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Abstract— Serverless computing is an event-driven 

cloud computing architecture for processing requests on-

demand, using light weight function containers and a 

micro-services model. A variety of applications like 

Internet of Things (IoT) services, edge computing, and 

stream processing have been introduced to the serverless 

paradigm. These applications are characterized by their 

stringent response time requirements, therefore 

expecting a quick and fault tolerant feedback from the 

application. The serverless, or Function-as-a-Service 

(FaaS), paradigm suffers from function ‘cold start’ 

challenges, where the serverless platform takes time to set 

up the dependencies, prepare the runtime environment 

and code for execution before serving the incoming 

workload. Most of the current works address the problem 

of cold start by (1) reducing the start-up or preparation 

time of function containers, or (2) reducing the frequency 

of function cold starts on the platform.  Recent industrial 

research has identified that factors such as runtime 

environment, CPU and memory settings, invocation 

concurrency, and networking requirements, affect the 

cold start of a function. Therefore, we propose a 

Reinforcement Learning (Q-Learning) agent setting, to 

analyze the identified factors such as function CPU 

utilization, to ascertain the function-invocation patterns 

and reduce the function cold start frequency by preparing 

the function instances in advance. The proposed Q-

Learning agent interacts with the Kubeless serverless 

platform by discretizing the environment states, actions 

and rewards with the use of per-instance CPU utilization, 

available function instances and success or failure rate of 

response, respectively. The workload is replicated using 

the Apache JMeter non-GUI toolkit and our agent is 

evaluated against the baseline default auto-scale feature 

of Kubeless. The agent demonstrates the capability of 

learning the invocation pattern, make informed decisions 

by preparing the optimal number of function instances 

over the period of learning, under controlled environment 

settings.  

Keywords—Serverless Computing, Faas, Reinforcement 

Learning, Q-Learning, Cold Start, Kubeless. 

I. INTRODUCTION  

The serverless computing architecture puts forward an event-
driven, function-as-a-service model with a fine-grained pay-
per-use pricing where costs are incurred only for the actual 
time that the resources are used. These models define a set of 
loosely coupled, stateless functions (a piece of code) that are 
executed on light-weight containers or virtual machines 
(VMs), having an inherent characteristic of on-demand 

scalability. Serverless computing completely takes off the 
burden of resource provisioning and management from the 
developers or users, thus emphasising solely on the 
application development. Serverless, in no way means the 
absence of servers, in fact the complexity of resource 
management lies solely with the Cloud Service Provider 
(CSP) [13,14]. The function-based abstraction increases 
agility in application development, offering lower 
administrative and ownership costs.  

Serverless models execute the client code inside a light-
weight function container, spawning the instances as per the 
function workload. With the ease of deployment and on-
demand function scalability, the serverless execution model 
has attracted a wide range of applications from a variety of 
fields such as IoT services, REST APIs, stream processing, 
prediction services, etc. These applications have rigid latency 
requirements and thus expect a quick and fault tolerant 
response from the function. Conceptually, the serverless 
architecture is designed to prepare a new instance for every 
incoming workload and shut down after serving the request 
[14]. But, practically, commercial serverless platforms like 
AWS Lambda, Azure Functions, Google Cloud Function, etc 
may choose to re-use a function instance or keep the instance 
running for a limited period of time to serve subsequent 
requests [1]. Some open source serverless frameworks such as 
Kubeless [16] and Knative that are implemented over 
Kubernetes, have similar implementations to retain an 
instance of a function and re-use it to serve the subsequent 
requests.    

