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Abstract—Cloud computing providers are now offering their
unused resources for leasing in the spot market, which has been
considered the first step towards a full-fledged market economy
for computational resources. Spot instances are virtual machines
(VMs) available at lower prices than their standard on-demand
counterparts. These VMs will run for as long as the current
price is lower than the maximum bid price users are willing
to pay per hour. Spot instances have been increasingly used for
executing compute-intensive applications. In spite of an apparent
economical advantage, due to an intermittent nature of biddable
resources, application execution times may be prolonged or they
may not finish at all. This paper proposes a resource allocation
strategy that addresses the problem of running compute-intensive
jobs on a pool of intermittent virtual machines, while also
aiming to run applications in a fast and economical way. To
mitigate potential unavailability periods, a multifaceted fault-
aware resource provisioning policy is proposed. Our solution
employs price and runtime estimation mechanisms, as well
as three fault-tolerance techniques, namely checkpointing, task
duplication and migration. We evaluate our strategies using trace-
driven simulations, which take as input real price variation
traces, as well as an application trace from the Parallel Workload
Archive. Our results demonstrate the effectiveness of executing
applications on spot instances, respecting QoS constraints, despite
occasional failures.

Index Terms—cloud computing; spot market; scheduling;
fault-tolerance;

I. INTRODUCTION

Variable pricing virtual machines (also know as “spot in-

stances”1) are increasingly being employed as a means of

accomplishing various computational tasks, which are com-

mon in several areas of science, such as climate modeling,

drug design, and protein analysis, as well in data analyt-

ics scenarios, such as execution of MapReduce tasks [1].

Significant cost savings and the possibility of easily leasing

extra resources when needed, are major considerations when

choosing virtual clusters, dynamically assembled out of cloud

computing resources, over a local HPC cluster [2].

The cloud computing spot market, since introduced by

Amazon Web Services [3], [4], has been considered as the

first step for a full-fledged market economy for computational

resources [5]. In this market, users submit a resource leasing

request that specifies a maximum price (bid) they are willing to

1The terms “spot instance”, “instance”, “virtual machine”, “VM”, and
“resource” signify the same concept and are used interchangeably in this
work.

pay per hour for a predefined instance type. Instances associ-

ated to that request will run for as long as the current spot price

is lower than the specified bid. Prices vary frequently, based on

supply and demand. Price are distinct and vary independently

for each available datacenter (“availability zone” in Amazon

terminology), spot instance type, and operating system choice.

Not all type/OS combinations are available in all datacenters.

In other words, there are multiple spot markets from where

to choose suitable computational resources, making the provi-

sioning problem significantly challenging.

When an out-of-bid situation occurs, i.e. the current spot

price for that instance type goes above the user’s maximum

bid, instances are terminated by the provider without prior no-

tice. Therefore, in spite of an apparent economical advantage,

an intermittent nature is inherent to biddable resources, which

may cause VM unavailability.

Despite the possibility of failures due to out-of-bid situ-

ations, as we have discussed in our previous work [2], it is

advantageous to utilize spot instances to run compute-intensive

applications at a fraction of the price that would normally

cost when using standard fixed-priced VMs. Specifically, we

have demonstrated the effect of different runtime estimation

methods on the decision-making process of a dynamic job

allocation policy. Our policy was responsible for requesting

and terminating spot instances on-the-fly as needed by a stream

of computational jobs, as well as choosing the best instance

type for each job based on the estimated job execution time

on each available type.

We had previously assumed that users would bid high

enough so that the chance of spot instance failures due to out-

of-bid situations would be negligible. In reality, even though

users only pay the current spot price at the beginning of each

hour, regardless of the specified bid, there are incentives for

bidding lower. Andrzejak et al, who evaluated checkpointing

techniques for spot instance fault-tolerance, observed that by

bidding low, significant cost savings can be achieved, but

execution times increase significantly. Similarly, by increasing

the budget slightly, execution times can be reduced by a large

factor [6].

