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ABSTRACT

This chapter presents software architectures of the big data processing platforms. It also provides in-depth 
knowledge on resource management techniques involved while deploying big data processing systems 
in the cloud environment. It starts from the very basics and gradually introduce the core components of 
resource management which are divided into multiple layers. It covers the state-of-art practices and re-
searches done in SLA-based resource management with a specific focus on the job scheduling mechanisms.

INTRODUCTION

Cloud Computing is an emerging platform which can provide infrastructure, platform, and software for 
storing and computing of data. Nowadays Cloud Computing is used in many small and large organiza-
tions like a utility (Buyya et al. 2009) as it is more affordable to go for the pay per use service of cloud 
service providers instead buying and maintaining own computing resources. While registering in any 
Cloud Service, both the cloud service customer and the cloud service provider must agree on some pre-
defined policies which are called the Service Level Agreement (SLA). Violation of SLAs may affect the 
proper execution and performance of an application of any customer, so it poses a significant threat on 
a cloud service provider’s business reputation. Therefore, it is essential to manage the cloud resources 
in such a way that it guarantees SLA.
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Big Data (Assunção et al. 2015; Kune et al. 2016) is the recent hype in information technology. 
Scientific applications generate a large amount of data which is used for discoveries and explorations. 
Besides, social media data analysis, sentiment analysis, and business data analysis are crucial for busi-
ness organizations to adopt customer needs and gain more profits. Cloud computing can be an appropri-
ate solution to host big data applications, but many challenges need to be addressed to use the existing 
cloud architectures for big data applications. This chapter discusses the challenges of hosting big data 
processing platforms in the cloud. Moreover, it also gives a comprehensive overview of cloud resource 
management for big data applications. Resource management is a broad domain that contains many 
complex components. However, to make it easier to understand, we divide it as a layered architecture 
and discuss the critical elements from each layer. Our focus will be on resource allocation and scheduling 
mechanisms and how the existing research tried to incorporate SLA in these components. We will also 
point out the limitations of the current approaches and highlight future research directions.

The contents of this chapter are organized as follows. Sections 2 provides background on cloud 
computing, big data, big data processing platform systems and their architectures and some popular 
cluster managers. Section 3 gives a layered overview of the overall resource management process for big 
data applications on the cloud. Section 4 shows a taxonomy of resource allocation for big data applica-
tions. Section 5 exhibits a taxonomy of job scheduling mechanisms for big data applications. Section 
6 discusses the research gaps and future research directions towards SLA-based resource management. 
Finally, section 7 concludes the chapter.

BACKGROUND

In this section, we briefly discuss the key features of cloud computing. Moreover, we explain the ar-
chitectures of the popular open-source software systems for processing big data applications. Also, we 
provide an overview of some popular cluster managers. Finally, we conclude with explaining why the 
cloud is a viable alternative to deploy a big data processing software and how cluster managers can be 
used for efficient management of the system.

Cloud Computing

Cloud computing delivers a shared pool of on-demand computing resources on a pay-per-use basis. The 
main features of cloud computing are:

• Resource Elasticity: Cloud resources can be easily scaled up or down to meet application or user 
demands.

• Metered Service: Users are billed based on what resources they used and how long they have 
used them.

• Easy Access: The resources of cloud can be easily accessed and can be provisioned as a self-
service manner.

There are three different types of cloud. These are:
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• Public Cloud: There are many public cloud service providers who offers computing resources 
as a pay-per-use basis. Organizations can hire resources from these service providers to deploy 
their own applications. It greatly reduces the cost of buying computing hardware and removes the 
burdens of managing local resources.

• Private Cloud: Many organizations setup an on-premise computing resource facility which is 
known as the private cloud. The main reason for setting up a private cloud is to reduce the data 
transfer overhead to the public cloud. In addition, it also ensures that private and sensitive data are 
kept on the organization’s premises to reduce security threats.

• Hybrid Cloud: It is mix of both public and private cloud. Sometimes organizations need to scale 
up their resources in public cloud to be processed in the public cloud.

Cloud provides computing as a service, and we can divide cloud services in three ways:

• Software as a Service (SaaS): SaaS can be used from any devices through the Internet and typi-
cally these services are accessed via a web browser. The required software needed by the user for 
any specialized task are already developed and provided thorough different interfaces. Users just 
define the task, input data and collect the results. Example: Google Apps1

• Platform as a Service (PaaS): A platform is provided for developing distributed, scalable cloud-
based programs. It greatly reduces the hassle for managing the underlying resources. Example: 
IBM Cloud2

• Infrastructure as a Service (IaaS): Computing and storage resources are provided to setup a 
user’s own infrastructure to build platform and services. Reduces the hassle of buying and manag-
ing own physical hardware, provides a scalable on demand pool of resources. Example: Windows 
Azure3, Amazon EC24.

Big Data

In today’s world, huge amount of data is being generated through social media, scientific explorations 
and many other emerging applications like Internet of Things (IoT). The term “Big data” is not about 
the size of data; rather it covers many other aspects. For simplicity, we can define it in terms of the 3V 
as shown in Figure 1.

The volume of data can be small or large, from a few Megabytes to thousands of Terabytes. Each 
day we are generating so much data that recently (in 2015) we have moved into a Zettabyte era. Velocity 
represents the speed of incoming data. For example, some applications need real-time or near real-time 
processing and comes with great speed. These types of applications can be categorized as streaming ap-
plications. In contrast, applications that need offline processing of huge volume of static data are called 
batch applications. Finally, data can have many varieties such as structured, unstructured etc. Storing 
and processing of data is often not possible by the traditional Database Management Systems (DBMS) 
and NoSQL has greatly replaced SQL in many domains. There are many other aspects of big data (many 
other Vs) depending on the specific domain.
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Big Data Processing Platforms

Processing big data is a difficult task, and it is not possible in a centralized system. Therefore, distributed 
computing solutions are used for parallel processing of big data. Many big data processing platforms have 
emerged over the last decade. Figure 2 shows a taxonomy on big data processing platforms. As it shows, 
previously only batch-based platforms like Hadoop was mostly used. However, due to the discovery of 
many scientific, business and social streaming applications, real-time processing became more influential 
and dedicated stream processing platforms like Strom, S4 were invented. However, applications became 
more complex, and often organizations need to have both batch and stream-based processing. Hence, 
some hybrid processing platforms like Apache Spark, Apache Flink are being used in the industry.

In this chapter, we only focus on batch and hybrid-based processing platforms and briefly discuss 
about some of the most popular ones.

