

A Reinforcement Learning Approach to Reduce

Serverless Function Cold Start Frequency
Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya

Cloud Computing and Distributed Systems(CLOUDS) Laboratory

School of Computing and Information Systems

The University of Melbourne, Australia
Email: siddhartha@student.unimelb.edu.au, {maria.read, rbuyya}@unimelb.edu.au

Abstract— Serverless computing is an event-driven

cloud computing architecture for processing requests on-

demand, using light weight function containers and a

micro-services model. A variety of applications like

Internet of Things (IoT) services, edge computing, and

stream processing have been introduced to the serverless

paradigm. These applications are characterized by their

stringent response time requirements, therefore

expecting a quick and fault tolerant feedback from the

application. The serverless, or Function-as-a-Service

(FaaS), paradigm suffers from function ‘cold start’

challenges, where the serverless platform takes time to set

up the dependencies, prepare the runtime environment

and code for execution before serving the incoming

workload. Most of the current works address the problem

of cold start by (1) reducing the start-up or preparation

time of function containers, or (2) reducing the frequency

of function cold starts on the platform. Recent industrial

research has identified that factors such as runtime

environment, CPU and memory settings, invocation

concurrency, and networking requirements, affect the

cold start of a function. Therefore, we propose a

Reinforcement Learning (Q-Learning) agent setting, to

analyze the identified factors such as function CPU

utilization, to ascertain the function-invocation patterns

and reduce the function cold start frequency by preparing

the function instances in advance. The proposed Q-

Learning agent interacts with the Kubeless serverless

platform by discretizing the environment states, actions

and rewards with the use of per-instance CPU utilization,

available function instances and success or failure rate of

response, respectively. The workload is replicated using

the Apache JMeter non-GUI toolkit and our agent is

evaluated against the baseline default auto-scale feature

of Kubeless. The agent demonstrates the capability of

learning the invocation pattern, make informed decisions

by preparing the optimal number of function instances

over the period of learning, under controlled environment

settings.

Keywords—Serverless Computing, Faas, Reinforcement

Learning, Q-Learning, Cold Start, Kubeless.

I. INTRODUCTION

The serverless computing architecture puts forward an event-
driven, function-as-a-service model with a fine-grained pay-
per-use pricing where costs are incurred only for the actual
time that the resources are used. These models define a set of
loosely coupled, stateless functions (a piece of code) that are
executed on light-weight containers or virtual machines
(VMs), having an inherent characteristic of on-demand

scalability. Serverless computing completely takes off the
burden of resource provisioning and management from the
developers or users, thus emphasising solely on the
application development. Serverless, in no way means the
absence of servers, in fact the complexity of resource
management lies solely with the Cloud Service Provider
(CSP) [13,14]. The function-based abstraction increases
agility in application development, offering lower
administrative and ownership costs.

Serverless models execute the client code inside a light-
weight function container, spawning the instances as per the
function workload. With the ease of deployment and on-
demand function scalability, the serverless execution model
has attracted a wide range of applications from a variety of
fields such as IoT services, REST APIs, stream processing,
prediction services, etc. These applications have rigid latency
requirements and thus expect a quick and fault tolerant
response from the function. Conceptually, the serverless
architecture is designed to prepare a new instance for every
incoming workload and shut down after serving the request
[14]. But, practically, commercial serverless platforms like
AWS Lambda, Azure Functions, Google Cloud Function, etc
may choose to re-use a function instance or keep the instance
running for a limited period of time to serve subsequent
requests [1]. Some open source serverless frameworks such as
Kubeless [16] and Knative that are implemented over
Kubernetes, have similar implementations to retain an
instance of a function and re-use it to serve the subsequent
requests.

