
DOI: 10.4018/IJOCI.2016070103

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

RSSMSO Rapid Similarity Search on Metric
Space Object Stored in Cloud Environment
Raghavendra S., University Visvesvaraya College of Engineering, Bangalore, India

Nithyashree K., University Visvesvaraya College of Engineering, Bangalore, India

Geeta C.M., University Visvesvaraya College of Engineering, Bangalore, India

Rajkumar Buyya, University of Melbourne, Melbourne, Australia

Venugopal K. R., University Visvesvaraya College of Engineering, Bangalore, India

S. S. Iyengar, Florida International University, Miami, FL, USA

L. M. Patnaik, National Institute of Advanced Studies, Bangalore, India

ABSTRACT

This paper involves a cloud computing environment in which the dataowner outsource the similarity
search service to a third party service provider. Privacy of the outsourced data is important because
they may be confidential data. The data should be made available to the authorized client groups, but
not to be revealed to the service provider in which the data is stored. Given this scenario, the paper
presents a technique called RSSMSO which has build phase, query phase, data transformation and
search phase. The build phase and the query phase are about uploading the data and querying the
data respectively; the data transformation phase transforms the data before submitting it to the service
provider for similarity queries on the transformed data; search phase involves searching similar object
with respect to query object. The RSSMSO technique provides enhanced query accuracy with low
communication cost. Experiments have been carried out on real data sets which exhibits that the
proposed work is capable of providing privacy and achieving accuracy at a low cost in comparison
with FDH

KEywORdS
Cloud Computing, Data Transformation, Query Processing, RSSMSO, Similarity Search

1. INTROdUCTION

There is a rapid growth of the volume and diversity of digital data produced by all kinds of commercial,
scientific and leisure-time applications; to search for a desired data in such voluminous data set is a
tedious task. The complex data types, such as various sensor data, time series data, gene sequence
data introduces a natural requirement for search. It is difficult to search such multimedia data using
typical keyword search techniques; hence the similarity search (Zezula et al., 2006) comes into picture.
With the growing popularity of cloud services, the natural approach is to outsource this task to the
cloud environment. Service outsourcing means that the data is provided to third party repositories
that are not controlled by the data owner. The outsourced data may be sensitive and confidential,
(e.g. medicine data) or valuable (e.g. collected from a scientific research (Cheng and Church, 2000,
Hubble et al., 2009)) and thus the privacy of the data is given more importance.

The concept of similarity search (Zezula et al., 2006) (Raghavendra et al., 2015) is applicable to a
wide range of data and infinite number of various similarity functions. The time series pattern which

32

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

33

has been collected in hourly or weekly basis can be searched by the scientist for similar patterns to
indicate an interesting phenomenon. The similarity search can be used for analysis of DNA patterns
for understanding gene or gene groups. Similarity search is most prominently used in the field of
health care. Content-based retrieval (Pepsi and Mala, 2013) using similarity search is helpful in
healthcare data like X-rays, MRT out-puts, various complex electric signals. New similarity search
applications are constantly being developed, ranging from language translation systems to intellectual
property protection.

The standard search techniques lie in the core of the similarity search and there are infinite number
of (dis)similarity functions that can be used with a wide variety of data types. When searching, the
similarity query typically contains a query object and the search should return the data objects that
are the most similar to the query according to the specified function.

In our work we mainly focus on the similarity search based on the metric space model. The
metric space is an ordered pair M M d= (,) , where M is a domain of data objects and d is a
total distance function d M M R: × → satisfying metric postulates of non-negativity, identity,
symmetry, and triangle inequality. The set of indexed objects X M⊆ is typically searched by the
query-by-example paradigm, for instance by the range query
Range q r o X d q o r q M(,) = (,) ,∈ ≤ ∈|
or by the nearest neighbours query k NN q− () covering k objects from X with the smallest distances
to given q M∈ (Kozak, Novak and Zezula, 2012).

Motivation: Existing solutions offer any one of the following, its either query efficiency and no privacy,
or complete data privacy and less query efficiency. Metric Preserving Transformation(MPT) and
Flexible Distance-based Hashing(FDH) are existing methods which shifts search functionality to
the server. The MPT stores relative distance information at the server with respect to a private set of
anchor objects and guarantees to fetch exact results, but it needs two rounds of communication. The
FDH method takes a single round of communication, but does not guarantee to retrieve the exact
result. Hence our objective is to retrieve the exact result in just a single round of communication.

Contribution: In this paper, we describe a new technique for similarity search on metric data named as
Rapid Similarity Search on Metric Space Object (RSSMSO). RSSMSO supports for fast retrieval
of resultant object with accuracy and it provides privacy for objects by using data transformation
steps before uploading to the cloud server. We suggest new technique to overcome the drawbacks
of the outsourced similarity search on metric data assets (Yiu et al., 2012).

The implication of the contributions are:
1. RSSMSO method is developed to retrive Fast similarity search on metric space data. It helps

to reduces communication cost over huge cloud data.
2. RSSMSO algorithm reduces the communication cost and increases accuracy.
3. Flexible Distance-based hashing methods allow the client to specify the theta (θ) value for

increasing the accuracy of the result. Theta value would change depending on the size of
the data set. In RSSMSO algorithm, θ value would always be 1, even when data set size
vary. Hence we are able to retrieve the exact result with a very low theta value in a single
communication round.

4. The experiment is demonstrated on real time data set gene expression matrix data (eg:
YEAST (Cheng and Church, 2000)).

