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ABSTRACT

This paper involves a cloud computing environment in which the dataowner outsource the similarity 
search service to a third party service provider. Privacy of the outsourced data is important because 
they may be confidential data. The data should be made available to the authorized client groups, but 
not to be revealed to the service provider in which the data is stored. Given this scenario, the paper 
presents a technique called RSSMSO which has build phase, query phase, data transformation and 
search phase. The build phase and the query phase are about uploading the data and querying the 
data respectively; the data transformation phase transforms the data before submitting it to the service 
provider for similarity queries on the transformed data; search phase involves searching similar object 
with respect to query object. The RSSMSO technique provides enhanced query accuracy with low 
communication cost. Experiments have been carried out on real data sets which exhibits that the 
proposed work is capable of providing privacy and achieving accuracy at a low cost in comparison 
with FDH
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1. INTROdUCTION

There is a rapid growth of the volume and diversity of digital data produced by all kinds of commercial, 
scientific and leisure-time applications; to search for a desired data in such voluminous data set is a 
tedious task. The complex data types, such as various sensor data, time series data, gene sequence 
data introduces a natural requirement for search. It is difficult to search such multimedia data using 
typical keyword search techniques; hence the similarity search (Zezula et al., 2006) comes into picture. 
With the growing popularity of cloud services, the natural approach is to outsource this task to the 
cloud environment. Service outsourcing means that the data is provided to third party repositories 
that are not controlled by the data owner. The outsourced data may be sensitive and confidential, 
(e.g. medicine data) or valuable (e.g. collected from a scientific research (Cheng and Church, 2000, 
Hubble et al., 2009)) and thus the privacy of the data is given more importance.

The concept of similarity search (Zezula et al., 2006) (Raghavendra et al., 2015) is applicable to a 
wide range of data and infinite number of various similarity functions. The time series pattern which 
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has been collected in hourly or weekly basis can be searched by the scientist for similar patterns to 
indicate an interesting phenomenon. The similarity search can be used for analysis of DNA patterns 
for understanding gene or gene groups. Similarity search is most prominently used in the field of 
health care. Content-based retrieval (Pepsi and Mala, 2013) using similarity search is helpful in 
healthcare data like X-rays, MRT out-puts, various complex electric signals. New similarity search 
applications are constantly being developed, ranging from language translation systems to intellectual 
property protection.

The standard search techniques lie in the core of the similarity search and there are infinite number 
of (dis)similarity functions that can be used with a wide variety of data types. When searching, the 
similarity query typically contains a query object and the search should return the data objects that 
are the most similar to the query according to the specified function.

In our work we mainly focus on the similarity search based on the metric space model. The 
metric space is an ordered pair M M d= ( , ) , where M  is a domain of data objects and d  is a 
total distance function d M M R: × →  satisfying metric postulates of non-negativity, identity, 
symmetry, and triangle inequality. The set of indexed objects X M⊆  is typically searched by the 
query-by-example paradigm, for instance by the range query
Range q r o X d q o r q M( , ) = ( , ) ,∈ ≤ ∈|  
or by the nearest neighbours query k NN q− ( )  covering k  objects from X  with the smallest distances 
to given q M∈  (Kozak, Novak and Zezula, 2012).

Motivation: Existing solutions offer any one of the following, its either query efficiency and no privacy, 
or complete data privacy and less query efficiency. Metric Preserving Transformation(MPT) and 
Flexible Distance-based Hashing(FDH) are existing methods which shifts search functionality to 
the server. The MPT stores relative distance information at the server with respect to a private set of 
anchor objects and guarantees to fetch exact results, but it needs two rounds of communication. The 
FDH method takes a single round of communication, but does not guarantee to retrieve the exact 
result. Hence our objective is to retrieve the exact result in just a single round of communication.

Contribution: In this paper, we describe a new technique for similarity search on metric data named as 
Rapid Similarity Search on Metric Space Object (RSSMSO). RSSMSO supports for fast retrieval 
of resultant object with accuracy and it provides privacy for objects by using data transformation 
steps before uploading to the cloud server. We suggest new technique to overcome the drawbacks 
of the outsourced similarity search on metric data assets (Yiu et al., 2012).