With an incoming workload, new function containers are 
requested and a process of initialisation precedes the serving 
of the requests. The serverless platform initialises new 
containers, downloads the client code, sets up the code 
dependencies and runtime environment, sets up the worker 
node and eventually executes the container to handle the 
incoming request. This process introduces a non-negligible 
time latency, known as ‘cold start’, and poses as an existing 
challenge for the serverless platforms [2,3,5,7]. In other 
words, cold starts can be understood as the time taken by the 
platform to start executing an incoming request. A number of 
application factors as well as the function requirements affect 
the cold start of a function. Recent studies [6,7,8,9] suggest 
that factors like programming language, runtime environment, 
code packaging and deployment size, CPU or memory 
requirement limits, etc. affect the cold start of a function. The 
different offerings of serverless platforms allow for capturing 
the correct underlying resource information and some open 
source Kubernetes [15] native serverless frameworks like 
Kubeless take advantage of the native resource metrics. To 
deal with the function workload, Kubeless supports resource-
based auto-scaling, i.e., Kubernetes Horizontal Pod 
AutoScaler (HPA) to derive the new instances based on the 
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per-instance CPU-utilization of the function. The default auto-
scaler starts requesting new instances only when the current 
function containers runs out of requested memory or the per-
instance CPU utilization spikes above a specified threshold 
value. This leads to function container cold starts to serve the 
requests and eventually an increased number of failed 
requests, if the cold start time is greater than the request’s 
time-to-live.  

As these observations are solely dependent on the resource 
utilization values, they pose as an opportunity to explore 
techniques to understand the process and reduce the frequency 
of cold starts of a function. In this work, we present a 
Reinforcement Learning (RL), i.e., a model free Q-Learning 
agent, which exploits the per-instance CPU utilization, 
number of available function instances, to represent the 
environment states and, define the appropriate reward system 
for the agent to dynamically ascertain the optimal number of 
function instances for a given workload. In practice, a Q-
Learning agent learns through the process of trial and error by 
interacting with the serverless environment. In each iteration, 
the agent analyses the current state of the environment and 
performs a particular action. A delayed feedback is observed, 
either positive or negative, based upon the realised factor (per-
instance CPU-utilization, successful or failed response) and 
consequently learns about the workload pattern. This strategy 
does not have any prior knowledge about the workload pattern 
and dynamically adapts to the changes, thereby reducing the 
cold start frequency in subsequent invocations. This approach 
explores the applicability of Q-Learning algorithm for 
determining the optimal number of function instances in 
serverless environments in advance, so as to reduce the 
frequency of function cold starts, during a particular span of 
time. We compare this work by simulating the workload 
pattern for the default auto-scaling feature of the Kubeless 
platform. This helps in performing the analysis and examine 
the performance of both the configurations. 

The key contributions of our work are as follows: 

1. A Reinforcement Learning Agent implementing 
model free Q-Learning in a serverless environment 
setting to reduce the cold start frequencies of a 
function.  

2. Implementing an agent to dynamically learn the 
function invocation patterns to ascertain optimal 
number of function instances, reducing cold start 
occurrences. 

3. Evaluation of our proposed agent against the baseline 
auto-scale policy of the serverless platform for a 
synthetic function workload pattern.  

The rest of the paper is organised as follows. Section II 
highlights related research studies. In Section III we present 
the system model and architecture along with the workload 
specification. Section IV outlines the proposed agent’s 
workflow and describe the design decisions. In Section V we 
evaluate our technique with the baseline approach and 
highlight the possible shortcomings. Section VI concludes the 
paper, highlight the future research directions. 

II. RELATED WORK 

Serverless computing - featuring affordability, on-demand 
scalability and light-weight containerization, comes with 
inherent challenges and problems. These challenges can 
broadly be listed as security, privacy, caching, modes of 

execution, etc. Among them, the problem of cold start is still 
prevalent and has attracted academia for realising possible 
solutions. A current study [1] discusses the ongoing trends of 
handling the cold starts in commercial as well as open source 
serverless platforms and present their results by evaluating 
AWS Lambda offerings. They broadly categorise the 
approaches to deal with cold starts in two classes: (1) 
Optimising environments i.e. minimise the cold start delay 
itself and (2) Pinging i.e. minimising the frequency of cold 
start occurrences. Among the existing techniques to mitigate 
the cold start problem, they review the offerings of OpenFaas, 
OpenWhisk, AWS Lambda and discuss the solutions like 
cold and warm queue. They further create a case study with 
I/O intensive and CPU intensive benchmarks for evaluating 
the AWS Lambda’s warm queueing technique and conclude 
with the absence of any correlation between the warm 
containers prepared by the platform and time interval of 
incoming requests.  

