
1

A Framework for Carbon-aware Real-Time
Workload Management in Clouds using

Renewables-driven Cores
Tharindu B. Hewage, Shashikant Ilager, Maria A. Rodriguez, and Rajkumar Buyya

Abstract—Cloud platforms commonly exploit workload tem-
poral flexibility to reduce their carbon emissions. They sus-
pend/resume workload execution for when and where the energy
is greenest. However, increasingly prevalent delay-intolerant real-
time workloads challenge this approach. To this end, we present
a framework to harvest green renewable energy for real-time
workloads in cloud systems. We use Renewables-driven cores in
servers to dynamically switch CPU cores between real-time and
low-power profiles, matching renewable energy availability. We
then develop a VM Execution Model to guarantee running VMs
are allocated with cores in the real-time power profile. If such
cores are insufficient, we conduct criticality-aware VM evictions
as needed. Furthermore, we develop a VM Packing Algorithm to
utilize available cores across the servers. We introduce the Green
Cores concept in our algorithm to convert renewable energy
usage into a server inventory attribute. Based on this, we jointly
optimize for renewable energy utilization and reduction of VM
eviction incidents. We implement a prototype of our framework
in OpenStack as openstack-gc. Using an experimental openstack-
gc cloud and a large-scale simulation testbed, we expose our
framework to VMs running RTEval, a real-time evaluation
program, and a 14-day Azure VM arrival trace. Our results
show: i) a 6.52× reduction in coefficient of variation of real-
time latency over an existing workload temporal flexibility-based
solution, and ii) a joint 79.64% reduction in eviction incidents
with a 34.83% increase in energy harvest over the state-of-
the-art packing algorithms. We open source openstack-gc at
https://github.com/tharindu-b-hewage/openstack-gc.

Index Terms—Carbon-aware computing, real-time, cloud com-
puting, sustainability, renewable energy.

I. INTRODUCTION

Data centers consumed approximately 1-1.3% of global elec-
tricity demand in 2022 [1]. Between 2015 and 2022, data
center energy usage increased by 20-70% [1]. The recent
unprecedented compute demand due to Artificial Intelligence
(AI) and Machine Learning (ML) workloads indicates that this
trend will continue to grow [2]. Data centers often connect
to electricity grids with shares of energy generation based on
fossil fuels. As a result, in 2020, data centers were responsible
for 0.9% of energy-related greenhouse gas (GHG) emissions
[1]. Climate crisis-driven road maps necessitate that data
center emissions drop by half by 2030 to meet global Net
Zero Emissions goals [1], [2].

In response to GHG emissions, electrical grids continue to
integrate low-emission renewable energy sources. In 2022, the
share of renewables in total electricity generation was 39%
and is projected to be 91% by 2035 [3]. However, growing
variable-availability (intermittent) renewable energy sources,

T. B. Hewage, M. A. Rodriguez, R. Buyya are with the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory, School of Computing and
Information Systems, University of Melbourne, Parkville, VIC 3010, Aus-
tralia.

S. Ilager is with the Informatics Institute, University of Amsterdam.

such as solar and wind, challenge electrical grids [2]. Between
2022 and 2035, energy reports project the share of solar and
wind renewables in total generation to rise from 12% to 58%
[3].

Data centers develop various load matching strategies to
match workload execution over intermittent renewable energy.
Amongst them, load shifting is commonly practised [4]–
[7]. Load shifting uses workloads with temporal flexibility
to suspend/resume their execution. For example, Google’s
delay-tolerant workloads, such as machine learning, data com-
paction, and data processing, tolerate delays as long as their
work gets completed within 24 hours [6]. Workloads execute
in periods when renewable energy capacity is higher, resulting
in reduced GHG emissions. However, load shifting falls short
when applied to real-time workloads with strict response time
boundaries [8]. Real-time workloads cannot tolerate the delays
inherent in load shifting.

Nevertheless, the growing prevalence of real-time cloud ap-
plications, such as autonomous vehicles, industrial automation
[9], and railway control systems [10] expects to account for
nearly 30% of the world data by 2025 [11]. As a result, cloud
operators will eventually have to incorporate growing real-time
workloads in intermittent renewable energy integration. In this
context, one must find an alternative load matching strategy to
load shifting for delay-intolerant real-time workloads. Existing
solutions, such as applying CPU-wide low power profile to
match renewable energy supply [12], often result in increased
latency, making them unsuitable for real-time applications.
Moreover, techniques like Harvest Virtual Machines (HVMs),
which allow uninterrupted execution of workloads with re-
duced resources [13], can still degrade performance and fail
to meet real-time constraints.

Given these challenges, there is a need for an efficient strat-
egy to integrate renewable energy into real-time cloud systems
(Real-Time Clouds). To this end, we propose a framework
to harvest renewable energy in Real-Time Clouds. We use
Renewables-driven cores to integrate renewable energy for
servers. It dynamically switches the power profiles of each
CPU core between a real-time power profile and a low power
profile to match renewable energy intermittency. Then, our
framework applies a twofold solution to utilize this dynamic
core availability. First, we develop a VM Execution Model to
guarantee that real-time virtual machines (VMs) occupy cores
at the real-time power profile. Our model adopts renewable en-
ergy fluctuations by conducting criticality-aware VM evictions
as needed. Secondly, we develop a VM Packing Algorithm
to optimize the use of available cores across servers. It reduces
the likelihood of VM evictions while maximizing renewable
energy utilization (renewable energy harvest). Our algorithm

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

2

frames renewable energy management as a VM placement
optimization problem by introducing the concept of Green
Cores. Green Cores presents each server as an inventory
of two virtual CPU core types: Green and Regular. Green
cores quantify renewable energy usage, whereas Regular cores
quantify core usage that does not increase risks of VM eviction
incidents. Using Green Cores, we achieve a computationally
inexpensive VM packing algorithm, which is required to
handle VM throughput at scale [6].

We implement our framework in OpenStack [14] as
openstack-gc. We combine OpenStack’s control plane with
an on-node daemon service. The daemon service implements
Renewables-driven cores in the server using per-core sleep
states. openstack-gc’s control plane then communicates with
the daemon service to orchestrate our VM Execution Model
and VM Packing Algorithm. We evaluate our framework at
the core-level using VMs running RTEval, a program from
the Real-Time Linux project to measure real-time performance
[15]. We evaluate our framework at the server-level using a 14-
day VM arrival trace from Azure [16]. We use two testbeds:
an experimental openstack-gc cloud deployed on an HPE
ProLiant server with a 12-core Intel Xeon CPU, and a large-
scale simulation testbed. We make the following contributions
in designing, implementing, and evaluating our framework.
• We propose a core-level VM Execution Model to uti-

lize renewable energy without degrading real-time latency
performance in VMs. We leverage criticality-aware VM
evictions for that.

• We propose a server-level VM Packing Algorithm to
reduce VM eviction incidents over renewable energy uti-
lization.

• We implement a prototype of our framework in OpenStack,
detailing its design and demonstrating its practicality.

• We evaluate our approach against multiple baselines. Our
results show: i) 6.52× reduction in coefficient of variation
of real-time latency in VMs over the existing workload
temporal flexibility-based VM execution model, and ii) a
joint optimization of 79.64% reduction in VM eviction
incidents and 34.83% increase in utilized renewable energy
over state-of-the-art packing algorithms [17].
The rest of the paper is organized as follows: Section II

provides the background and motivation for our problem with
a use case study. Section III details our system model and
problem formulation. Section V outlines the design of our
proposed framework. Section VI describes the implementation
of openstack-gc. Section VII presents the performance evalu-
ation of our framework. Section VIII discusses related work,
and Section IX concludes the paper and outlines future work.

II. BACKGROUND, MOTIVATION, AND USE CASE

This section provides background on real-time workloads in
clouds (Real-Time Clouds) and the application of Renewables-
driven cores. It then motivates our contributions with a use
case study. Finally, it outlines the key takeaways.

A. Real-Time Clouds

Real-Time Clouds deploy cloud-based real-time applications,
such as industry 4.0 use cases [18], transport use cases [10],

Fig. 1. Renewables-driven cores in Real-Time Clouds

and software-defined networks [19]. A key requirement in
real-time computing is to produce computation results in a
bounded time [18]. Clouds achieve that by tuning the entire
virtualization stack to reduce latency in executing application
instructions [10], [20]–[22], such as setting each CPU core
to a consistent high-performance power profile and pinning
each virtual machine (VM) core to a dedicated physical core,
resulting rigid VM placement constraints while delivering
deterministic performance. Further, real-time cloud systems
employ an application-specific middleware layer over VMs to
provide fault-tolerance in VM failures [10], [19].

B. Renewables-driven Cores

Renewables-driven cores is a load-matching technique that
dynamically adjusts per-core power draw in CPU to match
server load for renewable energy dynamics [23], [24]. Unlike
the CPU-wide throttling techniques [17], it narrows power
optimization to the core level. However, such per-core power
dynamics must be efficiently utilized, adhering to application
performance requirements using a suitable workload execution
model. Existing works that utilize Renewables-driven cores in
clouds use Harvest Virtual Machine (HVM) as the workload
execution model [25], which dynamically shares available
CPU cores among the VM cores.

