organization of data to develop data-

driven websites and applications without dema-

nding to manage infrastructure. Caching offers

effective storage space, which is used to off-load

nontransactional work from a database. Table 4

shows the comparison of commercial clouds

based on fault tolerance parameters.

RELIABILITY VIA MICROSERVICES
AND CLOUD-NATIVE
ARCHITECTURES

Microservice-based design of applications

make them loosely coupled from other services,

modular, and independent. Therefore, a micro-

service will not impact on other services and

thus improve the fault-tolerance and availability7

of applications. To achieve fault-tolerance in

microservice, it has to be designed with the

following objectives:

1. minimum interdependencies among services;

2. include built-in resilience using API gateway

(e.g., Zuul);8

3. contain built in self-healing capabilities (e.g.,

Kubernetes);9

4. protection against intermittent service fail-

ures or load spikes using cache request in

stream processor (e.g., Apache Kafka).11

Further, automated testing mechanism

should be incorporated to perform application

testing with ultrahigh loads or randomized

input/wrong input, which can further improve

the fault tolerance in microservices. There are

two types of microprofiles can be used for micro-

service implementation for fault tolerance:

CircuitBreaker and Fallback.23 To prevent the

repeated calls that likely to fail, CircuitBreaker

service permits microservice to fail instantly.

After main service failure, fallback service runs

to offer failure or may continue operation of the

original microservice.

Cloud-native architectures enable the creation

of applications using Infrastructure-as-a-Service

(IaaS) and Platform-as-a-Service (PaaS) capabili-

ties and services supported by cloud computing

platforms. Such applications are called cloud-

native applications,29 as they seamlessly benefit

from reliability, scalability, and elasticity features

offered by PaaS platforms. Moreover, many cloud

PaaS platforms are designed to run on a variety of

computing infrastructures, from networked desk-

top computers to public clouds. That means, the

engineering reliable system applications becomes

easier, seamless, and cost-effective. For example,

the application designed using cloud PaaS plat-

forms suchAneka28 can run on networkeddesktop

computers within an enterprise, leased resources

from public clouds, or hybrid clouds by harness-

ing both enterprise and public cloud resources

along with seamlessly benefiting from reliable and

cost-efficient execution services offered by the

platform.

RESILIENCE ON EXASCALE SYSTEMS
Exascale systems usesmulticore processors to

offer massive parallelism, which executes more

Table 4. Comparison of commercial clouds based on fault tolerance parameters.

Cloud Computing

58 Computing in Science & Engineering

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

than thousand floating point operations per sec-

ond. The probability of partial failures will be

increased due to participation of large number of

heterogenous functional components, such as

network interfaces,memory chips, and computing

cores.3 Therefore, fault tolerance at system level is

required to handle dynamic reconfigurations at

runtime. In past, the checkpoint/restart technique

is used to prevent computation to be lost due to

failures for long running jobs, but this technique is

not very effective due to slow communication

channels between RAM and parallel file system.5

Replication can be used in addition to checkpoint/

restart to improve fault tolerance. In replication,

same computation is performed by multiple

processors; therefore, processor failure does

not affect application execution.24 There are

two different types of approaches for replication

has been developed: process replication and

instance replication. In process replication, it rep-

licates every process in a single instance of a par-

allel application while in instance replication, it

replicates the instances of entire application. The

tradeoff between power consumption and cost for

resilience on exascale systems is an open issue.

A CONCEPTUAL MODEL FOR
RELIABLE CLOUD SERVICE

Figure 3 shows the conceptual model for reli-

able cloud computing in the form of layered

architecture, which offers effective management

of cloud computing resources, to make cloud

services more reliable. The three main compo-

nents of proposed architecture are discussed as

follows.

1. Cloud Users: At this layer, cloud user submits

their requests and defines required services in

terms of SLA. Workload manager is deployed

to handle the incoming user workloads, which

can be interactive or batch style and transfer

to themiddleware for resource provisioning.