Figure 1. Big data 3V

Figure 2. A Taxonomy of big data processing frameworks
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Apache Hadoop

Apache Hadoop, introduced by Yahoo in 2005, is the open source implementation of the MapReduce 
programming paradigm. The main feature of Hadoop is to use primarily distributed commodity hardware 
to parallel processing of batch-based jobs. The core of Hadoop is its fault-tolerant file system Hadoop 
Distributed File Systems (HDFS) (Shvachko et al. 2013) that can be explicitly defined to span in many 
computers. In HDFS, the block of data is much larger than a traditional file system (4KB versus 128MB). 
Therefore, it reduces the memory needed to store the metadata on data block locations. Besides, it re-
duces the seek operation in big files. Furthermore, it greatly enhances the use of the network as only a 
fewer number of network connections are needed for shuffle operations. In the architecture of HDFS, 
there are mainly two types of nodes: Name node and Data node. Name node contains the metadata of the 
HDFS blocks, and the data node is the location where the actual data is stored. By default, three copies 
of the same block are stored over the data nodes to make the system fault tolerant. The resource manager 
of Hadoop is called Yarn (Vavilapalli et al. 2013). It is composed of a central Resource Manager who 
resides in the master node and many Node Managers that live on the slave nodes. When an application 
is submitted to the cluster, the Application Master negotiates resources with the Resource Manager and 
starts container (where actual processing is done) on the slave nodes.

The main drawback of Hadoop was that it stored intermediate results in the disk, so for shuffle-
intensive operations like iterative machine learning, a tremendous amount of data is stored in the disk 
and transferred over the network which poses a significant overhead on the whole system.

Figure 3. Apache hadoop architecture
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Apache Spark

Apache Spark (Zaharia et al. 2016) is one of the most prominent big data processing platforms. It is an 
open source, general-purpose, large-scale data processing framework. It mainly focuses on high-speed 
cluster computing and provides extensible and interactive analysis through high-level APIs. Spark sup-
ports batch or stream data analytics, machine learning and graph processing. It can also access diverse 
data sources like HDFS, HBase (George 2011), Cassandra (Lakshman and Malik 2010), etc. and use 
Resilient Distributed Dataset (RDD) (Zaharia et al. 2012) for data abstraction.

As compared to the Hadoop system tasks, Apache Spark allows most of the computations to be per-
formed in memory and provides better performance for some applications such as iterative algorithms. 
When the results do not fit on the memory, the intermediate results are written to the disk. Spark can run 
locally in a single desktop, in a local cluster, and on the cloud. It runs on top of Hadoop Yarn, Apache 
Mesos (Hindman et al. 2011) and the default standalone cluster manager. Jobs/applications are divided 
into multiple sets of tasks called stages which are inter-dependent. All these stages make a directed 
acyclic graph (DAG), where each stage is executed one after another.

Apache Flink

Apache Flink (Katsifodimos and Schelter 2016) is an open-source stream processing platform. It ex-
ecutes data-flow programs in data-parallel pipelines. Flink is fault-tolerant and treats batch data as a 
form of a stream, therefore, it is a hybrid framework. Programs can be written in Java, Scala, Python, 
and SQL. Flink does not provide any data storage mechanism. Instead, it uses other data sources like 
HDFS, Cassandra, etc. During the execution stage, Flink programs are mapped to streaming dataflows. 
Every dataflow starts with one or more origins (input, queue or file system) and ends with one or more 
sinks (output, message queue, database or file system). An arbitrary number of transformations can be 
done on the stream. These dataflow streams are arranged as a directed acyclic dataflow graph, allowing 

Figure 4. Apache spark architecture
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the flexibility for the applications to branch and merge dataflows. Flink is relatively new and unstable 
as compared to the matured frameworks like Hadoop and Spark. It is yet to be seen whether Flink can 
be scalable like Spark in a production-grade cluster.

CLUSTER MANAGERS

Apache Hadoop Yarn

Apache Hadoop Yarn (Vavilapalli et al. 2013) is the resource manager for Apache Hadoop. The core idea 
of Yarn is to split up the mechanisms for resource management such as job scheduling, monitoring, etc. 
into separate daemons. There is a global Resource-Manager in the master node and Node Managers in 
each of the worker/slave nodes. Resource Managers and Node Managers form the whole data-compu-
tation framework. Resource Manager is the ultimate co-ordinate that can dictate resource provisioning 
and scheduling in the entire system. Node Managers are responsible for running containers and moni-
tor resource usages and reporting the resource usage statistics to the Resource Manager. Furthermore, 
per-application Application-Manager negotiates with the Resource Manager to reserve resources and 
collaborates with the Node Manager to run containers and monitor the tasks.

The Resource Manager has two main components: Scheduler and Applications-Manager. Scheduler 
tracks and maintains a queue of jobs set the order of the jobs and allocate resources to each of the jobs 
before execution. The scheduler functions are based on the implemented policies and SLA requirements 
of the applications. The scheduler has a pluggable policy which makes it extendable to different schedul-
ing policies. For example, CapacityScheduler and FairScheduler are the example plugins implemented 
and available with Yarn. Applications-Manager accepts job submission requests and provides the service 
to restart failed jobs.

Figure 5. Apache hadoop yarn architecture
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Apache Mesos

Apache Mesos (Hindman et al. 2011) is said to be the data-center level cluster manager. Mesos was 
built primarily to support multiple different big data processing frameworks to be running in the same 
cluster. Mesos isolates the resources (e.g., CPU, Memory and disk) shared by different framework tasks/
executors and run them in the same physical/ virtual machine. Schedulers from different frameworks 
negotiate with Mesos to reserve resources for running tasks. Moreover, each application (of any big data 
processing system like Spark, Hadoop, Storm) is called a framework and can have a custom implemented 
scheduler that can negotiate with Mesos to set the required resources for that application.

Mesos send resource offers to each framework by using the Dominant Resource Fairness (DRF) 
(Ghodsi et al. 2011) resource allocator which tries to distribute the resources among multiple frameworks 
equitably. However, Mesos has an advanced scheduler and operator HTTP APIs and supports Dynamic 
Resource Reservation for any application. Therefore, by using the scheduler/operator APIs, it is possible 
to build custom pluggable scheduler with specific SLA requirements. Frameworks can also be assigned 
with particular roles and set resource quotas to make the resource management flexible.

