
Future Generation Computer Systems 79 (2018) 765–775

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Resource provisioning for data-intensive applications with deadline
constraints on hybrid clouds using Aneka
Adel Nadjaran Toosi *, Richard O. Sinnott, Rajkumar Buyya
The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

h i g h l i g h t s

• A new data-aware provisioning algorithm is proposed to meet user-defined deadline requirements for data-intensive applications. The proposed
algorithm takes into account available bandwidth and data transfer time.
• The proposed provisioning algorithm is integrated into the Aneka platform. Aneka is extended to support theMicrosoft Azure ResourceManager (ARM)

deployment service model.
• In an actual hybrid cloud environment, we evaluate the proposed algorithm’s ability in meeting deadlines for a case study data-intensive application

in smart cities context.

a r t i c l e i n f o

Article history:
Received 3 February 2017
Received in revised form 26 April 2017
Accepted 30 May 2017
Available online 24 June 2017

Keywords:
Dynamic provisioning
Hybrid cloud
Aneka cloud application platform
Deadline-driven scheduling
Data locality
Network bandwidth
Data-intensive applications

a b s t r a c t

Cloud computing has emerged as a mainstream paradigm for hosting various types of applications by
supporting easy-to-use computing services. Among the many different forms of cloud computing, hybrid
clouds, whichmix on-premises private cloud and third-party public cloud services to deploy applications,
have gained broad acceptance. They are particularly relevant for applications requiring large volumes of
computing power exceeding the computational capacity within the premises of a single organization.
However, the use of hybrid clouds introduces the challenge of howmuch andwhen public cloud resources
should be added to the pool of resources – and especially when it is necessary to support quality of
service requirements of applications with deadline constraints. These resource provisioning decisions
are far from trivial if scheduling involves data-intensive applications using voluminous amounts of data.
Issues such as the impact of network latency, bandwidth constraints, and location of data must be taken
into account in order to minimize the execution cost while meeting the deadline for such applications.
In this paper, we propose a new resource provisioning algorithm to support the deadline requirements
of data-intensive applications in hybrid cloud environments. To evaluate our proposed algorithm, we
implement it in Aneka, a platform for developing scalable applications on the Cloud. Experimental results
using a real case study executing a data-intensive application tomeasure thewalkability index on a hybrid
cloud platform consisting of dynamic resources from the Microsoft Azure cloud show that our proposed
provisioning algorithm is able to more efficiently allocate resources compared to existing methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Data-intensive applications involving the analysis of large
datasets have become increasingly important as many areas of
science and business are facing thousand-fold increases in data
volumes [1]. The explosive growth of data is mainly driven by
the rapid expansion of the Internet, smart cities, social networks,

* Corresponding author.
E-mail address: adel.nadjaran@unimelb.edu.au (A. Nadjaran Toosi).

e-commerce, and widespread usage of high-throughput instru-
ments, sensor networks, Internet of Things (IoT) devices, accel-
erators, and supercomputers. This expansion forms a voluminous
amount of structured and unstructured data, known as big data,
that needs to be processed to be useful [1]. The ability to analyze
and process such large quantities of data has become an important
and challenging mission for many fields.

Cloud computing [2] platforms are becoming one of the most
preferred ways of hosting data-intensive applications. Challenges
posed by big data can be overcomewith the aid of cloud computing
services offering the illusion of an infinite pool of highly reliable,
scalable, and flexible computing, storage, and network resources.

http://dx.doi.org/10.1016/j.future.2017.05.042
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.05.042
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.042&domain=pdf
mailto:adel.nadjaran@unimelb.edu.au
http://dx.doi.org/10.1016/j.future.2017.05.042


766 A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775

However, in many cases, data is available in local IT infrastructure
with limited processing capacity, for example, a small cluster or
resources from local area networks (desktop grids). Therefore, it is
not time or cost effective to transfer the whole dataset to clouds
to be processed. To tackle this issue, the cloud bursting model can
be used in which an application runs in a private infrastructure
and bursts onto a public cloud when more resources are required.
This model has found broad acceptance due to its benefits such as
cost reduction and dealing with issues related to the location of
sensitive data [3].

To achieve the vision of cloud bursting, hybrid cloudmiddleware
is required to acquire and release resources from both local infras-
tructures and external cloud providers in a seamless fashion [4].
It is essential for such hybrid cloud middleware to make efficient
decisions regarding the workloads that must be outsourced to
the public cloud based on the timing and number of externally
provisioned resources tomeet deadline constraints of applications.
In such a setting, however, building a middleware that jointly
minimizes cost and meets the deadline for applications is far from
trivial [5].

There is a large body of literature aimed at cost and execu-
tion time minimization of running computational tasks in hybrid
cloud environments. These studies mostly overlook aspects such
as data locality, the impact of network bandwidth constraints,
and data transfer time which significantly affect the time and
cost performance of the scheduling. This is exacerbated for data-
intensive applications where the data transfer time to the external
cloud is often comparable to the computational time. In this paper,
one of our main goals is to take these aspects into consideration
for scheduling and resource provisioning of deadline-driven data-
intensive applications in hybrid cloud environments.

In this context, Platform-as-a-Service (PaaS) solutions offer var-
ious tools to implement scheduling and resource provisioning
policies in hybrid clouds. We exploit the Aneka platform [6] to
implement the proposed solution in this paper. Aneka is a PaaS
solution providing a middleware for the development and deploy-
ment of applications in hybrid and multi-clouds. Aneka provides
application developers with Application Programming Interfaces
(APIs) for transparently harnessing and exploiting the physical
and virtual computing resources in heterogeneous networks of
workstations, clusters, servers, and data centers. Earlier version
of Aneka had many features supporting multi-cloud and hybrid
computing. However, to provide wider support for scheduling and
resource provisioning of data-intensive applications, we incorpo-
rate additional functionalities into Aneka.

In this paper, we make the following key contributions:

• We propose a new data-aware provisioning algorithm
meeting the deadline requirements of applications execut-
ing in hybrid cloud environments. The proposed algorithm
makes provisioning decisions by taking into account the
data transfer time of scheduling tasks onto public cloud
resources. This significantly affects data-intensive applica-
tions requiring large amount of data transfer. The main
novelty of our approach is that while the solution takes
into account bandwidth and data locality, it continually and
dynamically updates scaling decisions based on the changes
in the average runtime of the tasks and data transfer rates.
• The proposed algorithm is plugged into the Aneka platform

that allows dynamically adding and removing resources
from public clouds into the Aneka resource pool to meet
user-defined application deadline requirements.
• Aneka is extended to support dynamic resource provision-

ing capabilities based on theMicrosoft Azure ResourceMan-
ager (ARM) deployment service model.

• In an actual hybrid cloud environment built using local
resources (desktop machines) and Azure virtual machines,
we compared our method with existing approaches and
demonstrated Aneka and its new provisioning algorithm’s
ability to meet deadlines for data-intensive applications. As
a case study, a data-intensive application in the smart cities
context is employed to measure the walkability index for
different neighborhoods of the city of Melbourne utilizing
spatial analysis of a large dataset [7].