    In [2], an adaptive function container warm up technique 
is introduced to reduce the cold start latency. It utilises a 
function chain model, i.e., a sequence of functions to predict 
the function invocation time, using LSTM networks, and non-
first functions to keep the warmed function containers ready 
in queue. The researchers also propose a container pool 
strategy that seeks to dynamically adjust the number of empty 
containers in the container pool to reduce the waste of 
resources. Both approaches work in synchronisation as the 
failure of adaptive warmup strategy will automatically launch 
adaptive container pool strategy by providing a pre-warmed 
empty container, thus reducing the overall cold start latency. 
It is highlighted in the study that even though the strategy 
learns the invocation time of the function chain, the first 
function in the sequence suffers cold start latency. They test 
their approaches by comparing the resource utilisation, idle 
time and overall cluster utilisation with other existing 
techniques. 

    Researchers in [3] explain the phenomenon of cold starts 
with respect to the Knative serverless platform and suggest a 
pod migration technique to reduce the cold start of the 
function containers. They posit that the cold start overhead is 
dependent on the underlying implementation of the function 
and categorise them in platform dependent and application 
dependent overheads. To deal with the cold starts, a pool of 
pre-warmed containers, marked with selector ‘app-label’, are 
kept ready. When the requests arrive, first the pool is checked 
for existing pre-warmed containers and allocated to the 
application, otherwise new containers are spawned as per the 
request workload. Using this approach, they conclude with an 
improvement in the cold start latencies of the containers for a 
single instance of pool.    

    Another research [4], studies and exploits the data 
similarity for reducing the cold starts and proposes a 
deployment system over a peer-to-peer network, virtual file 
system and content addressable storage to increase the 
computing capabilities, storage requirements and prevent 
network bottlenecks of system. They criticise the current 
container deployment technique of pulling each new 
container image from the storage bucket and introduces a live 
container migration technique over a peer-to-peer network. 
They propose to transfer blocks of files containing frequently 
used libraries and packages, over the network when required, 
and found a 37.9% reduction in the boot-time of containers.  
Similarly, [5] aims to reduce the number of cold stars by 
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utilising the function composition knowledge. It presents an 
application side solution based on a light-weight middleware 
that aims to enable the developers to control the frequency of 
cold starts. It establishes that applications are generally 
deployed as a set of functions and proposes three strategies; 
naïve approach, extended approach and global approach 
where a dedicated orchestration component invokes all the 
steps and follow a process of ‘hinting’ the next batch of 
functions involved. 

    Research in [6] explores network creation and network 
initialisation as the prime contributor to the cold start latency. 
It explains four stages of container lifecycle: (1) service 
invocation, (2) startup, (3) run time and (4) cleanup. The 
cleanup includes stopping the container, disconnecting its 
network and destroying it and this process demands cycles 
form the underlying containerisation daemon, hindering with 
the other three processes. Thus, a pause container pool 
manager is proposed to pre-create a network for function 
containers and whenever required, attach the new function 
container to configured IP and network. Their evaluation on 
OpenWhisk platform demonstrates a reduction of up to 80% 
in the cold start times with a negligible memory footprint.  

    Research [6,7,8] has identified various factors like runtime 
environment, CPU and memory settings, dependency setting, 
the effect of concurrency, networking requirements, etc. 
which affect the cold start of a function. Most works focus on 
commercial serverless platforms like AWS Lambda, Azure 
Functions, Google Cloud Functions and fall short to evaluate 
open source serverless platforms like OpenLambda, Fission, 
Kubeless, etc. Very few studies [9,10,11] have successfully 
performed analysis on open source serverless platforms and 
provided possible solutions by targeting the container level 
finer-grained control of the platform.  