The implication of the contributions are:
1.  RSSMSO method is developed to retrive Fast similarity search on metric space data. It helps 

to reduces communication cost over huge cloud data.
2.  RSSMSO algorithm reduces the communication cost and increases accuracy.
3.  Flexible Distance-based hashing methods allow the client to specify the theta (θ ) value for 

increasing the accuracy of the result. Theta value would change depending on the size of 
the data set. In RSSMSO algorithm, θ  value would always be 1, even when data set size 
vary. Hence we are able to retrieve the exact result with a very low theta value in a single 
communication round.

4.  The experiment is demonstrated on real time data set gene expression matrix data (eg: 
YEAST (Cheng and Church, 2000)).

Organisation: The rest of the paper is organized in the following manner; We describe the Related 
work in Section 2 which gives the pros and cons of similarity search. Background is described in 
Section 3 which lists some of the existing method for deriving the results from the server. Problem 
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statement and System model describes the working of the system and gives the details about the 
design goals these are discussed in Section 4. Proposed work describing the implementation of 
data transformation, query and the search phase is in Section 5.Performance evaluation results 
are listed in Section 6. Conclusions are presented in Section 7.

2. RELATEd wORKS

We have listed out various work related to similarity search on cloud environment, along with their 
advantages and diadvantages.

The techniques present in (Yiu et al., 2012),(Pepsi and Mala, 2013),(Kuzu, Islam and Kantarcioglu, 
2012),(Sun et al., 2014) helps in accomplishing the similarity search over encrypted data and helps in 
search process to happen while preserving the data privacy. FDH (Flexlible Distance Based Hashing) 
(Yiu et al., 2012) shift the search functionality to the server with a single round of communication, 
but do not assure of providing accurate result. Kuzu et al., (Kuzu, Islam and Kantarcioglu, 2012) uses 
LSH for fast similarity search which is tolerant to typographical errors . (Sun et al., 2014) also uses 
the LSH to do similarity search on images. (Pepsi and Mala, 2013) does a dynamic similarity search 
using content based retrieval. This ability to search dynamically was helpful in medical industry to 
retrieve lung images.

Consider various parameters to do similarity search (Xia et al., 2014),(Hjaltason and Samet, 
2003),(Amato and Savino, 2008) various parameters to do similarity search over encrypted cloud, 
similarity search based on distances and search based on metric spaces respectively. (Xia et al., 2014) 
returns files which are semantically related to the keyword but need to protect semantic information 
from the files. (Hjaltason and Samet, 2003) use M-tree to have a fast similarity search, but suitable 
only when we have a large amount of data. (Amato and Savino, 2008) use inverted files to obtain 
similarity search. This can be applied to any application which works on any such paradigm and can 
be modelled using metric space.

Important concepts in (Ciaccia, Patella and Zezula, 1997),(Bozkaya and Ozsoyoglu, 
1999),(Agrawal et al., 2004) help in carrying out similarity search on metric space. (Ciaccia, Patella 
and Zezula, 1997) proposed M-tree to organize and search large data sets from generic metric 
space. They perform well in high dimensional space and are more efficient than R* tree. (Bozkaya 
and Ozsoyoglu, 1999) uses MVP tree which is created in atop down fashion on a given set of data 
points and hence guarantees a balance tree. (Jang, Yoon and Chang, 2013) offer a spatial data base 
encryption scheme that produce a transformed data base by using network distance among POIs 
(point of interest). Hence reduces the search range.

Indexing concept mentioned in (Kozak and Zezula, 2013),(Hong Lu et al., 2006),(Bin Cui et al., 
2005),(Gil-Costa and Marin, 2012) play an important role in performing similarity search. (Kozak 
and Zezula, 2013) propose two new similarity indexes EM-Index and DSH Index that are apt for 
search systems outsourced in a cloud and also guarantee data privacy. EM-Index proves profitable 
by supporting precise evaluation of the range queries and efficient update operations while DSH 
guarantee higher privacy level. (Hong Lu et al., 2006) propose an efficient solution, called the Ordered 
VA-File (OVA-File) which addresses the problem of content-based video indexing. A high query 
result is obtained in the proposed method when compared to other two existing methods VA-file 
based method and iDistance. (Bin Cui et al., 2005) uses an indexing structure called ∆ -tree. This 
indexing method helps in lowering the cost of computing and cache misses because the search process 
can reduce the space to be searched efficiently. (Gil-Costa and Marin, 2012) works on indexed metric 
space where query processing can happen in parallel manner. Scheduling algorithm is applied onto 
a global index which gets evenly distributed on the processors and hence helps to achieve good 
performance.