The rest of the paper is organized as follows: Section 2 presents
the motivation for this work and defines the problem domain.
Section 3 outlines a general overview of the Aneka framework
and describes the dynamic provisioning mechanisms of Aneka.
Our proposed algorithm for deadline-driven data-aware resource
provisioning is described in Section 4 and its realization in Aneka
is discussed in Section 5. Section 6 is dedicated to a performance
evaluation of the proposed algorithm. It discusses the hybrid cloud
testbed built on top of computing resources from desktop grids
and theMicrosoft Azure cloud. Then, it describes the data-intensive
case study application focused onmeasuring the walkability index
and the assorted experimental results. Section 7 presents related
work. Finally, Section 8 presents conclusions and offers future
directions.

2. Motivation and problem domain

One of the main challenges for efficient scaling of applications
is the location of the data relative to the available computational
resources [8]. Co-locating data and computation is evidently ideal
in terms of performance especially for data-intensive applications.
However, this is not always feasible for various reasons. For exam-
ple, data might be located in the storage nodes of the user’s local
organizational infrastructure (e.g., a cluster or desktop grid) with
limited or overloaded computational resources and the user facing
deadline constraintsmayprefer to leverage on-demand computing
resources from a public cloud provider to reduce the execution
time of the application.

In the above particular scenario, it may not be ideal for the
user to move the entire dataset to the cloud as the data transfer
time, due to the data size and network bandwidth,might dominate
over the performance gain resulting from utilizing external CPUs.
Moving data to distant computational resources, in particular for
big data anddata-intensive applications, to get access tomoreCPUs
is often inefficient and can become the bottleneck in many cases.
Therefore, any scheduling and resource provisioning algorithm
aimed at improving data-intensive application performance by
dynamic acquisition of cloud resources must take into account
the time and amount of data movement. In other words, attempts
to address the scheduling problem of data-intensive application
would not be successful if they take into account computation
separately from data movement. Accordingly, we focus on data-
aware scheduling of data-intensive application considering data
locality as well as monetary and performance costs of transferring
data that has been neglected by many other scheduling methods
in the literature.

Specifically, we focus on characteristics and requirements of
hybrid cloud schedulers for executing deadline-constrained Bag-
of-Tasks applications having large volumes of data. We assume
that the application workload consists of a number of parallel
tasks that each can run on an independent computing node. In
addition, each task is associated with a dataset residing within
the local infrastructure of the user that has to be fully transferred
to the public cloud for those tasks to be executed on externally
provisioned computational resources. Finally, the application has
a deadline by which all its tasks must finish their execution.



A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775 767

Fig. 1. Aneka programming models.

In a hybrid cloud setting, the execution of an application hap-
pens through cloud bursting deployment models. Cloud bursting
allows an application to run in a private data center and burst
into a public cloud when more resources are required to meet a
given deadline. In this paper, the application is primarily scheduled
on private resources allocated from organizational infrastructure
based on a best-effort algorithm. The scheduling algorithm needs
to compute the time left for the deadline based on the average
runtime of tasks. Extra resources from public clouds are dynami-
cally allocated if the scheduling algorithm determines the number
of resources (locally) acquired by the application is insufficient
to meet the deadline. This process must take place repeatedly to
continually update the average runtime of tasks. Note that in the
remaining part of the paper, we use the term runtime to refer to the
time period required to execute a task and the term execution time
to refer to the total execution time of the application.

The main new added feature compared to our previous work is
that the scheduler explicitly takes into account the size and trans-
fer time of input/output data for the estimation of the required
resources. We employ the Aneka middleware as the basis for
supporting the proposed scheduling and provisioning algorithms
to transparently execute the application in a hybrid cloud setting.

3. Aneka and dynamic resource provisioning

Aneka [6] is a software platform and framework facilitating
the development and deployment of distributed applications onto
clouds. It offers a collection of tools to build, control, and mon-
itor cloud environment. The Aneka cloud built up this way can
be composed of a collection of heterogeneous resources from a
public cloud virtual infrastructure available through the Internet,
a network of computing nodes in the premises of an enterprise, or
a combination of both. Aneka provides developerswithApplication
Programming Interfaces (APIs) for transparently exploiting physi-
cal and virtual resources in the Aneka cloud. Developers express
the logic of applications using programming models and define
runtime environments on top of which applications are deployed
and executed. As shown in Fig. 1, Aneka currently supports four
different programming models [6]: Bag of tasks model, Distributed
threads model,MapReduce model, and Parameter sweep model.

3.1. Aneka architecture

The core components of the Aneka framework are designed and
implemented in a service-oriented fashion. We briefly describe
the architecture and the fundamental services that comprise the
Aneka platform. Following this, we focus on the scheduler and
provisioning services that are central to this paper.

Fig. 2 provides a layered view of the Aneka components. Aneka
provides a runtime environment for executing applications by
leveraging heterogeneous resources on the underlying infrastruc-
turebuilt on the top of computingnodes employed fromnetwork of
workstations, clusters, grids, and data centers. In other words, the

infrastructure layer is a collection of nodes hosting components of
Aneka middleware.

Themiddleware provides a collection of services for interactions
with the Aneka cloud. The container represents the unit of deploy-
ment of Aneka clouds and the runtime environment for services.
The core functionalities residing in the Platform Abstraction Layer
(PAL) constitute the basic services that are used to control the
infrastructure of Aneka clouds. It provides a uniform interface for
management and configuration of nodes and the containers in-
stances deployed on them in the infrastructure layer. Middleware
is composed of two major components representing the building
blocks of Aneka clouds: the Aneka Daemon and Aneka Container.
Each node hosts the Aneka daemon and one or more Aneka con-
tainer instances. The daemon is a management component con-
trolling the container instances installed on the particular node.
A node forms the infrastructure layer running the Aneka master
containerwhich plays the role of resourcemanager and application
scheduler. Nodes runningAnekaworker containers are responsible
for processing and executing work units of the applications. In ad-
dition, each container provides a messaging channel for accessing
features of different services provided by the container. There are
three classes of services characterizing the container:

1. Execution services: are responsible for scheduling and exe-
cuting applications. Specialized implementations of these
services are defined for execution of work units of each
programming model supported by Aneka.

2. Foundation services: are in-charge of metering applications,
allocating resources, managing the collection of available
nodes, and keeping the services registry updated.

3. Fabric services: provide access to the physical and virtual-
ized resources managed by the Aneka cloud. The Resource
Provisioning Service (RPS) enables horizontal scaling out and
allows for elastic and dynamic growth and shrinkage of the
Aneka cloud to meet Quality of Service (QoS) requirements
of applications.

The services of the middleware are accessible through a set of
interfaces and tools in the development and management layer. The
Software Development Kit (SDK) embodies a collection of abstrac-
tions and APIs for definition of applications and leveraging existing
programmingmodels. TheManagement Kit contains a collection of
tools for management, monitoring, and administration of Aneka
clouds. All the management functions of the Aneka cloud are
made accessible through theManagement Studio, a comprehensive
graphical environment providing a global view of the cloud for
administrators.

3.2. Aneka scheduling and dynamic resource provisioning

Dynamic provisioning is the ability to dynamically acquire re-
sources and integrate them into existing infrastructures and soft-
ware systems. In the most common case, resources are Virtual
Machines (VMs) acquired from an Infrastructure-as-a-Service (IaaS)
cloud provider. Dynamic provisioning in Aneka happens as part of
the Fabric Services by offering provisioning services for allocating
virtual nodes from public cloud providers to complement local
resources. This is mainly achieved as a result of the interaction
between two services: the Scheduling Service and the Resource
Provisioning Service. The former triggers on-demand provisioning
requests based on the system status and the requirements of ap-
plications, while the latter is responsible for interacting with IaaS
providers to instantiate VMs and deploy Aneka containers to meet
the requests.