2. Middleware: This is the main layer of model,

which includes five subcomponents, such as

accounting and billing, workload manager,

resource provisoner, resource monitor, and

security manager.

a) Accounting and billing module includes the

information about expenses of cloud serv-

ices, cost of ownership, user budget, etc.

b) Workload Manager manages the incoming

workloads from the application manager and

identifies the QoS requirement for every

workload for their successful execution and

transfer the QoS information of workload to

the resource provisoner.

c) Resource provisoner has three modules: SLA

manager, VM manager, and fault manager.

SLA manager module manages the official

contract between user and provider in terms

of QoS requirements. Based on the availabil-

ity of VMs, VM manager provisions and

schedules the cloud resources for workload

execution based on QoS requirements of

workload using physical machines or VMs.

Fault manager keep tracks of system, detects

the faults along with their causes and correct

them without degradation of performance.

Further, it finds the future faults and their

impacts on the system’s performance.

d) Resource monitor keeps a continuous record

of activities of underlying infrastructure to

assure the availability of services. Moreover,

it also monitors the QoS requirements of

incoming workloads.

e) Security Manager deploys the virtual network

security policies to provide secure: data

transmission between cloud users and pro-

viders and workload and VM migration

between cloud datacenters.

3. Physical Infrastructure layer consists of cloud

datacentres (which consists of multiple

resources, such as processors, network cards,

storage devices, and disk drives), which are

used to execute cloud workloads. Based on

Figure 3. Conceptual model for reliable cloud computing.

May/June 2020 59
Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

the VM manager policy, VM migration or con-

solidation is performed for execution.

FAILURE MANAGEMENT FOR
SCIENTIFIC COMPUTING
APPLICATIONS

There are different areas, such as astronomy,

bioinformatics, genomics, quantum chemistry,

life-sciences, and high-energy physics represent

their applications as scientific workflows.

To obtain their scientific experimental results,

these applications are executed using distrib-

uted systems.26 These applications can be I/O or

data or compute intensive applications, which

have exponentially adopted cloud computing

environments.25 The workflow management sys-

tems use on-demand dynamic provisioning

model to execute application on multicloud envi-

ronment, which improves the fault tolerance

in scientific workflow based applications.27

The Cloudbus workflow management system

executes applications on multiple clouds using

dynamic provisioned resources.

Montage: A Case Study of Astronomy Workflow

This section presents the reliable execution of

astronomy application on cloud environment to

validate the conceptual model. Astronomy stud-

ies spiritual bodies and space through image

datasets that cover a wide range of electromag-

netic spectrum.27 Further, astronomers use these

images in different ways, such as spatial sam-

plings, pixel densities, image sizes, and variety of

map projections.25 As astronomy application is

expressed as workflow made up thousands of

interrelated tasks; any failure in task execution as

resources faults will have a cascading effect.

Figure 4 shows the system architecture, which

shows the interactions among different compo-

nents for application execution and the need for

handling failures explicitly. The system architec-

ture comprises of the following subcomponents:

� Montage Workflow: Montage application is a

complex astronomy workflow, which produ-

ces a mosaic of astronomic images.

� Cloudbus Workflow Management System: This

uses decentralized scheduling architecture

for workflow execution, which allows tasks

to be scheduled by multiple schedulers.

� Fault Tolerance Manager: Two different types

of fault tolerance techniques (retry and task

replication) are used, which helps to mitigate

failures during execution on distributed

systems. Retry method reschedules a failed

job to an available resource, while task repli-

cation method replicates a task on more than

one resource.

In a demonstrated application, Melbourne

CLOUDS Lab researchers27 created a montage

workflow consisting of 110 tasks, where the num-

ber of images used are represented by the number

of tasks. Montage toolkit is used to process tasks

that compute such mosaics through independent

modules using simple executables. Workflowman-

agement systems requires three type of resources

such asmaster node (hosted in the OpenStack pri-

vate cloud), storage host (hosted in the AWS EC2

public cloud) andworker node (hosted in the AWS

EC2public cloud,which performsworkflowexecu-

tion). Resource failures was orchestrated to dem-

onstrate the fault-tolerance of the workflow

management system. The experimental results

show that makespan (execution time) increases

with the increase of the number of failures using

retry fault-tolerant technique. After a resource

fails, it remaps all tasks that where scheduled on

the failed resource, thus saving execution time.