Concepts and the ideology of K-NN (Nearest Neighbour) are discussed in (Khoshgozaran and 
Shahabi, 2007), (Connor and Kumar, 2010),(Wong et al., 2009),(Hajebi et al., 2011). (Khoshgozaran 
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and Shahabi, 2007) realizes K-NN query by mapping the static and dynamic objects after applying 
one way transformation to another space and the query can be resolved blindly in the transformed 
space(Hilbert space). (Connor and Kumar, 2010) fostered K-NN graph construction using 
Morton ordering. Linear list of numbers is achieved as a result of applying Morton ordering on to 
N-Dimensional space. The algorithm favours faster construction of K-NN graphs and uses less space. 
(Wong et al., 2009) formulate a new Asymmetric Scalar-Product-Preserving Encryption (ASPE) 
aims to support K-NN computation on encrypted data by constructing secure schemes. APSE profits 
by giving a very low cost and resist different overhead cost at various level of practical attacks by 
considering different background knowledge. (Hajebi et al., 2011) introduce a new algorithm that 
helps in resolving the nearest neighbor search problem by performing hill-climbing on a K-NN graph.

Similarity search concept is considered in the following references (Xia et al., 2013),(Tsymbal 
et al., 2014),(Popivanov and Miller, 2002). (Xia et al., 2013) performs similarity search on encrypted 
images based on a secure transformation method. The transformation used does not mortify the 
result accuracy and also keeps the confidentiality of the data intact. (Tsymbal et al., 2014) share their 
experience gained by translation of a similarity search-based clinical decision support system called 
“Case Reasoner”. They help in advanced similarity search and case retrieval-based solutions with 
lower computational complexity. (Popivanov and Miller, 2002) permit proficient similarity search 
over time-series where data is of high-dimensions and considers the use of wavelet transformations 
for reducing the dimensions.

There are many third party security issues related to the clouds; bussiness clouds are one among 
them, since it cater to many people and store huge amount of confidential data. (Chang, Kuo and 
Ramachandran, 2016) introduce a frame work designed for business clouds called CCAF multi-layered 
security. It can detect and block various types of viruses and trojans . This security model would help 
businesses to run smoothly by proctecting their data and assets using (Chang and Ramachandran, 2015).

3. BACKGROUNd

Two basic solutions exist to derive the results from the third party server while preserving the privacy:

3.1. Brute Force Secure Solution
The objects will be uploaded to the server only after the data owner encrypts them by applying a 
symmetric key. Actual result is calculated after the client places a query at the query time and the 
encrypted objects are downloaded from the server. The method is absolutely secure due to the use 
of encryption, but there is an increase in the communication cost due to the downloading of all the 
objects, even the data objects not concerned with the query. Hence the method is not suitable for the 
present day needs.

3.2. Anonymization-based Solution
Data privacy for the anonymization-based solution can be achieved by the k-anonymity and not by 
the encryption. Here we assume that there exists k number of objects and the generalization happens 
in such a way that every object that is generalized cannot be discriminated from other k-1 objects 
which are generalized. Hence by following generalization scheme the transformed objects ranking 
can be confused. The confusion created help to represent that the k-1 objects has the same rank as 
the transformed object of the actual nearest neighbor. The clustering-based anonymization technique 
of (Aggarwal et al., 2006) can be applied for arbitrary metric space data. Each bucket is represented 
by Minimum Bounding Sphere (MBS).

The anonymization-based solution has a limitation; the MBRs/MBSs (Maximum/Minimum 
bounding Rectangle/Sphere) may contain lot of empty space as they are dealing with multidimensional 
data, causing them to retrieve large number of buckets. On contrary in the proposed method the anchors 
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are changed to IDs and distance information is changed to numbers and only what is concerned with 
the query are retrieved, not less nor more.

3.3. Indexing and NN Search on Metric Space

R*-Tree: It is capable of accessing multidimensional points and spatial data. Queries and operations, 
such as map overlay, rectangles and multidimensional points can be easily dealt using R*-tree. 
Data containing many dimensions can be stored by using X-tree whose indexing structure is based 
on R-tree. R tree and X tree are renowned disk based indexes for multi-dimensional objects. Data 
objects which are complex ex: time series, cannot properly match up to by the co-ordinate values.