C. Motivation

We outline the motivation behind our proposed framework,
specifically focusing on the rationale for selecting Renewables-
driven cores as the load-matching technique for Real-Time
Clouds. Then, we discuss the lack of static compute allocation
in the existing VM execution solution for Renewables-driven
cores and how it can impact real-time VMs. Following this,
we present our approach to addressing this limitation by ex-
ploiting the presence of mixed-criticality in Real-Time Clouds,
composed of VMs hosting critical components and best-effort
components, to implement criticality-aware VM evictions.
How does Renewables-driven cores align with the needs
of Real-Time Clouds? Renewable energy integration using
Renewables-driven cores as the load-matching technique en-
ables avoiding both suspend/resume and CPU-wide throttling
of workloads. Figure 1 illustrates a scenario where a set of
cores reside in the low power profile. However, the remaining
cores reside in the real-time power profile. They provide the
opportunity to serve real-time VMs amidst renewable energy
fluctuations.
Why is a static compute allocation important to real-
time VMs?: To apply Renewables-driven cores in Real-
Time Clouds, we need a workload execution model to match
dynamic core availability for VMs. In this regard, the existing
solution is Harvest VMs (HVMs) [13]. HVM’s approach is to
change the number of physical cores (pCPUs) in the VM but
preserve the number of virtual cores (vCPUs). It allows con-

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I
MIXED-CRITICALITY USE CASES IN 5G NETWORK SLICING [9]

Scenario Reliability Criticality
Autonomous Driving 99.999% Critical
Industrial Machinery 99.999% Critical

4K/8K HD Video - Best-effort
Mass Gathering - Best-effort

tinued execution of the VM amidst dynamic core availability.
However, for real-time VMs, this dynamic compute allocation
can introduce performance degradation. For instance, if the
number of pCPUs is less than that of vCPUs, vCPUs oversub-
scribe physical cores, leading to scheduling delays, which must
be avoided with real-time compute [21]. Therefore, insufficient
pCPU allocations can lead to undesirable real-time latency
spikes in the VMs. Maintaining a static compute allocation
is important to avoid such scenarios. In Section VII-B, we
practically show the VM’s real-time performance degradation
when the number of pCPUs falls below vCPUs.
Opportunities in mixed-criticality within Real-Time
Clouds to provide static compute allocation for VMs
over Renewables-driven cores: An alternative to the HVM
approach of continuing the execution of VMs with insufficient
pCPUs is to evict the VMs. Existing works show opportunities
for this in Real-Time Clouds via the mixed-criticality of real-
time systems [10], [19], [26]. Firstly, they model real-time
system components as either critical or best-effort. Then,
an application-specific middleware layer exploits this mixed-
criticality to provide fault tolerance for component failures.
In real-time cloud systems, application-specific middleware
layers use reconfiguration policies to recover the system upon
VM failures [19]. In this context, there is an opportunity to
conduct VM evictions in Real-Time Clouds safely. Since a VM
eviction is a well-defined failure event, the application-specific
middleware layer can tolerate it through reconfiguration. More
importantly, we can guarantee a static compute allocation
for VMs with a fixed allocation of CPU cores and conduct
criticality-aware VM eviction if cores are insufficient instead
of continued VM execution with degraded performance.

D. Usecase

To further motivate our approach, we experiment with a
real-time cloud use case of 5G Network Slicing via Virtual
Network Functions (VNFs) [9]. As the application-specific
middleware layer, we employ the production-grade VNF man-
agement and orchestration middleware, OSM MANO [19]. We
map VNFs to critical and best-effort components based on the
service quality level of their network slice. Table I denotes an
example where the criticality of four different 5G scenarios
is interpreted based on service reliability. Figure 2 illustrates
our study. We connect the MANO deployment with a real-time
tuned two-node OpenStack deployment as the real-time cloud.
We use the auto-heal feature of MANO as the reconfiguration
policy [19]. Each VNF is deployed as a VM in OpenStack
with two virtual CPU cores. We use 50% Renewables-driven
cores in servers at 100% initial renewable energy capacity.
Once the deployment stabilizes, we drop that to 0%, reducing
server core count by half and evicting VMs to load match. We
repeat the experiment for two VM scheduling approaches in
OpenStack.

Fig. 2. Use case: understanding the effect of load matching with evictions
via application-level reconfiguration. 5G network slicing prototype of open
source NFV Management and Orchestration (MANO) with OpenStack as the
virtualized infrastructure provider (i.e. real-time cloud provider). MANO’s
auto-healing feature facilitates application-level reconfiguration over VM
failures [19].

TABLE II
COMPARISON OF THE VM PACKING INVENTORY OVER DIFFERENT

PACKING STRATEGIES AS 5G NETWORK SLICING PROTOTYPE CONDUCT
LOAD MATCHING FOR RENEWABLE ENERGY LOSS VIA VM EVICTIONS.

Packing Before After Evictions
Node 1 Node 2 Node 1 Node 2

Tightly 0/8 8/8 4/4 4/4 2
Spread 4/8 4/8 4/4 4/4 0

Table II denotes our observations. Firstly, upon the loss of
renewable energy capacity, MANO reconfigured the available
cores through auto-healing. Secondly, OpenStack initiates VM
evictions. Thus, knowledge of VM criticality is beneficial
in reducing the impact of eviction. For example, it permits
evicting best-effort components prior to critical components.
Thirdly, the VM packing strategy can change the number of
VM evictions. Of the two packing approaches used in our use
case, the Tightly approach triggered two eviction incidents,
whereas the spreading approach yielded none.

E. Key Takeaways

From our motivations and the use case experiment, we identify
the following key takeaways:

1) Renewables-driven cores enable integrating renewable en-
ergy in Real-Time Clouds. In that,
a) A static compute allocation for VMs ensures their real-

time performance.
b) Criticality-aware VM evictions enable maintaining

static compute allocations over Renewables-driven
cores.

2) The server-level VM packing strategy can influence the
likelihood of VM eviction incidents.

Motivated by the above, we design our framework to apply
Renewables-driven cores in Real-Time Clouds. It addresses
the point 1 using a VM Execution Model and the point 2
using a VM Packing Algorithm. It advances cloud renew-
able energy integration by providing deterministic computing
amidst the supply intermittency of renewable energy. It enables
carbon-efficient computing with time-critical real-time cloud
workloads, which is otherwise considered inflexible for carbon
optimization [6].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Our system model is shown in Figure 3. In that, each server
receives dedicated allocations of grid and renewable energy
capacities through a mixed power delivery system. Allocations
are even across all servers. We use homogeneous servers for

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

4

simplicity, but the model can be adapted for heterogeneous
servers by allocating power capacities proportionately. Each
server monitors the dynamic availability of its allocated renew-
able capacity for load matching. We model renewable energy
as intermittent and carbon-free and grid energy as static and
carbon-intensive. An application-specific middleware layer
manages each VM. It can tolerate VM eviction incidents. At
arrival, VMs provide their criticality to the cloud control plane
as either critical or best-effort. A VM packing algorithm then
places VMs in the server inventory.

B. Problem Formulation

Server power modeling: Data center power modeling outlines
key load elements, such as information and technology (IT),
cooling, and internal power conditioning system [27]. IT load
corresponds to server power consumption of active VM execu-
tion and idle power draw, which can be modeled encompassing
the power consumption of server components such as CPU,
Memory, GPU and HDD [28], [29]. Our focus in this paper is
integrating intermittent renewable energy with the IT load for
CPU-dominant real-time workloads [10], [21]. In that regard,
server power can be estimated using a linear function (f) of
CPU power (PCPU (t)) [29] with over 90% accuracy. Based
on that, we derive a CPU utilization-aware linear multi-piece
server power model for the server power usage of the power
distribution unit (PDU). First, we state server power at time t
(PS(t)) as,

PS(t) = f(PCPU (t))

In multi-core CPUs, the cumulative sum of core power
becomes a close upper bound of PCPU (t) [30]. Based on that,
we derive an upper-bound to server power and use that as an
estimate to PCPU (t). Therefore, for a server with N number
of cores,

PS(t) ≃ f(

N∑
i=1

PCOREi
(t)) (1)

where PCOREi
(t) is the power consumption of ith core

at time t. Commodity servers often consist of homogeneous
cores. Thus, we apply the same model here. Next, we model
power states for the three distinct states of PCOREi(t). When
a core is unused, its power state is either,
• Active ≡ PCOREi

(t) = PACT (an idle core)
• Sleep ≡ PCOREi(t) = PSLP (a core in the low power

profile)
In contrast, a core pinned to a VM exhibits a power state

of PCOREi(t) = F (UCOREi(t)). Where UCOREi(t) is the
utilization of the core at time t, and F is a linear function
[30]. Dynamics of UCOREi

(t) depends on the VM workload,
which is a black box to the cloud operator [17]. Therefore,
in packing problems, a representative utilization statistic is
commonly estimated based on historical data [17], [29]. Based
on this, we use URT to estimate UCOREi(t). Cloud operator
sets the exact URT value using deployment-specific data. As
a result, the pinned power state of a core becomes,
Pinned ≡ PCOREi(t) = PPIN , where PPIN = F (URT)

We verify our core power model with an Intel Xeon Silver
CPU with 12 cores. For that, we use URT = 100%. We
wake up cores from 1 to 12 and plot CPU package power

Fig. 3. A high-level system model of the proposed carbon-aware real-time
cloud. We highlight components with our contributions in green.

obtained through Intel’s RAPL interface. We conduct the same
experiment for both Active and Pinned scenarios. Figure 4
illustrates our results. Graphs that sustain linear trends with
constant slopes, corresponding to PPIN and PACT . The same
trends imply the PSLP .