   Work in [12] introduces the paradigm of Reinforcement 
Learning (RL) to the serverless platforms. It is focused 
towards provisioning VMs or containers on request-based 
autoscaling in the serverless offerings. The study is 
conducted using Knative serverless platform that supports 
parallel processing of requests per instance utilising the 
Horizontal Pod Autoscaler of Kubernetes. The researchers 
show that depending upon the workload, different 
concurrency levels of the container can influence 
performance and thus, propose a RL based model, 
specifically model free Q-Learning, to determine the optimal 
concurrency levels for individual workloads. It evaluates the 
performance of model based on latency and throughput of the 
function containers and demonstrated the capability of 
applying Q-Learning algorithm to the task of auto-scaling in 
serverless platforms. 

    As a novel approach, we explore the applicability and 
capability of RL strategies to reduce the function cold start in 
a serverless environment. Contrasting to the existing works, 
we apply the model free Q-Learning algorithm for reducing 
the cold start frequencies on the serverless platforms, by 
identifying the invocation patterns of the specific workloads, 
focus towards learning the optimal number of function 
instances and evaluate it against the non-intelligent, default 
auto-scaler strategy responsible for cold starts. A summary of 
few discussed researches and our methodology is presented 
in Table 1, highlighting the distinguishing parameters of the 
individual studies. 

Table 1. Summary of Relevant Works. 

Parameter 
Related Work Our 

work [2] [3] [4] [5] [6] [12] 

Open Source 
Platform 

Yes Yes No Yes Yes No Yes 

Commercial 
Platform 

No No Yes Yes Yes Yes No 

Function 
Invocation 

Pattern 
Yes No No No No No Yes 

Reinforcement 
Learning 

Technique 
No No No No No Yes Yes 

Pre-Warmed 
Containers 

Yes Yes No No No No No 

Other Techniques 
(Network 
creation, 

Migration, etc.) 

No No Yes Yes Yes Yes Yes 

Cold Start 
Frequencies 

No No No No No No Yes 

III. SYSTEM ARCHITECTURE 

A. System Model 

The overall architecture and system model of the 
experiment is illustrated in Fig. 1 and Fig. 2. To perform the 
experiment, a Kubernetes service cluster was setup using 
Melbourne Research Cloud (MRC) services at The University 
of Melbourne, Australia. 

 
Figure 1. Deployed Stack Architecture.

 

Figure 2. System Model. 
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    The service cluster contains 4 nodes with 4 vCPU and 16 
GB memory each and provides sufficient capacity to all the 
Kubeless components for the experiment. The workload 
generator agent is also configured on a similar node, 
responsible for sending the requests to function service cluster 
to generate the workload using Apache JMeter Non-GUI 
toolkit. The Kubernetes (version v1.18.6) cluster is configured 
using Ansible scripts for automatic cluster deployment. 
Kubeless (version v1.0.6) serverless framework is installed on 
the service cluster with all its components and inherent from 
Kubernetes, does not support scale-to-zero functionality 
(minimum 1 instance) in the implemented version.   

The Q-Learning agent is configured to work in parallel to 
Kubernetes & Kubeless services on the service cluster and 
continuously monitors and manages the activities of the 
cluster including metrics collection, update the function 
deployment state based on collected metrics and logging the 
required metrics. To extensively test the workload learning 
capabilities of the agent, a NGINX-Ingress is also configured 
to handle the load balancing of incoming requests and thus 
allow the agent to avoid any performance issues while 
learning.      

B. Workload Specification 

There are a variety of applications which benefit from the 
serverless execution model including REST APIs, multimedia 
processing, highly parallel workloads, stream processing, etc. 
Some of these applications are compute intensive and demand 
considerable amount of resources, therefore, to investigate the 
cold start problem, we generate a stable workload from a set 
quota of function requests to simulate a serverless application. 
The request simulation uses the thread sleep method that 
enables the service cluster to serve quota of requests for a set 
time span and provide the RL agent with a delayed 
feedback/reward. 

 We fabricate a compute intensive process of calculating 
Fibonacci series up to number 38 [8], in order to keep the 
running instances busy and allow the default auto-scaler of the 
Kubeless to account for the increased number of function cold 
starts. Since Kubeless does not cite its concurrency policies, 
we specify function resource requirements (CPU and 
Memory) to be allocated and used for the purpose of 
evaluating the resource metrics. The Fibonacci calculator 
appropriately fits the compute intensive requirement of the 
experiment and the RL agent extensively captures the state of 
the serverless environment for learning the necessary function 
instances to lower the cold starts. 