VP Tree: Data in the metric space is isolated by choosing a position in the space, this is called Vantage 
Point (Vp). The data points are divide into two partitions, those which are at close proximity to 
the server and those which are farther away from the Vp. Feature vector of fixed dimensions can 
easily be represented by index objects.

MVP: Objects can be indexed using an abstract data structure called Multi vantage point (Mvp). 
Similarity query can be applied on large metric spaces using distance based index which is 
constructed using Mvp-tree. Similarity partitioning strategy are made use in the Mvp-tree and 
Vp-tree where they do not use pre computed distances and use only one Vantage point.

Mtree: Mtree is a dynamic distance-based index structure for metric domains. M-tree is more 
competent than R*-tree in terms of input /output cost and distance optimization. They perform 
well in high dimensional space. The disadvantage is that the objects are entered randomly, the 
parent node is located by travelling from the root of the tree until the node itself is found.

3.4. Encrypted Hierarchical Index
It is a hierarchical indexing structure which is built on the Metric Space(MS) object data set; these 
nodes are encrypted using a symmetric key algorithm and address of the root node is made public. 
Mindistance and maxdistance functions are used for the data transformation which makes the algorithm 
secure. The search service is at the client side. The client request for nodes, decrypts them and applies 
the search function on these nodes; a new set of nodes are requested again from the server until the 
required result is found. There exists a considerable traffic between the server and the client due to 
multiple communication round trips; a reason for increased communication cost. There is an additional 
overhead on the client due to the search procedure which takes place on its side. The method suffers 
from relatively very low search efficiency.

3.5. Metric Preserving Transformation (MPT)
Metric Preserving Transformation makes use of an order-preserving encryption( )OPE . The function 
f R R: →  is said to be order-preserving f(x) > f(y) iff x > y. A set of anchor objects A are selected 

from the data set P;where each object is assigned an anchor object A
i
. The distance is computed for 

objects with respect to anchor objects. An OPE is applied on these distances and then uploaded to 
the server. The application of OPE serves as the transformation function. MPT needs two round trip 
communications during the query phase. The method is sufficiently secure but not well suited for 
dynamically changing data.

3.6. Flexible distance-based Hashing

In the build phase, a set of n anchor objects is chosen and each anchor ai  is assigned a range r
i
. 

Then, for every object o  a bitmap of length n is created; the i th bit of this bitmap equals to zero if 
d a o r

i i
( , )≤ , otherwise it equals to 1. The objects are encrypted and are stored on the server along 

with their bitmap representation. Here bitmap is used as the data transformation function. Here the 
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client is given the liberty to select and vary the θ  value; the server returns θ  number of objects that 
are closest to the bit map representation of the query. This approach accomplishes the best 
communication cost because of the very compact bit map representation; only drawback being it 
innately supports only approximate search queries.

4. PROBLEM STATEMENT ANd SySTEM MOdEL

Nearest neighbour search and Range queries are key subclasses of similarity search. Similarity Search 
is mostly performed on the complex objects like the metric space objects. The previous methods used 
multiple communication rounds to get the result, hence we work on reducing the communication 
round to as low as 1.

Objectives:

1.  The data owner allows only authorized clients to run search queries on a third party cloud 
server and get results from it.

2.  To avoid the overhead on the client side, search should be performed on the server side as 
much as possible.

3.  Communication cost should be as minimal as possible between the client and the server.
4.  Data on the server should be stored in a secure way.

4.1. System Model

1.  Data Owner: Owns the data and allows to outsource the search service.
2.  Server: Server(s) is a third party similarity cloud used to store the data. The data owner does 

not trust the server (server can be attacked and data from it leaks to an attacker).
3.  Authorized Client: Access the data by using the secret key and retrieves the data needed by 

using the search service.

The system model has 3 elements as shown in Figure 1: data owner, client and server. Data owner 
desires that the data be made available to the authorized clients, but to do so he has to host his data 
on the server which he does not trust. Hence the data owner encrypts the data and uploads to the 
server. He applies a standard encryption method (symmetric key encryption algorithm e.g., AES) on 
the data set of original objects; this results in encrypted objects. These encrypted objects along with 
their Ids are uploaded to the server and stored in a relational table (or in the file system). The original 
objects are subjected to two steps of data transformation DT1 and DT2; the values obtained during 
the second step of transformation are sent to the server to be indexed (DT1 and DT2 are explained 
in section 5.1). This step is necessary to maintain privacy of the objects uploaded. The original data 
objects can be anything such as time series, graphs, strings, medical data, and scientific data. Search 
service is outsourced by the data owner to the server. Data owner shares a secret key with his clients. 
The clients having the secret key are authorized to use the search service. The client issues a query 
and must have the key as a proof of its authorization to the server. The server processes the query 
and returns the similarity result to the client.