Organisation: The rest of the paper is organized in the following manner; We describe the Related
work in Section 2 which gives the pros and cons of similarity search. Background is described in
Section 3 which lists some of the existing method for deriving the results from the server. Problem

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

34

statement and System model describes the working of the system and gives the details about the
design goals these are discussed in Section 4. Proposed work describing the implementation of
data transformation, query and the search phase is in Section 5.Performance evaluation results
are listed in Section 6. Conclusions are presented in Section 7.

2. RELATEd wORKS

We have listed out various work related to similarity search on cloud environment, along with their
advantages and diadvantages.

The techniques present in (Yiu et al., 2012),(Pepsi and Mala, 2013),(Kuzu, Islam and Kantarcioglu,
2012),(Sun et al., 2014) helps in accomplishing the similarity search over encrypted data and helps in
search process to happen while preserving the data privacy. FDH (Flexlible Distance Based Hashing)
(Yiu et al., 2012) shift the search functionality to the server with a single round of communication,
but do not assure of providing accurate result. Kuzu et al., (Kuzu, Islam and Kantarcioglu, 2012) uses
LSH for fast similarity search which is tolerant to typographical errors . (Sun et al., 2014) also uses
the LSH to do similarity search on images. (Pepsi and Mala, 2013) does a dynamic similarity search
using content based retrieval. This ability to search dynamically was helpful in medical industry to
retrieve lung images.

Consider various parameters to do similarity search (Xia et al., 2014),(Hjaltason and Samet,
2003),(Amato and Savino, 2008) various parameters to do similarity search over encrypted cloud,
similarity search based on distances and search based on metric spaces respectively. (Xia et al., 2014)
returns files which are semantically related to the keyword but need to protect semantic information
from the files. (Hjaltason and Samet, 2003) use M-tree to have a fast similarity search, but suitable
only when we have a large amount of data. (Amato and Savino, 2008) use inverted files to obtain
similarity search. This can be applied to any application which works on any such paradigm and can
be modelled using metric space.

Important concepts in (Ciaccia, Patella and Zezula, 1997),(Bozkaya and Ozsoyoglu,
1999),(Agrawal et al., 2004) help in carrying out similarity search on metric space. (Ciaccia, Patella
and Zezula, 1997) proposed M-tree to organize and search large data sets from generic metric
space. They perform well in high dimensional space and are more efficient than R* tree. (Bozkaya
and Ozsoyoglu, 1999) uses MVP tree which is created in atop down fashion on a given set of data
points and hence guarantees a balance tree. (Jang, Yoon and Chang, 2013) offer a spatial data base
encryption scheme that produce a transformed data base by using network distance among POIs
(point of interest). Hence reduces the search range.

Indexing concept mentioned in (Kozak and Zezula, 2013),(Hong Lu et al., 2006),(Bin Cui et al.,
2005),(Gil-Costa and Marin, 2012) play an important role in performing similarity search. (Kozak
and Zezula, 2013) propose two new similarity indexes EM-Index and DSH Index that are apt for
search systems outsourced in a cloud and also guarantee data privacy. EM-Index proves profitable
by supporting precise evaluation of the range queries and efficient update operations while DSH
guarantee higher privacy level. (Hong Lu et al., 2006) propose an efficient solution, called the Ordered
VA-File (OVA-File) which addresses the problem of content-based video indexing. A high query
result is obtained in the proposed method when compared to other two existing methods VA-file
based method and iDistance. (Bin Cui et al., 2005) uses an indexing structure called ∆ -tree. This
indexing method helps in lowering the cost of computing and cache misses because the search process
can reduce the space to be searched efficiently. (Gil-Costa and Marin, 2012) works on indexed metric
space where query processing can happen in parallel manner. Scheduling algorithm is applied onto
a global index which gets evenly distributed on the processors and hence helps to achieve good
performance.

Concepts and the ideology of K-NN (Nearest Neighbour) are discussed in (Khoshgozaran and
Shahabi, 2007), (Connor and Kumar, 2010),(Wong et al., 2009),(Hajebi et al., 2011). (Khoshgozaran

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

35

and Shahabi, 2007) realizes K-NN query by mapping the static and dynamic objects after applying
one way transformation to another space and the query can be resolved blindly in the transformed
space(Hilbert space). (Connor and Kumar, 2010) fostered K-NN graph construction using
Morton ordering. Linear list of numbers is achieved as a result of applying Morton ordering on to
N-Dimensional space. The algorithm favours faster construction of K-NN graphs and uses less space.
(Wong et al., 2009) formulate a new Asymmetric Scalar-Product-Preserving Encryption (ASPE)
aims to support K-NN computation on encrypted data by constructing secure schemes. APSE profits
by giving a very low cost and resist different overhead cost at various level of practical attacks by
considering different background knowledge. (Hajebi et al., 2011) introduce a new algorithm that
helps in resolving the nearest neighbor search problem by performing hill-climbing on a K-NN graph.

Similarity search concept is considered in the following references (Xia et al., 2013),(Tsymbal
et al., 2014),(Popivanov and Miller, 2002). (Xia et al., 2013) performs similarity search on encrypted
images based on a secure transformation method. The transformation used does not mortify the
result accuracy and also keeps the confidentiality of the data intact. (Tsymbal et al., 2014) share their
experience gained by translation of a similarity search-based clinical decision support system called
“Case Reasoner”. They help in advanced similarity search and case retrieval-based solutions with
lower computational complexity. (Popivanov and Miller, 2002) permit proficient similarity search
over time-series where data is of high-dimensions and considers the use of wavelet transformations
for reducing the dimensions.