With an incoming workload, new function containers are
requested and a process of initialisation precedes the serving
of the requests. The serverless platform initialises new
containers, downloads the client code, sets up the code
dependencies and runtime environment, sets up the worker
node and eventually executes the container to handle the
incoming request. This process introduces a non-negligible
time latency, known as ‘cold start’, and poses as an existing
challenge for the serverless platforms [2,3,5,7]. In other
words, cold starts can be understood as the time taken by the
platform to start executing an incoming request. A number of
application factors as well as the function requirements affect
the cold start of a function. Recent studies [6,7,8,9] suggest
that factors like programming language, runtime environment,
code packaging and deployment size, CPU or memory
requirement limits, etc. affect the cold start of a function. The
different offerings of serverless platforms allow for capturing
the correct underlying resource information and some open
source Kubernetes [15] native serverless frameworks like
Kubeless take advantage of the native resource metrics. To
deal with the function workload, Kubeless supports resource-
based auto-scaling, i.e., Kubernetes Horizontal Pod
AutoScaler (HPA) to derive the new instances based on the

797

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-7281-9586-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CCGrid51090.2021.00097

per-instance CPU-utilization of the function. The default auto-
scaler starts requesting new instances only when the current
function containers runs out of requested memory or the per-
instance CPU utilization spikes above a specified threshold
value. This leads to function container cold starts to serve the
requests and eventually an increased number of failed
requests, if the cold start time is greater than the request’s
time-to-live.

As these observations are solely dependent on the resource
utilization values, they pose as an opportunity to explore
techniques to understand the process and reduce the frequency
of cold starts of a function. In this work, we present a
Reinforcement Learning (RL), i.e., a model free Q-Learning
agent, which exploits the per-instance CPU utilization,
number of available function instances, to represent the
environment states and, define the appropriate reward system
for the agent to dynamically ascertain the optimal number of
function instances for a given workload. In practice, a Q-
Learning agent learns through the process of trial and error by
interacting with the serverless environment. In each iteration,
the agent analyses the current state of the environment and
performs a particular action. A delayed feedback is observed,
either positive or negative, based upon the realised factor (per-
instance CPU-utilization, successful or failed response) and
consequently learns about the workload pattern. This strategy
does not have any prior knowledge about the workload pattern
and dynamically adapts to the changes, thereby reducing the
cold start frequency in subsequent invocations. This approach
explores the applicability of Q-Learning algorithm for
determining the optimal number of function instances in
serverless environments in advance, so as to reduce the
frequency of function cold starts, during a particular span of
time. We compare this work by simulating the workload
pattern for the default auto-scaling feature of the Kubeless
platform. This helps in performing the analysis and examine
the performance of both the configurations.

The key contributions of our work are as follows:

1. A Reinforcement Learning Agent implementing
model free Q-Learning in a serverless environment
setting to reduce the cold start frequencies of a
function.

2. Implementing an agent to dynamically learn the
function invocation patterns to ascertain optimal
number of function instances, reducing cold start
occurrences.

3. Evaluation of our proposed agent against the baseline
auto-scale policy of the serverless platform for a
synthetic function workload pattern.

The rest of the paper is organised as follows. Section II
highlights related research studies. In Section III we present
the system model and architecture along with the workload
specification. Section IV outlines the proposed agent’s
workflow and describe the design decisions. In Section V we
evaluate our technique with the baseline approach and
highlight the possible shortcomings. Section VI concludes the
paper, highlight the future research directions.

II. RELATED WORK

Serverless computing - featuring affordability, on-demand
scalability and light-weight containerization, comes with
inherent challenges and problems. These challenges can
broadly be listed as security, privacy, caching, modes of

execution, etc. Among them, the problem of cold start is still
prevalent and has attracted academia for realising possible
solutions. A current study [1] discusses the ongoing trends of
handling the cold starts in commercial as well as open source
serverless platforms and present their results by evaluating
AWS Lambda offerings. They broadly categorise the
approaches to deal with cold starts in two classes: (1)
Optimising environments i.e. minimise the cold start delay
itself and (2) Pinging i.e. minimising the frequency of cold
start occurrences. Among the existing techniques to mitigate
the cold start problem, they review the offerings of OpenFaas,
OpenWhisk, AWS Lambda and discuss the solutions like
cold and warm queue. They further create a case study with
I/O intensive and CPU intensive benchmarks for evaluating
the AWS Lambda’s warm queueing technique and conclude
with the absence of any correlation between the warm
containers prepared by the platform and time interval of
incoming requests.