Execution of applications in Aneka happens through allocating
tasks to the available set of resources in a dynamic fashion using
the existing scheduling algorithms. Scheduling algorithms might



768 A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775

Fig. 2. Aneka framework overview [6].

be designed to leverage dynamic provisioning to cope with the ap-
plication or system requirements. The scheduling algorithmmakes
decisions regardingwhen andhowmany resource allocationsmust
take place to meet the application QoS requirements.

Aneka supports interactions with different resource providers,
e.g., Amazon Elastic Computer Cloud (EC2), Microsoft Azure,
XenServer, and GoGrid, using its dedicated provider-specific re-
source pool component. The main operations performed by this
component are the translation of provisioning requests into
provider specific requests, controlling the life cycle of VMs, and
shutting them down when they are no longer needed. The life
cycle of resource pools and redirecting provisioning requests, their
release, or directing queries to the appropriate pool is the re-
sponsibility of the pool manager component. The pool manager
also notifies the provisioning service when a dynamic resource is
activated and terminated. Fig. 3 illustrates a schematic overview of
Aneka’s dynamic provisioning mechanism.

Aneka features several provisioning algorithms that are de-
signed to support dynamic provisioning of virtual resources.
Among these, the algorithms proposed in [4,6] are designed to
leverage dynamic resources to meet the deadline requirements of
Bag-of-Tasks applications. The algorithm proposed by Veccholia
et al. [6], which we call Default here, makes an estimation of
the expected completion time of the application with currently
available resources and if the expected completion time is later
than the deadline defined in the Quality of Service parameters of
the application, it requests extra resources from the public cloud
to complete the application within given deadlines. This algorithm
provides a best effort strategy for meeting the required deadlines
based on the average task runtime estimation. Since the Default al-
gorithm ignores the deployment time of resources (e.g., VM startup
time) during the calculation of number of extra required resources,

Calheiros et al. [4] proposed an improved provisioning algorithm,
whichwe callEnhanced here, that dynamically leases resources to
meet deadlines while it takes deployment time of resources into
account. The Enhanced algorithm is designed to utilize Amazon
EC2 Spot Instance resources with on average higher deployment
time but lower budget than the Default algorithm. One of the key
differences between our proposed provisioning algorithm in the
next Section and these existing algorithms is that we consider the
network bandwidth and data transfer time during the calculation
of the required extra resources. In Section 6, we compare our
proposed algorithm with the Default and Enhanced algorithms
based on different parameters such as application execution time,
the number of resources launched on the public cloud, and the cost
of resources.

4. Deadline-driven data-aware resource provisioning algo-
rithm

Suppose that a private cloudwith a limited number of resources
in the local infrastructure is available for execution of a data-
intensive Bag-of-Tasks application. Since the number of tasks that
can be running concurrently on the private cloud is limited, to
meet the deadline requirement of the application, extra resources
from the public cloud need to be acquired to scale out available
resources. We assume that the public cloud provider is able to
fulfill all requests and thus has an infinite number of resources
available from the user’s perspective. Note that the network band-
width available between the private and public cloud is limited and
can impose a significant amount of data transfer time for each task
running on the public cloud resource.

Weassume that the application’sworkload consists of a number
of trivially parallel tasks, each requiring specific input data files



A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775 769

Fig. 3. A schematic overview of Aneka’s dynamic provisioning.

Algorithm 1 Data-aware Provisioning Algorithm.
1: privateCores← private cores available for the application;
2: avgTaskRuntime← Average task runtime on a prviate core;
3: timeRemaining ← Time to application deadline;
4: totalTasks← Total number of tasks in the application;
5: tasksCompeleted← Total number of tasks compeleted so far;
6: startupTime← Startup time of a resource (VM);
7: tasksInPrivate← ⌊ timeRemaining

avgTaskRuntime × privateCores⌋;
8: tasksRemaining = (totalTasks− tasksCompeleted− tasksInPrivate)+;
9: totalTransferTime← tasksRemaining × taskInputDataSize

upBandwidth ;
10: actualTimeRemaining ← (timeRemaining − startupTime− totalTransferTime)+;

11: avgTaskRuntimeOnPublic ← Average task runtime on public core;
12: provisionedCores← Current daynamically prorvisioned cores;
13: totalExecutionTime← tasksRemaining × avgTaskRuntimeOnPublic;
14: tasksPerCore← ⌊ actualTimeRemaining

avgTaskRuntimeOnPublic ⌋;
15: if tasksPerCore < 1 then
16: if toGrow then
17: totalCoresRequired← provisionedCores;
18: else
19: totalCoresRequired← provisionedCores− 1
20: end if
21: else
22: totalCoresRequired← ⌈ totalExecutionTime

tasksPerCore×avgTaskRuntimeOnPublic ⌉;
23: end if
24: extraResources← ⌈ totalCoresRequired−provisionedCoresnumberofCoresPerResource ⌉;

located in the local infrastructure. Bag-of-Tasks applications with
independent tasks are used in a variety of scenarios, especially
when the same piece of computation logic must be executed over
a large volume of data, e.g., Monte Carlo simulations, data mining
algorithms, parameter sweep applications [9]. This makes them
suitable for hybrid cloud scenarios as tasks running on two sep-
arate clouds do not need to communicate with each other.

Algorithm 1 presents the newly proposed dynamic resource
provisioning approach for Aneka, called Data-aware provisioning.

The Data-aware algorithm takes into account the available band-
width and the data size associated with each task and calculates
the number of extra resources required to meet the deadline con-
straints of the application. The algorithm is executed when any of
the following conditions are observed: (i) a task from the applica-
tion is queued, and (ii) execution of a task completes. The variable
toGrow at line 16 is True if the former condition happens and is
False otherwise. If completion of a task triggers the algorithm
and the computed number of extra resources by the algorithm
is negative, a release request for the task allocated resource is
submitted to the Resource Provisioning Service; otherwise, extra
resources computed by the algorithm are requested to be added
to the pool. Moreover, in order to reduce unnecessary calls of the
algorithm, we only execute the algorithm in the growing mode,
i.e., the average runtime of tasks is increased in comparison to the
previous round of algorithm execution. Similarly, we call it in the
shrinking mode if the average runtime of the task is decreased in
comparison to the previous round of algorithm execution. For the
sake of brevity, these conditions are not shown in the algorithm.