There are many third party security issues related to the clouds; bussiness clouds are one among
them, since it cater to many people and store huge amount of confidential data. (Chang, Kuo and
Ramachandran, 2016) introduce a frame work designed for business clouds called CCAF multi-layered
security. It can detect and block various types of viruses and trojans . This security model would help
businesses to run smoothly by proctecting their data and assets using (Chang and Ramachandran, 2015).

3. BACKGROUNd

Two basic solutions exist to derive the results from the third party server while preserving the privacy:

3.1. Brute Force Secure Solution
The objects will be uploaded to the server only after the data owner encrypts them by applying a
symmetric key. Actual result is calculated after the client places a query at the query time and the
encrypted objects are downloaded from the server. The method is absolutely secure due to the use
of encryption, but there is an increase in the communication cost due to the downloading of all the
objects, even the data objects not concerned with the query. Hence the method is not suitable for the
present day needs.

3.2. Anonymization-based Solution
Data privacy for the anonymization-based solution can be achieved by the k-anonymity and not by
the encryption. Here we assume that there exists k number of objects and the generalization happens
in such a way that every object that is generalized cannot be discriminated from other k-1 objects
which are generalized. Hence by following generalization scheme the transformed objects ranking
can be confused. The confusion created help to represent that the k-1 objects has the same rank as
the transformed object of the actual nearest neighbor. The clustering-based anonymization technique
of (Aggarwal et al., 2006) can be applied for arbitrary metric space data. Each bucket is represented
by Minimum Bounding Sphere (MBS).

The anonymization-based solution has a limitation; the MBRs/MBSs (Maximum/Minimum
bounding Rectangle/Sphere) may contain lot of empty space as they are dealing with multidimensional
data, causing them to retrieve large number of buckets. On contrary in the proposed method the anchors

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

36

are changed to IDs and distance information is changed to numbers and only what is concerned with
the query are retrieved, not less nor more.

3.3. Indexing and NN Search on Metric Space

R*-Tree: It is capable of accessing multidimensional points and spatial data. Queries and operations,
such as map overlay, rectangles and multidimensional points can be easily dealt using R*-tree.
Data containing many dimensions can be stored by using X-tree whose indexing structure is based
on R-tree. R tree and X tree are renowned disk based indexes for multi-dimensional objects. Data
objects which are complex ex: time series, cannot properly match up to by the co-ordinate values.

VP Tree: Data in the metric space is isolated by choosing a position in the space, this is called Vantage
Point (Vp). The data points are divide into two partitions, those which are at close proximity to
the server and those which are farther away from the Vp. Feature vector of fixed dimensions can
easily be represented by index objects.

MVP: Objects can be indexed using an abstract data structure called Multi vantage point (Mvp).
Similarity query can be applied on large metric spaces using distance based index which is
constructed using Mvp-tree. Similarity partitioning strategy are made use in the Mvp-tree and
Vp-tree where they do not use pre computed distances and use only one Vantage point.

Mtree: Mtree is a dynamic distance-based index structure for metric domains. M-tree is more
competent than R*-tree in terms of input /output cost and distance optimization. They perform
well in high dimensional space. The disadvantage is that the objects are entered randomly, the
parent node is located by travelling from the root of the tree until the node itself is found.

3.4. Encrypted Hierarchical Index
It is a hierarchical indexing structure which is built on the Metric Space(MS) object data set; these
nodes are encrypted using a symmetric key algorithm and address of the root node is made public.
Mindistance and maxdistance functions are used for the data transformation which makes the algorithm
secure. The search service is at the client side. The client request for nodes, decrypts them and applies
the search function on these nodes; a new set of nodes are requested again from the server until the
required result is found. There exists a considerable traffic between the server and the client due to
multiple communication round trips; a reason for increased communication cost. There is an additional
overhead on the client due to the search procedure which takes place on its side. The method suffers
from relatively very low search efficiency.

3.5. Metric Preserving Transformation (MPT)
Metric Preserving Transformation makes use of an order-preserving encryption()OPE . The function
f R R: → is said to be order-preserving f(x) > f(y) iff x > y. A set of anchor objects A are selected

from the data set P;where each object is assigned an anchor object A
i
. The distance is computed for

objects with respect to anchor objects. An OPE is applied on these distances and then uploaded to
the server. The application of OPE serves as the transformation function. MPT needs two round trip
communications during the query phase. The method is sufficiently secure but not well suited for
dynamically changing data.

3.6. Flexible distance-based Hashing

In the build phase, a set of n anchor objects is chosen and each anchor ai is assigned a range r
i
.

Then, for every object o a bitmap of length n is created; the i th bit of this bitmap equals to zero if
d a o r

i i
(,)≤ , otherwise it equals to 1. The objects are encrypted and are stored on the server along

with their bitmap representation. Here bitmap is used as the data transformation function. Here the

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

37

client is given the liberty to select and vary the θ value; the server returns θ number of objects that
are closest to the bit map representation of the query. This approach accomplishes the best
communication cost because of the very compact bit map representation; only drawback being it
innately supports only approximate search queries.