IV. PROPOSED AGENT WORKFLOW 

The workflow is partitioned into two processes, the workload 
generator and RL agent. The workload generator is used to 
simulate a quota of parallel HTTP user requests against the 
Fibonacci function. We use Apache JMeter, an open source 
HTTP load testing tool, to simultaneously send a number of 
requests at a constant rate over a period of time. JMeter 
features a configurable thread ‘ramp-up’ period that tells 
JMeter how long to take for creating the desired number of 
request threads. In our experiment, a set of requests are sent 
from the quota of 100 requests with a ramp-up period of 200 
seconds, engaging sufficient amount of resources from the 
function instances. This guarantees the demand for newer 
instances from the default auto-scaler, providing sufficient 
time for scaling or acknowledging the RL agent to analyse the 
workload pattern, observe the environment states and generate 

the rewards which complement the function cold start 
evidence.  

The RL agent begins with set-up of reinforcement learning 
environment, i.e., state and action for successful 
implementation of model free Q-Learning technique to the 
serverless configuration. The reinforcement learning task is to 
train the agent that interacts with its environment. The agent 
transitions between different scenarios of the environment, 
called states, by performing the valid, available actions. These 
actions lead to rewards, either positive, negative or zero and 
the purpose of agent is to maximize the total reward it 
receives, during the process of learning. Q-learning trains an 
agent to approximate the value of actions i.e. Q-value, making 
use of the tabular representation of state-action values known 
as Q-table that forms the basis of decision making in the 
learning process.  

 Q(s,a) represents the Q-value of action a an agent 
performs at state s and tries to maximise this cumulative 
reward using Bellman Equation (1) at each iteration t.  

Q(st, at) ← (1 − α)Q(st, at) + α[rt + γ maxa Q(st+1, a)]   ...(1) 

α is the learning rate that describes the weight of newly 
observed information over old information, γ is the discount 
factor that describes the importance of future rewards. To 
choose between exploration and exploitation of information, 
the agent is implemented with ε-greedy strategy, where ε is 
the probability of exploration. Therefore, the agent selects an 
action that maximises the expected value i.e. an action with 
maximum Q-value for state s with probability of 1- ε.    

The Kubeless framework along with its components and 
resources, including the sample function of Fibonacci 
calculator, forms the environment for the RL agent to interact. 
The state of the environment is defined by the combination of 
(1) number of function instances available and (2) per-
instance CPU-utilization of the function. The agent allows 
maximum number of function instances to be passed as a 
parameter that controls states explored during the learning 
process. Since CPU-utilization values are continuous 
numbers, the per-instance CPU-utilization values are 
discretised into five bins of equal size – {20, 40, 60, 80, 100}, 
each representing the maximum value of CPU-utilization in 
the bin. This decision helps in appropriately limiting the size 
of the Q-table learned.  

The agent interacts with the environment using actions of 
(1) scale up and (2) scale down the function deployment with 
valid number of instances. The availability of actions for a 
state is determined by the state representation, regulating the 
instances between 1 (minimum instance count supported by 
Kubeless) to M (maximum instance count). This allows the 
RL agent to explore and exploit only the possible state-action 
space, thus reducing the number of explorations and 
increasing the convergence time. For example, if the 
maximum number of function instances to be explored are M, 
the environment states can be represented as a set {x$y | x ξ 
1…M, y ξ (20, 40, 60, 80, 100)} containing M x 5 states. The 
action set for the agent at state x$y (x: instance count, y: CPU 
utilization range) can be represented as {a | x + a > 0, abs (x + 
a) <= M, a ξ 1…M}. Therefore, the size of the Q-table can be 
calculated as (M x 5) x (2M – 1).  

At each action step, the agent yields delayed rewards, 
determined after the specific time span, reflecting the 
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appropriateness of the selected action. The agent learns the 
best actions by updating the Q-values according to the 
Bellman Equation, as in (1). The immediate reward, ‘r’, of 
state transition depends on function instance count, CPU-
utilization and request success or failure rate during the 
observed time span, as in (2). The agent yields positive reward 
for successfully serving more than half the requests, being 
inversely proportional to the instance count and gets penalised 
for the states with CPU-utilization above a threshold of 75% 
and an undesired failure rate of more than 70%.  