 In [2], an adaptive function container warm up technique
is introduced to reduce the cold start latency. It utilises a
function chain model, i.e., a sequence of functions to predict
the function invocation time, using LSTM networks, and non-
first functions to keep the warmed function containers ready
in queue. The researchers also propose a container pool
strategy that seeks to dynamically adjust the number of empty
containers in the container pool to reduce the waste of
resources. Both approaches work in synchronisation as the
failure of adaptive warmup strategy will automatically launch
adaptive container pool strategy by providing a pre-warmed
empty container, thus reducing the overall cold start latency.
It is highlighted in the study that even though the strategy
learns the invocation time of the function chain, the first
function in the sequence suffers cold start latency. They test
their approaches by comparing the resource utilisation, idle
time and overall cluster utilisation with other existing
techniques.

 Researchers in [3] explain the phenomenon of cold starts
with respect to the Knative serverless platform and suggest a
pod migration technique to reduce the cold start of the
function containers. They posit that the cold start overhead is
dependent on the underlying implementation of the function
and categorise them in platform dependent and application
dependent overheads. To deal with the cold starts, a pool of
pre-warmed containers, marked with selector ‘app-label’, are
kept ready. When the requests arrive, first the pool is checked
for existing pre-warmed containers and allocated to the
application, otherwise new containers are spawned as per the
request workload. Using this approach, they conclude with an
improvement in the cold start latencies of the containers for a
single instance of pool.

 Another research [4], studies and exploits the data
similarity for reducing the cold starts and proposes a
deployment system over a peer-to-peer network, virtual file
system and content addressable storage to increase the
computing capabilities, storage requirements and prevent
network bottlenecks of system. They criticise the current
container deployment technique of pulling each new
container image from the storage bucket and introduces a live
container migration technique over a peer-to-peer network.
They propose to transfer blocks of files containing frequently
used libraries and packages, over the network when required,
and found a 37.9% reduction in the boot-time of containers.
Similarly, [5] aims to reduce the number of cold stars by

798

utilising the function composition knowledge. It presents an
application side solution based on a light-weight middleware
that aims to enable the developers to control the frequency of
cold starts. It establishes that applications are generally
deployed as a set of functions and proposes three strategies;
naïve approach, extended approach and global approach
where a dedicated orchestration component invokes all the
steps and follow a process of ‘hinting’ the next batch of
functions involved.

 Research in [6] explores network creation and network
initialisation as the prime contributor to the cold start latency.
It explains four stages of container lifecycle: (1) service
invocation, (2) startup, (3) run time and (4) cleanup. The
cleanup includes stopping the container, disconnecting its
network and destroying it and this process demands cycles
form the underlying containerisation daemon, hindering with
the other three processes. Thus, a pause container pool
manager is proposed to pre-create a network for function
containers and whenever required, attach the new function
container to configured IP and network. Their evaluation on
OpenWhisk platform demonstrates a reduction of up to 80%
in the cold start times with a negligible memory footprint.

 Research [6,7,8] has identified various factors like runtime
environment, CPU and memory settings, dependency setting,
the effect of concurrency, networking requirements, etc.
which affect the cold start of a function. Most works focus on
commercial serverless platforms like AWS Lambda, Azure
Functions, Google Cloud Functions and fall short to evaluate
open source serverless platforms like OpenLambda, Fission,
Kubeless, etc. Very few studies [9,10,11] have successfully
performed analysis on open source serverless platforms and
provided possible solutions by targeting the container level
finer-grained control of the platform.

 Work in [12] introduces the paradigm of Reinforcement
Learning (RL) to the serverless platforms. It is focused
towards provisioning VMs or containers on request-based
autoscaling in the serverless offerings. The study is
conducted using Knative serverless platform that supports
parallel processing of requests per instance utilising the
Horizontal Pod Autoscaler of Kubernetes. The researchers
show that depending upon the workload, different
concurrency levels of the container can influence
performance and thus, propose a RL based model,
specifically model free Q-Learning, to determine the optimal
concurrency levels for individual workloads. It evaluates the
performance of model based on latency and throughput of the
function containers and demonstrated the capability of
applying Q-Learning algorithm to the task of auto-scaling in
serverless platforms.