A. Bidding strategies and the need for fault-tolerance

We now elaborate on the potential risks and rewards of

provisioning a resource pool composed exclusively of spot
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instances in scenarios where QoS constraints play an import

role.

Failures due to out-of-bid situations may lead to the inability

to provide the desired quality of service, e.g.: prolonged appli-

cation execution times or an inability of applications to finish

within a specified deadline. To overcome this uncertainty, one

may come up with a few strategies to decrease the chance of

failure or mitigate their effects.

To decrease the chance that out-of-bid situations occur, one

could to choose to bid as high as possible. Given that, under

the current model of Amazon spot instances, users pay at

maximum the current spot price (not the actual bid), there

would be no apparent disadvantages in bidding much higher

than the spot price. However, there are incentives for adopting

more aggressive bidding strategies, i.e. bidding close or even

lower than the current spot price.

Firstly, Amazon offers on-demand instances at a fixed price,

which are identically functional to spot instances and are not

subject to terminations due to pricing issues. The value set by

Amazon to these on-demand instances is likely to influence the

maximum price a user is willing to bid. Thus, this value acts

as an upper bound for bids of users that would rather lease

a more reliable on-demand instance in cases the spot price

is equal or above the on-demand price. In fact, by analysing

the history of spot prices of Amazon EC2, we have observed

that, over the period of about 100 days from 05-Jul-2011 to

15-Oct-2011, spot prices have surpassed on-demand prices

several times across most instances types and datacenters.

For example, the spot price of one of the most economical

instances (M1SMALL) in the US-EAST region, has reached

this situation 11 times, for periods of up to 2 hours and 20

minutes, and price value of up to 17% above the on-demand

price.

Secondly, in a scenario where most users submit high bids,

providers would likely increase the spot price to maximize

profits. As previously postulated [7], the Amazon EC2 spot

market resembles a Vickrey auction style [8], where users

submit sealed bids, the provider gathers them and computes

a clearing price. The pricing scheme thought to be used by

Amazon, where all buyers pay the clearing price, is a general-

ization of the Vickrey model for multiple divisible goods, the

standard uniform price auction, on which the provider assigns

resources to users starting by the highest bidder, until all bids

are satisfied or there are no more resources. The price paid by

all users is the value of the lowest winning bid (sometimes,

the highest non winning bid) [5]. It has also been observed

that Amazon may be artificially intervening in the prices by

setting a reserve price and generating prices at random [9].

In any case, we argue that there is an incentive for users to

submit fair bids, based on the true value they are willing to

pay for the resource.

Thirdly, on a similar note, users may choose to postpone

non-urgent tasks when prices are relatively high, hoping to

obtain a lower price (the true value) later, a strategy that can

be accomplished by placing a bid at the desired price and

waiting for it to be fulfilled. Similarly, in the case of an out-

of-bid situation, owners of a non-urgent task would prefer wait

for the request to be in-bid again, rather than obtaining a new

resource under new lease terms (e.g. another VM type, or the

same type at a higher bid).

Finally, as observed by Yi et al [10], one can bid low to

take advantage of the fact that the provider does not charge

the partial hour that precedes an out-of-bid situation. Thus,

delaying the termination of an instance, even when it is not

needed, to the next hour boundary, one can expect a probability

of failure before termination, potentially avoiding to pay for

the last hour.

The choice of an exact bid value can be empirically derived

from a number of factors, including observations of price

history, the willingness of the user to run instances at less

than a certain price or not run at all, and a minimum reliability

level required. These factors, when reflected on the bid value,

define how likely the system is able to meet time and cost

constraints.

In any case, the adoption of more aggressive bidding strate-

gies can result in more failures, and potentially undermine the

cost savings, as a result of frequent loss of work. Therefore,

resource provisioning policies aimed at running computational

jobs on spot instances must be accompanied by fault mitigation

techniques, especially tailored for the features of cloud com-

puting spot instances. Notable features of spot instances may

influence the way fault-tolerance works in this scenario. Most

notably, an hour-based billing granularity and non-payment of

partial hours in the case of failures, guarantees payment of the

actual progress of computation [10]. Additionally, given that

providers, such as Amazon, freely provide a history of price

variations, significantly more informed decisions can be made

by observing the past behaviour.