Google Kubernetes

Kubernetes5 is an open source container management platform which is designed to run at production 
scale. It was built upon the foundations laid by Google. The architecture of Kubernetes supports loosely-
couped mechanism for service discovery. There are a master and one or more computing nodes in a 
Kubernetes cluster. The master exposes APIs, schedules workloads and controls the cluster. Each node 
runs a container runtime like Docker or rkt an agent that communicates with the master. A node also has 
additional components responsible for logging, monitoring, service discovery and optional add-ons. A 
pod is a collection of containers that serve as a core unit of management. It acts as logical isolation for 
containers sharing same context and resources. Replica sets provide the required scale and availability 
of services by maintaining a pre-defined set of pods. The deployment of an application can be scaled 

Figure 6. Apache mesos architecture



9

Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments
 

by using replica sets which ensures an application has its desired number of pods running to meet the 
requirements. The master node has etcd, which is an open-source distributed key-value database and 
acts as the single point of truth for all components in a Kubernetes cluster. When an application gets 
enough pods to run, the nodes pull images from the image registry and works with the local container 
runtime to launch the container in each pod. Kubernetes is flexible and provides a rich set of APIs for 
building custom container management modules which are particularly useful in deploying efficient, 
large-scale IoT/Fog based applications.

RESOURCE MANAGEMENT FOR BIG DATA APPLICATIONS

In this section, we will provide a brief overview of the significant components of resource management 
for Big Data applications. Many steps or components can be included. However, the overall process of 
managing resources for big data applications is a complex task, and many parts are inter-dependent thus 
it is hard to distinguish them. Therefore, as shown in Figure 7, we have simplified the categorization in 
three different layers and only discuss the key elements from each of these categories.

RESOURCE MANAGEMENT LAYERS

Setup Layer

The first layer of resource management is the Cluster Setup. In this layer, hardware or virtualized re-
sources are selected depending on the applications. Additionally, a cluster manager is deployed to man-
age the resources and jobs from different big data processing frameworks. Lastly, one or more big data 
processing frameworks are used.

Figure 7. Key components of resource management in a big data cluster



10

Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments
 

Resource Selection

Both physical or virtualized resources can be used to build a cluster. Generally, depending on the ap-
plications and analytics demands of any business organization, the hardware resources are chosen. The 
setup can be done on-premise (local cluster or private cloud), deployed on cloud resources (public cloud) 
or a hybrid deployment (some local resources with a pay-as-you-go subscription from a cloud provider) 
can also be made. The actual underlying hardware resources might vary with applications. However, 
CPU, RAM, Storage, and Network are the must no matter where the cluster is deployed. Nowadays, 
GPU resources are gaining popularity due to the widespread use in sophisticated machine learning (deep 
learning) algorithms running in platforms like TensorFlow.

Cluster Manager Deployment

The next step is to choose a cluster manager to manage both the jobs and the resources. A cluster man-
ager also balances the workloads and resource shares in a multi-tenant environment. For containerized 
applications, Kubernetes or Docker Swarm can be deployed to provide container management platform. 
Kubernetes excels as a complete management system featuring scheduling, dynamic on-the-fly updates, 
auto-scaling, and health monitoring. However, Docker Swarm features a system-wide view of the whole 
cluster from a single Docker engine. Apache Hadoop Yarn is the cluster manager of choice if all the 
applications of the cluster are only MapReduce or Hadoop-based. In contrast, Apache Mesos is a better 
choice than Yarn as it supports efficient resource isolations for multiple different big data processing 
frameworks and provides strong scheduling capabilities.

Big Data Processing Framework Deployment

Many big data processing frameworks are available which can run distributed applications across one or 
more clusters. The applications can be real-time, stream or batch and for each type of applications, there 
are some frameworks which are capable of handling the requirements efficiently. It is not possible to 
say which is the best possible framework to deploy in general. Instead, each one has its own merits and 
suits a group of applications. For example, in the last decade, Hadoop was the most prominent platform 
to process MapReduce based static batch jobs. However, due to the increasing popularity of real-time 
systems and streaming applications; Apache Spark, Apache Flink, and Apache Storm have become the 
standard choice to tackle them. Apache Storm is particularly useful for stream-based applications. Apache 
Spark is vastly replacing both Hadoop and Strom, and it is a hybrid platform that supports both batch 
and stream processing. Apache Flink is new a hybrid platform that needs to be more stable to compete 
with the likes of Spark or Storm.

Operation Layer

The second layer of resource management is the operation layer. Here, performance models are built to 
determine the set of resources to be allocated that is enough to meet user SLA and schedule multiple 
jobs in a multi-tenant setup. Moreover, the overall cluster utilization is maximized, and each job’s per-
formance is enhanced without interfering with any other job’s SLA.
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Performance Modelling

The performance of a job might vary depending on various aspects like allocated resources, workload 
size, task placement, etc. Hence, before a complete deployment of a job, performance models can be 
established which will be used in resource allocation and job scheduling phase to choose an optimized 
set of resources to run the job without sacrificing any performance constraints. Generally, performance 
modeling can be done in two ways. First, running the job with different resource configurations and 
workloads to build job profiles. Second, collecting historical data of jobs running in the cluster. Both job 
profiles or historical data can be used to perform statistical analyses, training machine learning algorithms 
or build mathematical models. These models are then used to select optimal resource configurations and 
efficient scheduling strategies. There are many existing researches that tried to model the performance 
of different types of jobs running in both Spark or Hadoop based platforms. (Zhuoyao Zhang, Cher-
kasova, and Loo 2013) modeled the performance of MapReduce workloads in a heterogeneous cluster 
(where resources are different types, or the performance varies). This model is then used to predict the 
job completion times. (Wang and Khan 2015) proposed a simulation-based approach where they have 
used different Apache Spark configuration parameters and modeled different stages of a job to predict 
its completion time.

Resource Allocation

Resource allocation means reserving a set of resources for a job which will be used by that job to run 
its tasks up to a specific period. Generally, resource allocation is of two types.

• Static: Manual resource allocation for each job by the user if the user has enough knowledge on 
the application behavior on the cluster environment.

• Dynamic: The job is started with a few sets of resources. Based on the utilization and to meet the 
SLA constraints, more resources might be allocated or deallocated over time.

Choosing the right amount of resources to meet user SLA is crucial as improper resource allocation 
might lead to either under-utilization or over-utilization problem. Therefore, as mentioned in the previ-
ous step, performance models are used to determine the optimal set of resources for each job. Resource 
allocation can be done from both big data processing framework or cluster manager side. (Islam, Karunas-
ekera, and Buyya 2017) modeled Spark jobs based on different parameters such as input size, iteration, 
resource requirements to predict the job runtime. Then an optimized resource configuration parameter is 
suggested based on the models which is enough for that job to meet its deadline. (Sidhanta, Golab, and 
Mukhopadhyay 2016) also suggested a deadline-aware model to perform resource allocation which is also 
cost-effective. The model is called OptEx and it estimates job runtime before resource allocation by using 
the job profiles. (Verma, Cherkasova, and Campbell 2011) proposed a resource provisioning framework 
for MapReduce jobs which also uses job profiles from jobs to estimate the required resources for jobs.