We then apply the core power model in Equation 1 and
derive the following model to estimate server power using
core counts as variables.

PS(t) ≃ f(m(t)× PPIN + l(t)× PSLP

+(N −m(t)− l(t))× PACT)
(2)

where at time t, m(t) is the pinned core count and l(t) is the
sleeping core count.
Renewable energy harvest: Electricity generated from re-
plenishing renewable energy sources (i.e., renewables) emits
significantly lower amounts of carbon when compared to
grid energy, which often relies on fossil fuel-based energy
generation. However, most renewable energy sources rely on
intermittent natural resources that vary depending on the time
of the day and geographical location, such as solar and wind
[2]. In return, renewables yield intermittent power capacities
compared to stable grid power.

In our model, renewable energy harvesting denotes max-
imizing the utilization of the intermittent power capacity of
renewables. We use a heterogeneous server power allocation
of dedicated renewable and grid energy capacities. In doing
so, each server is guaranteed a specific amount of stable
power capacity, allowing the resource management layer to
utilize that in maintaining the stringiest service level objectives
(SLOs) of real-time VMs. The portion of the renewable energy
capacity is set by the data center operator, depending on
the fault tolerance levels of the data center power delivery.
In Section VII-A, we provide an example of deciding that
with our large-scale testbed design. The dynamics of the
renewable capacity availability depends on the volume pattern
of the renewable energy source. Figure 13a illustrates an

Fig. 4. CPU power as cores awake in Renewables-driven cores: measured
with an Intel Xeon Silver CPU where core power states are: i) Sleep ≡ sleep
state of C6, ii) Active ≡ sleep state of POLL, and iii) Pinned ≡ pinned with
100% utilization .

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

5

example of that with our 14-day VM packing experiments.
We assume renewable energy does not incur additional costs
besides supply dynamics.

As a result of the heterogeneous server power allocation,
harvesting renewables in our system model must be done at
the server level. When server power meets the grid capacity
(PGRID), we denote PS(t) = PGRID. Renewable energy
harvesting begins when PS(t) > PGRID. Therefore, for an
arbitrary time period ∆T , we denote harvested renewable
energy (ERW (∆T)) of the server as,

ERW (∆T) =

∫
∆T

{u(PS(t)− PGRID)

×(PS(t)− PGRID)} dt
(3)

where u is the unit step function.
Service quality: We model service quality with real-time
latency performance of VMs and the number of VM evic-
tion incidents. In our system model, an application-specific
middleware layer provides fault tolerance over VM evictions.
Therefore, we prefer minimizing VM evictions as an objec-
tive at the resource management layer. Meanwhile, real-time
latency performance impacts application business logic. We
prefer a bounded latency performance for that.
Problem formulation: We formulate our problem as follows:
Given an arbitrary ∆T period, maximize renewable energy
harvesting while preserving service quality. Thus our objective
is:

Maximize ERW (∆T) and Minimize n

where ERW (∆T) is the harvested renewable energy derived in
Equation 3, and n is the number of VM eviction incidents. The
objective function should satisfy the following constraints:

l̄i ≤ l̄maxi and σi ≤ σmaxi for vmi ∈ Svm

Svm is the virtual machines executed during ∆T and l̄i and σi

are the mean and variance of real-time latency, respectively.
l̄maxi and σmaxi are deployment-specific upper bounds.

IV. GREEN CORES: CONVERT RENEWABLES UTILIZATION
INTO A PACKING ATTRIBUTE

In this section, we introduce the concept of Green Cores,
which converts the utilization of renewables as a server
packing attribute, and outline its core idea, formulation, and
boundaries. Green Cores enables us to design a framework
in Section V to efficiently harvest renewables in Real-Time
Clouds. In Section VII, we show the superiority of that over
existing VM management approaches.

A. High-level idea of Green Cores

The core idea behind Green Cores is to identify the actual
harvest of renewables, which is not reflected in Renewables-
driven cores. Although Renewables-driven cores increases the
available CPU cores matching that of renewables capacity, its
increased core count is not an accurate signal for renewables
harvest. Instead, a combination of core availability and their
utilization with VMs encompass the server utilization of
renewable energy capacity. Existing works addressing similar
problems integrate feedback signals from power systems to
identify server power draw and conduct VM packing accord-

ingly [17] with the added complexity of integrating power
domain and VM packing. Instead, we calculate a server inven-
tory of Green Cores using the characteristics of Renewables-
driven cores and our power allocation, which derives a server
inventory of green and regular virtual core types. Unlike
Renewables-driven cores, the number of green cores utilized
maps to renewables harvest.

B. Comparison between Renewables-driven cores and Green
Cores

Although both Renewables-driven cores and Green Cores may
sound similar, they are distinct concepts. Renewables-driven
cores is a physical notation that refers to the availability of
additional cores corresponding to renewable energy dynamics.
However, utilization of those additional cores does not neces-
sarily utilize available renewables capacity. In contrast, the
Green Cores is a virtual notation that converts the utilization
of renewables into a packing attribute, such that utilizing a
green core map to renewables harvest.

C. Formulation of the Green Cores server inventory

In a server, we denote the number of cores that remain in a
constant real-time power profile as R where 0 ≤ R ≤ N ,
such that the size of Renewables-driven cores at time t (l(t))
is 0 ≤ l(t) ≤ N−R. We choose a value for R such that when
R cores are at a Pinned power state and l(t) is N − R, the
server power draw meets the grid capacity. Using our server
power model in Equation 1 we derive,
PS(t) ≃ f(R× PPIN + (N −R)× PSLP) = PGRID (4)

where m(t) = R, l(t) = N − R, and PGRID is the grid
capacity.

We derive an equation for the amount of renewable energy
harvested by subtracting Equation 4 from Equation 1.

PS(t)− PGRID = f(m(t)× PPIN + l(t)× PSLP

+(N −m(t)− l(t))× PACT

−R× PPIN − (N −R)× PSLP)

(5)

We then model m(t) with R as m(t) = R+g(t) where g(t)
is an arbitrary function. Substituting this model in Equation 5
yields:

PS(t)− PGRID = f(g(t)× (PPIN − PACT)

+(PACT − PSLP)× ((N −R)− l(t)))
Here, we denote the leakage power (L(t)): power drawn

by Renewables-driven cores at the Active state as L(t) =
(PACT − PSLP)× ((N −R)− l(t)).

PS(t)− PGRID = f(g(t)× (PPIN − PACT) + L(t)) (6)
Then, substituting Equation 6 in Equation 3, we estimate

renewable energy harvest for an arbitrary time period δt where
g(t) ≥ 0,

ERW (δt) =

∫
δt

f(g(t)× (PPIN − PACT) + L(t)) dt

where f is the linear function to map CPU power into server
power, in which a positive input yields a positive power value.
Here, when δt is small enough to match the measurement
interval of the system, the ERW (δt) can be stated as,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 5. Comparison of server power draw vs proposed server inventory of
Green Cores.

ERW (δt) ≃ f(g(δt)× (PPIN − PACT) + L(δt))× δt

where both g(δt) and L(δt) are values measured for the δt
interval. The design of our Renewables-driven cores ensures
that L(δt) is independent from workload execution. In con-
trast, the value of g(δt) depends on the packing decisions of
the cloud’s control plane. Therefore, if g(δt) is changed with
different packing algorithms,

ERW (δt) ∝ g(δt) (7)
Equation 7 states that if the packing algorithm positively

increases g(δt), the renewable energy harvest increases. How-
ever, a positive g(δt) also means that m(t) > R, implying
VMs are pinned to Renewables-driven cores, thus increasing
the eviction possibilities.

Based on the calculation, We derive the server inventory of
Green Cores. Green Cores presents a server with CPU cores
of two types: Green and Regular. For Green cores, active cores
(CGactive

) are calculated with (N −R)− l(t) and used cores
(CGused

) are calculated with g(t) if g(t) ≥ 0 (otherwise is set
to 0). For Regular cores, active (CRactive), and used (CRused

)
cores are calculated with R, and m(t) if m(t) < R (otherwise
is set to R), respectively. Calculations of Green cores quantify
the usage of renewable energy capacity, and calculations of
Regular cores quantify the usage of cores that do not increase
the risks of VM eviction incidents.