The workflow makespan is higher as it schedules

the resources on two cloud infrastructures

because of data transfer time and the data move-

ment time between tasks. Experimental results

demonstrate that execution of an application

using two cloud infrastructures would increase

the time but will reduce the cost significantly than

running the entire application on a public cloud.

See27 formore details.t

Figure 4. System architecture.

Cloud Computing

60 Computing in Science & Engineering

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

FUTURE RESEARCH DIRECTIONS
As discussed in Table 2, there are many

open challenges in ensuring reliability of cloud

computing services. To address them, we pro-

posed the following directions that help in

practical realization of the proposed concep-

tual model.

1. Energy: To provide a reliable cloud service, it

is required to identify that how the occur-

rences of failures effect the energy efficiency

of cloud computing system. Moreover, it is

necessary to save the checkpoints with mini-

mum overhead after predicting an occur-

rence of failure. Therefore, workloads or VMs

can be migrated to more reliable servers,

which can save the energy consumption and

time. Further, consolidation the multiple

independent instances (web service or e-

mail) of an application can improve the

energy efficiency, which improves the avail-

ability of cloud service.

2. Security: Real cloud failure traces can be used

to perform the empirical or statistical analy-

sis about failures to test the performance in

terms of the security of the system. Security

during VM migration is also an important

issue because a VM state can be hijacked

during its migration. To solve this problem,

there is a need of encrypted data transfer to

stop user account hijacking, which can pro-

vide a secure communication between user

and provider. To improve the reliability of

cloud service to next level, homomorphic

encryption methods can be used to provide

security against malicious attacks such as

denial of service, password crack, data leak-

age, DNS spoofing, and eavesdropping.

Further, it is required to understand and

address the causes of security threats, such

as VM level attacks, authentication and

authorization, and network-attack surface for

efficient detection and prevention from

cyberattacks. Moreover, data leakage pre-

vention applications can be used to secure

data, which also improves the reliability of

the cloud computing system.

3. Scalability: The unplanned downtime can vio-

late the SLA and effects the business of cloud

providers. To solve this problem, a cloud com-

puting system should incorporate dynamic

scalability to fulfil the changing demand of

users without the violation of SLA.

4. Latency: Virtualization overhead and

resource contention are two main problems

in computing systems, which increases the

response time. Reliability-aware computing

system can minimize the problems for real-

time applications, such as video broadcast

and video conference, which can reduce

latency while transferring data.

5. Data Management: Computing systems

are also facing a challenge of data synchroni-

zation because data is stored geographically,

which overloads the cloud service. To solve

this problem, rapid elasticity can be used to

find the overloaded cloud service and it adds

new instances to handle the current work-

loads. Further, there is a need of efficient

data backup to recover the data in case of

server downtime.

6. Auditing: To maintain the stable and health

situation of the cloud service, there is a need

for periodic auditing by third parties, which

can improve the reliability and protection of

computing system.

CONCLUSION
We proposed a taxonomy for identifying the

research issues in reliable cloud computing. Fur-

ther, the existing techniques of the reliable cloud

computing have been analysed based on the tax-

onomy of failure management. We have discussed

the failure management in open-source technolo-

gies and the fault tolerance resilience in practice

for commercial clouds. Further, fault tolerance in

modular microservices and the resilience on exas-

cale systems is discussed. We propose a concep-

tual model for effective management of resources

to improve reliability of cloud services. Moreover,

a case study of astronomy workflow is presented

for reliable execution in cloud environment. Our

study has helped to determine research gaps in

reliable cloud computing as well as identifying

future research directions.