The Data-aware algorithm checks if the currently available re-
sources are sufficient for the completion of the application tasks
within the given deadline based on estimation of the average
runtime of tasks on the private resources (avgTaskRuntime).
Note that avgTaskRuntime includes the data transfer time in the
calculation as we assume that the data transfer time within the
private cloud is insignificant compared to the task execution time.
Therefore, we do not consider a separate variable to capture that in
the algorithm. The algorithm first updates timeRemaining based
on the left time to the deadline. Then it computes the number of
tasks that can be completed on the private resources within the
left time to the deadline (Line 4). Then, it calculates the number
of remaining tasks (Line 8). Here (x)+ means max(0, x). These re-
maining tasks must be scheduled on the dynamic resources. Since
the execution of tasks on resources from the public cloud requires
transferring data from the local storage to the allocated VMs, the



770 A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775

algorithm first calculates the total transfer time for the tasks that
should be executed on the public cloud resources (Line 9). In
Line 10, the actual remaining time which can be effectively used
for the execution of the tasks on dynamic resources is computed
by subtracting the total transfer time and the start-up time of
resources from the remaining time to the deadline. Note that
avgTaskRuntimeOnPublic in Line 11, contrary toavgTaskRun-
time, is only calculated based on the actual time tasks are being
executed on the public cloud resources and does not include any
associated data transfer time, i.e., it is the time period from when
the task starts execution on the compute node (after all input data
is available) up to the moment its execution is over. In line 13, the
total time required to execute all remaining task on a single public
CPU core is calculated and stored in the totalExecutionTime
variable.

By dividing the actual time remaining by the average runtime of
tasks on public cloud resources, the number of tasks each CPU core
on the public resources can execute is calculated. If the number
of tasks can be executed on each core in the public resources is
at least one, then the total number of required cores can be esti-
mated by dividing totalExecutionTime by the result of tasks
per core multiplied by the average runtime of the task (Line 22).
Otherwise, there is not enough time for allocating new resources
and the algorithm sets the number of required CPU cores to that
of the already provisioned cores in the pool (Line 17). If this is
a shrinking mode, the task allocated cores will be nominated for
release (Line 19). Line 24, calculates extra resources that must be
added to or removed from the pool by the ratio of extra required
cores to the number of cores per resource.

5. Realization of data-aware provisioning algorithm in Aneka

To support execution of applications in hybrid clouds, it is
important for Aneka to have access to public cloud resources.
The Aneka resource provisioning service currently supports pro-
visioning for providers such as Amazon EC2, GoGrid, andMicrosoft
Azure. Microsoft Azure has undergone a significant transformation
in recent years and as a result, there are two different sets of
APIs for resource management and deployment in Azure: Azure
Resource Manager (ARM) and Classic. Aneka originally supported
the Classic deploymentmodel in which each resource (e.g., storage
disk, VM, Public IP address, etc.) existed independently and there
was no way to group related resources together. In 2014, Azure
introduced ARM, which added the concept of a resource group as
a container for resources that share a common lifecycle. As part
of implementing Data-aware provisioning algorithm, we added an
Azure-specific resource pool based on ARM APIs into Aneka which
handles provisioning requests for Azure.

Since in the hybrid cloud environment, computational nodes
are scattered throughoutmultiple networks (i.e., private andpublic
cloud networks), public IP addresses are required to make the
communication between nodes possible. Providing public IP ad-
dresses for all nodes, in particular for private resources in the
organizational infrastructure, is not always feasible. Therefore, we
used Azure Virtual Private Network (VPN) to solve this issue. We
configured a Point-to-Site (P2S) Virtual Network in Azure which
allows a secure connection from an individual client computer to
the virtual network. Point-to-Site is a VPN connection over SSTP
(Secure Socket Tunneling Protocol) and does not require a VPN
device or a public-facing IP address to work. Fig. 4 shows a sample
Azure Point-to-Site virtual network configuration.

Aneka provides interfaces for installation of Aneka containers
on static resources (i.e., private cloud resources) via its Aneka
Management Studio. However, in dynamic resource provisioning
when machines are added on-demand by instantiating VMs, the
installation must be done automatically without any human in-
tervention. Therefore, we create virtual machine images on Azure

for Aneka Workers with an initial configuration for containers.
To complete the installation process, instantiated VMs are further
configured using PowerShell scripts to set the Master container IP
and Port, configure IP addresses in configuration files and to start
the container service.

Finally, to support execution of data-intensive applications in
hybrid cloud environments, we incorporate the Data-aware algo-
rithm in Aneka. Aneka offers abstract interfaces that can be used to
implement new resource provisioning algorithms. Our algorithm is
implemented as a new scheduling algorithm by implementing the
ISchedulingAlgorithm interface. The algorithm invokes the
provisioning service to add extra resources to the pool of available
resources based on the QoS requirement of the application.

6. Performance evaluation

6.1. Hybrid cloud setup

The experimental testbed used to evaluate the performance of
the proposed resource provisioning and scheduling algorithms is a
hybrid cloud environment constituting of two desktop machines
(one master and one slave) residing at The University of
Melbourne and dynamic resources provisioned from Microsoft
Azure. A schematic view of the hybrid cloud in which the exper-
iments are carried out is depicted in Fig. 5 and the configurations
of machines used in the experiment are shown in Table 1.

Public cloud resources are dynamically provisioned from Mi-
crosoft Azure cloud when local resources are not able to meet
application deadlines. Public cloud resources are deployed on
Azure Australia Southeast region using Standard DS1 VM
instances with the configuration shown in Table 1. The initial esti-
mated start-up time of Azure VMs used by the proposed algorithm
is 250 s. However, this is updated by a new value each time a VM
is added to the resource pool.

The master and worker machines are connected through a high
bandwidth LAN connection that imposes a negligible data transfer
time between the local machines. On the other hand, the data
transfer from the data repository on the master node to dynamic
resources on the cloud is performed over the Internet. Since, the In-
ternet connection on the master is relatively high for the intended
experiments; we used NetLimiter1 Version 4 to limit both the
up-link and down-link bandwidth of the master node to 2 MB/s.

6.2. Walkability application and dataset

The data-intensive application used for the experiments is a
Bag-of-Tasks for measuring a walkability index [7]. A walkability
index is used to assess howwalkable a given neighborhood is based
on factors such as road connectivity, gross dwelling density and the
land use mix in the area. The information can be used for better
understanding the growing urban challenges such as obesity and
increasing dependence on cars. The walkability index application
is part of the AURIN project which supports nationwide urban and
built environment research across Australia [10].

In our experiments, we use the walkability application to pro-
vide walkability indexes for 220 different neighborhoods in the
city of Melbourne. The walkability application suits the purpose
of our experiments since it is data-intensive and it can be bro-
ken into independent tasks, each computing a walkability index
for a neighborhood. The test application contains 55 tasks, each
calculating walkability indexes for four different neighborhoods.
The input data for each task contains geospatial datasets for road

1 NetLimiter, https://www.netlimiter.com/download.

https://www.netlimiter.com/download


A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775 771

Fig. 4. A sample Azure Point-to-Site virtual network.

Fig. 5. Hybrid cloud testbed.

Table 1
Configuration of machines used in the experiments.

Machine Type CPU (GHz) Cores Memory (GB) OS

Master Intel Core i7-4790 3.60 8 16 Windows 7
Worker Intel Core i7-2600 3.40 8 8 Windows 7
Azure Instances Standard DS1 2.4 1 3.5 Windows Server 2012

networks provided by the Public Sector Mapping Agent (PSMA) Aus-
tralia2 and points representing the center of each neighborhood.
The size of input data for each task is 130 MB including the Java
executable JAR file. The input dataset must be transferred to the
computingmachine from the Aneka data repository residing in the
master node. The output is the computedwalkability score for each
neighborhood and its size for each task is negligible. Fig. 6 displays
a sample snapshot of output data for several neighborhoods visu-
alized on the map according to the computed walkability indexes.
Each area is colored based on the walkability score with blue
marked area noted as the most walkable and red representing the
least walkable.