This is illustrated in Figure 5 with a side-by-side comparison
between power domain and the server inventory of Green
Cores. In this scenario, the number of pinned cores (m(t))
increases from t1 to t5. As a result, server power draw (PS(t))
increases. Until t3, server power draw is less than the grid
capacity, where CGused

= 0 and CRused
is proportionate to

the utilized energy capacity. During this period, there are no
risks of VM eviction incidents. Beyond t3, the risk of VM
eviction incidents increases as the server power draw utilizes
renewable energy capacity, where CGused

is proportionate to
the utilized energy capacity and CRused

is capped at R.

D. Boundaries of the Green Cores server inventory

The derivation of Green Cores server inventory is tightly
coupled with Renewables-driven cores and the power model
in our system model. As a result, it relies on the accuracy of
estimation techniques we used in Section III-B. Nevertheless,
the core idea of Green Cores can be applied to similar contexts
by adjusting the inventory calculation for their specific system
models.

V. DESIGN

In this section, we outline the design of our framework. It
combines a core-level VM Execution Model with a server-

Fig. 6. Joint optimization of renewable energy harvest and VM eviction
incidents via the distance to ideal points in the Euclidean space of the proposed
server inventory of Green Cores.

level VM Packing Algorithm. The VM Execution Model
guarantees a static compute allocation for VMs at the core-
level amidst the intermittency of Renewables-driven cores. To
do so, it exploits the mixed-criticality of Real-Time Clouds and
conducts criticality-aware VM evictions. In order to reduce the
severity of that, we pack VMs at the server-level to optimize
the number of best-effort and critical VM types provided to
each server while maximizing the per-server utilization of
renewable energy capacity. We do that with our server-level
VM Packing Algorithm.

A. Design of the Core-level VM Execution Model

We select a subset of cores and apply Renewables-driven cores
to them. At 100% renewable energy capacity, we set all server
cores to the real-time power profile. At 0% renewable energy
capacity, we put all cores in the subset to a low power profile.
For in-between, we set the real-time power profile to a partial
amount of cores in the subset and set the low power profile
for the rest. In this case, the number of cores in the real-time
power profile is proportionate to available renewable energy
capacity. For example, at 50% renewable energy capacity, half
of the cores in the subset are set to the real-time power
profile. In our approach, Renewables-driven cores dynamics
depend solely on the renewable energy intermittency and are
independent of the workload execution dynamics.

We pin VM cores to server cores set to the real-time power
profile at the VM deployment and do not change it for the
duration of the VM lifetime. If the number of such server
cores is insufficient to serve running VMs, we perform a
minimum amount of criticality-aware VM evictions. We evict
best-effort VMs first and critical VMs as a last resort. Our
model guarantees a static compute allocation for a VM’s
lifetime. The VM eviction events trigger well-defined VM
failure events at the application-specific middleware layer,
allowing it to recover through reconfiguration. In the next
section, we design a server-level VM Packing Algorithm to
reduce the possibility of such VM eviction events.

B. Design of the Server-level VM Packing Algorithm

Possibilities of VM eviction incidents with our VM Execution
Model increases when the number of VMs packed in a
server begin renewable energy harvesting (see Equation 3).
Therefore, optimizing VM eviction incidents must be con-
ducted jointly with optimizing the renewable energy harvest.
We convert that joint optimization task into a VM packing
optimization problem using the Green Cores server inventory
we introduced in Section IV. We then design a server-level
VM packing algorithm to address that.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

7

Algorithm 1 Proposed VM Packing Algorithm
1: function GETPLACEMENTPREFERENCES(V : VM, S:

Candidate servers, τ1: Ideal point for critical VMs, τ2:
Ideal point for best-effort VMs)

2: ϵ← GetCriticality(V)
3: τ ← GetIdealPoint(ϵ, τ1, τ2)
4: for all si ∈ S do
5: dsqi ← GetRNW (si)
6: drnwi ← GetSQ(si)
7: di ← GetDistance(dsqi , drnwi

, τ)
8: si.score← 1− di
9: end for

10: return getSorted(S)
11: end function
12: function GETIDEALPOINT(ϵ, τ1, τ2)
13: return τ1 if ϵ is critical else τ2
14: end function
15: function GETSQ(si)
16: CRactive(t), CRused

(t)← si
17: return |CRactive

(t)−CRused
(t)|

CRactive
(t)

18: end function
19: function GETRNW(si)
20: CGactive

(t), CGused
(t)← si

21: return |CGactive(t)−CGused
(t)|

CGactive
(t)

22: end function
23: function GETDISTANCE(dsqi , drnwi

, τ)
24: dsqτ , drnwτ

← τ

25: distance←
√

(dsqτ −dsqi
)2+(drnwτ −drnwi

)2
√
2

26: return distance
27: end function

Algorithm 1 outlines the proposed VM packing algorithm.
It takes the VM creation request (V) and the set of candidate
servers (S) as inputs. It then provides a sorted list of candidate
servers in the order of placement preference as the output.
Additionally, it takes two other input parameters, called ideal
points, each for critical VMs (τ1) and best-effort VMs (τ2).
Our intuition behind the packing algorithm stems from the
representation of a server in Green Cores. In that, a server is
presented with two attributes: green cores and regular cores.
Our algorithm uses those attributes to represent a server in a
two-dimensional Euclidean feature space. Figure 6 illustrates
that. For an arbitrary time t, we calculate a two-dimensional
feature vector ≡ (drnw, dsq) to represent a server in this
space. We denote the axis drnw to quantify the opportunity
to harvest renewables. We denote the axis dsq to quantify the
opportunity to deploy VMs with a minimum probability for
an eviction incident. Firstly, we get the criticality of the V (ϵ),
which is either critical or best-effort (line 2). Then, we filter
the corresponding ideal point (τ) for ϵ (line 3). Afterward,
we iterate through each server in S and calculate its feature
vector. For the ith server, we calculate the value for drnw as
dsqi with GetRNW subroutine (line 5), and we calculate the
value for dsq as drnwi

with GetSQ subroutine (line 6). Using
both, we calculate the Euclidean distance between the feature
vector and the τ using the GetDistance subroutine (line 7)
and derive the preference score from that as closest being the

Fig. 7. System architecture of OpenStack-GC. It outlines the server load
matching workflow for intermittent availability of renewable energy.

higher (line 8). Using the calculated preference score, we sort
the S and provide it as the output (line 10).

Process of VM Packing: A server inventory is empty at first,
where its feature vector maps to ≡ (1, 1). As VMs get packed,
their regular core usage increases. Thus, the feature vector
moves vertically towards ≡ (1, 0). Once all regular cores are
used, its green core usage increases; thus, the feature vector
moves horizontally towards ≡ (0, 0). This behavior allows the
packing algorithm to decide its server preference depending
on VM criticality. Figure 6 illustrates a scenario of ideal point
placement. In that, the ideal point for critical VMs is placed
between (1, 1) and (1, 0), such that critical VMs prefer servers
with available cores supported by stable grid energy (refer
Section IV-C) to reduce the eviction risks. In contrast, the ideal
point for best-effort VMs is between (0, 0) and (1, 0), such that
best-effort VMs prefer servers that draw power beyond the
grid allocation to maximize renewables harvest. Tunable ideal
points in our algorithm enable the cloud operator to adjust
for deployment-specific performances [18]. In Section VII, we
show its superiority in the sensitivity analysis of our large-
scale VM packing testbed.

VI. IMPLEMENTATION

In this section, we outline openstack-gc: implementation of
our framework in OpenStack.

Implementation of Openstack-GC: Figure 7 illustrates the
system architecture of openstack-gc. We highlight newly added
OpenStack extensions in green. We deploy an on-node daemon
service to realize Renewables-driven cores. We introduce a
Green Cores Controller at the control plane to orchestrate the
proposed VM Execution Model. We implement the proposed
VM Packing Algorithm as a VM scheduling algorithm in
OpenStack.