ACKNOWLEDGMENTS
This work is supported by the Melbourne-

Chindia Cloud Computing (MC3) Research

Network and ARC (DP160102414).

May/June 2020 61
Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

& REFERENCES

1. S. Singh and I. Chana, “QoS-aware autonomic

resource management in cloud computing: A

systematic review,” ACM Comput. Surveys, vol. 22,

no. 30, pp. 1–46, 2016.

2. S.S. Gill and R. Buyya, “SECURE: Self-protection

approach in cloud resourcemanagement,” IEEE Cloud

Comput., vol. 5, no. 1, pp. 60–72, Jan./Feb. 2018.

3. Y.-K. Lin and P.-C. Chang, “Maintenance reliability

estimation for a cloud computing network with nodes

failure,” Expert Syst. Appl., vol. 38, no. 11, pp. 14185–

14189, 2011.

4. A.V. Dastjerdi and R. Buyya, “An autonomous

reliability-aware negotiation strategy for cloud

computing environments,” in Proc. 12th IEEE/ACM Int.

Symp. Cluster, Cloud Grid Comput., 2012, pp. 284–

291.

5. Z. Xuejie, W. Zhijian, and X. Feng, “Reliability

evaluation of cloud computing systems using hybrid

methods,” Intell. Automat. Soft Comput., vol. 19, no. 2,

pp. 165–174, 2013.

6. A. Chowdhury and P. Tripathi, “Enhancing cloud

computing reliability using efficient scheduling by

providing reliability as a service,” in Proc. Int. Conf.

Parallel, Distrib. Grid Comput., 2014, pp. 99–104.

7. N. Cordeschi, D. Amendola, M. Shojafar, and E.

Baccarelli, “Distributed and adaptive resource

management in cloud-assisted cognitive radio

vehicular networks with hard reliability guarantees,”

Veh. Commun., vol. 2, no. 1, pp. 1–12, 2015.

8. A. Zhou, S. Wang, Z. Zheng, C.-H. Hsu, M.R. Lyu, and

F. Yang, “On cloud service reliability enhancement

with optimal resource usage,” IEEE Trans. Cloud

Comput., vol. 4, no. 4, pp. 452–466, Oct.–Dec. 2016.

9. M. Li, C. Qin, J. Li, and P.P.C. Lee, “CDStore: Toward

reliable, secure, and cost-efficient cloud storage via

convergent dispersal,” IEEE Internet Comput., vol. 20,

no. 3, pp. 45–53, May–Jun. 2016.

10. F. Azimzadeh and F. Biabani, “Multi-objective job

scheduling algorithm in cloud computing based on

reliability and time,” in Proc. IEEE 3rd Int. Conf. Web

Res., 2017, pp. 96–101.

11. J. Deng, S.C.-H. Huang, Y. S. Han, and J.H. Deng,

“Fault-tolerant and reliable computation in cloud

computing,” in Proc. Global Telecommun. Conf.

Workshops, 2010, pp. 1601–1605.

12. S. Singh and I. Chana, “Q-Aware: Quality of service

based cloud resource provisioning,” Comput. Elect.

Eng., vol. 47, pp. 138–160, 2015.

13. R.N. Calheiros and R. Buyya, “Meeting deadlines of

scientific workflows in public clouds with tasks

replication,” IEEE Trans. Parallel Distrib. Syst., vol. 25,

no. 7, pp. 1787–1796, Jul. 2014.

14. D. Poola, K. Ramamohanarao, and R. Buyya,

“Enhancing reliability of workflow execution using task

replication and spot instances,” ACM Trans. Auton.

Adapt. Syst., vol. 10, no. 4, pp. 1–21, Feb. 2016, .

15. C. Qu, R.N. Calheiros, and R. Buyya, “A reliable and

cost-efficient auto-scaling system for web applications

using heterogeneous spot instances,” J. Netw.

Comput. Appl., vol. 65, pp. 167–180, Apr. 2016.