 As a novel approach, we explore the applicability and
capability of RL strategies to reduce the function cold start in
a serverless environment. Contrasting to the existing works,
we apply the model free Q-Learning algorithm for reducing
the cold start frequencies on the serverless platforms, by
identifying the invocation patterns of the specific workloads,
focus towards learning the optimal number of function
instances and evaluate it against the non-intelligent, default
auto-scaler strategy responsible for cold starts. A summary of
few discussed researches and our methodology is presented
in Table 1, highlighting the distinguishing parameters of the
individual studies.

Table 1. Summary of Relevant Works.

Parameter
Related Work Our

work [2] [3] [4] [5] [6] [12]

Open Source
Platform

Yes Yes No Yes Yes No Yes

Commercial
Platform

No No Yes Yes Yes Yes No

Function
Invocation

Pattern
Yes No No No No No Yes

Reinforcement
Learning

Technique
No No No No No Yes Yes

Pre-Warmed
Containers

Yes Yes No No No No No

Other Techniques
(Network
creation,

Migration, etc.)

No No Yes Yes Yes Yes Yes

Cold Start
Frequencies

No No No No No No Yes

III. SYSTEM ARCHITECTURE

A. System Model

The overall architecture and system model of the
experiment is illustrated in Fig. 1 and Fig. 2. To perform the
experiment, a Kubernetes service cluster was setup using
Melbourne Research Cloud (MRC) services at The University
of Melbourne, Australia.

Figure 1. Deployed Stack Architecture.

Figure 2. System Model.

799

 The service cluster contains 4 nodes with 4 vCPU and 16
GB memory each and provides sufficient capacity to all the
Kubeless components for the experiment. The workload
generator agent is also configured on a similar node,
responsible for sending the requests to function service cluster
to generate the workload using Apache JMeter Non-GUI
toolkit. The Kubernetes (version v1.18.6) cluster is configured
using Ansible scripts for automatic cluster deployment.
Kubeless (version v1.0.6) serverless framework is installed on
the service cluster with all its components and inherent from
Kubernetes, does not support scale-to-zero functionality
(minimum 1 instance) in the implemented version.

The Q-Learning agent is configured to work in parallel to
Kubernetes & Kubeless services on the service cluster and
continuously monitors and manages the activities of the
cluster including metrics collection, update the function
deployment state based on collected metrics and logging the
required metrics. To extensively test the workload learning
capabilities of the agent, a NGINX-Ingress is also configured
to handle the load balancing of incoming requests and thus
allow the agent to avoid any performance issues while
learning.

B. Workload Specification

There are a variety of applications which benefit from the
serverless execution model including REST APIs, multimedia
processing, highly parallel workloads, stream processing, etc.
Some of these applications are compute intensive and demand
considerable amount of resources, therefore, to investigate the
cold start problem, we generate a stable workload from a set
quota of function requests to simulate a serverless application.
The request simulation uses the thread sleep method that
enables the service cluster to serve quota of requests for a set
time span and provide the RL agent with a delayed
feedback/reward.

 We fabricate a compute intensive process of calculating
Fibonacci series up to number 38 [8], in order to keep the
running instances busy and allow the default auto-scaler of the
Kubeless to account for the increased number of function cold
starts. Since Kubeless does not cite its concurrency policies,
we specify function resource requirements (CPU and
Memory) to be allocated and used for the purpose of
evaluating the resource metrics. The Fibonacci calculator
appropriately fits the compute intensive requirement of the
experiment and the RL agent extensively captures the state of
the serverless environment for learning the necessary function
instances to lower the cold starts.