6.3. Experimental results

In order to evaluate the performance of the proposed data-
aware algorithm, we first submit the walkability application to

2 PSMA, https://www.psma.com.au/.

Aneka for execution without setting a deadline for the application.
Later, we repeat the execution with different deadlines, showing
how theproposed algorithmbehaves. All experiments are repeated
for the Default [6] and Enhanced [4] algorithms for the sake of
comparison. By running the preliminary experiment, we are able
to estimate the expected execution time of the application, which
allows us to impose a deadline triggering the resource provisioning
in other experiments. We identified that the execution time of
the application without setting a deadline which only uses private
(local) resources takes 45.4 min. Therefore, we considered test
scenarios with four different deadline values of 35, 40, 45 and 50
min. Note that the deadline value of 35min is the tightest deadline
we trial in our experiments since all algorithms failed to meet the
deadline within 30 min.

Fig. 7 and Table 2 show the results of the application execution
under different deadlines in two different forms. As shown by
Fig. 7(a), the proposed data-aware algorithm meets the deadline
in all scenarios. However, the Default and Enhanced algorithms
miss the deadline under tight deadline constraints (Bars marked

https://www.psma.com.au/


772 A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775

Fig. 6. A snapshot of visualized Walkability indexes computed for a set of neighborhoods around Melbourne. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

by ‘‘x’’), i.e., both algorithms violate the deadline constraint when
the deadline is set to 35 min whilst the Default algorithm misses
the deadline when it is set to 40 min. The key reason is that these
algorithms rely on only a single variable for measuring average
runtime of tasks (the value includes the data transfer time) to
allocate dynamic resources that is significantly different in our
scenario for private and public cloud resources. This difference is
due to the dissimilarity of the data transfer time for the tasks exe-
cuted on the private andpublic cloud resourceswhich is dependent
on the difference in the available bandwidth for each case. We
conclude that our new algorithm is able to meet strict application
deadlines by taking into account the start-up time of the VMs and
data transfer time, while the Default and Enhanced algorithms
fail to do the same as they underestimate the overall runtime by
neglecting significantly different intra and inter cloud data transfer
time in the hybrid cloud setting.

The experimental results also show that Data-aware algorithm
instantiates a lower number of VMs in comparison to the two other
algorithms when deemed necessary (e.g., at deadline values of 40,
45, and 50 min). This can be justified by the fact that the Data-
aware algorithm takes into account the data transfer time and is
less affected by the fluctuation of the average runtime of tasks.
The fluctuation of the average task runtime leads to more hasty
decisions by the Default and Enhanced algorithms to terminate
VMs that may subsequently need to be instantiated again shortly
after the termination. It is noted that the only case that the Data-
aware algorithm instantiates a higher number of VMs than other
algorithms is when the deadline is 35 min (i.e., 19 VMs compared
to 10 and 11 for Default and Enhanced, respectively). However, as
noted, both other competing algorithms fail to meet the deadline
in this case.

As shown by Fig. 7(a) and (c) and Table 2, the proposed Data-
aware algorithm not only guarantees the deadline but also op-
timizes the (monetary) cost spent on allocation of public cloud
resources from Azure. Since Azure VMs are billed on a per-minute
basis, we report the total number of minutes that dynamically
added resources are kept running in the resource pool by each
algorithm as an indication of cost. Compared to Data-aware, the
Default and Enhanced algorithms run dynamically provisioned
VM resources for a higher number of minutes in all cases where

they meet the deadline. This happens because of both the higher
expenditure on total start-up time of VMs due to more frequent
instantiation and termination of VMs and the over-provisioning of
resources due to late or wrong decisions regarding the addition of
dynamic resources.

As stated before, the estimated execution time of the applica-
tion under no deadline constraints is roughly 45 min. Therefore,
we expect that none of the algorithms provision any dynamic
resources when the deadline is set to a value higher than 45 min.
However, all algorithmswitness some degree of over-provisioning
when the deadline is set to 50 min or even 45 min. The reason
behind this is the primary estimate provided for the tasks runtime
which is higher than the actual average runtime in our case can
lead to wrong initial decisions made by algorithms and adding
dynamic resources to the pool of resources. In the Aneka platform,
whenever a resource is allocated to a task the mapping is irre-
versible unless a task or resource failure occurs. As a result, all
algorithms use dynamically added VMs for the execution of at least
one task if they add dynamic resources. As can be seen in both Fig. 7
and Table 2, the Data-aware algorithm incurs a lower amount of
over-provisioning compared to other algorithms in case of over-
estimation of task runtime in the initial setup of the scheduling
algorithms.

Our conclusion is that providing Aneka scheduler with more
accurate initial estimates of the runtime of tasks helps tominimize
these over-provisioning issues. Moreover, considering the start-
up of VMs that are particular to different infrastructures together
with the size of the transferred data and network bandwidth are
necessary in providing an efficient scheduling in the Aneka plat-
form. This is particularly acute for data-intensive applications. In
line with this, our experimental results show that our proposed
algorithm is able tomeet strict application deadlines withminimal
budget expenditure by taking into account such factors.

7. Related work

Resource provisioning is one of the most challenging problems
in the cloud environment [11]. Resources must be allocated dy-
namically according to the Quality of Service (QoS) requirements
and workload changes of the application. Autonomic systems pro-
vide solution to this problem by offering the environment inwhich



A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775 773

Table 2
Experimental results for Default, Enhanced, and Data-aware algorithms considering different application deadlines.

Deadline (min) Execution time (min) Launched Azure VMs (#) Total running time of VMs (min)

Default Enhanced Data-aware Default Enhanced Data-aware Default Enhanced Data-aware

35 44 42 35 10 11 19 182 133 513
40 40 37 38 8 10 7 105 146 135
45 40 44 44 8 10 3 86 104 61
50 41 42 43 7 7 1 82 104 32
+∞ 45 45 45 0 0 0 0 0 0

Fig. 7. (a) Execution time. (b) Number of launched Azure VMs and (c) Total running
timeof VMs forDefault, Enhanced, andData-aware algorithms considering different
application deadlines. The X symbol shows a violated deadline.

dynamic resource provisioning for applications can be performed
without human intervention [12]. To achieve the goal of auto-
nomic systems, the Monitor–Analyze–Plan–Execute (MAPE) refer-
ence model proposed by IBM is of the most popular architectures.
Ghobaei-Arani et al. [13] proposed a generic resource provisioning
framework for cloud applications based on the MAPE architecture.
In contrast to our approach, they focus on a single cloud application
and do not investigate the impact of network latency, bandwidth
constraints, and location of data on the dynamic resource provi-
sioning.