4.2. design Goals
4.2.1. Use of Relational Database
A relational database allows you to easily find specific information. The sorting is based on any field 
and generates reports which contain only particular fields from each record. A relational database 
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makes use of tables to store information. In a table, rows and columns correspond to field and records. 
Information can be quickly compared because the data is arranged in columns. The relational database 
is advantageous because of its uniformity, hence helpful to build completely new tables out of required 
information from tables which are already existing. A small table is created with the locations that 
can then be used for various purposes by other tables in the database. A large database, like the one 
a big Web site, such as Amazon and contains hundreds or thousands of tables all are used together 
to speedily find the exact information needed at any given time.

4.2.2. Use of Distance Object Tree Structure to Fetch the Exact Object Queried:
In a M-tree, objects are entered randomly, hence searching for a particular object takes more time. 
In our approach we keep the objects in a sorted way this would help in fetching the object faster.

5. PROPOSEd wORK

There are four phases in RSSMSO technique:

5.1. data Transformation
The original objects are transformed and then uploaded to the server. Transformation is important 
in the aspect of security; objects which are transformed and indexed on the server are having less 
chances of being understood by the third party like the server or the attackers. The prime concern 
of the data owner is the privacy of the data kept on these servers and also being able to cater to his 
authorized clients which lead to the need of data to be transformed. It consists of two stages for Data 
Transformation(DT):

DT1: The distance function dist( , )a b
x y

 is said to be a metric if it satisfies symmetry, nonnegativity, 
and triangle inequality. This value obtained from the function dist ( , )a bx y  is used to compute the 
dissimilarity between objects a

x
 and by .

The proposed algorithm uses the Euclidean distance function. It is a straight line distance between 
two points in space. This distance in space are Metric Space.

Figure 1. System Architecture
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Consider an Euclidean plane; X(x
1
, x

2
) and Y( y1 , y

2
) then the distance between X and Y or 

the distance between Y and X is given by:

dist X Y x y x ye ( , ) = ( ) ( )1 1
2

2 2
2− + −  (1)

Example: Let X(2, 3)  and Y (4,5)

dist X Y
e
( , ) = ((2 4) (3 5) = 2.82842 2− + −  (2)

In general, for an n-dimensional space, where X x xn( , , )1 …  and Y y y
n

( , , )
1
…  the distance is:

dist X Y x y x ye n n( , ) = ( ) ( )1 1
2 2− + + −…  (3)

Table 1. Notations

Symbols Definition 

P Data set (set of original objects).

P’ Set of transformed objects.

pi Any object in the data set.

pi
│ Transformed object.

p.id id of the object p.

CK Encryption key.

ECR(x,CK) Encrypting x  using CK.

DCR(y,CK) Decrypting y  using CK.

diste(a,b) Euclidean distance.

disto(a,b) Object distance.

θ Integer value used in query phase.

doi
 ith  distance object, i = 1  to n .

disti
 ith  distance from the anchor object, where i =1  to n .

Eoi
 ith  encrypted object, i = 1  to n .

qdist distance of the query object from the anchor object.



International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

40

DT2: This stage is required to give a sufficient amount of obfuscation about the values indexed 
in the server.

dist dist S
o e
= /  (4)

substituting (2) in (4)

disto = (2.8284 / 2) =1.189  (5)

Assume S to be the size of the data set(in terms of number of dimensions).
As a result, the original objects P p p p

n
( , , , )
1 2
…  have been transformed to ′P p p pn( ', ', , ')1 2 …

Algorithm 1. RSSMSO Algorithm
Build Phase
Input: Set of original objects
Output: Distance for each object in the data set with respect to 
anchor object
Function: Build (P, CK)
1) Choose an object randomly from the data set P as an anchor 
object;
2) For each object p

i
uptop

n
 where p

i
∈ P and p

i
!= Anchor object A

o
 

do;
3) Compute the dist

e
(A

o
, p

i
);