IV. PROPOSED AGENT WORKFLOW

The workflow is partitioned into two processes, the workload
generator and RL agent. The workload generator is used to
simulate a quota of parallel HTTP user requests against the
Fibonacci function. We use Apache JMeter, an open source
HTTP load testing tool, to simultaneously send a number of
requests at a constant rate over a period of time. JMeter
features a configurable thread ‘ramp-up’ period that tells
JMeter how long to take for creating the desired number of
request threads. In our experiment, a set of requests are sent
from the quota of 100 requests with a ramp-up period of 200
seconds, engaging sufficient amount of resources from the
function instances. This guarantees the demand for newer
instances from the default auto-scaler, providing sufficient
time for scaling or acknowledging the RL agent to analyse the
workload pattern, observe the environment states and generate

the rewards which complement the function cold start
evidence.

The RL agent begins with set-up of reinforcement learning
environment, i.e., state and action for successful
implementation of model free Q-Learning technique to the
serverless configuration. The reinforcement learning task is to
train the agent that interacts with its environment. The agent
transitions between different scenarios of the environment,
called states, by performing the valid, available actions. These
actions lead to rewards, either positive, negative or zero and
the purpose of agent is to maximize the total reward it
receives, during the process of learning. Q-learning trains an
agent to approximate the value of actions i.e. Q-value, making
use of the tabular representation of state-action values known
as Q-table that forms the basis of decision making in the
learning process.

 Q(s,a) represents the Q-value of action a an agent
performs at state s and tries to maximise this cumulative
reward using Bellman Equation (1) at each iteration t.

Q(st, at) ← (1 − α)Q(st, at) + α[rt + γ maxa Q(st+1, a)] ...(1)

α is the learning rate that describes the weight of newly
observed information over old information, γ is the discount
factor that describes the importance of future rewards. To
choose between exploration and exploitation of information,
the agent is implemented with ε-greedy strategy, where ε is
the probability of exploration. Therefore, the agent selects an
action that maximises the expected value i.e. an action with
maximum Q-value for state s with probability of 1- ε.

The Kubeless framework along with its components and
resources, including the sample function of Fibonacci
calculator, forms the environment for the RL agent to interact.
The state of the environment is defined by the combination of
(1) number of function instances available and (2) per-
instance CPU-utilization of the function. The agent allows
maximum number of function instances to be passed as a
parameter that controls states explored during the learning
process. Since CPU-utilization values are continuous
numbers, the per-instance CPU-utilization values are
discretised into five bins of equal size – {20, 40, 60, 80, 100},
each representing the maximum value of CPU-utilization in
the bin. This decision helps in appropriately limiting the size
of the Q-table learned.

The agent interacts with the environment using actions of
(1) scale up and (2) scale down the function deployment with
valid number of instances. The availability of actions for a
state is determined by the state representation, regulating the
instances between 1 (minimum instance count supported by
Kubeless) to M (maximum instance count). This allows the
RL agent to explore and exploit only the possible state-action
space, thus reducing the number of explorations and
increasing the convergence time. For example, if the
maximum number of function instances to be explored are M,
the environment states can be represented as a set {x$y | x ξ
1…M, y ξ (20, 40, 60, 80, 100)} containing M x 5 states. The
action set for the agent at state x$y (x: instance count, y: CPU
utilization range) can be represented as {a | x + a > 0, abs (x +
a) <= M, a ξ 1…M}. Therefore, the size of the Q-table can be
calculated as (M x 5) x (2M – 1).

At each action step, the agent yields delayed rewards,
determined after the specific time span, reflecting the

800

appropriateness of the selected action. The agent learns the
best actions by updating the Q-values according to the
Bellman Equation, as in (1). The immediate reward, ‘r’, of
state transition depends on function instance count, CPU-
utilization and request success or failure rate during the
observed time span, as in (2). The agent yields positive reward
for successfully serving more than half the requests, being
inversely proportional to the instance count and gets penalised
for the states with CPU-utilization above a threshold of 75%
and an undesired failure rate of more than 70%.

Immediate reward ← (0.5*CPU utilisation) + (0.3*state-1)
+ (0.1*success rate) + (0.1*failure rate) …(2)

The following steps outline the Q-learning approach to
train the agent in serverless setting:

1. Input the maximum number of function instances to
be explored and time step to consider for observing
the rewards.

2. Setup the agent initial state and Q-table for the (state,
action) pair.

3. Choose and perform an action according to the ε-
Greedy policy with ε = 5%.

4. Wait for ‘sleep time’ to observe the reward for current
iteration.

 Gather metrics for current function instances.