4. PROBLEM STATEMENT ANd SySTEM MOdEL

Nearest neighbour search and Range queries are key subclasses of similarity search. Similarity Search
is mostly performed on the complex objects like the metric space objects. The previous methods used
multiple communication rounds to get the result, hence we work on reducing the communication
round to as low as 1.

Objectives:

1. The data owner allows only authorized clients to run search queries on a third party cloud
server and get results from it.

2. To avoid the overhead on the client side, search should be performed on the server side as
much as possible.

3. Communication cost should be as minimal as possible between the client and the server.
4. Data on the server should be stored in a secure way.

4.1. System Model

1. Data Owner: Owns the data and allows to outsource the search service.
2. Server: Server(s) is a third party similarity cloud used to store the data. The data owner does

not trust the server (server can be attacked and data from it leaks to an attacker).
3. Authorized Client: Access the data by using the secret key and retrieves the data needed by

using the search service.

The system model has 3 elements as shown in Figure 1: data owner, client and server. Data owner
desires that the data be made available to the authorized clients, but to do so he has to host his data
on the server which he does not trust. Hence the data owner encrypts the data and uploads to the
server. He applies a standard encryption method (symmetric key encryption algorithm e.g., AES) on
the data set of original objects; this results in encrypted objects. These encrypted objects along with
their Ids are uploaded to the server and stored in a relational table (or in the file system). The original
objects are subjected to two steps of data transformation DT1 and DT2; the values obtained during
the second step of transformation are sent to the server to be indexed (DT1 and DT2 are explained
in section 5.1). This step is necessary to maintain privacy of the objects uploaded. The original data
objects can be anything such as time series, graphs, strings, medical data, and scientific data. Search
service is outsourced by the data owner to the server. Data owner shares a secret key with his clients.
The clients having the secret key are authorized to use the search service. The client issues a query
and must have the key as a proof of its authorization to the server. The server processes the query
and returns the similarity result to the client.

4.2. design Goals
4.2.1. Use of Relational Database
A relational database allows you to easily find specific information. The sorting is based on any field
and generates reports which contain only particular fields from each record. A relational database

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

38

makes use of tables to store information. In a table, rows and columns correspond to field and records.
Information can be quickly compared because the data is arranged in columns. The relational database
is advantageous because of its uniformity, hence helpful to build completely new tables out of required
information from tables which are already existing. A small table is created with the locations that
can then be used for various purposes by other tables in the database. A large database, like the one
a big Web site, such as Amazon and contains hundreds or thousands of tables all are used together
to speedily find the exact information needed at any given time.

4.2.2. Use of Distance Object Tree Structure to Fetch the Exact Object Queried:
In a M-tree, objects are entered randomly, hence searching for a particular object takes more time.
In our approach we keep the objects in a sorted way this would help in fetching the object faster.

5. PROPOSEd wORK

There are four phases in RSSMSO technique:

5.1. data Transformation
The original objects are transformed and then uploaded to the server. Transformation is important
in the aspect of security; objects which are transformed and indexed on the server are having less
chances of being understood by the third party like the server or the attackers. The prime concern
of the data owner is the privacy of the data kept on these servers and also being able to cater to his
authorized clients which lead to the need of data to be transformed. It consists of two stages for Data
Transformation(DT):

DT1: The distance function dist(,)a b
x y

 is said to be a metric if it satisfies symmetry, nonnegativity,
and triangle inequality. This value obtained from the function dist (,)a bx y is used to compute the
dissimilarity between objects a

x
 and by .

The proposed algorithm uses the Euclidean distance function. It is a straight line distance between
two points in space. This distance in space are Metric Space.

Figure 1. System Architecture

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

39

Consider an Euclidean plane; X(x
1
, x

2
) and Y(y1 , y

2
) then the distance between X and Y or

the distance between Y and X is given by:

dist X Y x y x ye (,) = () ()1 1
2

2 2
2− + − (1)

Example: Let X(2, 3) and Y (4,5)

dist X Y
e
(,) = ((2 4) (3 5) = 2.82842 2− + − (2)

In general, for an n-dimensional space, where X x xn(, ,)1 … and Y y y
n

(, ,)
1
… the distance is:

dist X Y x y x ye n n(,) = () ()1 1
2 2− + + −… (3)

Table 1. Notations

Symbols Definition

P Data set (set of original objects).

P’ Set of transformed objects.

pi Any object in the data set.

pi
│ Transformed object.

p.id id of the object p.

CK Encryption key.

ECR(x,CK) Encrypting x using CK.

DCR(y,CK) Decrypting y using CK.

diste(a,b) Euclidean distance.

disto(a,b) Object distance.

θ Integer value used in query phase.

doi
 ith distance object, i = 1 to n .

disti
 ith distance from the anchor object, where i =1 to n .

Eoi
 ith encrypted object, i = 1 to n .

qdist distance of the query object from the anchor object.