Immediate reward ← (0.5*CPU utilisation) + (0.3*state-1)     
+ (0.1*success rate) + (0.1*failure rate) …(2) 

The following steps outline the Q-learning approach to 
train the agent in serverless setting: 

1. Input the maximum number of function instances to 
be explored and time step to consider for observing 
the rewards. 

2. Setup the agent initial state and Q-table for the (state, 
action) pair. 

3. Choose and perform an action according to the ε-
Greedy policy with ε = 5%. 

4. Wait for ‘sleep time’ to observe the reward for current 
iteration.  

 Gather metrics for current function instances. 

 Calculate and return the immediate reward using 
collected metrics. 

 Calculate updated Q-value according to the 
Bellman Equation with α = 0.4 and γ = 0.3. 

5. Update the Q-table with new Q-values calculated. 

6. Repeat the training procedure. 

V. PERFORMANCE EVALUATION 

To evaluate the performance of our RL agent, we compare it 
with the default auto-scaling policy supported by the Kubeless 
serverless platform. Kubeless supports auto-scaling of the 
function based upon the CPU metrics i.e. the per instance 
CPU-utilisation of the active instances. The default policy is 
implemented as a control loop with a period of 15 seconds, 
after which the controller scrapes the metrics and perform the 
required action of scaling up. The platform keeps the allotted 
resources for a period of 5 minutes to prevent the resources 
from thrashing, due to dynamic nature of the changing 
metrics.  

 We simulate the CPU intensive serverless workload using 
the function Fibonacci calculator up to number 38 [8]. This 
ensures a sufficient amount of resources, CPU and memory, 
are utilised by a single request and therefore results in 
simulating higher number of cold starts to evaluate the 
algorithms. To mimic the serverless workload pattern under 
the experimental conditions, we create a set of a number of 
requests with a limit of 100 requests per 5 minutes, {reqCount 
| reqCount <= 100}. The period of 5 minutes is chosen in order 
to prevent thrashing of the resources while auto-scaling the 
function instances and thus evaluating both the approaches 
within a comparable schedule.  

 To effectively observe the results of default auto-scaling 
policy and examine the feasibility of model free Q-Learning 
in the experimental serverless setting, a period of 240 minutes 
was designated. As the Q-Learning algorithm seeks to explore 
the available state-action pair in the environment, a maximum 
of 10 function instances were preferred to comfortably 

execute the procedure of learning, while abstaining from the 
explosion of the size of the state-action space represented by 
the Q-table. In the baseline experiment of default auto-scaling 
policy responsible for provisioning the function instances on-
request, every new instance provisioned represents a potential 
addition to cold starts frequency. This keeps a part of 
incoming workload waiting to get an instance allocated and 
leads to a failed response, while spawning the new instances. 
Therefore, the rate of failed responses, which could not be 
served due to requirement of instances (resources) are used to 
compare both the discussed approaches. 

 Fig. 3 illustrates the results of the default auto-scaling 
policy of the Kubeless platform. With the limited number of 
function instances and considering CPU-utilisation metrics, it 
can be seen that the baseline approach suffers from a number 
of failed requests and accounts for approximately 44% of the 
failed requests out of the workload of approximately 2166 
requests. This can be attributed to the following 
characteristics:  

 A control loop period of 15 seconds, after which the 
auto-scaler checks for the CPU metrics. 

 A CPU-intensive function composition that leads to 
occupied resources and waiting or failed requests. 

 Limited scaling of the function instances during the 
experiment. 