The idea of using public cloud resources to expand the capacity
of local infrastructure has been explored by many studies. Ma-
teescu et al. [14] propose an architecture that provides a platform
for the execution of High-Performance Computing (HPC) scientific
applications. The cornerstone of the proposed architecture is the
Elastic Cluster which makes an expandable hybrid cloud environ-
ment. Their approach differs from ours since we focus specifically
on data-intensive applications and take into account the impact
of data transfer times. Assunção et al. [15] analyze the trade-off
between performance and usage costs of different provisioning
algorithms for use of resources from the cloud to expand a cluster
capacity. Similar to [14], they neglect the impact of data transfer
time. Javadi et al. [16] propose failure-aware resource provision-
ing policies for hybrid cloud environments which they evaluated
using a model-based simulation as opposed to our real case study
performance evaluation. Xu and Zhao [3] propose a privacy-aware
hybrid cloud framework which supports a tagging mechanism for
the location of sensitive data.While they focus on compliancewith
the location of sensitive data, we focus on the data locality and data
transfer time to compute the number of public cloud resources
required by the application in order to meet deadlines. Belgacem
and Chopard [17] conduct an experimental study of running a
large, tightly coupled, distributed application over a hybrid cloud
consisting of resources from Amazon EC2 clusters and an existing
HPC infrastructure. They evaluated the overhead of using public
cloud resources for a tightly coupled,massively parallelMPIs appli-
cation in which tasks are communicating with each other without
considering QoS related factors such as deadlines. However, in this
work, we look into the design of dynamic resource provisioning
algorithms meeting the deadline constraint of the locally coupled
Bag-of-Tasks applications. Mattess et al. [18] present a provision-
ing algorithm for extending cluster capacity with Amazon EC2 Spot
Instances. In contrast to ourwork, they focus on compute-intensive
applicationswithout considering network related costs and delays.
Yuan et al. [19] propose a profit maximization model for private
cloud providers by utilizing the temporal variation of prices in
hybrid cloud. While similar to many others, they assume the time
and cost related to data and network are negligible. Themajority of
these works focus largely on theoretical aspects and evaluate their
method through simulation, while we focus on practical aspects
and execute our case study on a real hybrid cloud environment
using the Aneka platform with a real application.

Scheduling and resource provisioning techniques in a hybrid
cloud for data-intensive applications where the data transfer time
is comparable to computational time, adds new levels of complex-
ities requiring addressing the impact of network latency, band-
width constraints, as well as economic aspects such as costs and
prices. A thorough survey on resource scheduling and provision-
ing in cloud environments has been conducted by Singh and
Chana [20]. Bossche et al. [5] proposed scheduling algorithms to
deal with cost optimization problem for deadline-constrained ap-
plications while taking into account data constraints, data locality
and inaccuracies in task runtime estimates. Similar to our ap-
proach, their algorithm considers computational and data transfer
costs as well as network bandwidth constraints. However, their
work is a simulation-based study and does not consider the dy-
namic nature of networks and fluctuations in the runtime of tasks.



774 A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775

Kailasem et al. [21] propose a Hadoop-based cloud bursting frame-
work for data-intensive workloads. They focus on checkpointing
schemes to overlap data download with processing and upload.
They consider the performance optimization of interactive jobs
whilewe target Bag-of-Tasks jobs. They also ignore the uncertainty
of job execution runtimes. Similar to our work, Bicer et al. [22]
propose a resource allocation framework suitable for a hybrid
cloud settings to support time and cost sensitive execution of data-
intensive applications. Different from our work, their method is
designed for Map-Reduce applications and is based on a feedback
mechanism in which the compute nodes regularly report their
performance. Malawski [23] proposed a mixed integer nonlinear
programming model to tackle the problem of resource allocation
on multiple heterogeneous clouds taking into account the cost of
instances and data transfers. While we focus both on how many
andwhenextra resourcesmust be added in adynamic fashion, they
try to provide a single decision using a mixed integer non-linear
programming model to tackle the resource provisioning problem
in hybrid cloud environments. In contrast to our work, they have
used simulation to evaluate their method.

Scheduling and resource provisioning in hybrid clouds has been
researched for other types of application as well. Examples include
big data analytics [24], workflows applications [25], online com-
merce [26], mobile phone applications [27] and compute intensive
applications [28].

8. Conclusions and future directions

Supplementing on-premises private infrastructure of orga-
nizations with dynamically provisioned resources from public
cloud providers introduces the problem of cost-efficiently exe-
cuting applications. This paper presents a provisioning algorithm
for scheduling deadline-constrained data-intensive applications
while taking into account aspects such as data transfer time, the
location of data, and the network bandwidth. This work builds
upon previously proposed provisioning algorithms for the Aneka
platform for developing and deploying scalable applications on
the cloud. In this work, we propose a provisioning algorithm that
computes the extra resources needed to complete application tasks
within deadlines by considering aspects such as data locality, start-
up time of public cloud resources, network bandwidth, and data
transfer time.We demonstrate that our proposed algorithm is able
to meet strict deadlines for a sample data-intensive application
while minimizing cost and the total number launched instances
compared to other existing algorithms. Contrary to other algo-
rithms, the proposed algorithm measures the average runtime of
tasks on public cloud resources as a separate variable and takes the
data transfer time calculated based on the available bandwidth into
account.

In this paper, we focused on scheduling and resource provision-
ing of Bag-of-Tasks applications with a set of trivially parallel tasks
which can be executed independently of one another. However,
there are other common types of data-intensive applications with
a non-trivial workflow structure that includes precedence con-
straints and data dependencies between tasks. Ameaningful future
work is to extend our proposed algorithm for workflows with data
dependencies. This is a complex problem and the major challenge
in the design of such algorithms in addition to consideration of
data transfer time and data locality is how to devise the task
grouping and task assignment techniques that minimize inter-
cloud communications.

Another future work in line with this contribution consists of
developing provisioning policies that can support the integration
of multiple clouds with different pricing and network latency in
Aneka. We also plan to look into the scheduling of Bag-of-Tasks
applications with tasks partly sharing input data and other QoS
parameters such as budget constraints.

Future directions of data-intensive application scheduling in-
clude new algorithms for multi-cloud resource allocation, inno-
vative provisioning algorithms honoring user requirements such
as privacy and the location of sensitive data, energy efficient
techniques for minimizing cost and carbon footprint. This can be
further extended to support resource allocation techniques lever-
aging software-defined networks. This can also be explored in the
context of various other programming paradigms such as Map
Reduce model.

Acknowledgments

This work was partially supported by Australian Research
Council (ARC) Future Fellowship (Grant no: FT120100545) and
the Australia-India Strategic Research Fund (AISRF) (Grant no:
AISRF08140).We thankMicrosoft for providing access to the Azure
IaaS infrastructure. We also thank William Voorsluys for his tech-
nical support for the execution of the case study application.

References

[1] C.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and
technologies: a survey on big data, Inform. Sci. 275 (2014) 314–347. http:
//dx.doi.org/10.1016/j.ins.2014.01.015.

[2] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616. http:
//dx.doi.org/10.1016/j.future.2008.12.001.

[3] X. Xu, X. Zhao, A framework for privacy-aware computing on hybrid clouds
with mixed-sensitivity data in: Proceedings of the IEEE International Sympo-
sium on Big Data Security on Cloud, 2015, pp. 1344–1349 http://doi.org/10.
1109/HPCC-CSS-ICESS.2015.110.

[4] R.N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The Aneka platform
andQoS-driven resource provisioning for elastic applications onhybrid clouds,
Future Gener. Comput. Syst. 28 (6) (2012) 861–870. http://dx.doi.org/10.1016/
j.future.2011.07.005.

[5] R.V. denBossche, K. Vanmechelen, J. Broeckhove, Online cost-efficient schedul-
ing of deadline-constrained workloads on hybrid clouds, Future Gener. Com-
put. Syst. 29 (4) (2013) 973–985. http://dx.doi.org/10.1016/j.future.2012.12.
012.