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

40

DT2: This stage is required to give a sufficient amount of obfuscation about the values indexed
in the server.

dist dist S
o e
= / (4)

substituting (2) in (4)

disto = (2.8284 / 2) =1.189 (5)

Assume S to be the size of the data set(in terms of number of dimensions).
As a result, the original objects P p p p

n
(, , ,)
1 2
… have been transformed to ′P p p pn(', ', , ')1 2 …

Algorithm 1. RSSMSO Algorithm
Build Phase
Input: Set of original objects
Output: Distance for each object in the data set with respect to
anchor object
Function: Build (P, CK)
1) Choose an object randomly from the data set P as an anchor
object;
2) For each object p

i
uptop

n
 where p

i
∈ P and p

i
!= Anchor object A

o

do;
3) Compute the dist

e
(A

o
, p

i
);

Compute the dist
o
 /*distance between anchor object and object*/

4) Compute ECR(p
i
, CK); /*encrypt each object with secret key*/

5) Send the tuple<p.id, ECR(p, CK), dist> to the server;
Query Phase
Input: Client Sends q, A

o
 and θ to the Server

Output: Decrypted Result Object
Function: Client Request (q, A

o
, θ)

1) Compute the dist
e
 (A

o
,q);

Compute the dist
o
 (dist

e
);/* qdist*/

2) Send query to the server
qdist ≤ distance object tree = dist1; with respect to θ
/*qdist is the query object distance with respect to the anchor
object*/
qdist ≥distance object tree = dist2; with respect to θ
/*any one of the distance among dist1 and dist2 are selected,
hence θ =1*/
3) Request θ tuples < θ=1, dist

o
> ;

/*tuple contains the θ value and the distance value */
4) An encrypted result object is received by the client;
5) DCR(p

i
’, CK);/* Decrypt the object to get the final search

result*/

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

41

5.2. Build Phase
Build phase takes data set P as the input and the encryption key CK. The data set P can contain n
number of objects, which can be represented as P p p p

n
(, , ,)
1 2
… ; these objects may also be called

as original objects. A symmetric key algorithm is used for encryption. The choice of our algorithm
is AES, just because of its sheer advantages. The key length is around 128 bits or could have a bigger
key length according to the confidentiality and the size of the data set. AES is easy to implement,
more secure and less prone to attacks.

The build phase mainly occurs at the data owner side. Any random object p Pi ∈ is selected
to be an anchor object. The similarity or dissimilarity of the query object is found with respect to the
other objects in the data set with reference to the anchor object. Each object is given an id denoted
as p.id. Distance computation (as per Section 5.1) of all the objects in the data set is computed with
respect to the anchor object. These transformed distances are indexed at the server side. In the tree
structure as shown in Fig 2, every object is linked except the anchor object. The root node is having
the least DT2 value (that is the object which is most nearest to the anchor object), the second one
having the second least DT2 value with respect to the anchor object and so on. The data set gets
sorted after it gets uploaded to the server. The tree structure might change dynamically during an
update because an anchor object is randomly chosen every time when the data set is uploaded. The
objects are encrypted and stored at the server side in the file system or a database. In a tuple data
owner sends the id, encrypted object and the distance.

5.3. Query Phase
Query phase occurs at the client side. The query is submitted to the server in order to know if there
exist data which is required by the client. In the previous FDH algorithm the client had to choose
various θ values in order to get approximation of the result. In the proposed RSSMSO algorithm,
the value of θ is 1, we get the most apt and exact result from the server side. The result received
from the server is in encrypted format, the client uses its key to decrypt the object.

5.4. Search Phase
The search phase takes place on the server. The main concern is to search for most similar object with
respect to the query object and at the same time maintaining the privacy of the data stored at the server.

Figure 2. Distance Object Tree

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

42

The server finds the nearest object with respect to the queried object at the Server side when the
query is received from the client:

qdist≤ distance object tree = dist1 with respect to θ // qdist is the query object distance with
respect to the anchor object.

qdist ≥ distance object tree = dist2 with respect to θ
if θ=1 ; we consider a value which is greater (qdist≤ distance object tree = dist1) and a value

which is lesser (qdist≥ distance object tree = dist2) than the query distance value. These values are
fetched from the distance object tree. The value nearest to the qdist is chosen as the resultant object.

if θ= 2; we consider two values which is greater (qdist≤ distance object tree = dist1) and two
value which is lesser (qdist≥ distance object tree = dist2) than the query distance value. These values
are fetched from the distance object tree. Among these four values, one value which is closest to the
qdist is chosen as the resultant object.

Note: our aim is to always have θ=1, hence we consider any θ value greater than 1 as a ruled
out option.

1. if dist1 and dist2 are equal distance from the anchor object then, dist1 from distance object tree
is sent to the client.

2. if dist1 is more closer to the query object than dist2, then dist1 is sent from distance object tree
to the client.

3. if dist2 is more closer to the query object than dist1 then, dist2 is sent from distance object tree
to the client.

The following example shows how the algorithm works for various theta values:
Example:

When θ = 1
 ◦ if the query object distance with respect to the anchor is 7 and the following are distances

in the distance object tree; 3,4,5,8,10
 ◦ 7 is compared with values stored in the tree
 ◦ qdist≤ distance tree = dist1

7≤ 8, hence the dist1=8
 ◦ qdist≥ distance tree = dist2

7≥ 5, hence the dist2 = 5
 ◦ dist1 is chosen to be sent to the client as it is only one unit far from the query, where as dist2

is 2 units away from the query
 ◦ More closer the distance from the query, more accurate is the result.

When θ> 1; assuming θ =2, two value with respect to dist1 and dist2 are chosen from the tree, the
nearest among the 4 values is chosen to return to the client. The nearest would be one among
the four values .This is a ruled out option since exact result is got when θ=1, θ >1 would
increase the overhead.

When θ<1; it is not possible since the result has to be returned to the client.