Renewables-driven cores: We implement an on-node daemon
service in Golang to control per-core power profiles. By
making an API call to the daemon service, the openstack-
gc control plane can specify the number of cores to put
into a specific power profile. If the real-time power profile
is requested, the daemon service sets the requested number of
cores into a high-performance state. If the low power profile
is requested, the daemon service sets the requested cores into
a deep sleep state. The daemon service wraps the Intel Power

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

8

TABLE III
OPENSTACK-GC PROTOTYPE: NODE SPECIFICATIONS

Attribute Description
Server Model ProLiant DL380 Gen10
CPU Intel(R) Xeon(R) Silver 4214
Physical Cores 12
Hyper Threading Disabled
Renewables-driven Cores 6
Real-time power profile C-state = POLL at 2699 MHz
Low power profile C-state = C6

TABLE IV
OPENSTACK-GC PROTOTYPE: VM SPECIFICATIONS

Attribute Description
Resources CPU: 6 Cores, RAM: 6GB
OS CentOS 7
Kernel Linux 3.10.0 + CERN’s Real-Time patches
System Load Load test of RTEval [15]
Latency Monitoring Cyclictest [31]

Optimization Library1 and overrides the kernel management of
the sleep state and operating frequency of each core to achieve
this.
VM Execution Model: We orchestrate our VM Execution
Model using the load matching workflows of openstack-gc.
First, we enable the dedicated cores feature in OpenStack
to pin each VM core to a dedicated server core, resulting
in a static core allocation for each deployed VM. Then, our
load-matching workflows of openstack-gc take place. Suppose
an increased energy capacity signal arrives to openstack-
gc. In that case, the Green Cores Controller calculates and
notifies on-node daemon services to set the required number
of cores from the low power profile to the real-time power
profile. If a decreased energy capacity signal is provided
to openstack-gc, the Green Cores Controller pings APIs of
the virtualization layer (openstack-gc uses Libvirt2) in each
node to obtain mappings of VM cores to server cores. Then,
the Green Cores Controller calculates and triggers criticality-
aware VM evictions by blocking API calls to the OpenStack.
Upon completion, the required cores are put to the low power
profile using on-node daemon services. Figure 7 illustrates the
workflow for the decreased energy capacity. In both cases,
our modified Nova Compute, OpenStack’s on-node compute
service, periodically polls the Green Cores Controller to obtain
cores at the low power profile. Afterwards, Nova Compute
signals the control place to omit cores from VM scheduling
in the low power profile.
VM Packing Algorithm: We modify the OpenStack scheduler
service to poll the Green Cores Controller and obtain server
inventory attributes of Green Cores for all server nodes. To
provide that, the Green Cores Controller pings virtualization
layers of servers to obtain core usage information and calcu-
lates server inventory attributes of Green Cores. Our imple-
mentation of the proposed VM Packing Algorithm as a VM
scheduling algorithm in OpenStack consumes obtained Green
Cores server attributes to make VM placement decisions.

VII. PERFORMANCE EVALUATION

We evaluate our core-level VM Execution Model and the
server-level VM Packing Algorithm using a multi-node

1https://github.com/intel/power-optimization-library.git
2https://www.libvirt.org

openstack-gc prototype deployment. Further, we evaluate its
efficacy at scale using long-running production VM traces over
a large-scale simulation testbed.

A. Experimental Setup

Openstack-GC prototype experiments: We deploy a proto-
type two-node openstack-gc cloud on HPE ProLiant servers
with 12-core Intel Xeon Silver CPUs. Table III outlines its
node specifications.
Workload: Table IV outlines the VM specifications for our
real-time workloads. We use CentOS 7 VMs with CERN’s
real-time kernel patches [32] applied. We run the RTEval tool
from the Linux foundation project, Real-Time Linux [15], to
emulate a system load. Alongside the load, RTEval continu-
ously measures the VM kernel’s real-time performance via the
Cyclictest tool [31]. Further, we synthesize 30-minute traces
for VM arrivals and renewables dynamics from Microsoft
Azure’s VM packing trace [16] and ELIA solar data [33].
Baseline: We use Harvest Virtual Machines (HVM): the
existing VM execution model over Renewables-driven cores
[13] to evaluate advancements of our VM Execution Model.
We use Openstack’s default VM packing implementation in
its nova scheduling service [14] to evaluate advancements of
our VM Packing Algorithm.
Metrics: We use Intel’s Running Average Power Limit
(RAPL) [34] interface to capture CPU metrics in the server
every 0.5 seconds. We collect i) core residencies at the C6
sleep state and ii) core operating frequency in MHz. Further,
we use server power estimation using the linear power model
of CPU power that is shown over 90% accuracy [29]. For
that, we collect PkgWatt metric in RAPL (power consumption
of the CPU socket [35]) as the server power metric (Figure
4 illustrate the verification of CPU power estimation with
RAPL for our system model). Inside VMs, we measure real-
time performance with the latency to wake up a real-time
thread using the Cyclictest tool [31]. For VM packing per-
formance, we use the Eviction Incidents to count the number
of eviction incidents of best-effort and critical VMs. We use
the Normalized Lifetime (nLT) to measure the severity of
an eviction incident. For each evicted VM, we normalize its
lifetime from the original lifetime in the trace. A lower nLT
value implies increased severity. We use scheduling overhead
time to measure the same with packing algorithms. For that,
we analyze logs from OpenStack to identify the scheduling
duration for VM creation requests.
Trace-driven simulations at scale: We use 8K+ servers,
each with 40 CPU cores, to match the realistic similar values
in Microsoft’s Azure’s cloud zones [36]. Existing fallback
mechanisms of Azure’s data center power delivery suggest
that a 12% power overdraw is manageable [17]. To operate
within that, we add four cores in each server and use them as
Renewables-driven cores.
Workload: We use the full 14-day Azure VM packing trace
[16], which contains request arrivals, resource requirements,
lifetime on Azure, and criticality. We use renewable dynamics
from ELIA solar data [33]. We normalize and scale the
renewable dynamics trace, so that the maximum renewable
energy capacity can wake all Renewables-driven cores in a

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

9

Fig. 8. CPU package power measurements obtained through Intel’s RAPL interface [34] during the load matching experiment of the OpenStack-GC prototype.
The proposed VM Execution Model manages the server load over the renewable energy availability. Before t1, the server executes two 6-core VMs. An
energy loss signal at t1 triggers the eviction of one VM to unpin six cores, completing at t2. The unpinned cores enter into deep sleep at t3.

server.
Baselines: To evaluate the proposed VM packing algorithm,
we use two comparison baselines. The Best-Fit packing (best-
fit) is a commonly used packing approach in production
clouds [36], [37] that packs VMs tightly in servers. We
use it to evaluate our advancements over a commonly used
VM packing approach. The Criticality-Aware packing (crt-
aware) is a packing approach that reduces VM throttling
incidents in power over-subscribed data centers [17]. Similar
to our problem context, it leverages VM criticality to reduce
VM performance impact incidents incurred from server load
exceeding available power capacity. We use it to evaluate our
advancements over the state-of-the-art.
Metrics: In addition to Eviction Incidents and Normalized
Lifetime (nLT), we use the Harvested Renewables to measure
utilization of renewable energy capacity. Using derivations of
Green Cores, we calculate it as ≡

∫ T

0
CGused

(t)dt for a period
of T .

B. Evaluation of Core-level VM Execution Model

We evaluate the proposed VM Execution Model’s ability to
maintain the server load to match available renewable energy
capacity and its impact on the real-time performance of VMs.
Firstly, we signal openstack-gc prototype deployment with a
100% energy capacity to wake all Renewables-driven cores
in the server. Then, we pin all cores by deploying two 6-
core VMs. In both VMs, we run the RTEval program for the
duration of the experiment to emulate a peak load. Then, we
signal a 0% energy capacity.

Figure 8 shows the CPU package power observed through-
out. We collect it via Intel’s Running Average Power Limit
(RAPL) [34] interface. The CPU package draws up to 75.79W
at peak load with a relatively constant trend. t1 denotes the
arrival of the energy loss signal for 0% renewable energy
capacity. openstack-gc’s response shows a two-stage power
reduction; t1 - t2 and t2 - t3. The former shows the power
reduction from evicting one of the VMs to unpin six cores.
Latter shows the power reduction from putting unpinned cores
to deep sleep. After t3, CPU package power does not exceed
59W. It translates to a 22% reduction of the peak power draw.
With the linear model of CPU power to server power [6], our
openstack-gc deployment shows a reduction of 22% of the
server peak power in matching 100% to 0% loss of renewable
energy capacity.

Figure 9 shows CPU core power characteristics. We capture
operating frequency and C6 deep sleep state residency (i.e. in a
given measurement period, the percentage that the core resided
in the sleep state) of cores. We average it for the six cores that

(a)

(b)
Fig. 9. CPU core power characteristics in Openstack-GC prototype during
server load matching for renewable energy loss. We obtain power metrics
through Intel’s RAPL interface [34]. (a) CPU core C6 deep sleep state
residency. (b) CPU core operating frequency.

enter deep sleep state after t3 (Renewables-driven cores), for
the six cores that continue to operate, and for overall. Until
t2, openstack-gc maintains a constant 2700 MHz operating
frequency of cores with 0% residency in deep sleep, showing
cores operating at the real-time power profile. Afterwards,
Renewable-driven cores mostly reside in a deep sleep with
0 MHz operating frequency, showing their low power profile.
It shows that openstack-gc only changes power profiles after
the VM eviction completion at t2. Throughout the lifetimes
of VMs, VM cores are allocated with physical cores in the
real-time power profile.

The spikes in maintaining the low power profile show
the characteristics of controlling core power through Intel’s
Power Optimization library that we use in openstack-gc. Our
prototype also has an overhead of running external services,
including the OpenStack control plane services in the same
server, which could be attributed to the spikes shown. Despite
that, the server power draw shows a 59W upper bound in
figure 8, showing openstack-gc can maintain a constant power
reduction over the intermittent spikes in the low power profile.