[6] C. Vecchiola, R.N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-driven
provisioning of resources for scientific applications in hybrid clouds with
aneka, Future Gener. Comput. Syst. 28 (1) (2012) 58–65. http://dx.doi.org/10.
1016/j.future.2011.05.008.

[7] R.O. Sinnott, W. Voorsluys, A scalable cloud-based system for data-intensive
spatial analysis, Int. J. Softw. Tools Technol. Trans. 18 (6) (2016) 587–605.
http://dx.doi.org/10.1007/s10009-015-0398-6.

[8] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-
degree compared, in: Proceedings of 2008 Grid Computing Environments
Workshop, 2008, pp. 1–10, ISSN: 2152-1085 http://dx.doi.org/10.1109/GCE.
2008.4738445.

[9] F.A. da Silva, H. Senger, Scalability limits of bag-of-tasks applications running
on hierarchical platforms, J. Parallel Distrib. Comput. 71 (6) (2011) 788–801.
http://dx.doi.org/10.1016/j.jpdc.2011.01.002. Special Issue on Cloud Comput-
ing.

[10] R.O. Sinnott, C. Bayliss, A. Bromage, G. Galang, G. Grazioli, P. Greenwood, A.
Macaulay, L. Morandini, G. Nogoorani, M. Nino-Ruiz, M. Tomko, C. Pettit, M.
Sarwar, R. Stimson, W. Voorsluys, I. Widjaja, The Australia urban research
gateway, Concurr. Comput.: Pract. Exper. 27 (2) (2015) 358–375. http://dx.doi.
org/10.1002/cpe.3282. CPE-13-0325.R1.

[11] M. Amiri, L. Mohammad-Khanli, Survey on prediction models of applications
for resources provisioning in cloud, J. Netw. Comput. Appl. 82 (2017) 93–113.
http://dx.doi.org/10.1016/j.jnca.2017.01.016.

[12] S. Singh, I. Chana, R. Buyya, STAR: SLA-aware autonomicmanagement of cloud
resources, IEEE Trans. Cloud Comput. (2017). http://dx.doi.org/10.1109/TCC.
2017.2648788.

[13] M. Ghobaei-Arani, S. Jabbehdari, M.A. Pourmina, An autonomic resource pro-
visioning approach for service-based cloud applications: a hybrid approach,
Future Gener. Comput. Syst. (2017). http://dx.doi.org/10.1016/j.future.2017.
02.022.

[14] G. Mateescu, W. Gentzsch, C.J. Ribbens, Hybrid computing-where HPC meets
grid and cloud computing, Future Gener. Comput. Syst. 27 (5) (2011) 440–453.
http://dx.doi.org/10.1016/j.future.2010.11.003.

[15] M.D. de Assunção, A. di Costanzo, R. Buyya, A cost-benefit analysis of using
cloud computing to extend the capacity of clusters, Cluster Comput. 13 (3)
(2010) 335–347. http://dx.doi.org/10.1007/s10586-010-0131-x.

http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://doi.org/10.1109/HPCC-CSS-ICESS.2015.110
http://doi.org/10.1109/HPCC-CSS-ICESS.2015.110
http://doi.org/10.1109/HPCC-CSS-ICESS.2015.110
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1016/j.future.2012.12.012
http://dx.doi.org/10.1016/j.future.2012.12.012
http://dx.doi.org/10.1016/j.future.2012.12.012
http://dx.doi.org/10.1016/j.future.2011.05.008
http://dx.doi.org/10.1016/j.future.2011.05.008
http://dx.doi.org/10.1016/j.future.2011.05.008
http://dx.doi.org/10.1007/s10009-015-0398-6
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1109/GCE.2008.4738445
http://dx.doi.org/10.1016/j.jpdc.2011.01.002
http://dx.doi.org/10.1002/cpe.3282
http://dx.doi.org/10.1002/cpe.3282
http://dx.doi.org/10.1002/cpe.3282
http://dx.doi.org/10.1016/j.jnca.2017.01.016
http://dx.doi.org/10.1109/TCC.2017.2648788
http://dx.doi.org/10.1109/TCC.2017.2648788
http://dx.doi.org/10.1109/TCC.2017.2648788
http://dx.doi.org/10.1016/j.future.2017.02.022
http://dx.doi.org/10.1016/j.future.2017.02.022
http://dx.doi.org/10.1016/j.future.2017.02.022
http://dx.doi.org/10.1016/j.future.2010.11.003
http://dx.doi.org/10.1007/s10586-010-0131-x


A. Nadjaran Toosi et al. / Future Generation Computer Systems 79 (2018) 765–775 775

[16] B. Javadi, J. Abawajy, R. Buyya, Failure-aware resource provisioning for hybrid
cloud infrastructure, J. Parallel Distrib. Comput. 72 (10) (2012) 1318–1331.
http://dx.doi.org/10.1016/j.jpdc.2012.06.012.

[17] M.B. Belgacem, B. Chopard, A hybrid HPC/cloud distributed infrastructure:
Coupling EC2 cloud resources with HPC clusters to run large tightly coupled
multiscale applications, Future Gener. Comput. Syst. 42 (2015) 11–21. http:
//dx.doi.org/10.1016/j.future.2014.08.003.

[18] M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leasing cloud
infrastructure services from a spot market, in: Proceedings of the 12th IEEE
International Conference on High Performance Computing and Communica-
tions HPCC, 2010, pp. 180–188. http://dx.doi.org/10.1109/HPCC.2010.77.

[19] H. Yuan, J. Bi, W. Tan, B.H. Li, Temporal task scheduling with constrained
service delay for profit maximization in hybrid clouds, IEEE Trans. Autom. Sci.
Eng. 14 (1) (2017) 337–348. http://dx.doi.org/10.1109/TASE.2016.2526781.

[20] S. Singh, I. Chana, A survey on resource scheduling in cloud computing: issues
and challenges, J. Grid Comput. 14 (2) (2016) 217–264. http://dx.doi.org/10.
1007/s10723-015-9359-2.

[21] S. Kailasam, P. Dhawalia, S.J. Balaji, G. Iyer, J. Dharanipragada, Extending
MapReduce across Clouds with BStream, IEEE Trans. Cloud Comput. 2 (3)
(2014) 362–376. http://dx.doi.org/10.1109/TCC.2014.2316810.

[22] T. Bicer, D. Chiu, G. Agrawal, Time and cost sensitive data-intensive computing
on hybrid clouds, in: Proceedings of 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing CCGrid 2012, 2012, pp. 636–643. http:
//dx.doi.org/10.1109/CCGrid.2012.95.

[23] M. Malawski, K. Figiela, J. Nabrzyski, Cost minimization for computational
applications on hybrid cloud infrastructures, Future Gener. Comput. Syst.
29 (7) (2013) 1786–1794. http://dx.doi.org/10.1016/j.future.2013.01.004.

[24] F.J. Clemente-Castell, B. Nicolae, K. Katrinis, M.M. Rafique, R. Mayo, J.C. Fern-
ndez, D. Loreti, Enabling big data analytics in the hybrid cloud using iterative
mapreduce in: Proceedings of the 8th IEEE/ACM International Conference on
Utility and Cloud Computing UCC, pp. 290–299, 2015. http://dx.doi.org/10.
1109/UCC.2015.47.