B. Our contribution

This paper proposes a resource provisioning strategy that

addresses the problem of running computational jobs on

intermittent spot instances. In particular, we aim to perform

this in a reliable manner, similar to what would be achieved if

on-demand instances were chosen instead. Our main objective

is to run applications in a fast and economical way, while toler-

ating sudden unavailability of virtual machines. We build up on

our previous work [2], where we demonstrated the viability of

dynamically assembling virtual clusters exclusively composed

of spot instances to run compute-intensive applications.

Specifically, the contributions of this work are:
• A multifaceted resource provisioning approach, that in-

cludes novel mechanisms for maximizing the chance jobs

finish within their deadlines, while minimizing costs in a

spot instances-based computational platform;

• A bidding mechanism that aids the decision-making

process by estimating future spot prices and making

informed bidding decisions;

• An evaluation of two novel fault-tolerance techniques,

namely migration and job duplication, and their compari-

son to an existing checkpointing-based approach, in terms

of deadline violations and cost.
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Fig. 1. Modeled architecture: Client (broker) and server (cloud) side. The “Runtime estimation” component was the focus of our previous work [2]. Here,
we focus primarily on the “fault-tolerance” component

The rest of this paper is organized as follows: Section II

describes related literature on existing approaches that use

spot instances; Section III describes our existing resource

provisioning policy and discusses the modifications necessary

to add a reliability component to it; Section IV details our

multifaceted approach and discusses each mechanism and

the interaction between them; Section V presents extensive

simulation-based experimental results and their discussion;

finally Section VI concludes the paper.

II. RELATED WORK

A few recently published works have touched the sub-

ject of leveraging variable pricing cloud resources in high-

performance computing. Andrzejak et al. [6] have proposed a

probabilistic decision model to help users decide how much to

bid for a certain spot instance type in order to meet a certain

monetary budget or a deadline. The model suggests bid values

based on the probability of failures calculated using a mean

of past prices from Amazon EC2. It can then estimate, with a

given confidence, values for a budget and a deadline that can

be achieved if the given bid is used.

Yi et al. [10] proposed a method to reduce costs of

computations and providing fault-tolerance when using EC2

spot instances. Based on the price history, they simulated

how several checkpointing policies would perform when faced

with out-of-bid situations. The proposed policies used two

distinct techniques for deciding when to checkpoint a running

program: at hour boundaries and at price rising edges. In

the hour boundary scheme, checkpoints are taken periodically

every hour, while in the rising edge scheme, checkpoints

are taken when the spot price for a given instance type

is increasing. The authors proposed combinations of the

above mentioned schemes, including adaptive decisions, such

as taking or skipping checkpointing at certain times. Their

evaluation has shown that checkpointing schemes, in spite

of the inherent overhead, can tolerate instance failures while

reducing the price paid, as compared to normal on-demand

instances. Similarly, we evaluate a checkpointing mechanism

implemented according to this work, with the objective of

comparing with other fault-tolerance approaches.

III. RESOURCE PROVISIONING IN A SPOT

INSTANCES-BASED COMPUTATIONAL PLATFORM

In our previous work, we have proposed a resource pro-

visioning and job allocation architecture and an associated

policy. Our solution has been tailored for an organization that

aims at assembling a computational platform solely based on

spot instances and use it to accomplish a stream of deadline-

constrained computational jobs. In that work, we also evalu-

ated several runtime estimation mechanisms and their effect

on cost and utilization of the platform, as well as deadline

violations of jobs. Especially, we have employed the same

workload we use in this work, and compared the costs of

running such workload on on-demand and on spot instances. In

this section, we summarize how our solution works; a detailed

description and analysis can be found in [2].