We then evaluate the superiority of our VM Execution
Model’s static core allocation shown in the load matching
experiments by comparing that with baseline HVM’s approach
of dynamic physical core allocation. HVM’s approach is to
change the number of physical cores (pCPUs) allocated to the
VM while preserving the number of virtual cores (vCPUs).
To evaluate its workload impact on real-time computing,
we monitor the real-time performance of an HVM over the
dynamic allocation of pCPUs. Our experimental HVM consists

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

10

Fig. 10. Comparison of real-time latency performance of a two-core Harvest
VM (HVM) [13] over different physical CPU core allocations.

of 2 vCPUs. We set pCPUs to the real-time power profile.
We then execute the RTEval [15] program inside the HVM
to measure the real-time performance. We dynamically adjust
the mapping of pCPUs through our virtualization management,
libvirt’s APIs3.

The results are illustrated in Figure 10. When the number
of pCPUs ≥ to the number of vCPUs, the HVM sustains a
consistent real-time latency performance, having both mean
and mean absolute deviation statistics consistent for all three
cases of pCPUs ≥ 2. The opposite shows increased latency
variance inside the HVM. Compared to pCPUs = 2−which
maps to the performance of our VM Execution Model due to
its static core allocation−the case of pCPUs = 1 increases the
mean latency by 30% alongside a 7.32× increase of the mean
absolute deviation of latency. In contrast, our VM Execution
Model can incur VM evictions. In the next experiment, we
evaluate its impact on real-time application performance.

Next, we evaluate the impact of the proposed VM Execution
Model at the application layer. We use the Harvest VM (HVM)
as a comparison baseline, the existing VM execution model
over Renewables-driven cores [13]. We use an experimental
deployment of OSM MANO [19], a Virtual Network Functions
(VNF) orchestration and management application layer, to
match a real-time application layer having both critical and
best-effort components (see Table I). In public clouds, server
utilization is around 60%, and the packing density (i.e. utiliza-
tion of servers running at least one VM) is around 85% [36].
To match that, we use two 12-core servers and tightly pack
one server with two 6-core VMs while the other is left unused.
MANO is a generic orchestration layer where the exact time-
bound requirements depend on the use case. Therefore, for
VMs, we measure the real-time latency of the VM kernel
for a consistent real-time latency performance independent
of the use case. To match application-level reconfiguration
over component failures, we enable MANO’s auto-heal fea-
ture, which reconfigures itself via VM redeployment. HVM
executes VMs under resource variations. To match it’s worst-
case, we set the dynamics of Renewables-driven cores to sleep
five cores in both servers, such that HVM executes a VM with
6 VM cores allocated to one physical core. In contrast, the
proposed approach evicts one of the VMs, triggering MANO
to redeploy it in the unused server. We obtain the time taken
for reconfiguration via MANO’s event logs.

Figure 11 shows the real-time latency performance of the
affected VM in both the proposed and HVM approaches. In
both methods, the remaining VM continues executing under
the same core allocations without any performance impact
since the server’s physical core count is sufficient. Until the
server core sleep event at time axis = 300, the affected

3https://www.libvirt.org

Fig. 11. Application layer real-time performance comparison of VM execution
models. Experimental setup deploys VNF orchestration application, OSM
MANO [19], over two 12-core server nodes of openstack-gc prototype. We
plot the mean real-time latency obtained through RTEval [15] running in the
affected VMs. MANO’s auto-heal feature is enabled to reconfigure itself upon
VM eviction by redeploying. Initially, two 6-core VMs tightly pack a server
where the other is left unused to match resource usages of public clouds [36].
At t = 300, worst-case resource reduction with an HVM is emulated by
sleeping five cores in each server. The proposed model evicts a VM, where
HVM reduces the physical core count to one in a VM.

VM in both approaches shows the same mean real-time
latency. Afterwards, the core count reduces. With HVM, the
affected VM’s mean real-time latency increases from 8.13µs
to 37.65µs. When comparing the coefficient of variation of
the VM’s real-time latency, it increases to 6.52×. With the
proposed approach, the affected VM undergoes a 30-second
service unavailability. However, when it resumes afterwards,
the VM retains the same real-time latency performance. The
results show that, unlike the existing temporal flexibility-based
approach, the proposed VM Execution Model maintains intact
real-time latency performance. In doing so, it incurs brief
service unavailability from VM evictions as a trade-off. In the
next section, we evaluate the role of our proposed VM packing
algorithm in reducing the impact of that on the application
layer.

C. Evaluation of Server-level VM Packing Algorithm

We first evaluate the practical aspects of our VM Packing
Algorithm with the openstack-gc prototype over the default
OpenStack. We focus on the scheduling overhead of our im-
plementation and the impact of service quality on renewables
dynamics. Then, we replay long-running VM arrivals and
renewable dynamics to evaluate renewables harvest and long-
term service quality impact with the large-scale simulation
testbed.

We write a Python client to read VM arrivals in the Azure
trace and make VM creation requests to openstack-gc deploy-
ment in real time. For each VM request, it spawns a lifecycle
management thread, which then waits in real-time and makes
the VM creation request. Afterward, it periodically polls the
deployment to check the deployed VM status. Management
thread completes if the VM has prematurely deleted, which is
then marked as an eviction incident, or the VM has lived to
the lifetime provided in the trace data, which then is deleted
via a request made to the deployment. In parallel, a separate
client emulates renewables dynamics by reading the trace data.
It emulates a single peak renewables dynamics matching 24-
hour solar availability by switching Renewables-driven cores
through openstack-gc APIs.

Figure 12 illustrates our results. Our proposed algorithm
outperforms OpenStack nova regarding the severity of eviction
incidents. Eviction incident counts in Figure 12a show our
proposed algorithm reduces critical VM percentage from 0.205
to 0.195 while leveraging that with best-effort VM evictions.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

11

(a) (b)

(c)
Fig. 12. Performance of the proposed VM Packing Algorithm in VM packing
experiments of openstack-gc prototype. (a) Number of VM eviction incidents.
(b) Distribution of normalized lifetimes (nLT) of VMs with nLT CDF value
≤ 90%. (c) Distribution of scheduling overhead in VM deployment.

In Figure 12b, our proposed algorithm reduces CDF value
for the 90% of normalized lifetime of VMs from 27.14% to
23.81%. In return, Figure 12c illustrates the distribution of
scheduling overhead in VM requests. Note that OpenStack
logs that we leverage for that have a granularity of seconds. In
measuring the overhead values, we disable the synchronization
overhead of openstack-gc for OpenStack nova. In return, re-
sults demonstrate the impact of additional scheduling overhead
in openstack-gc, where the overhead distribution concentrates
to 2 seconds from 1 second. Increased scheduling overhead
can delay the VM deployment, resulting in lesser optimized
packing decisions. For example, servers may increase critical
VM eviction incidents with renewable dynamics due to the
lack of best-effort VMs. Most of the scheduling overhead is
attributed to the synchronization implementation of openstack-
gc prototype, where the controller polls each server to collect
information in calculating the server inventory of Green Cores.
With that, the overhead shown in the results can increase with
the deployment size. However, apart from that, the remain-
ing algorithm implementation does not significantly increase
the scheduling overhead. We use OpenStack’s default filter
scheduler and integrate our algorithm with its existing iteration
of servers, avoiding additional re-iterations. Nevertheless, our
synchronization implementation in the openstack-gc proto-
type can be improved by applying scheduling optimization
techniques. For instance, Azure’s production VM scheduler,
Protean [36], addresses a similar scaling problem in VM
packing by implementing an optimistic concurrency model.
Collectively, the results of VM packing with openstack-gc
prototype highlight its potential in improving VM eviction
severity and opportunities to improve its scheduling overhead
for production deployments. Next, we evaluate the proposed
VM packing algorithm at scale for renewables harvesting over
long-running experiments.

For that, we use a large-scale simulation test bed to evaluate
our framework at the data center scale. In the test bed,
we first implement Renewables-driven cores with a trace of
renewable energy dynamics and then implement the proposed

VM Execution Model. We expose the test bed to a 14-day
Azure VM workload arrival trace. We use our proposed VM
packing algorithm and comparison baselines to determine VM
allocations across servers.

We first tune our algorithm by observing its performance
over short-running experiments. We aim to jointly optimize
the reduction of VM eviction incidents and increase renew-
able energy harvest. Once tuned, we conduct 14-day packing
experiments. Figure 13 shows (a) harvested renewable energy
and (b) the number of VM evictions. Values for the former
are normalized among the comparison baselines, and values
for the latter are expressed as a percentage of the total number
of VM requests.

Both baselines show their inability to conduct joint opti-
mization. The best-fit algorithm is most effective in harnessing
renewable energy yet evicts over 2% of VM requests. It incurs
the highest amount of critical VM evictions among the three
algorithms. The crit-aware, on the other hand, shows the most
effectiveness in reducing VM eviction incidents with 0.25%
of total VMs evicted with a 1.703×10−4% of critical VM
evictions, the lowest amongst three algorithms. However, it
shows the least harvested renewable energy with an 80%
reduction from the best-fit algorithm. Our proposed algorithm
shows a joint optimization, a 34.83% increase over crit-aware
in harvested renewable energy and a 79.64% reduction of
VM eviction incidents compared to best-fit. Our algorithm
reaches 50% of the renewable energy harvest performance
of best-fit with a 26.09% VM eviction incidents of best-
fit, showing its joint optimization characteristic to favour
lesser eviction incidents. Figure 15 shows distributions of a
normalized lifetime (nLT) of evicted VMs. The proposed VM
packing algorithm surpasses best-fit and approaches crit-aware
with the CDF value for nLT ≤ 90%.