Job Scheduling

It is the most critical component of resource management. Job scheduling means settings the order of the 
jobs in which they will run on the cluster. Additionally, the resources can also be ordered before running 
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any jobs. Both job and resource ordering depend on the scheduling policy. The most straightforward 
scheduling policy that is used in all the cluster managers and big data frameworks is the FIFO (First in 
First Out). Here, jobs are ordered according to their arrival time; that means the job that comes first is 
executed first in the cluster. If there are not enough resources in the cluster to run all the jobs, then the 
remaining jobs are placed in a queue which is sorted based in increasing order of their arrival time. In 
most cases, the FIFO scheduler underperforms with complex SLA requirements in a multi-tenant cluster 
setup. Therefore, a vast amount of research exists in this area that proposes efficient schedulers with 
optimal scheduling policies. However, most of the scheduling algorithms are either application or the 
SLA-demand specific. Also, the parameters that are considered vary greatly depending on the applica-
tion or cluster setting. The more sophisticated schedulers tackle both resource allocation and scheduling 
together to make it more efficient. First, these schedulers use some pre-existed performance models for 
the jobs at hand or build it dynamically then decide the resource configuration for a job before schedul-
ing it. Moreover, the resource usages of the currently executing jobs are tracked, and further resources 
will be reallocated or deallocated to make it optimally achieve the SLA requirements. Job scheduling is 
a massively broad and explored topic in both big data and cloud computing. We will provide a detailed 
discussion and compare the existing works in section 4.

MAINTENANCE LAYER

It is the final layer of resource management for big data applications. The components of this layer are 
responsible for maintaining an already deployed big data cluster.

Cluster Monitoring and Logging

Cluster Monitoring is crucial as it plays a vital role in the resource management lifecycle. The cluster 
monitoring data can be logged and saved in persistent storage. This data can be used to validate the 
performance of the resource allocation and scheduling policies. Besides, if a feedback-based system is 
used (can be both feedback-based resource reprovisioning/ scheduling and machine learning models that 
are updated and improved by using the current system status), it needs to use the cluster monitoring data 
to improve the system performance. Popular big data processing frameworks like Hadoop, Spark, and 
Storm provide cluster-wide monitoring data and web-UI to visualize the health of the cluster. Besides, 
cluster monitoring data can also be found from cluster/container management systems like Kubernetes, 
Mesos and Yarn. Sometimes while building sophisticated application/user-specific resource management 
modules, data from the underlying platform might not be enough. In those cases, the administrator or 
developer might need fine-grained resource usage and health data which is possible by using tools such 
as Collectd6 or Prometheus7. A cluster monitoring system like Prometheus not only provides cluster 
monitoring data, but it can also offer a time-series database to store the monitoring data. The database 
is particularly useful for applying advanced machine learning algorithms or performing time-series 
analysis on the monitoring data.
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Failure/Anomaly Detection and Mitigation

When a cluster is deployed, and in operation, jobs might fail due to an anomaly in the system, hardware/
software failure, resource over-utilization, resource-scarcity, etc. By analyzing cluster-wide monitored 
log data, it is possible to detect the root cause of failures in the system. It is important to solve the issue 
to keep the cluster healthy so that the jobs can meet their SLAs. The most trivial way to solve the failure 
is to restart the failed jobs. In the case of resource scarcity, jobs might fail due to a shortage of resource 
or interference of co-located jobs. This problem can be solved by throwing more resources in the cluster 
so that the jobs can run properly. In case of hardware or software failures, the affected hardware that 
might be prone to failure can be avoided in scheduling to avoid any further failures. Chronos (Yildiz et al. 
2015) is a Hadoop-based failure-aware scheduler that uses pre-emption on failed jobs. Then it recovers 
from failure by reallocating the failed jobs with pre-empted resources to meet the SLA objectives. Fuxi 
(Zhuo Zhang et al. 2014) is fault-tolerant resource management and scheduling system that can predict 
and prevent failures in large clusters to satisfy user performance needs.

Cluster Scaling

A big data processing cluster might need to be scaled up and down based on the current usage. In a 
high-load hour, the currently running VMs might not be enough to run all the jobs while satisfying all 
the users’ SLAs. Therefore, in this situation, the cluster needs to be scaled up to satisfy the peak surge 
of resource demands. In contrast, in a light-load hour, a cluster might go under-utilized. In this scenario, 
the existing cluster jobs can be consolidated in fewer VMs so that the underutilized VMs can be freed 
and turned off. Dynamically scaling up or down the cluster is possible by using elastic cloud services 
offered by Amazon AWS or Azure. (Gandhi et al. 2016) is a model-driven autoscaler for Hadoop clus-
ters. It uses novel gray-box performance models to predict job runtimes and resource requirements to 
dynamically scale the cluster so that SLA is satisfied.

A TAXONOMY ON SCHEDULING OF BIG DATA APPLICATIONS

Many types of research have been done in the task and resource scheduling in the cloud computing 
environment. Researchers are trying to adapt existing scheduling approaches to facilitate the needs of 
big data applications. However, many challenges are posed due to the different characteristics of big 
data applications. In this section, different scheduling policies will be discussed. We have divided job 
scheduling approaches for big data applications based on four aspects. Figure 8 exhibits a taxonomy of 
big data job scheduling in the cloud.

Based on the taxonomy, Table 1 shows a summary of comparison between the existing studies on Job 
scheduling for big data. In the following subsections, a detailed comparison will be provided between 
all these works regarding the critical aspects of scheduling. When referring to a paper, we will follow 
the serial number of the corresponding paper from Table 1.
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Objective

The target of a scheduling algorithm to achieve is called the objective. A scheduler can be single-objective 
or multi-objective, and it depends on the application scenario. Most of the scheduling algorithms focus 
on improving application performance. Besides, monetary cost reduction, handling soft or tight dead-
lines of jobs, energy-efficient placement of jobs and scalability of the overall system are also important 
objectives. Generally, the more objective is added to a scheduler, the more complex the decision-making 
progress becomes. Sometimes, the overhead of the scheduling solution could be a bigger issue rather 
than achieving the objects. Therefore, in real systems, different trade-offs are made on the objectives to 
design fast schedulers with fewer overheads.

Now, each of the following subsections will provide a detailed study on the existing literature from 
the perspective of the scheduling objectives.