 Fig. 4, Fig. 5, Fig. 6 and Fig. 7 illustrates the four iterations 
of the Q-Learning agent. The agent is trained for a period of 
240 minutes, in multiple iterations to ascertain the function 
invocation patterns and learn the number of function instances 
required for a specific workload. This decision is based upon 
the rewards experienced by the agent according to the CPU-
utilisation, success and failure rate of requests and the number 
of serving function instances. It is evident from the graphical 
representation that the agent starts learning the invocation 
patterns and exploits the experience it gets from the rewards. 
For instance, it can be inferred from the iteration 3 & 4 that 
the agent explores different configurations and tries to 
minimise the cold starts by preparing the required number of 
function instances, leading to reduced number of failed 
requests, during the time period 10 – 20 and 30 – 40. The 
lower variations of failed requests (i.e. the reduction in 
number of failed requests over the iterations) also signify that 
the agent is learning the optimal number of function instances 
to reduce the cold start problems and tries to serve maximum 
request. 

 

Figure 3. Failed requests using default HPA policy. 
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Figure 4. Q-Learning Agent iteration 1 of 240 minutes. 

 

Figure 5. Q-Learning Agent iteration 2 of 240 minutes. 

 

Figure 6. Q-Learning Agent iteration 3 of 240 minutes. 

 

Figure 7. Q-Learning Agent iteration 4 of 240 minutes. 

After four iterations of training the RL agent, it manages to 
serve approximately 50.1% requests successfully and shows a 
positive indication towards converging to the optimal values. 
As compared to default auto-scaling technique, the 
performance of our agent after few iterations of the Q-
Learning procedure shows the feasibility and appropriateness 
of the reinforcement learning strategy to the task of reducing 
cold start occurrences. The difference of results between both 
the approaches can be attributed to the following 
characteristics of the RL agent implemented –  

 The elementary reward structure used in the Q-
Learning process that can affect the information gain 
of the agent. 

 The values of α, learning rate and γ, discount factor, 
that plays an important role in learning process. The 
different combination of these values might result in 
quicker convergence. 

 The underlying CPU-intensive function composition 
causes the high resource utilisation leading to 
negative values. Thus, the agent explores different 
state - action space values taking more time to learn 
the required values. 

 Discretisation of the continuous number values of 
CPU utilisation for state space representation can 
hinder with the optimal performance of the agent with 
Q-Learning techniques. 

 The large state-action space also accounts for the 
longer learning periods and affect the agent’s 
information gains. 

In comparison to the baseline approach of default autoscaling, 
our approach shows practical applicability of the RL 
algorithm to reduce the cold start occurrences for a specific 
function workload and closes on the difference between the 
successfully served requests within few iterations. 

VI.  CONCLUSIONS AND FUTURE WORK 

Serverless computing with its easy-to-go deployment 
structure, have discharged the application developers from the 
responsibilities of managing the servers. On the other hand, 
this execution style increases the responsibilities of the cloud 
service providers to continuously provide fault tolerant 
services to their customers. With application response time 
being one of the most important factors for the end-user, 
serverless introduces overheads of cold starts i.e. setup time of 
the function containers to serve the requests. Various 
approaches have been proposed to reduce the challenge of 
cold starts both by academia as well as the technology industry 
like keeping a warm queue of function containers, 
continuously pinging the functions to keep them running and 
keeping pre-prepared containers with dependencies ready, etc. 
These non-intelligent approaches fail to identify the request 
invocation patterns and therefore lead to failed responses due 
to resulting cold starts. We present an evidence of using 
reinforcement learning technique, specifically model free Q-
Learning, to the serverless environment setting and propose 
an intelligent agent that learns from the unknown invocation 
pattern to ascertain the optimal number of function instances 
to reduce the cold start frequencies of the function. We 
compare the result of our approach with the existing auto-
scaling technique and successfully observe that with a few or 
limited number of training iterations, the agent was able to 
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show moderate results by serving approximately 50.1% of the 
requests. 

 As part of future work, we plan to extend this approach of 
Q-Learning using combinations of reward structure, α and γ 
values and a variety of function compositions. We further plan 
to include other important factors like memory setting, and 
function size, etc. in the learning process of the agent to better 
determine the criticality of the actions in the state space. As 
this approach requires discretisation of the continuous values 
for state representation, we plan to extend this approach using 
DQNs (Deep Q-Learning Networks) to estimate the 
information about optimal actions without the risk of state-
action space explosion. 
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