[25] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, J. Koodziej, Resource-aware
hybrid scheduling algorithm in heterogeneous distributed computing, Future
Gener. Comput. Syst. 51 (2015) 61–71. http://dx.doi.org/10.1016/j.future.
2014.11.019.

[26] G. Lackermair, (2011) Hybrid cloud architectures for the online commerce in:
Procedia Computer Science, World Conference on Information Technology,
Vol. 3, 2011 pp. 550–555, ISSN1877-0509 http://dx.doi.org/10.1016/j.procs.
2010.12.091.

[27] H. Flores, S.N. Srirama, C. Paniagua, A generic middleware framework for han-
dling process intensive hybrid cloud services from mobiles, in: Proceedings
of the 9th International Conference on Advances in Mobile Computing and
Multimedia, MoMM ’11, ACM, New York, NY, USA, 2011, pp. 87–94. http:
//dx.doi.org/10.1145/2095697.2095715.

[28] M. Brock, A. Goscinski, Execution of compute intensive applications on hybrid
clouds, case study with mpiBLAST, in: Proceedings of the Sixth International
Conference on Complex, Intelligent, and Software Intensive Systems, 2012, pp.
995–1000 http://dx.doi.org/10.1109/CISIS.2012.109.

Adel Nadjaran Toosi is Post-doctoral Research Fellow at
the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information Systems
(CIS), the University of Melbourne, Australia. He received
his B.Sc. degree in 2003 and his M.Sc. degree in 2006
both in Computer Science and Software Engineering from
Ferdowsi University of Mashhad, Iran. He has done his
Ph.D., supported by International Research Scholarship
(MIRS) andMelbourne International Fee Remission Schol-
arship (MIFRS), at the CIS department of the University of
Melbourne. Adel’s thesis was nominated for CORE John

Makepeace Bennett Award for the Australasian Distinguished Doctoral Dissertation
and John Melvin Memorial Scholarship for the Best Ph.D. thesis in Engineering.
His current h-index is 14 based on the Google scholar Citations. His research
interests include scheduling and resource provisioning mechanisms for distributed
systems. Currently he is working on data-intensive application resource provi-
sioning and scheduling in cloud environments. Please visit his homepage: http:
//adelnadjarantoosi.info.

Richard O. Sinnott is the Director of eResearch at the Uni-
versity of Melbourne and Professor of Applied Computing
Systems. In these roles he is responsible for all aspects
of eResearch (research-oriented IT development) at the
University. He has been lead software engineer/architect
on an extensive portfolio of national and international
projects, with specific focus on those research domains
requiring finer-grained access control (security). Prior to
coming to Melbourne, Richard was the Technical Direc-
tor of the UK National e-Science Centre; Director of e-
Science at the University of Glasgow; Deputy Director

(Technical) for the Bioinformatics Research Centre also at the University of Glas-
gow, and for a while the Technical Director of the National Centre for e-Social
Science. He has a Ph.D. in Computing Science, an M.Sc. in Software Engineer-
ing and a B.Sc. in Theoretical Physics (Hons). He has over 300 peer-reviewed
publications across a range of computing and application-specific domains. He
teaches High Performance Computing and Cloud Computing at the University of
Melbourne.

Rajkumar Buyya is a Fellow of IEEE, Professor of Com-
puter Science and Software Engineering and Director of
the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Australia. He
is also serving as the founding CEO of Manjrasoft, a spin-
off company of the University, commercializing its inno-
vations in Cloud Computing. He served as a Future Fellow
of the Australian Research Council during 2012–2016. He
has authored over 525 publications and seven text books
including ‘‘Mastering Cloud Computing’’ published byMc-
Graw Hill, China Machine Press, and Morgan Kaufmann

for Indian, Chinese and international markets respectively. He also edited sev-
eral books including ‘‘Cloud Computing: Principles and Paradigms’’ (Wiley Press,
USA, Feb 2011). He is one of the highly cited authors in computer science and
software engineering worldwide (h-index = 108, g-index = 225, 55, 200+
citations). Recently, Dr. Buyya is recognized as ‘‘2016 Web of Science Highly
Cited Researcher’’ by Thomson Reuters. Software technologies for Grid and Cloud
computing developed under Dr. Buyya’s leadership have gained rapid acceptance
and are in use at several academic institutions and commercial enterprises in
40 countries around the world. Manjrasoft’s Aneka Cloud technology developed
under his leadership has received ‘‘2010 Frost & Sullivan New Product Innovation
Award’’. Recently, Dr. Buyya received ‘‘Bharath Nirman Award’’ and ‘‘Mahatma
Gandhi Award’’ along with Gold Medals for his outstanding and extraordinary
achievements in Information Technology field and services rendered to promote
greater friendship and India–International cooperation. He served as the founding
Editor-in-Chief of the IEEE Transactions onCloudComputing. He is currently serving
as Co-Editor-in-Chief of Journal of Software: Practice and Experience, which was
established over 45 years ago. For further information on Dr. Buyya, please visit his
cyberhome: www.buyya.com.

http://dx.doi.org/10.1016/j.jpdc.2012.06.012
http://dx.doi.org/10.1016/j.future.2014.08.003
http://dx.doi.org/10.1016/j.future.2014.08.003
http://dx.doi.org/10.1016/j.future.2014.08.003
http://dx.doi.org/10.1109/HPCC.2010.77
http://dx.doi.org/10.1109/TASE.2016.2526781
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1109/TCC.2014.2316810
http://dx.doi.org/10.1109/CCGrid.2012.95
http://dx.doi.org/10.1109/CCGrid.2012.95
http://dx.doi.org/10.1109/CCGrid.2012.95
http://dx.doi.org/10.1016/j.future.2013.01.004
http://dx.doi.org/10.1109/UCC.2015.47
http://dx.doi.org/10.1109/UCC.2015.47
http://dx.doi.org/10.1109/UCC.2015.47
http://dx.doi.org/10.1016/j.future.2014.11.019
http://dx.doi.org/10.1016/j.future.2014.11.019
http://dx.doi.org/10.1016/j.future.2014.11.019
http://dx.doi.org/10.1016/j.procs.2010.12.091
http://dx.doi.org/10.1016/j.procs.2010.12.091
http://dx.doi.org/10.1016/j.procs.2010.12.091
http://dx.doi.org/10.1145/2095697.2095715
http://dx.doi.org/10.1145/2095697.2095715
http://dx.doi.org/10.1145/2095697.2095715
http://dx.doi.org/10.1109/CISIS.2012.109
http://adelnadjarantoosi.info
http://adelnadjarantoosi.info
http://adelnadjarantoosi.info
http://www.buyya.com

	Resource provisioning for data-intensive applications with deadline constraints on hybrid clouds using Aneka
	Introduction
	Motivation and problem domain
	Aneka and dynamic resource provisioning
	Aneka architecture
	Aneka scheduling and dynamic resource provisioning

	Deadline-driven data-aware resource provisioning algorithm
	Realization of data-aware provisioning algorithm in Aneka
	Performance evaluation
	Hybrid cloud setup
	Walkability application and dataset
	Experimental results

	Related work
	Conclusions and future directions
	Acknowledgments
	References