Performance-Oriented Scheduling

Performance improvement in scheduling can be achieved from two levels. First one is from the appli-
cation/job level; where the target is to minimize the execution time of a job. The second one is from 
the cluster level; where a cluster scheduler has a global goal to improve the performance of the whole 
cluster. The most optimized way of scheduling is doing both. First, the job performance can be modeled 
by building mathematical models, machine-learning models, using monitoring data, etc. to set the ap-
propriate resource requirement and configuration parameters for a job which is enough to maintain its 
SLA. Then, while each job is submitted, the cluster level scheduler improves the performance of the job 

Figure 8. A taxonomy of scheduling of big data applications on cloud
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Table 1. Comparison between the existing scheduling algorithms

SL No. Literature Objective Approach Architecture Platform

1 (Mashayekhy et al. 2015) Deadline, Cost, Energy-
efficiency

ILP, 
Heuristic Centralized Cross-Platform

2 (Ousterhout et al. 2013) Performance, Scalability Sampling, Late bind Distributed Spark

3 (Ren et al. 2015) Performance, Scalability Sampling, SRPT Hybrid Cross-Platform

4 (Sandhu and Sood 2015) Cost, Scalability AKNN, Naive Bayes Hybrid Cross-Platform

5 (Zhao et al. 2015) Deadline, Cost Greedy Heuristics, ILP Centralized Cross-Platform

6 (Kaur and Chana 2014) Cost, Scalability Prediction-based Centralized

7 (Alrokayan, Vahid Dastjerdi, and Buyya 
2015) Deadline, Cost Prune Tree, Greedy 

Heuristics Centralized Cross-Platform

8 (Lim, Majumdar, and Ashwood-Smith 
2014) Performance, Deadline Constraint Programming Centralized Hadoop

9 (Maroulis, Zacheilas, and Kalogeraki 
2017a)

Deadline, Energy-
efficiency EDF, Periodic-DVFS Centralized Spark

10 (Lu et al. 2016) Performance Genetic algorithm Centralized Hadoop

11 (Rasooli and Down 2012) Performance, Scalability Multiplexing Hybrid Hadoop

12 (Fonseca Reyna et al. 2015) Performance Reinforcement learning Centralized Hadoop

13 (Nayak et al. 2015) Performance, Deadline Greedy, Negotiation Centralized Hadoop

14 (Zacheilas and Kalogeraki 2016) Performance, Deadline, 
Cost Pareto-Frontier Centralized Hadoop

15 (Yildiz et al. 2015) Performance Task pre-emption Centralized Hadoop

16 (Zeng et al. 2017) Performance, Cost, 
Deadline Greedy Heuristics Centralized Hadoop

17 (Sidhanta, Golab, and Mukhopadhyay 
2016)

Performance, Cost, 
Deadline

Mathematical model, 
Prediction Centralized Spark

18 (Cheng et al. 2017) Performance Reservation aware, 
Dependency-aware Centralized Cross-Platform

19 (Chen, Lin, and Kuo 2014) Performance, Deadline Graph Modelling Centralized Hadoop

20 (Kim et al. 2016) Cost, Energy-efficiency Reinforcement Learning Centralized Cross-Platform

21 (Imes, Hofmeyr, and Hoffmann 2018) Performance, Energy-
efficiency Machine Learning Classifiers Centralized Hadoop

22 (F. Zhang et al. 2014) Performance, Cost Evolutionary algorithm Centralized Cross-Platform

23 (Maroulis, Zacheilas, and Kalogeraki 
2017b)

Performance, Energy-
efficiency

Time-series prediction, 
DVFS Centralized Spark

24 (Zong, Ge, and Gu 2017) Performance, Energy-
efficiency Power profiles Centralized Cross-Platform

25 (W. Zhang et al. 2014) Performance, Deadline Interference-aware Centralized Hadoop

26 (Hwang and Kim 2012) Deadline, Cost Pricing List, Bin Packing Centralized Hadoop

27 (Jyothi et al. 2016) Performance, Deadline, 
Scalability

Job Profiles, Task Packing, 
Resource Reprovision Centralized Hadoop

28 (Guo et al. 2017) Performance, Scalability Slot Management, 
Speculative Execution Centralized Hadoop

29 (Orhean, Pop, and Raicu 2018) Performance Reinforcement Learning Centralized Cross-Platform

30 (Polo et al. 2011) Performance, Scalability Job Profiles, Slot 
reconfiguration Centralized Hadoop

31 (Kc and Anyanwu 2010) Deadline Greedy Heuristic Centralized Hadoop
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by various techniques such as task consolidations in the same node to reduce network transfers, placing 
tasks close to data, order jobs based on their priority or deadline, etc.

Cost-Efficient Scheduling

The monetary cost of running a big data processing cluster in a cloud environment is crucial. Improper 
resource selection and resource scheduling might lead to resource wastage which intern increases the 
monetary cost of the cluster. If using VMs as the worker nodes of a big data cluster, it is often useful 
to turn-off unused or underutilized VMs to save cost if it does not affect performance/SLA of the jobs. 
Saving cost is mostly comes with a sacrifice of performance guarantee as cost can be saved by using a 
smaller number of resources in a cluster which might impact performance. Therefore, when both cost 
and performance is considered, resources are saved/consolidated only after ensuring a satisfying per-
formance for all the jobs. In extremely scalable or fast scheduling systems, improving performance is 
the only goal and cost saving is mostly ignored.

Deadline-Oriented Scheduling

Some jobs are associated with deadlines, and some job is time-critical or real-time and needs to be 
scheduled as soon as they arrive. Therefore, the deadline is an SLA parameter, and many schedulers try 
to minimize deadline violations. There are several techniques to achieve this — first, the pre-emption 
mechanism where non-priority jobs are killed when priority jobs need to be scheduled. Second, reserving 
some resources that can be dedicated to time-critical or deadline-constrained jobs only. Lastly, ordering 
the jobs beforehand based on their deadlines. However, maintain the job deadline while handling other 
SLA constraints for jobs is difficult due to the presence of stragglers (large periodic jobs that might hold 
a considerable chunk of resources), job inter-dependency (a deadline-constrained job might wait for 
other critical or non-priority jobs), etc. When multiple objects such as cost, deadline and performance 
are considered together, generally there are strict priorities between the objectives. For example, the first 
objective is always ensuring a satisfiable performance of a job so that it meets its given deadline. When 
these objectives are satisfied, only then cost-saving is considered.