A Broker component is responsible for receiving computa-

tional job requests from users, provisioning a suitable VM pool

by interacting with the provider, and applying a job scheduling

policy to ensure jobs finish within their deadlines, while

minimizing the cost. A diagram depicting the components of

the modeled architecture is shown in Figure 1.

We have modeled a cloud computing provider according to

how Amazon EC2 currently works in practice. The provider

manages a computational cloud, formed by one or more

datacenters, which offer virtual machines of predefined types

in a spot market. The provisioning of an instance is subject

to the following characteristics: clients submit requests for a

single instance, specifying a type, and up to how much they are

willing to pay per instance/hour (bid). Optionally, a particular

datacenter can be specified; if left blank, the provider allocates

the instance to the most economical datacenter choice. The

system provides instances whenever the bid is greater than

the current price; on the other hand, it terminates instances

without any notice when a client’s bid is less than or equal to

the current price. The system does not charge the last partial

hour when it stops an instance, but it charges the last partial

hour when the termination is initiated by the client (the price

of a partial hour is considered the same as a full hour). The

price of each instance/hour is the spot price at the beginning

of the hour.

Jobs are assumed to be moldable, in the sense that they

can run on any number of CPU cores, but limited to a single

544



virtual machine. To determine the run time of a job in a

particular number of CPU cores, we use Downey’s analytical

model for job speedup [11]. To generate values for A (average

parallelism) and σ (coefficient of variance of parallelism), we

have used the model of Cirne & Berman [12]. The moldability

of a job defines it’s preferred instance type, i.e. the type on

which the job will take advantage of the most number of cores

for a time greater than 1 hour. As a result, longer jobs that

offer more parallelism will prefer instances with more cores.

The activities of our proposed algorithm are summarized in

the steps described below.

• When any job is submitted, it is inserted into a list of

unscheduled jobs;

• At regular intervals (T ), the algorithm uses a runtime

estimation method to predict the approximate runtime of

the job on each available instance type;

• The broker then attempts to allocate the job to an idle

VM with enough time before a whole hour finishes;

• If unsuccessful, it attempts to allocate the job to a VM

that is currently running jobs but is expected to become

idle soon. Runtime estimates of all jobs running on the

VM, in addition to the incoming job, are required at this

step;

• If the job still cannot be allocated, the algorithm will

decide whether it is advantageous to extend a current

lease, to start a new VM lease, or to postpone the

allocation decision according to the job’s urgency factor

and pricing conditions.

The urgency factor U of a job j is the maximum estimated

time the job can wait for a resource to be provisioned so that

the chance of meeting the deadline is increased. It is computed

as per Equation 1, where Dj is the job’s deadline, T is the

current time, so that Dj −T corresponds to the time until the

job’s deadline; α is the urgency modifier; ej is the estimated

runtime of j on it’s preferred instance type; and B is the

expected time the provider takes to provision a new VM (fixed

at 5 minutes).

Uj = max(0, Dj − T − (α ∗ ej +B)) (1)

The greater the value of the α modifier, the more con-

servative the algorithm becomes, i.e. with higher values of

α, U approximates 0. A value equal to 0 indicates that a

resource must be provisioned immediately to complete the job

within the deadline. Alternatively, lower values of α cause the

algorithm to postpone more provisioning actions in order to

maximise the chances of finding lower prices or reusing other

jobs’ instances.

IV. MECHANISMS TO ACHIEVE FAULT TOLERANCE

In this work, we explore a multifaceted approach, which

relies on two interrelated modalities that define how reliably

the policy ensures that computational jobs finish before their

deadlines. The first mechanism aims at choosing appropriate

bid values based on estimation of price variations and on the

job’s urgency factor U , which influences the choice of when to

TABLE I
EVALUATED BIDDING STRATEGIES

Bidding strategy Bid value definition

Minimum The minimum value observed in the price history + G
Mean The mean of all values in the price history
On-demand The listed on demand price
High A value much greater than any price observed (defined as 100)
Current The current spot price + G

provision a resource for a given job and how much to bid. The

second mechanism adds extra levels of fault-tolerance through

checkpointing and migration of virtual machines, as well as

job duplication.