6. PERFORMANCE

We evaluate the performance of the RSSMSO based on the real world data set gene expression data
matrix. The experiment involves a server and a client. The implementation is done using Java on
windows platform using Intell core i3 CPU 3217 U, with a processor speed of 1.80 GHz. The distance
tree is hosted on Open shift cloud; Redhat. Gene expression data matrix gained from a Microarray
experiment on YEAST. Each entry signifies the expression level of a specific gene at a specific

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

43

condition. The data set used is highly enriched for genes of similar function. YEAST expression
matrix datasets is taken from (Cheng and Church, 2000). The matrix consists of 8224 rows and 17
columns, each element occupies 4 bytes of data, where -1 in the matrix indicates a missing value.

In FDH algorithm the value of θ should be varied in order to get a result nearer to the query
object. Table 2 shows the result measure of FDH in comparison with the RSSMSO algorithm. At
FDH, lesser the θ value, greater the result measure and a very high θ value is needed to make the
result measure 0. The RSSMSO algorithm returns the exact result at one communication round
without varying the θ value. The result measure remains 0 for any value of θ . The time complexity
applicable for the result measure with respect to FDH (Yiu et al., 2012) is O(n) where θ value has
to be varied n times to get result measure as zero, in comparision to RSSMSO the complexity is
O(1) because result measure is zero at θ = 1

In Figure 3, FDH algorithm for θ = 10, the graph starts from higher value; the θ value increases
then the result measure reduces slowly. For θ = 600 and θ = 900 there is constant line RM=108
and hence we increase the θ to a higher value; for example, if θ = 1500 then RM=0, hence there
is a steep reduction in the graph. The RSSMSO algorithm shows no variations and hence the graph
remains constant at zero, because the result measure is zero starting from the first attempt.

Table 3 shows reading based on communication cost. Communication cost is the amount of data
that is transferred between the server and the client while varying the value of θ . The communication
cost increase in FDH as the θ value increases, the proposed RSSMSO algorithm gets the exact result
at θ =1. In FDH, θ = 10 gives communication cost of 12.302 Kb. As the value of θ is varied to
get the exact result which occurs at θ = 1500 the communication cost of 1829.526 Kb is very high
in comparision to RSSMSO where the communication cost is 1.342 Kb with θ = 1. The complexity
of communication cost between client and the server in FDH is O(n), because the value of θ is varied
n times until exact results is found. In comparison to FDH, RSSMSO has complexity O(1), since
the result is obtained at the first attempt; the communication cost will be low between the client and
the server.

Table 4 shows the comparison between existing method FDH (Yiu et al., 2012) and the proposed
method RSSMSO with respect to various parameters like θ , Communication cost (in terms of Kbytes
and in millisecond) and result measure.Where, θ is an integer value required to get the accurate
result.

Communication Cost: Measure of cost during communication between server and the client. This
can be measured in 2 terms:

Table 2. Comparison of result measure

FDH (Yiu et al., 2012) RSSMSO

θ Result measure θ Result measure

10 163.521 1 0

50 150.087 50 0

200 121.07 200 0

300 113.688 300 0

450 108.056 450 0

600 108.056 600 0

900 108.056 900 0

1500 0 1500 0

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

44

A. Kilo bytes(Kb): amount of data communicated from server to client after the query has been
submitted to the client.

B. Milli seconds (ms): time required to send the result after every query.
Result Measure (RM): Distance between the query object and the result object.

The first row in the table 4 shows the experiment done on a data set of having 6273 objects. FDH
requires various values from (1, 10 and 20) to get the accurate result. RSSMSO on the other hand
needs θ=1 to get the accurate results. The cost in terms of bytes is more 1.353+12.501+24.853=38.707
Kb) compared to (1.341 Kb) in RSSMO. The cost in milli seconds (143+116+118=877 ms) compared
to 165 ms to get the accurate result. RM=0 represents that there is zero distance between the query
object and the result object. Experiments have been carried out on various sizes of objects to prove
the efficiency of the proposed system.

Figure 3. Distance between the Query Object and Result Object in Comparison with FDH and RSSMSO

Table 3. Communication cost with respect to θ value

FDH (Yiu et al., 2012) RSSMSO

Communication cost
in Kb

θ Communication cost
in Kb

10
50
300
600
1500

12.302
61.054
366.014
731.790
1829.526

1 1.342

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

45

7. dISCUSSION

Our aim is to reduce the communication round to as low as 1. We consider communication round as
number of times the server and the client need to communicate to get to the result object.

Distance function is closely related to similarity function. A similarity function is defined over
pairs of points which measures the similarity of the two points. Similarity function is inversely realted
to distance function. If a pair of points are very similar to one another, the distance between them
is small. We make use of a distance function (Euclidean distance) . DT1(Data Transformation1)
and DT2(Data Transformation2) are combinedly used in both build phase and quey phase. We also
consider them as steps for data transformation.

• DT1 is used for finding the similarity distance between the objects and also we consider it as
the first step to data transformation. The similarity value gained from DT1 is used in the second
step of transformation.

• If we store the DT1 values on the server there are possibilities that an intruder would observe the
values and the privacy of the data owner would be invaded. Hence we introduce a second step
“DT2” to further transform the DT1 values. Data owner computes DT1 and DT2 on the metric
space objects (original objects). To add security, only DT2 values are uploaded to the server by
the data owner. The distance object tree stores the DT2 values on the server. Similarly, the client
computes the DT1 and DT2 values, but sends only the DT2 values to match for a similar object
on the server during the query phase.

Theta (θ) is a measure used to increase the accuracy of the results (result object) fetched from
the server and reduce the communication cost.