Energy-Efficient Scheduling

One of the significant challenges of running big data applications in cloud deployed cluster is minimiz-
ing their energy costs. Electricity used in the data centers in the USA accounted for about 2% of the 
total electricity usage of the whole country in 2010. Furthermore, each year, the energy consumption 
by data-centers is increasing at over 15%. Lastly, the energy costs can take up to 42% of a data-centers 
total operational cost. It is predicted by IDC (Internet Data Corporation) that by the year 2020, big data 
analytics market will surpass $200 billion. Therefore, more and more data-centers are made, and these 
data-centers will consume a tremendous amount of energy soon. Consequently, it is crucial to make the 
scheduling techniques energy-efficient from both the application and the cluster side. Furthermore, from 
both the cluster and application side, consolidating resources to save cost leads to energy saving as it 
helps to reduce the number of active physical machines from the infrastructure side.
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Scalable Scheduling

Scalable scheduling means that the resource management or scheduling algorithms are scalable to large 
clusters and can perform in the presence of high number of scheduling requests in a heterogeneous en-
vironment. Although the centralized approach of scheduling is less complicated to handle the complex 
steps of scheduling at one place, it is not as scalable as a distributed/hybrid approach of scheduling. It 
can be observed that scheduler scalability is addressed in only a few works (2, 3, 4, 6, 11, 28, 30) which 
mostly have distributed/hybrid architecture. However, as the existing cluster systems are growing mas-
sively on size and scale to handle massive amounts of analytics demands, future research should focus 
on the distributed or hybrid deployment of schedulers to make them scalable.

Approach

The solution method towards the scheduling problem varies. Generally, a complete and sophisticated 
scheduler has separate performance prediction and resource assignment modules. The performance models 
are built from mathematical models to predict the runtime of a job, cost of running a job, deadline viola-
tion, etc. in advance which helps to make accurate scheduling decisions. Constraint programming-based 
approaches try to minimize or maximize an objective by satisfying the constraint parameters set by the 
job and the restrictions of resources on the cluster. However, for both resource assignment/allocation 
and scheduling, the optimization problem is always modeled as an NP-Hard problem. Therefore, even if 
exact algorithms or constraint solving approach can find optimal scheduling decisions, it is not feasible 
in most of the case and only applicable in small-scale clusters. In contrast, heuristics or meta-heuristics 
approaches are faster, less-complicated and provided acceptable near-optimal solutions and can be 
scalable to large clusters. Nowadays, machine learning approaches are also becoming popular to build 
sophisticated and intelligent schedulers.

Architecture

Some scheduling designs are centralized, some are distributed. Recently, some hybrid approaches have 
also been proposed which uses both a distributed or local scheduler and a global scheduler. Generally, 
there are two levels in scheduling. One is at the cluster manager level which manages and schedules all 
the jobs submitted from multiple users. Another one is on the application level that schedules the tasks 
of a job to the allocated resources by the cluster-level scheduler. A centralized cluster-level scheduler 
design is less complicated as it controls all the jobs. However, for a massive cluster, a centralized sched-
uler could be a single point of failure. This limitation is solved with either having backup master nodes 
with the cluster manager (using tools like ZooKeeper) or by designing a distributed scheduler where the 
worker nodes co-ordinate with each other to manage the tasks from different jobs.

Platform

Most of the researches have tried to design efficient scheduling algorithms for Hadoop MapReduce based 
clusters as it was the mostly used distributed data processing platform in the last decade. However, as 
Apache Spark, Apache Storm, etc. are becoming more popular and vastly replacing Hadoop these days, 
the researchers are focusing on these platforms now to devise scheduling algorithms. Lastly, due to the 
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popularity of the cluster managers that support multiple different big data frameworks at the same time 
(Apache Mesos), or container-based platforms (Docker, Kubernetes); research has been going on build-
ing cross-platform cluster-level schedulers that can work with a cluster manager to effectively handle 
jobs from different platforms.

To summarize, it is always a hard challenge to provide a general scheduling strategy for all types of 
big data applications. To design a sophisticated scheduling algorithm, the type of big data application 
needs to be detected. Furthermore, depending on the user SLAs, the objectives should be chosen carefully. 
Then after setting the priority between different objectives, a suitable scheduling strategy can be devised.

FUTURE RESEARCH DIRECTIONS

Energy-Efficient Fog/IoT Deployment

Fog/IoT is going to become the most investigated area in the next decade because of the availability of 
a vast number of wearable devices, smartphones, smart sensors, etc. Therefore, the distributed deploy-
ment of data processing applications will be typical. However, it is not efficient to send all the data to 
process in the cloud data-centers as it might impose excessive network/transmission/bandwidth overhead 
in the whole system and increase the energy consumption of the data-centers. Therefore, energy-efficient 
software systems need to be developed that can process and analyze data on the edge/fog level to reduce 
energy consumption and boost the performance of time-critical applications. Also, it will help to meet 
the SLA requirement through multi-tiered resource management over the cloud data-center, fog nodes, 
and mobile devices.

Intelligent Resource Management

Machine learning algorithms are becoming more accurate and suitable for solving complex problems. 
Specifically, it is useful in resource management across all the different components. The resource usage 
statistics, system status, and the configuration parameters can be used to predict the system performance. 
Additionally, machine learning can be used for predicting anomaly, resource demand, peak usage period 
which will help to build sophisticated scheduling, resource scaling, and load-balancing algorithms. 
Lastly, small applications focusing on resource monitoring, performance analysis, local scheduling can 
be packaged as containers in a system that runs through a containerized management system to push 
small resource management components on the fog/edge level for achieving faster and flexible services.

Shared-Sensing in IoT

As the number of IoT and mobile devices is increasing, a vast amount of resources from multiple users 
can be underutilized which neither energy-efficient nor cost-effective. Therefore, fog/IoT devices from 
various service providers and customers can be used collaboratively to provide efficient services. How-
ever, the software architecture should be made in such a way that it is both secure and beneficial for the 
collaborating partners. Besides, new protocols need to be designed on how to set the monetary cost and 
discount in a shared IoT infrastructure.
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SUMMARY

In this chapter, we have discussed the basics of cloud computing, the emergence of big data, processing 
platforms and tools used to handle big data applications and an overall view of resource management for 
big data applications in the cloud. We have specifically focused on the job scheduling aspect of resource 
management and provided a detailed taxonomy of job scheduling for big data applications. Furthermore, 
we have discussed the relevant research in scheduling and showed comparisons of various approaches 
regarding different aspects of scheduling. Lastly, we have highlighted some new research directions that 
need to be investigated to cope with the advanced resource management requirements in the modern era.