These mechanisms aim at mitigating spot instance unavail-

ability due to out-of-bid situations only, i.e. failures due to

price variations. Other types of instance failures, for instance,

due to hardware faults or network interruptions are not consid-

ered. In other words, we assume that, if no out-of-bid situation

takes place during an instance lifetime, its availability is 100%.

A. Bidding strategies: estimating cost and jobs’ urgency

The first mechanism comprises bidding strategies and the

calculation of the value of U . These are based on estimated

price variations and job runtimes. More specifically, this mech-

anism aims to aid the process in two ways: (1) allow the broker

to make informed decisions on how much to bid, a choice that

directly influences the risk of failure and monetary spending;

and (2) combine price information and a job’s urgency factor,

to decide the best point in time to start a new machine for a job,

thus seeking to cover the period that will yield the minimum

cost. The rationale behind combining these two pieces of

information is to avoid hasty decision that may increase costs,

i.e. to avoid commissioning new resources too early, at times

when non urgent jobs can be postponed, or too late, when jobs

will most likely miss their deadlines.

In our previous work [2], we have compared several run-

time estimation policies and their impact on cost, deadline

violations, and system utilization. A simple mechanism that

computes the average runtime of two preceding jobs of the

same user has performed consistently well. Therefore, in this

work, we exclusively employ that technique.

We have evaluated 5 bidding strategies, which are listed

on table I. Two of the strategies use historical information to

compute the bid. In all cases, a window of one week worth

of price history, individual to each instance type/OS/datacenter

combination, is fed to the bidding strategy. The output of each

strategy is the maximum price, in US dollars per hour, to be

paid for one particular instance. The minimum bid granularity

G is 0.001.

In all cases that can yield values lower than the current price,

the broker uses the value of U to override the bid value, if

necessary. Specifically, it applies the steps of Algorithm 1.

B. Hourly Checkpointing

Checkpointing consists of saving the state of a VM, appli-

cation, or process, during execution and restoring the saved

state after a failure to reduce the amount of lost work [13]. In
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b← compute bid;1

U ← compute urgency factor;2

P ← query provider for current price;3

if U = 0 then4

if b <= P then5

b = P +G;6

else7

schedule a bid check at T + U ;8

Algorithm 1: Bid check algorithm, which overrides the

bid value or schedules a new check in the future

the context of virtual machines, the action of encapsulating

execution and user customization state is a commonplace

feature in most virtual machine monitors (VMM) [14]. Saving

a VM state consists of serializing its entire memory contents to

a persistent storage, thus including all applications and process

running [15]. In our work, we assume that checkpointing a

running application is the same as saving the state of an

entire VM. The advantage of relying on VMM-supported

checkpointing is that applications do not need to be modified

to enable checkpointing-based fault-tolerance. However, it is

necessary that cloud computing providers explicitly support

such operation.

The technique considered in this work is a hourly-based VM

checkpointing, where states are saved at hour-boundaries. This

technique has been previously identified by Yi et al. [10] as the

simplest and most intuitive, yet effective, form of dealing with

the cost/reliability trade-off when running applications on spot

instances. More specifically, taking a checkpoint on an hourly

basis guarantees that only useful computational time is paid,

given that spot instances are billed at an hour granularity and

partial hours, in the case of failures, are not charged.

In this method, it is assumed that a checkpointed VM will

only resume when the original spot request, which has a fixed

bid and machine type, is in-bid again. No attempt is made to

provision a new VM by submitting higher bids for the same

machine type, or to bid for other types. This contrasts with

our next solution, which considers relocating the saved state

to a new space in order to hasten job completion.

C. Migration of persistent VM state

We propose a migration-based fault-tolerance mechanism on

which the state of a VM is frequently saved on a global filesys-

tem and upon an out-of-bid situation the state is relocated.