16. X. Liu, A. Harwood, S. Karunasekera, B. Rubinstein,

and R. Buyya, “E-Storm: Replication-based state

management in distributed stream processing

systems,” in Proc. 46th Int. Conf. Parallel Process,

Bristol, U.K., Aug. 14–17, 2017, pp. 571–580.

17. S. Singh, I. Chana, and M. Singh, “The journey of QoS-

aware autonomic cloud computing,” IT Prof., vol. 19,

no. 2, pp. 42–49, 2017.

18. S. S. Gill and R. Buyya, “A Taxonomy and future

directions for sustainable cloud computing: 360

degree view,” ACM Comput. Surveys, 2018,

arXiv:1712.02899.

19. S. Singh and I. Chana, “A survey on resource scheduling

in cloud computing: Issues and challenges,” J. Grid

Comput., vol. 14, no. 2, pp. 217—264, 2016.

20. M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure,

“Securing MultiPath TCP: Design & implementation,”

in Proc. Conf. Comput. Commun., 2017.

21. M.S.A. Latiff, S.H.H. Madni, and M. Abdullahi, “Fault

tolerance aware scheduling technique for cloud

computing environment using dynamic clustering

algorithm,” Neural Comput. Appl., vol. 29, no. 1,

pp. 279–293, 2018.

22. R. Jhawar and V. Piuri, “Fault tolerance and resilience

in cloud computing environments,” in Computer and

Information Security Handbook. 3rd ed., 2017, pp.

165–181.

23. S. Haselb€ock, R. Weinreich, and G. Buchgeher,

“Decision guidance models for microservices: Service

discovery and fault tolerance,” in Proc. 5th Eur. Conf.

Eng. Comput.-Based Syst., 2017.

24. H. Casanova, F. Vivien, and D. Zaidouni, “Using

replication for resilience on exascale systems,” in

Fault-Tolerance Techniques for High-Performance

Computing. Cham, Germany: Springer, 2015.

25. C. Day, “Astronomical images before the Internet,”

Comput. Sci. Eng., vol. 17, no. 6, pp. 108–108, 2015

Cloud Computing

62 Computing in Science & Engineering

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

26. H. Remmel, B. Paech, C. Engwer, and P. Bastian, “A

case study on a quality assurance process for a

scientific framework,” Comput. Sci. Eng., vol. 16, no. 3,

pp. 58–66, 2014.

27. D.P. Chandrashekar, “Robust and fault-tolerant

scheduling for scientific workflows in cloud computing

environments,” Ph.D. Thesis, The Univ. Melbourne,

Parkville, VIC, Australia, Aug. 2015.

28. S. Singh, I. Chana, and R. Buyya, “STAR: SLA-aware

autonomic management of cloud resources,” IEEE

Trans. Cloud Comput., to be published.

29. A. Mahajan, M.K. Gupta, and S. Sundar, Cloud-Native

Applications in Java: Build Microservice-Based Cloud-

Native Applications That Dynamically Scale.

Birmingham, U.K: Packt, 2018.

Sukhpal Singh Gill is a Postdoctoral Research

Fellow with the Cloud Computing and Distributed

Systems Laboratory, the University of Melbourne.

Contact him at sukhpal.gill@unimelb.edu.au.

Rajkumar Buyya is a Redmond Barry Distin-

guished Professor and the Director of the Cloud

Computing and Distributed Systems (CLOUDS)

Laboratory, the University of Melbourne, Australia.

He is one of the most highly cited authors in com-

puter science and software engineering worldwide.

He was recognized as a “Web of Science Highly

Cited Researcher” in both 2016 and 2017 by Thom-

son Reuters, is a Fellow of IEEE, and a Scopus

Researcher of the Year 2017 with an Excellence in

Innovative Research Award by Elsevier for his out-

standing contributions to Cloud computing. Contact

him at rbuyya@unimelb.edu.au.

May/June 2020 63
Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2020 at 02:26:13 UTC from IEEE Xplore. Restrictions apply.

mailto:sukhpal.gill@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