REFERENCES

Alrokayan, M., Dastjerdi, A. V., & Buyya, R. (2015). SLA-Aware Provisioning and Scheduling of Cloud 
Resources for Big Data Analytics. 2014 IEEE International Conference on Cloud Computing in Emerg-
ing Markets, CCEM 2014, 1–8.

Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2015). Big Data Comput-
ing and Clouds: Trends and Future Directions. Journal of Parallel and Distributed Computing, 79–80, 
3–15. doi:10.1016/j.jpdc.2014.08.003

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009, June). Cloud Computing and 
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Future 
Generation Computer Systems, 25(6), 17. doi:10.1016/j.future.2008.12.001

Chen, C. H., Lin, J. W., & Kuo, S. Y. (2014). Deadline-Constrained MapReduce Scheduling Based on 
Graph Modelling. IEEE International Conference on Cloud Computing, CLOUD, 416–23. 10.1109/
CLOUD.2014.63

Cheng, D., Zhou, X., Lama, P., Wu, J., & Jiang, C. (2017). Cross-Platform Resource Scheduling for 
Spark and MapReduce on YARN. IEEE Transactions on Computers, 66(8), 1341–1353. doi:10.1109/
TC.2017.2669964

Gandhi, A. (2016). Autoscaling for Hadoop Clusters. Proceedings - 2016 IEEE International Conference 
on Cloud Engineering, IC2E 2016: Co-located with the 1st IEEE International Conference on Internet-
of-Things Design and Implementation, IoTDI 2016, 109–18. 10.1109/IC2E.2016.11

George, L. (2011). HBase: The Definitive Guide. Retrieved from http://books.google.com/books?hl=e
n&lr=&id=nUhiQxUXVpMC&pgis=1

Ghodsi, A. (2011). Dominant Resource Fairness : Fair Allocation of Multiple Resource Types Maps 
Reduces. Ratio, 24–24. Retrieved from http://www.usenix.org/events/nsdi11/tech/full_papers/Ghodsi.pdf

Guo, Y., Rao, J., Jiang, C., & Zhou, X. (2017). Moving Hadoop into the Cloud with Flexible Slot Man-
agement and Speculative Execution. IEEE Transactions on Parallel and Distributed Systems, 28(3), 
798–812. doi:10.1109/TPDS.2016.2587641



20

Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments
 

Hindman, B. (2011). Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. Retrieved 
from http://static.usenix.org/events/nsdi11/tech/full_papers/Hindman_new.pdf

Hwang, E., & Kim, K. H. (2012). Minimizing Cost of Virtual Machines for Deadline-Constrained 
MapReduce Applications in the Cloud. Proceedings - IEEE/ACM International Workshop on Grid 
Computing, 130–38. 10.1109/Grid.2012.19

Imes, C., Hofmeyr, S., & Hoffmann, H. (2018). Energy-Efficient Application Resource Scheduling 
Using Machine Learning Classifiers. In Proceedings of the 47th International Conference on Parallel 
Processing - ICPP 2018 (pp. 1–11). New York: ACM Press. doi:10.1145/3225058.3225088

Islam, M. T., Karunasekera, S., & Buyya, R. (2017). DSpark: Deadline-Based Resource Allocation for 
Big Data Applications in Apache Spark. In 2017 IEEE 13th International Conference on E-Science (e-
Science) (pp. 89–98). Auckland, New Zealand: IEEE. doi:10.1109/eScience.2017.21

Jyothi, S. A. (2016). Morpheus: Towards Automated SLOs for Enterprise Clusters. 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16), 117–34. Retrieved from https://
www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi

Katsifodimos, A., & Schelter, S. (2016). Apache Flink: Stream Analytics at Scale. 2016 IEEE Interna-
tional Conference on Cloud Engineering Workshop (IC2EW), 193–193. Retrieved from http://ieeexplore.
ieee.org/document/7527842/

Kaur, P. D., & Chana, I. (2014). A Resource Elasticity Framework for QoS-Aware Execution of Cloud 
Applications. Future Generation Computer Systems, 37, 14–25. doi:10.1016/j.future.2014.02.018

Kc, K., & Anyanwu, K. (2010). Scheduling Hadoop Jobs to Meet Deadlines. Proceedings - 2nd IEEE 
International Conference on Cloud Computing Technology and Science, CloudCom 2010, 388–92. 
10.1109/CloudCom.2010.97

Kim, B.-G., Zhang, Y., van der Schaar, M., & Lee, J.-W. (2016). Dynamic Pricing and Energy Consump-
tion Scheduling With Reinforcement Learning. IEEE Transactions on Smart Grid, 7(5), 2187–2198. 
doi:10.1109/TSG.2015.2495145

Kune, R., Konugurthi, P. K., Agarwal, A., Chillarige, R. R., & Buyya, R. (2016). The Anatomy of Big 
Data Computing. Software, Practice & Experience, 46(1), 79–105. doi:10.1002pe.2374

Lakshman, A., & Malik, P. (2010). Cassandra. Operating Systems Review, 44(2), 35. 
doi:10.1145/1773912.1773922

Lim, N., Majumdar, S., & Ashwood-Smith, P. (2014). A Constraint Programming-Based Resource 
Management Technique for Processing Mapreduce Jobs with SLAs on Clouds. Proceedings of the In-
ternational Conference on Parallel Processing, 411–21. 10.1109/ICPP.2014.50

Lu, Q., Li, S., Zhang, W., & Zhang, L. (2016). A Genetic Algorithm-Based Job Scheduling Model for 
Big Data Analytics. EURASIP Journal on Wireless Communications and Networking, 152(1), 152. 
doi:10.118613638-016-0651-z PMID:27429611

Maroulis, Zacheilas, & Kalogeraki. (2017a). A Framework for Efficient Energy Scheduling of Spark 
Workloads. Proceedings - International Conference on Distributed Computing Systems, 2614–15.