The migration technique is very similar to checkpointing, as

it comprises of taking a snapshot of the VM and using it to

restore the computation upon a failure. But instead of waiting

for the original request to be in-bid again, the algorithm aims

to lease a new instance under new terms, and then restore the

saved VM state into the new instance.

To decide new lease terms, i.e. where to allocate the

remaining work of a saved job, the following decision-making

process takes place: (1) the algorithm estimates the cost of

leasing an instance of the same type for a higher price in the

same datacenter; (2) then it considers leasing an instance of

a different type on the same datacenter; (3) it also considers

relocating the workload to another datacenter where a suitable

VM may be leased for a cheaper price; finally, the chosen

location is wherever is estimated to be cheaper to accomplish

the remaining duration of the job. The overhead of restoring a

failed VM in a distinct datacenter is assumed to be higher than

when the same datacenter is chosen. This overhead is taken

into account when making a relocation decision.

All computation in the VM is paused while the snapshot

is being taken. The overhead of saving an instance state (the

same as taking a checkpoint) is defined as the time to serialize

a VM’s memory snapshot into a file in a global filesystem.

This value is different for each instance type, according to

their maximum memory size. The exact values are computed

as in the work of Sotomayor et al. [16], which provides

a comprehensive model to predict the time to suspend and

resume VMs. The times to suspend (i.e. save the state) and to

resume (i.e. restore from the latest saved state) a spot instance

with m MB of memory, are defined as per equations 2 and 3

respectively [16].

ts = m/s (2)

tr = m/r (3)

Values for s and r (rates, in MB/s, to write/read m MB of

memory to/from a global filesystem) are also taken from [16],

who obtained them from numerous experiments on a realistic

testbed. Therefore, s is 63.67 MB/s, and r is 81.27 MB/s (to

restore a state in the same datacenter). We assume half the rate

(40.64 MB/s) when moving/restoring a VM state into/from a

distinct datacenter.

D. Duplication of long jobs

We also propose a fault-tolerance mechanism that does not

require any application- or provider-assisted technique, as it is

the case of VM-based checkpointing and migration. With task

duplication, we aim to evaluate a simpler method for rapid

deployment of applications on spot instances using currently

available cloud computing feature.

Similar to replication and migration, duplication of work

aims to increase the chance of success in meeting deadlines

when running longer jobs (greater than one hour) over a

period of frequent price changes. Therefore, a duplication-

based technique was implemented and evaluated.

This technique also relies on estimates of jobs runtimes. It

creates one replica of each job that is expected to run for more

than 1 hour. The replica is submitted to the same scheduling

policy as the original job. The algorithm applies the same

rules as it does to a regular job, but avoids choosing the the

datacenter/type combination where the original job will run.

Choosing a different combination for a replica is an obvious

choice, since two jobs running on the same datacenter, using

the same instance type, will certainly fail at the same time

when the price increases.
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Fig. 2. Effect of aggressive and conservative urgency estimation modifier (α) under various bidding strategies, without any fault-tolerance mechanism in
action

TABLE II
FACTORS AND THEIR LEVELS

Factor Possible values

Bidding Strategy Minimum, Mean, On-demand, High, Current
α 1, 2, 4, 8, 10, 20
Fault tolerance mechanisms None, Migration, Checkpointing, Job duplication

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed fault-aware re-

source allocation policy and the effect of its mechanisms,

using trace-driven discrete event simulations. We quantify the

performance of our policy based on three metrics, two absolute

(monetary cost and deadline violations) and one relative (dollar

per useful computation). We especially observe the interaction

between these metrics, given that there is a known trade-

off between them, i.e. assuring less violations usually means

provisioning more resources, hence higher costs.

A. Experimental design

We have designed our experiments to study the influence

of the following factors and their levels: (1) bidding strategy;

(2) the value of the urgency factor modifier α; and (3) choice

of fault-tolerance mechanism. The factors and their levels are

listed on Table II.