Sensitivity analysis: We conduct a sensitivity analysis of our
algorithm’s hyper-parameters. In the proposed packing algo-
rithm, we represent each server using a 2-dimensional feature
vector ≡ (drnw, dsq): drnw quantifies renewable energy usage
and dsq quantifies the possibility of VM eviction incidents.
Parameters of our algorithm are two instances of this vector
(called ideal points), one for each critical and best-effort VM
type. For initial values, we set critical VM ideal point to
(1, 0.5) such that those VMs prefer servers with the potential
to reduce VM eviction incidents, and best-effort ideal point to
(0.2, 0.0) such that those VMs prefer servers with the potential
to harvest renewable energy.

In subsequent experiments, we move critical ideal point
closer to the other and conduct 24-hour packing experiments
in each step. Figure 14 illustrates our results. As ideal points
move closer, our proposed algorithm favours increasing re-
newable energy harvest, surpassing the leading baseline best-
fit at a distance of 0.05. Although this behaviour compromises
eviction incidents, the number of incidents is still less than that
of the best-fit. In contrast, as ideal points deviate, our proposed
algorithm favours decreasing eviction incidents, surpassing the
leading baseline crt-aware at distances of 0.9875 and 1.30.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

12

(a) (b)
Fig. 13. Performance of the proposed VM Packing Algorithm in packing a 14-day Azure VM arrival trace [16] to jointly optimize renewable energy harvest
and VM eviction incidents. (a) Accumulation of harvested renewable energy capacity. (b) The number of VM eviction incidents.

(a) (b)
Fig. 14. Performance of the proposed packing algorithm during its sensitivity analysis. We change the distance between its ideal point parameters and conduct
a packing experiment of 24 hours in each step. (a) Accumulation of harvested renewable energy capacity. (b) The number of VM eviction incidents.

Fig. 15. Distribution of normalized lifetime (nLT) of evicted VMs during the
14-day VM packing experiment.

D. Discussion

Our evaluations show the potential of our framework to
manage server power using Renewables-driven cores. Per-core
application of low power profile demonstrates our framework
can reduce the server power to match supply variations of
renewable energy. CPU power metrics shown during that
indicate that if a core pins to a VM, that core’s power profile
transition will not occur. Even if unused cores are insufficient,
the framework evicts the VM first before changing the power
profile. As a result, our framework guarantees a static compute
allocation throughout a VM’s lifetime. Evaluation of the real-
time latency performance of VM kernels shows that the static
compute allocation provided in our framework significantly
outperforms existing workload temporal-flexibility-based VM
execution solutions.

Our approach shows two trade-offs. Firstly, a sustained core
power profile until the completion of VM evictions requires
redundancies in the data center power delivery to support the
short periods of server power overdraws. However, existing
cloud data centers can support similar requirements [17].
Therefore, our framework fits into existing data center designs.
Secondly, the static compute allocation requires VM evictions

if enough unused cores are unavailable to match the energy
supply. However, an application-specific middleware layer in
clouds manages real-time VMs, which provides fault tolerance
over VM evictions [10], [19]. Therefore, VM evictions in our
framework do not incur application-level failures for real-time
workloads. Moreover, large-scale packing experiments show
that our framework can reduce the number of VM eviction
incidents by utilizing core availability across the servers,
jointly optimizing that with the utilization of renewable energy
capacity. Our eviction-based approach exploits findings of a
previous study showing that cloud applications prefer VM
evictions over continued VM execution with performance
degradation [17].

Performance of our framework improves with the presence
of best-effort VMs. Therefore, cloud operators need to tune
our algorithm according to the workload variations. Sensitivity
analysis of our framework’s packing algorithm parameters
shows the ability to support that (see Section VII-C). The
algorithm can be tuned to favour renewable energy harvesting
for a deployment that expects an increased number of best-
effort VMs. Otherwise, it can be tuned down to reduce the
number of VM eviction incidents. Our framework design
expects server utilization levels in typical data centers, where
a slack of unused capacity is available [36]. It allows the
real-time application layer to reconfigure in the events of VM
evictions. If the data center utilization levels are much higher,
the application layer may be unable to do so. In such cases, the
algorithm tuning must be adjusted to reduce eviction incidents.

VIII. RELATED WORK

Load matching with renewables-driven cores: Common
load matching techniques for intermittent renewable energy,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

13

TABLE V
COMPARISON OF RELEVANT WORK WITH OURS

Work Renewables-driven
Cores

Critical
Workloads

Real-Time
Readiness

VM
Execution

Criticality-aware
Packing

Renewables
Harvest

SolarCore (2011) [23] ✓ ✓
Chameleon (2013) [24] ✓ ✓
Kumbhare et. al (2021) [17] ✓ ✓ ✓
PowerMorph (2022) [38] ✓ ✓ ✓
Slackshed (2023) [13] ✓ ✓ ✓
Our Proposed ✓ ✓ ✓ ✓ ✓ ✓

such as geographical load balancing, workload migration,
admission control, and capacity planning [5]–[7], depend on
either suspending/resuming or migrating flexible workloads.
In contrast, Renewables-driven cores avoids both by perform-
ing load matching with dynamic core availability. SolarCore
[23] and Chameleon [24] use per-core Dynamic Voltage and
Frequency Scaling (DVFS) and Power Gating to implement
Renewables-driven cores. In their work, workloads utilizing
power-adjusted cores can undergo performance degradation,
thus better suited for throughput workloads with flexible
deadlines. PowerMorph [38] improves this via core grouping,
hosting critical and best-effort workloads and power adjust-
ments isolated to core groups. However, workload core affinity
can dynamically change during load matching, unfavourable
for time-critical workloads such as real-time compute [21].
Slackshed [13] implement Renewables-driven cores for virtual
machine (VM) execution. They achieve uninterrupted VM ex-
ecution at the expense of dynamic CPU allocation, thus better
suited for throughput workloads with flexible time constraints.
In contrast, our work preserves workload time boundaries over
Renewables-driven cores and leverages criticality-aware VM
evictions within safe limits of the application layer.
VM packing algorithms: VM packing is a widely studied
research problem. Most existing works focus on variants of
bin packing algorithms to improve resource utilization at scale
[36], [39], yet consider servers as static inventories. Opposed
to that, Kumbhare et al. [17] explore an inventory where
servers oversubscribe power delivery, yielding a dynamically
changing inventory capacity. They propose a criticality-aware
packing algorithm to co-pack critical and best-effort compo-
nents, reducing workload impact. However, in doing so, they
do not consider renewable energy harvesting opportunities. In
contrast, our work achieves joint optimization of workload
impact and harvesting in dynamic inventories.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a framework to harvest renewable
energy with real-time workloads in clouds using Renewables-
driven cores. Existing works address only flexible workloads
and fail to preserve the time bounds of real-time computing.
To address that, we used a two-fold design of: i) Core-level
VM Execution Model for load matching via criticality-aware
VM evictions, and ii) Server-level VM Packing Algorithm to
reduce VM eviction incidents. We implemented our frame-
work in OpenStack as openstack-gc. To evaluate, we used a
prototype openstack-gc cloud and trace-driven simulations. As
evidenced through empirical results, the static compute alloca-
tion provided by our framework demonstrated its superiority in
real-time workloads by reducing the coefficient of variation of

real-time latency in VMs by 6.52× over the existing workload
temporal-flexibility-based solution. Furthermore, our proposed
framework showcased its safe energy harvesting capability
with a joint 79.64% reduction of VM eviction incidents and
34.83% increase of harvested renewable energy over state-of-
the-art baselines. Moreover, our sensitivity analysis of param-
eters demonstrated its capacity to cater to specific harvesting
requirements.

In the future, we intend to advance the server power model
in our work by leveraging prediction-based VM utilization
models. Further, power profile transitions in our framework
can impact CPU temperature. Thus, it is worth exploring the
thermal impact of our framework on CPU longevity to help
reduce data center embodied carbon footprint. Additionally,
as AI and machine learning models become popular, adopting
them in real-time workloads can require power-hungry GPU
accelerators. Extending the concept of Green Cores virtual
inventory to GPUs can help cloud operators reduce their
operational carbon footprint. From the application perspective,
advancing the Green Cores concept to handle VM evictions
as a service quality constraint enables real-time systems with
limited fault tolerance to integrate with our framework.
Software availability: openstack-gc has been open-sourced at
https://github.com/tharindu-b-hewage/openstack-gc.