• Our aim is to have θ=1, hence we consider any θ value greater than 1 as a ruled out option.
• θ value is mentioned by the client when it communicates to the server in order to have better

accuracy. Client considers starting from θ =1 and it does not exceed 1.

Table 4. Comparison between FDH and RSSMSO with respect to θ , Communcation Cost and Result Measure

FDH (Yiu et al., 2012) RSSMSO

Size θ Cost ms RM θ Cost ms RM

369×17 = 6273 1 1.353 143 215.242 1 1.341 165 0

10 12.501 116 63.984

20 24.853 118 0

700×17 = 11900 1 1.353 420 310.942 1 1.341 260 0

150 185.813 110 52.431

200 247.729 461 0

1500×17 = 25500 1 1.358 202 160.885 1 1.342 189 0

150 185.990 110 42.556

400 491.566 732 0

2885×17 = 49045 1 1.354 252 327.434 1 1.342 189 0

300 371.938 495 42.556

1500 1856.558 15556 0

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

46

When θ=1

• Only one tuple (result object) which is exactly similar to the query object is fetched from the
server in a single communication round, hence low communication cost and less time consuming.

• RM=0 the object which is exactly similar to the query object is fetched from the server.

8. CONCLUSION

In this paper, we propose a similarity search technique which works on cloud computing environment
without letting the server invade the privacy of the data stored in it. Existing solutions offer tradeoffs
between privacy, query accuracy and communication cost. We introduce a concept which outsources
the search service to the server. The proposed RSSMSO algorithm performs data transformation on
the original objects before storing it on the server which ensures privacy. It also retrieves accurate
result at a θ value as low as 1; hence reduces communication cost between server and the client. We
express its efficiency by experimenting on real data set. We have compared with FDH (Yiu et al.,
2012) our proposed method outperform FDH in terms of communication cost and accuracy. It can
be applied to any application where the similarity search hypothesis can be modelled using metric
spaces.

REFERENCES

Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S. R., Panigrahy, R., Thomas, D., & Zhu, A. (2006). Achieving
Anonymity via Clustering.Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (pp. 153-162). doi:10.1145/1142351.1142374

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004). Order Preserving Encryption for Numeric Data.
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (pp. 563-574).
doi:10.1145/1007568.1007632

Amato, G., & Savino, P. (2008). Approximate Similarity Search in Metric Spaces using Inverted Files.
Proceedings of the 3rd international conference on Scalable information systems (pp. 1-10). doi:10.4108/ICST.
INFOSCALE2008.3486

Bozkaya, T., & Ozsoyoglu, M. (1999). Indexing large metric spaces for similarity search queries. ACM
Transactions on Database Systems, 24(3), 361–404. doi:10.1145/328939.328959

Chang, V., Kuo, Y., & Ramachandran, M. (2016). Cloud computing adoption framework: A security framework
for business clouds. Future Generation Computer Systems, 57, 24–41. doi:10.1016/j.future.2015.09.031

Chang, V., & Ramachandran, M. (2015). Towards achieving Data Security with the Cloud Computing Adoption
Framework (pp. 1–1). IEEE Transactions on Services Computing.

Cheng, Y., & Church, G. (2000). Biclustering of Expression Data. Retrieved from http://arep.med.harvard.edu/
biclustering

Ciaccia, P., Patella, M., & Zezula, P. (1997). DEIS-CSITE-CNR. Proceedings of the International Conference
on Very Large Data Bases (pp. 426-435).

Connor, M., & Kumar, P. (2010). Fast construction of k-nearest neighbor graphs for point clouds. IEEE Transactions
on Visualization and Computer Graphics, 16(4), 599–608. doi:10.1109/TVCG.2010.9 PMID:20467058

Cui, B., Coi, B. C., & Su, J. (2005). Indexing high-dimensional data for efficient in-memory similarity search.
IEEE Transactions on Knowledge and Data Engineering, 17(3), 339–353. doi:10.1109/TKDE.2005.46

Gil-Costa, V., & Marin, M. (2012). Load Balancing Query Processing in Metric-Space Similarity Search.
Proceedings of the12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)
(pp. 368-375). doi:10.1109/CCGrid.2012.30

http://dx.doi.org/10.1145/1142351.1142374
http://dx.doi.org/10.1145/1007568.1007632
http://dx.doi.org/10.4108/ICST.INFOSCALE2008.3486
http://dx.doi.org/10.4108/ICST.INFOSCALE2008.3486
http://dx.doi.org/10.1145/328939.328959
http://dx.doi.org/10.1016/j.future.2015.09.031
http://arep.med.harvard.edu/biclustering
http://arep.med.harvard.edu/biclustering
http://dx.doi.org/10.1109/TVCG.2010.9
http://www.ncbi.nlm.nih.gov/pubmed/20467058
http://dx.doi.org/10.1109/TKDE.2005.46
http://dx.doi.org/10.1109/CCGrid.2012.30

International Journal of Organizational and Collective Intelligence
Volume 6 • Issue 3 • July-September 2016

47

Hajebi, K., Abbasi-Yadkori, Y., Shahbazi, H., & Zhang, H. (2011). Fast Approximate Nearest-Neighbor Search
with k -Nearest Neighbor Graph.Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI) (pp. 1312-1317).