Not all combinations of factors have been simulated; for

example, there was little sense in combining the High bidding

strategy with a fault-tolerance mechanism, given that the

bidding fashion itself completely avoid failures. In total, 5952

experiments were executed. All values presented correspond

to an average of 31 simulation runs. When available, error bars

correspond to a 95% confidence interval. The simulator was

implemented using the CloudSim framework [17].

Cloud characteristics: We modeled the cloud provider after

the features of Amazon EC2’s US-EAST geographic region,

which contains 4 datacenters. Instance types were modeled

directly after the characteristics of available standard and high-

CPU types The types available to be used are M1.SMALL

(1 ECU), M1.LARGE (4 ECUs), M1.XLARGE (8 ECUs),

C1.MEDIUM (5 ECUs), C1.XLARGE (20 ECUs). One ECU

(EC2 Compute Unit) is defined as equivalent to the power

of a 1.0-1.2 GHz 2007 AMD Opteron or 2007 Intel Xeon

processor. A period of 100 days worth of pricing history

traces has been collected comprising dates between July 5th,

2011 and October, 15th, 2011. These dates correspond to the

available traces since Amazon EC2 has started offering distinct

prices per individual datacenter, rather than per geographic

region.
Workload: The chosen job stream was obtained from the

LHC Grid at CERN [18], and is composed of grid-like

embarrassingly parallel tasks. A total of 100,000 jobs are

submitted over a period of seven days of simulation time,

starting from a randomly generated time within the available

price history. This workload is suitable to our experiments

due to its bursty nature and for being composed of highly

variable job lengths. These features require a highly dynamic

computation platform that must serve variable loads while

maintaining cost efficiency. The moldability parameters A and

σ of each job are assumed to be known by the broker.

Originally, this workload trace did not contain information

about user-supplied job runtime estimates and deadlines. User

runtime estimates were generated according to the model

of Tsafrir et al. [19]. A job’s maximum allowed runtime

corresponds to the runtime estimate multiplied by a random

multiplier, uniformly generated between 1.5 (urgent jobs)

and 4 (non-urgent jobs). A job’s deadline corresponds to its

submission time plus its maximum allowed runtime.

B. Effects of bidding strategies and urgency factor

In order to understand how our bidding strategies work,

without any fault-tolerance mechanism in action, we have

evaluated their effectiveness in a scenario where a failed
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Fig. 3. Performance of migration, checkpointing and job duplication on monetary cost

job must be restarted from the beginning after a failure.

In this experiment, we aimed at quantifying each strategy’s

performance when paired with different values of α.

Figure 2 shows the effect of most aggressive (α = 1) to

most conservative (α = 20) urgency estimations under various

bidding strategies. In these circumstances, bidding strategies

that produce higher bids tend to perform better, both in terms

of cost and deadline violations. In particular, we have observed

that the On-demand strategy avoids failures due to minor

price increases, as well as avoids incurring the cost of high

prices above the on-demand price. This fact can be noticed in

the performance comparison between On-demand and High,

which incurs extra cost due its very high bid. As expected,

given that there was no fault-tolerance, strategies that aim at

bidding low values experience the most failures, hence more

work had to be redone from start, which consequently led to

higher costs.

The value of α significantly influences both cost and dead-

line violations, consistently over all bidding strategies. Figure

2(a), indicates an optimal value of 2, which yields the lower

costs, although for most bidding strategies, the difference

between 1 and 2 is not statistically significant. Regarding

the deadline metric, 1 and 2 lead to many more deadline

violations. This is due to the fact that lower values of α
cause the algorithm to postpone more decisions, which in turn

often leads to the inability of provisioning resources “at the

last minute”. Conservative values, on the other hand, lead to

virtually no violations, but higher costs.