REFERENCES

[1] IEA. (2023) International energy agency’s data centres and
data transmission networks. [Online]. Available: https://www.iea.org/
energy-system/buildings/data-centres-and-data-transmission-networks

[2] R. Bianchini, C. Belady, and A. Sivasubramaniam, “Datacenter power
and energy management: past, present, and future,” IEEE Micro, pp.
1–9, 2024, early access.

[3] IEA. (2023) International energy agency’s report on low-emissions
sources of electricity. [Online]. Available: https://www.iea.org/reports/
low-emissions-sources-of-electricity

[4] T. Sukprasert, A. Souza, N. Bashir, D. Irwin, and P. Shenoy, “On the
limitations of carbon-aware temporal and spatial workload shifting in
the cloud,” in Proceedings of the Nineteenth European Conference on
Computer Systems, 2024, pp. 924–941.

[5] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating
global data center energy-use estimates,” Science, vol. 367, no. 6481,
pp. 984–986, 2020.

[6] A. Radovanović, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen,
K. Smith, M. Cottman, and W. Cirne, “Carbon-aware computing for
datacenters,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp.
1270–1280, 2023.

[7] J. Zheng, A. A. Chien, and S. Suh, “Mitigating curtailment and carbon
emissions through load migration between data centers,” Joule, vol. 4,
no. 10, pp. 2208–2222, 2020.

[8] E. Barbieri. (2023) What is real-time linux? part i. [Online]. Available:
https://ubuntu.com/blog/what-is-real-time-linux-i

[9] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware vnf
placement for service-customized 5g network slices,” in Proceedings
of the IEEE INFOCOM 2019 - IEEE Conference on Computer Commu-
nications, 2019, pp. 2449–2457.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

14

[10] G. Gala, G. Fohler, P. Tummeltshammer, S. Resch, and R. Hametner,
“Rt-cloud: Virtualization technologies and cloud computing for railway
use-case,” in Proceedings of the 24th IEEE International Symposium on
Real-Time Distributed Computing (ISORC), 2021, pp. 105–113.

[11] J. R. David Reinsel, John Gantz. (2018) The digitization of the world
from edge to core. [Online]. Available: https://www.readkong.com/
page/the-digitization-of-the-world-from-edge-to-core-8666239

[12] L. Piga, I. Narayanan, A. Sundarrajan, M. Skach, Q. Deng, B. Maity,
M. Chakkaravarthy, A. Huang, A. Dhanotia, and P. Malani, “Expanding
datacenter capacity with dvfs boosting: A safe and scalable deployment
experience,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, 2024, pp. 150–165.

[13] A. Agarwal, S. Noghabi, I. Goiri, S. Seshan, and A. Badam, “Unlocking
unallocated cloud capacity for long, uninterruptible workloads,” in
Proceedings of the 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 2023, pp. 457–478.

[14] Openstack. (2024) The most widely deployed open source cloud
software in the world. [Online]. Available: https://www.openstack.org

[15] Linux. (2024) Linux foundation projects: Real-time linux tools:
Rteval. [Online]. Available: https://wiki.linuxfoundation.org/realtime/
documentation/howto/tools/rteval

[16] Azure. (2020) Azure trace for packing 2020. [Online].
Available: https://github.com/Azure/AzurePublicDataset/blob/master/
AzureTracesForPacking2020.md

[17] A. G. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F. Frujeri,
N. Mahalingam, P. A. Misra, S. A. Javadi, B. Schroeder, M. Fontoura,
and R. Bianchini, “Prediction-Based power oversubscription in cloud
platforms,” in Proceedings of the 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021, pp. 473–487.

[18] Ubuntu. (2023) A cto’s guide to real-time linux. [Online]. Available:
https://ubuntu.com/engage/cto-guide-real-time-kernel

[19] ETSI. (2020) European telecommunications standards institute’s
osm mano autohealing. [Online]. Available: https://osm.etsi.org/docs/
user-guide/v15/05-osm-usage.html#autohealing

[20] Intel. (2024) Overview of intel® time coordinated
computing (tcc) tools – measurement library. [Online].
Available: https://www.intel.com/content/www/us/en/developer/articles/
technical/real-time-systems-measurement-library.html

[21] Openstack. (2021) Real time. [Online]. Available: https://docs.openstack.
org/nova/2023.2/admin/real-time.html

[22] Intel. (2016) Nfv performance optimization for
virtualized customer premises equipment. [Online].
Available: https://www.intel.com/content/www/us/en/developer/articles/
technical/nfv-performance-optimization-for-vcpe.html

[23] C. Li, W. Zhang, C.-B. Cho, and T. Li, “Solarcore: Solar energy
driven multi-core architecture power management,” in Proceedings of
the 17th IEEE International Symposium on High Performance Computer
Architecture, 2011, pp. 205–216.

[24] C. Li, X. Li, R. Wang, T. Li, N. Goswami, and D. Qian, “Chameleon:
Adapting throughput server to time-varying green power budget using
online learning,” in Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), 2013, pp. 100–105.

[25] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,
S. Pasupuleti, T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bianchini,
“Providing SLOs for Resource-Harvesting VMs in cloud platforms,”
in Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 735–751.

[26] G. Durrieu, G. Fohler, G. Gala, S. Girbal, D. Gracia Pérez, E. Noulard,
C. Pagetti, and S. Pérez, “DREAMS about reconfiguration and adapta-
tion in avionics,” in Proceedings of the ERTS 2016, 2016, pp. 48–57.

[27] K. M. U. Ahmed, M. H. J. Bollen, and M. Alvarez, “A review of data
centers energy consumption and reliability modeling,” IEEE Access,
vol. 9, pp. 152 536–152 563, 2021.

[28] S. Qi, D. Milojicic, C. Bash, and S. Pasricha, “Shield: Sustainable hybrid
evolutionary learning framework for carbon, wastewater, and energy-
aware data center management,” in Proceedings of the 14th International
Green and Sustainable Computing Conference, 2024, p. 56–62.

[29] A. Radovanovic, B. Chen, S. Talukdar, B. Roy, A. Duarte, and M. Shah-
bazi, “Power modeling for effective datacenter planning and compute
management,” IEEE Transactions on Smart Grid, vol. 13, no. 2, pp.
1611–1621, 2022.

[30] R. Basmadjian and H. de Meer, “Evaluating and modeling power
consumption of multi-core processors,” in Proceedings of the 3rd
International Conference on Future Energy Systems: Where Energy,
Computing and Communication Meet, 2012.

[31] Linux. (2023) Linux foundation projects: Real-time linux
tools: Cyclictest. [Online]. Available: https://wiki.linuxfoundation.
org/realtime/documentation/howto/tools/cyclictest/start

[32] CERN. Rt (realtime) cern. [Online]. Available: https://linux.web.cern.
ch/rt/

[33] ELIA. (2024) Elia group open data platform. [Online]. Available:
https://www.elia.be/en/grid-data/open-data

[34] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Intel, 2016.

[35] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action: Experiences in using rapl for power measurements,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 3, no. 2, 2018.

[36] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda,
“Protean: VM allocation service at scale,” in Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020, pp. 845–861.

[37] OpenStack. (2023) Compute schedulers. [Online]. Available: https:
//docs.openstack.org/nova/2023.2/admin/scheduling.html

[38] A. Jahanshahi, N. Yu, and D. Wong, “Powermorph: Qos-aware server
power reshaping for data center regulation service,” ACM Trans. Archit.
Code Optim., vol. 19, no. 3, 2022.

[39] T. Baker, B. Aldawsari, M. Asim, H. Tawfik, Z. Maamar, and R. Buyya,
“Cloud-senergy: A bin-packing based multi-cloud service broker for en-
ergy efficient composition and execution of data-intensive applications,”
Sustainable Computing: Informatics and Systems, vol. 19, pp. 242–252,
2018.

Tharindu B. Hewage is working toward a PhD
with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing
and Information Systems, University of Melbourne,
Australia. His research interests include distributed
systems and cloud computing. His current research
focuses on energy and carbon-aware resource man-
agement in edge-cloud systems.

Shashikant Ilager is an assistant professor at
the Informatics Institute, University of Amsterdam,
Netherlands. He is a member Multiscale Networked
Systems research group. He works at the intersec-
tion of distributed systems, energy efficiency, and
machine learning. His recent research explores the
energy efficiency and performance optimization of
data-intensive and distributed AI applications.

Maria Rodriguez Read is a lecturer in the School
of Computing and Information Systems, University
of Melbourne, Australia. Her research interests lie
in the field of distributed and parallel systems.
Her recent research works involve investigating how
containerized and cloud-native applications can be
better supported by cloud providers to offer users
advantages in terms of reduced cost and more scal-
able, robust, and flexible application deployment.

Rajkumar Buyya (Fellow, IEEE) is a Red-
mond Barry distinguished professor and director
of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne,
Australia. He has authored over 800 publications and
seven textbooks. He is one of the highly cited au-
thors in computer science and software engineering
worldwide (h-index=171, g-index=374, 156,100+ ci-
tations).

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3571495

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on May 31,2025 at 05:43:56 UTC from IEEE Xplore. Restrictions apply.