Hjaltason, G., & Samet, H. (2003). Index-driven similarity search in metric spaces. ACM Transactions on
Database Systems, 28(4), 517–580. doi:10.1145/958942.958948

Hubble, J., Demeter, J., Jin, H., Mao, M., Nitzberg, M., Reddy, T., Wymore, F., Zachariah, Z., Sherlock, G.
and Ball, C. (2009). Implementation of GenePattern within the Stanford Microarray Database. Nucleic Acids
Research, 37(Database), pp. D898-D901.

Jang, M., Yoon, M., & Chang, J. (2013). A k-Nearest Neighbor Search Algorithm for Privacy Preservation in
Outsourced Spatial Databases. International Journal of Smart Home, 21, 239-247.

Khoshgozaran, K., & Shahabi, S. (2007). Blind Evaluation of Nearest Neighbor Queries using Space
Transformation to Preserve Location Privacy. In Advances in Spatial and Temporal Databases (pp. 239-257).
doi:10.1007/978-3-540-73540-3_14

Kozak, S., Novak, D., & Zezula, P. (2012). Secure Metric-Based Index for Similarity Cloud. In Secure Data
Management (pp. 130-147). doi:10.1007/978-3-642-32873-2_9

Kozak, S., & Zezula, P. (2013). Efficiency and Security in Similarity Cloud Services.Proceedings of the Very
Large Data Base Endowment (pp. 1450-1455). doi:10.14778/2536274.2536334

Kuzu, M., Islam, M., & Kantarcioglu, M. (2012). Efficient Similarity Search over Encrypted Data. Proceedings
of the IEEE 28th International Conference on Data Engineering (ICDE) (pp. 1156-1167). doi:10.1109/
ICDE.2012.23

Lu, H., Ooi, B. C., Shen, H. T., & Xue, X. (2006). Hierarchical Indexing Structure for Efficient Similarity Search
in Video Retrieval. IEEE Transactions on Knowledge and Data Engineering, 18(11), 1544–1559. doi:10.1109/
TKDE.2006.174

Pepsi, M., & Mala, K. (2013). Similarity Search on Metric Data of Outsourced Lung Images. Proceedings of
theIEEE International Conference on Green High Performance Computing (ICGHPC) (pp. 1-6). doi:10.1109/
ICGHPC.2013.6533912

Popivanov, I., & Miller, R. (2002). Similarity Search over Time-Series Data using Wavelets.Proceedings of the
18th International Conference on Data Engineering (pp. 212-221). doi:10.1109/ICDE.2002.994711

Raghavendra, S., Geeta, C., Shaila, K., Buyya, R., Venugopal, K., & Patnaik, L. (2015). MSSS: Most Significant
Single-keyword Search over Encrypted Cloud Data.Proceedings of the 6th Annual International Conference on
ICT: Big Data, Cloud and Security (pp. 43-48).

Sun, X., Zhu, Y., Xia, Z., Chen, L., Li, T., & Zhang, D. (2014). Enabling Similarity Search over Encrypted
Images in Cloud. Information Technology J., 13(5), 824–831. doi:10.3923/itj.2014.824.831

Tsymbal, A., Meissner, E., Kelm, M., & Kramer, M. (2014). Towards Cloud-Based Image-Integrated Similarity
Search in Big Data. Proceedings of theIEEE-EMBS International Conference on Biomedical and Health
Informatics (BHI) (pp. 593-596). doi:10.1109/BHI.2014.6864434

Wong, W., Cheung, D., Kao, B., & Mamoulis, N. (2009). Secure k N N Computation on Encrypted Databases.
Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (pp. 139-152).

Xia, Z., Zhu, Y., Sun, X., & Chen, L. (2014). Secure semantic expansion based search over encrypted cloud data
supporting similarity ranking. Journal of Cloud Computing, 3(1).

Xia, Z., Zhu, Y., Sun, X., & Wang, J. (2013). A Similarity Search Scheme over Encrypted Cloud Images based
on Secure Transformation. International Journal of Future Generation Communication and Networking, 6(6),
71–80. doi:10.14257/ijfgcn.2013.6.6.08

Yiu, M., Assent, I., Jensen, C., & Kalnis, P. (2012). Outsourced Similarity Search on Metric Data Assets. IEEE
Transactions on Knowledge and Data Engineering, 24(2), 338–352. doi:10.1109/TKDE.2010.222

Zezula, A. G., Dohnal, V. and Batko, M. (2006). The Metric Space Approach. Proceedings of the Advances in
Database Systems (Vol. 32).

http://dx.doi.org/10.1145/958942.958948
http://dx.doi.org/10.1007/978-3-540-73540-3_14
http://dx.doi.org/10.1007/978-3-642-32873-2_9
http://dx.doi.org/10.14778/2536274.2536334
http://dx.doi.org/10.1109/ICDE.2012.23
http://dx.doi.org/10.1109/ICDE.2012.23
http://dx.doi.org/10.1109/TKDE.2006.174
http://dx.doi.org/10.1109/TKDE.2006.174
http://dx.doi.org/10.1109/ICGHPC.2013.6533912
http://dx.doi.org/10.1109/ICGHPC.2013.6533912
http://dx.doi.org/10.1109/ICDE.2002.994711
http://dx.doi.org/10.3923/itj.2014.824.831
http://dx.doi.org/10.1109/BHI.2014.6864434
http://dx.doi.org/10.14257/ijfgcn.2013.6.6.08
http://dx.doi.org/10.1109/TKDE.2010.222

	Masthead
	Table of Contents
	RSSMSO Rapid Similarity Search on Metric Space Object Stored in Cloud Environment