Compute the dist
o
 /*distance between anchor object and object*/

4) Compute ECR(p
i
, CK); /*encrypt each object with secret key*/

5) Send the tuple<p.id, ECR(p, CK), dist> to the server;
Query Phase
Input: Client Sends q, A

o
 and θ to the Server

Output: Decrypted Result Object
Function: Client Request (q, A

o
, θ)

1) Compute the dist
e
 (A

o
,q);

Compute the dist
o
 (dist

e
);/* qdist*/

2) Send query to the server
qdist ≤ distance object tree = dist1; with respect to θ
/*qdist is the query object distance with respect to the anchor 
object*/
qdist ≥distance object tree = dist2; with respect to θ
/*any one of the distance among dist1 and dist2 are selected, 
hence θ =1*/
3) Request θ tuples < θ=1, dist

o
> ;

/*tuple contains the θ value and the distance value */
4) An encrypted result object is received by the client;
5) DCR(p

i
’, CK);/* Decrypt the object to get the final search 

result*/
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5.2. Build Phase
Build phase takes data set P as the input and the encryption key CK. The data set P can contain n 
number of objects, which can be represented as P p p p

n
( , , , )
1 2
… ; these objects may also be called 

as original objects. A symmetric key algorithm is used for encryption. The choice of our algorithm 
is AES, just because of its sheer advantages. The key length is around 128 bits or could have a bigger 
key length according to the confidentiality and the size of the data set. AES is easy to implement, 
more secure and less prone to attacks.

The build phase mainly occurs at the data owner side. Any random object p Pi ∈  is selected 
to be an anchor object. The similarity or dissimilarity of the query object is found with respect to the 
other objects in the data set with reference to the anchor object. Each object is given an id denoted 
as p.id. Distance computation (as per Section 5.1) of all the objects in the data set is computed with 
respect to the anchor object. These transformed distances are indexed at the server side. In the tree 
structure as shown in Fig 2, every object is linked except the anchor object. The root node is having 
the least DT2 value (that is the object which is most nearest to the anchor object), the second one 
having the second least DT2 value with respect to the anchor object and so on. The data set gets 
sorted after it gets uploaded to the server. The tree structure might change dynamically during an 
update because an anchor object is randomly chosen every time when the data set is uploaded. The 
objects are encrypted and stored at the server side in the file system or a database. In a tuple data 
owner sends the id, encrypted object and the distance.

5.3. Query Phase
Query phase occurs at the client side. The query is submitted to the server in order to know if there 
exist data which is required by the client. In the previous FDH algorithm the client had to choose 
various θ  values in order to get approximation of the result. In the proposed RSSMSO algorithm, 
the value of θ  is 1, we get the most apt and exact result from the server side. The result received 
from the server is in encrypted format, the client uses its key to decrypt the object.

5.4. Search Phase
The search phase takes place on the server. The main concern is to search for most similar object with 
respect to the query object and at the same time maintaining the privacy of the data stored at the server.

Figure 2. Distance Object Tree
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The server finds the nearest object with respect to the queried object at the Server side when the 
query is received from the client:

qdist≤  distance object tree = dist1 with respect to θ // qdist is the query object distance with 
respect to the anchor object.

qdist  ≥  distance object tree = dist2 with respect to θ
if θ=1 ; we consider a value which is greater (qdist≤  distance object tree = dist1) and a value 

which is lesser (qdist≥  distance object tree = dist2) than the query distance value. These values are 
fetched from the distance object tree. The value nearest to the qdist is chosen as the resultant object.

if θ= 2; we consider two values which is greater (qdist≤  distance object tree = dist1) and two 
value which is lesser (qdist≥  distance object tree = dist2) than the query distance value. These values 
are fetched from the distance object tree. Among these four values, one value which is closest to the 
qdist is chosen as the resultant object.

Note: our aim is to always have θ=1, hence we consider any θ value greater than 1 as a ruled 
out option.

1.  if dist1 and dist2 are equal distance from the anchor object then, dist1 from distance object tree 
is sent to the client.

2.  if dist1 is more closer to the query object than dist2, then dist1 is sent from distance object tree 
to the client.

3.  if dist2 is more closer to the query object than dist1 then, dist2 is sent from distance object tree 
to the client.