21

Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments
 

Maroulis, S., & Zacheilas, N. (2017b). ExpREsS: EneRgy Efficient Scheduling of Mixed Stream and 
Batch Processing Workloads. Proceedings - 2017 IEEE International Conference on Autonomic Com-
puting, ICAC 2017, 27–32. 10.1109/ICAC.2017.43

Mashayekhy, L., Nejad, M. M., Grosu, D., Zhang, Q., & Shi, W. (2015). Energy-Aware Scheduling of 
MapReduce Jobs for Big Data Applications. IEEE Transactions on Parallel and Distributed Systems, 
26(10), 2720–2733. doi:10.1109/TPDS.2014.2358556

Nayak, D. (2015). Adaptive Scheduling in the Cloud - SLA for Hadoop Job Scheduling. Proceedings of 
the 2015 Science and Information Conference, SAI 2015, 832–37. 10.1109/SAI.2015.7237240

Orhean, A. I., Pop, F., & Raicu, I. (2018). New Scheduling Approach Using Reinforcement Learning 
for Heterogeneous Distributed Systems. Journal of Parallel and Distributed Computing, 117, 292–302. 
doi:10.1016/j.jpdc.2017.05.001

Ousterhout, K., Wendell, P., Zaharia, M., & Stoica, I. (2013). Sparrow : Distributed, Low Latency 
Scheduling. ACM Symposium on Operating Systems Principles (SOSP), 69–84. Retrieved from http://
dl.acm.org/citation.cfm?doid=2517349.2522716

Polo, J. (2011). Resource-Aware Adaptive Scheduling for MapReduce Clusters. Lecture Notes in Com-
puter Science, 7049, 187–207. doi:10.1007/978-3-642-25821-3_10

Rasooli, A., & Down, D. G. (2012). A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop 
Systems. Proceedings - 2012 SC Companion: High Performance Computing. Networking Storage and 
Analysis, SCC, 2012, 1284–1291.

Ren, X., Ananthanarayanan, G., Wierman, A., & Yu, M. (2015). Hopper : Decentralized Speculation-
Aware Cluster Scheduling at Scale. Sigcomm 2015, 379–92.

Reyna, César, Martínez Jiménez, Bermúdez Cabrera, & Méndez Hernández. (2015). A Reinforcement 
Learning Approach for Scheduling Problems. Investigación Operacional, 36(3), 225–31. Retrieved from 
http://0-search.ebscohost.com.mercury.concordia.ca/login.aspx?direct=true&db=a9h&AN=10865115
1&site=ehost-live&scope=site

Sandhu, R., & Sood, S. K. (2015). Scheduling of Big Data Applications on Distributed Cloud Based on 
QoS Parameters. Cluster Computing, 18(2), 817–828. doi:10.100710586-014-0416-6

Shvachko, Kuang, Radia, & Chansler. (2013). The Hadoop Distributed File System. Academic Press.

Sidhanta, S., Golab, W., & Mukhopadhyay, S. (2016). OptEx: A Deadline-Aware Cost Optimization 
Model for Spark. Proceedings - 2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and 
Grid Computing, CCGrid 2016, 193–202. 10.1109/CCGrid.2016.10

Vavilapalli, V. K. (2013). Apache Hadoop YARN. Proceedings of the 4th annual Symposium on Cloud 
Computing - SOCC ’13, 13, 1–16. Retrieved from http://dl.acm.org/citation.cfm?doid=2523616.2523633

Verma, A., Cherkasova, L., & Campbell, R. H. (2011). Resource Provisioning Framework for MapReduce 
Jobs with Performance Goals. Lecture Notes in Computer Science, 7049, 165–86. doi:10.1007/978-3-
642-25821-3_9



22

Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments
 

Wang, K., & Mohammad, M. H. K. (2015). Performance Prediction for Apache Spark Platform. Proceed-
ings - 2015 IEEE 17th International Conference on High Performance Computing and Communications, 
2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th Interna-
tional Conference on Embedded Software and Systems, H, 166–73. 10.1109/HPCC-CSS-ICESS.2015.246

Yildiz, O., Ibrahim, S., Phuong, T. A., & Antoniu, G. (2015). Chronos: Failure-Aware Scheduling in 
Shared Hadoop Clusters. Proceedings - 2015 IEEE International Conference on Big Data, IEEE. Big 
Data, 2015, 313–318.

Zacheilas & Kalogeraki. (2016). ChEsS: Cost-Effective Scheduling Across Multiple Heterogeneous 
Mapreduce Clusters. In 2016 IEEE International Conference on Autonomic Computing (ICAC). IEEE. 
Retrieved from http://ieeexplore.ieee.org/document/7573117/

Zaharia, M., Chowdhury, M., Das, T., & Dave, A. (2012). Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for in-Memory Cluster Computing. Nsdi, 2–2. Retrieved from https://www.usenix.org/system/
files/conference/nsdi12/nsdi12-final138.pdf

Zaharia, M., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., ... Venkataraman, S. (2016). 
Apache Spark. Communications of the ACM, 59(11), 56–65. doi:10.1145/2934664

Zeng, X. (2017). Cost Efficient Scheduling of MapReduce Applications on Public Clouds. Jour-
nal of Computational Science. Retrieved from https://www.sciencedirect.com/science/article/pii/
S1877750317308542

Zhang, F., Cao, J., Tan, W., Khan, S. U., Li, K., & Zomaya, A. Y. (2014). Evolutionary Scheduling of 
Dynamic Multitasking Workloads for Big-Data Analytics in Elastic Cloud. IEEE Transactions on Emerg-
ing Topics in Computing, 2(3), 338–351. doi:10.1109/TETC.2014.2348196

Zhang, W., Rajasekaran, S., Wood, T., & Zhu, M. (2014). MIMP: Deadline and Interference Aware 
Scheduling of Hadoop Virtual Machines. Proceedings - 14th IEEE/ACM International Symposium on 
Cluster, Cloud, and Grid Computing, CCGrid 2014, 394–403. 10.1109/CCGrid.2014.101

Zhang, Z. (2014). Fuxi: A Fault-Tolerant Resource Management and Job Scheduling System at Internet 
Scale. Proc. VLDB Endow., 7(13), 1393–1404. 10.14778/2733004.2733012

Zhang, Z., Cherkasova, L., & Loo, B. T. (2013). Performance Modeling of MapReduce Jobs in Hetero-
geneous Cloud Environments. 2013 IEEE Sixth International Conference on Cloud Computing, 839–46. 
Retrieved from http://ieeexplore.ieee.org/document/6740232/

Zhao, Y. (2015). SLA-Based Resource Scheduling for Big Data Analytics as a Service in Cloud Com-
puting Environments. 2015 44th International Conference on Parallel Processing, 510–19. Retrieved 
from http://ieeexplore.ieee.org/document/7349606/

Zong, Z., Ge, R., & Gu, Q. (2017). Marcher: A Heterogeneous System Supporting Energy-Aware High 
Performance Computing and Big Data Analytics. Big Data Research, 8, 27–38. Retrieved from http://
linkinghub.elsevier.com/retrieve/pii/S221457961630048X



23

Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments
 

ENDNOTES

1  https://gsuite.google.com.au/intl/en_au/
2  https://www.ibm.com/cloud/
3  https://azure.microsoft.com/en-au/
4  https://aws.amazon.com/ec2/
5  https://kubernetes.io/
6  https://collectd.org/
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