 Calculate and return the immediate reward using
collected metrics.

 Calculate updated Q-value according to the
Bellman Equation with α = 0.4 and γ = 0.3.

5. Update the Q-table with new Q-values calculated.

6. Repeat the training procedure.

V. PERFORMANCE EVALUATION

To evaluate the performance of our RL agent, we compare it
with the default auto-scaling policy supported by the Kubeless
serverless platform. Kubeless supports auto-scaling of the
function based upon the CPU metrics i.e. the per instance
CPU-utilisation of the active instances. The default policy is
implemented as a control loop with a period of 15 seconds,
after which the controller scrapes the metrics and perform the
required action of scaling up. The platform keeps the allotted
resources for a period of 5 minutes to prevent the resources
from thrashing, due to dynamic nature of the changing
metrics.

 We simulate the CPU intensive serverless workload using
the function Fibonacci calculator up to number 38 [8]. This
ensures a sufficient amount of resources, CPU and memory,
are utilised by a single request and therefore results in
simulating higher number of cold starts to evaluate the
algorithms. To mimic the serverless workload pattern under
the experimental conditions, we create a set of a number of
requests with a limit of 100 requests per 5 minutes, {reqCount
| reqCount <= 100}. The period of 5 minutes is chosen in order
to prevent thrashing of the resources while auto-scaling the
function instances and thus evaluating both the approaches
within a comparable schedule.

 To effectively observe the results of default auto-scaling
policy and examine the feasibility of model free Q-Learning
in the experimental serverless setting, a period of 240 minutes
was designated. As the Q-Learning algorithm seeks to explore
the available state-action pair in the environment, a maximum
of 10 function instances were preferred to comfortably

execute the procedure of learning, while abstaining from the
explosion of the size of the state-action space represented by
the Q-table. In the baseline experiment of default auto-scaling
policy responsible for provisioning the function instances on-
request, every new instance provisioned represents a potential
addition to cold starts frequency. This keeps a part of
incoming workload waiting to get an instance allocated and
leads to a failed response, while spawning the new instances.
Therefore, the rate of failed responses, which could not be
served due to requirement of instances (resources) are used to
compare both the discussed approaches.

 Fig. 3 illustrates the results of the default auto-scaling
policy of the Kubeless platform. With the limited number of
function instances and considering CPU-utilisation metrics, it
can be seen that the baseline approach suffers from a number
of failed requests and accounts for approximately 44% of the
failed requests out of the workload of approximately 2166
requests. This can be attributed to the following
characteristics:

 A control loop period of 15 seconds, after which the
auto-scaler checks for the CPU metrics.

 A CPU-intensive function composition that leads to
occupied resources and waiting or failed requests.

 Limited scaling of the function instances during the
experiment.

 Fig. 4, Fig. 5, Fig. 6 and Fig. 7 illustrates the four iterations
of the Q-Learning agent. The agent is trained for a period of
240 minutes, in multiple iterations to ascertain the function
invocation patterns and learn the number of function instances
required for a specific workload. This decision is based upon
the rewards experienced by the agent according to the CPU-
utilisation, success and failure rate of requests and the number
of serving function instances. It is evident from the graphical
representation that the agent starts learning the invocation
patterns and exploits the experience it gets from the rewards.
For instance, it can be inferred from the iteration 3 & 4 that
the agent explores different configurations and tries to
minimise the cold starts by preparing the required number of
function instances, leading to reduced number of failed
requests, during the time period 10 – 20 and 30 – 40. The
lower variations of failed requests (i.e. the reduction in
number of failed requests over the iterations) also signify that
the agent is learning the optimal number of function instances
to reduce the cold start problems and tries to serve maximum
request.

Figure 3. Failed requests using default HPA policy.

801

Figure 4. Q-Learning Agent iteration 1 of 240 minutes.

Figure 5. Q-Learning Agent iteration 2 of 240 minutes.