The following example shows how the algorithm works for various theta values:
Example:

When θ  = 1
 ◦ if the query object distance with respect to the anchor is 7 and the following are distances 

in the distance object tree; 3,4,5,8,10
 ◦ 7 is compared with values stored in the tree
 ◦ qdist≤  distance tree = dist1

7≤  8, hence the dist1=8
 ◦ qdist≥  distance tree = dist2

7≥  5, hence the dist2 = 5
 ◦ dist1 is chosen to be sent to the client as it is only one unit far from the query, where as dist2 

is 2 units away from the query
 ◦ More closer the distance from the query, more accurate is the result.

When θ> 1; assuming θ =2, two value with respect to dist1 and dist2 are chosen from the tree, the 
nearest among the 4 values is chosen to return to the client. The nearest would be one among 
the four values .This is a ruled out option since exact result is got when θ=1, θ >1 would 
increase the overhead.

When θ<1; it is not possible since the result has to be returned to the client.

6. PERFORMANCE

We evaluate the performance of the RSSMSO based on the real world data set gene expression data 
matrix. The experiment involves a server and a client. The implementation is done using Java on 
windows platform using Intell core i3 CPU 3217 U, with a processor speed of 1.80 GHz. The distance 
tree is hosted on Open shift cloud; Redhat. Gene expression data matrix gained from a Microarray 
experiment on YEAST. Each entry signifies the expression level of a specific gene at a specific 
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condition. The data set used is highly enriched for genes of similar function. YEAST expression 
matrix datasets is taken from (Cheng and Church, 2000). The matrix consists of 8224 rows and 17 
columns, each element occupies 4 bytes of data, where -1 in the matrix indicates a missing value.

In FDH algorithm the value of θ  should be varied in order to get a result nearer to the query 
object. Table 2 shows the result measure of FDH in comparison with the RSSMSO algorithm. At 
FDH, lesser the θ  value, greater the result measure and a very high θ  value is needed to make the 
result measure 0. The RSSMSO algorithm returns the exact result at one communication round 
without varying the θ  value. The result measure remains 0 for any value of θ . The time complexity 
applicable for the result measure with respect to FDH (Yiu et al., 2012) is O(n) where θ  value has 
to be varied n  times to get result measure as zero, in comparision to RSSMSO the complexity is 
O(1) because result measure is zero at θ  = 1

In Figure 3, FDH algorithm for θ  = 10, the graph starts from higher value; the θ  value increases 
then the result measure reduces slowly. For θ  = 600 and θ  = 900 there is constant line RM=108 
and hence we increase the θ  to a higher value; for example, if θ  = 1500 then RM=0, hence there 
is a steep reduction in the graph. The RSSMSO algorithm shows no variations and hence the graph 
remains constant at zero, because the result measure is zero starting from the first attempt.

Table 3 shows reading based on communication cost. Communication cost is the amount of data 
that is transferred between the server and the client while varying the value of θ . The communication 
cost increase in FDH as the θ  value increases, the proposed RSSMSO algorithm gets the exact result 
at θ =1. In FDH, θ  = 10 gives communication cost of 12.302 Kb. As the value of θ  is varied to 
get the exact result which occurs at θ  = 1500 the communication cost of 1829.526 Kb is very high 
in comparision to RSSMSO where the communication cost is 1.342 Kb with θ  = 1. The complexity 
of communication cost between client and the server in FDH is O(n), because the value of θ  is varied 
n  times until exact results is found. In comparison to FDH, RSSMSO has complexity O(1), since 
the result is obtained at the first attempt; the communication cost will be low between the client and 
the server.

Table 4 shows the comparison between existing method FDH (Yiu et al., 2012) and the proposed 
method RSSMSO with respect to various parameters like θ , Communication cost (in terms of Kbytes 
and in millisecond) and result measure.Where, θ  is an integer value required to get the accurate 
result.

Communication Cost: Measure of cost during communication between server and the client. This 
can be measured in 2 terms:

Table 2. Comparison of result measure

FDH (Yiu et al., 2012) RSSMSO

θ Result measure θ Result measure

10 163.521 1 0

50 150.087 50 0

200 121.07 200 0

300 113.688 300 0

450 108.056 450 0

600 108.056 600 0

900 108.056 900 0

1500 0 1500 0
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A.  Kilo bytes(Kb): amount of data communicated from server to client after the query has been 
submitted to the client.