C. Migration, checkpointing, and job duplication

Our results also demonstrate the positive effects of the

studied fault-tolerance mechanisms when paired with bidding

strategies and urgency factor estimation. Figure 3 shows a

comparison of migration, checkpoint and job duplication on

the cost metric. We only show values of α of 2, 4 and 8,

which yield the best costs in all cases. An interesting fact

is that migration performs better when paired with bidding

strategies that choose lower bid values, such as Minimum and

Current, while checkpointing benefits from higher bid values,

such as Mean and On-demand. This behaviour is coherent

with the features of each mechanism. Migration tends to have

more choices after an out-of-bid situation given its ability to

choose other types of instances from multiple datacenters.

Checkpointing, on the other hand, is bound to a persistent

request, and will benefit from a higher chance of being in-bid

most of the time.

Job duplication was found to perform poorly in all cases,

yielding higher costs when compared to the case when no

fault-tolerance exists. It’s merit however, lies on its simplicity

and the capability of replicating jobs across multiple datacen-

ters. Therefore, it can be useful in cases where an extra level

of redundancy is required.

Figure 4 presents a summary of best combinations of

strategies discovered in our simulations. Overall, the migration

technique, along with the Minimum bidding strategy and

α = 2 produced the lower cost. However, α = 8 produced

the least number of deadline violations (30 out of 100,000

jobs). These results confirm that the trade-off between cost

and deadline violations applies in this case.

In summary, our results demonstrate that the interaction of

factors can influence the exact choice of bidding strategy, α,

and fault-tolerance mechanism. It is expected that, in absolute

 $3,563.7  

 $3,635.2  

 $3,729.1  

Migration 
Minimum 

Checkpointing 
Current 

None On-
demand 

Fig. 4. Most economical combinations of bidding strategy and fault-tolerance
mechanism
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TABLE III
ANALYSIS OF THE DOLLARS PER USEFUL COMPUTATION METRIC

Rank Fault tolerance Bidding
strategy

α Dollars
per useful
computation

Worsening re-
lated to best
(%)

1 Migration Minimum 2 0.03578 0
2 Migration Current 2 0.03588 0.29
3 Migration Minimum 4 0.03613 0.978
4 Migration Current 4 0.03614 1.006
5 Migration Mean 2 0.03641 1.736
6 Checkpointing Current 2 0.03647 1.881
7 Migration Mean 4 0.03648 1.932
8 Migration Minimum 8 0.03661 2.279
9 Checkpointing On-demand 2 0.03663 2.330
10 Checkpointing Mean 2 0.03666 2.412
...
18 None On-demand 2 0.03736 4.224

terms, more conservative urgency factors will lead to less

deadline violations and a greater cost. To help gauge a more

precise metric, we define dollars per useful computation as

the ratio between the total cost and the number of jobs that

finished within their deadlines. Table III ranks the 10 best

factor combinations according this metric. The combinations

that employ migration rank consistently superior, which makes

these combinations good candidates for environments where a

strict meeting of deadlines is expected.

VI. CONCLUSIONS AND FUTURE WORK

In this work, he have proposed a multifaceted resource

provisioning policy that reliably manages a pool of intermittent

spot instances. Our policy contains multiple mechanisms,

including 5 bidding strategies, an adjustable urgency factor

estimator, and 3 fault-tolerance approaches.

We have performed extensive simulations under realistic

conditions that reflect the behaviour of Amazon EC2, via a

history of its prices. Our results demonstrate that both costs

savings and stricter adherence to deadlines can be achieved

when properly combining and tuning the policy mechanisms.

Especially, the fault-tolerance mechanism that employs mi-

gration of VM state providers superior results in virtually all

metrics.

Currently, the cloud computing spot market is still in its

infancy. Therefore, many challenges have not been encoun-

tered, given the short history and relatively low variability of

Amazon EC2 prices. In this sense, we plan to further improve

our policy by devising bidding strategies that will perform

well in environments with highly variable price levels and

more frequent changes. We expect fault-tolerance to be even

more crucial in such scenarios. We also plan to lean towards

provider-centric research, by studying the challenges involved

in setting spot prices under various demand patterns.
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