B.  Milli seconds (ms): time required to send the result after every query.
Result Measure (RM): Distance between the query object and the result object.

The first row in the table 4 shows the experiment done on a data set of having 6273 objects. FDH 
requires various values from (1, 10 and 20) to get the accurate result. RSSMSO on the other hand 
needs θ=1 to get the accurate results. The cost in terms of bytes is more 1.353+12.501+24.853=38.707 
Kb) compared to (1.341 Kb) in RSSMO. The cost in milli seconds (143+116+118=877 ms) compared 
to 165 ms to get the accurate result. RM=0 represents that there is zero distance between the query 
object and the result object. Experiments have been carried out on various sizes of objects to prove 
the efficiency of the proposed system.

Figure 3. Distance between the Query Object and Result Object in Comparison with FDH and RSSMSO

Table 3. Communication cost with respect to θ value 

FDH (Yiu et al., 2012) RSSMSO

Communication cost 
in Kb

θ Communication cost 
in Kb

10 
50 
300 
600 
1500

12.302 
61.054 
366.014 
731.790 
1829.526

1 1.342
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7. dISCUSSION

Our aim is to reduce the communication round to as low as 1. We consider communication round as 
number of times the server and the client need to communicate to get to the result object.

Distance function is closely related to similarity function. A similarity function is defined over 
pairs of points which measures the similarity of the two points. Similarity function is inversely realted 
to distance function. If a pair of points are very similar to one another, the distance between them 
is small. We make use of a distance function (Euclidean distance) . DT1(Data Transformation1) 
and DT2(Data Transformation2) are combinedly used in both build phase and quey phase. We also 
consider them as steps for data transformation.

• DT1 is used for finding the similarity distance between the objects and also we consider it as 
the first step to data transformation. The similarity value gained from DT1 is used in the second 
step of transformation.

• If we store the DT1 values on the server there are possibilities that an intruder would observe the 
values and the privacy of the data owner would be invaded. Hence we introduce a second step 
“DT2” to further transform the DT1 values. Data owner computes DT1 and DT2 on the metric 
space objects (original objects). To add security, only DT2 values are uploaded to the server by 
the data owner. The distance object tree stores the DT2 values on the server. Similarly, the client 
computes the DT1 and DT2 values, but sends only the DT2 values to match for a similar object 
on the server during the query phase.

Theta (θ) is a measure used to increase the accuracy of the results (result object) fetched from 
the server and reduce the communication cost.

• Our aim is to have θ=1, hence we consider any θ value greater than 1 as a ruled out option.
• θ value is mentioned by the client when it communicates to the server in order to have better 

accuracy. Client considers starting from θ =1 and it does not exceed 1.

Table 4. Comparison between FDH and RSSMSO with respect to  θ , Communcation Cost and Result Measure

FDH (Yiu et al., 2012) RSSMSO

Size θ Cost ms RM θ Cost ms RM

369×17 = 6273 1 1.353 143 215.242 1 1.341 165 0

10 12.501 116 63.984

20 24.853 118 0

700×17 = 11900 1 1.353 420 310.942 1 1.341 260 0

150 185.813 110 52.431

200 247.729 461 0

1500×17 = 25500 1 1.358 202 160.885 1 1.342 189 0

150 185.990 110 42.556

400 491.566 732 0

2885×17 = 49045 1 1.354 252 327.434 1 1.342 189 0

300 371.938 495 42.556

1500 1856.558 15556 0
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When θ=1

• Only one tuple (result object) which is exactly similar to the query object is fetched from the 
server in a single communication round, hence low communication cost and less time consuming.

• RM=0 the object which is exactly similar to the query object is fetched from the server.

8. CONCLUSION

In this paper, we propose a similarity search technique which works on cloud computing environment 
without letting the server invade the privacy of the data stored in it. Existing solutions offer tradeoffs 
between privacy, query accuracy and communication cost. We introduce a concept which outsources 
the search service to the server. The proposed RSSMSO algorithm performs data transformation on 
the original objects before storing it on the server which ensures privacy. It also retrieves accurate 
result at a θ  value as low as 1; hence reduces communication cost between server and the client. We 
express its efficiency by experimenting on real data set. We have compared with FDH (Yiu et al., 
2012) our proposed method outperform FDH in terms of communication cost and accuracy. It can 
be applied to any application where the similarity search hypothesis can be modelled using metric 
spaces.
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