Figure 6. Q-Learning Agent iteration 3 of 240 minutes.

Figure 7. Q-Learning Agent iteration 4 of 240 minutes.

After four iterations of training the RL agent, it manages to
serve approximately 50.1% requests successfully and shows a
positive indication towards converging to the optimal values.
As compared to default auto-scaling technique, the
performance of our agent after few iterations of the Q-
Learning procedure shows the feasibility and appropriateness
of the reinforcement learning strategy to the task of reducing
cold start occurrences. The difference of results between both
the approaches can be attributed to the following
characteristics of the RL agent implemented –

 The elementary reward structure used in the Q-
Learning process that can affect the information gain
of the agent.

 The values of α, learning rate and γ, discount factor,
that plays an important role in learning process. The
different combination of these values might result in
quicker convergence.

 The underlying CPU-intensive function composition
causes the high resource utilisation leading to
negative values. Thus, the agent explores different
state - action space values taking more time to learn
the required values.

 Discretisation of the continuous number values of
CPU utilisation for state space representation can
hinder with the optimal performance of the agent with
Q-Learning techniques.

 The large state-action space also accounts for the
longer learning periods and affect the agent’s
information gains.

In comparison to the baseline approach of default autoscaling,
our approach shows practical applicability of the RL
algorithm to reduce the cold start occurrences for a specific
function workload and closes on the difference between the
successfully served requests within few iterations.

VI. CONCLUSIONS AND FUTURE WORK

Serverless computing with its easy-to-go deployment
structure, have discharged the application developers from the
responsibilities of managing the servers. On the other hand,
this execution style increases the responsibilities of the cloud
service providers to continuously provide fault tolerant
services to their customers. With application response time
being one of the most important factors for the end-user,
serverless introduces overheads of cold starts i.e. setup time of
the function containers to serve the requests. Various
approaches have been proposed to reduce the challenge of
cold starts both by academia as well as the technology industry
like keeping a warm queue of function containers,
continuously pinging the functions to keep them running and
keeping pre-prepared containers with dependencies ready, etc.
These non-intelligent approaches fail to identify the request
invocation patterns and therefore lead to failed responses due
to resulting cold starts. We present an evidence of using
reinforcement learning technique, specifically model free Q-
Learning, to the serverless environment setting and propose
an intelligent agent that learns from the unknown invocation
pattern to ascertain the optimal number of function instances
to reduce the cold start frequencies of the function. We
compare the result of our approach with the existing auto-
scaling technique and successfully observe that with a few or
limited number of training iterations, the agent was able to

802

show moderate results by serving approximately 50.1% of the
requests.

 As part of future work, we plan to extend this approach of
Q-Learning using combinations of reward structure, α and γ
values and a variety of function compositions. We further plan
to include other important factors like memory setting, and
function size, etc. in the learning process of the agent to better
determine the criticality of the actions in the state space. As
this approach requires discretisation of the continuous values
for state representation, we plan to extend this approach using
DQNs (Deep Q-Learning Networks) to estimate the
information about optimal actions without the risk of state-
action space explosion.

REFERENCES

[1] P. Vahidinia, B. Farahani and F. S. Aliee, "Cold start in serverless
computing: Current trends and mitigation strategies," in Proceedings
of the International Conference on Omni-layer Intelligent Systems
(COINS), Barcelona, Spain, 2020, pp. 1-7.

[2] Z. Xu, H. Zhang, X. Geng, Q. Wu and H. Ma, "Adaptive function
launching acceleration in serverless computing platforms," in
Proceedings of the IEEE 25th International Conference on Parallel
and Distributed Systems (ICPADS), Tianjin, China, 2019, pp. 9-16.

[3] P.M. Lin and A. Glikson, “Mitigating cold starts in serverless
platforms: A pool-based approach,” arXiv preprint arXiv:1903.12221,
2019.

[4] K. Mahajan, S. Mahajan, V. Misra and D. Rubenstein, “Exploiting
content similarity to address cold start in container deployments,” in
Proceedings of the 15th International Conference on emerging
Networking EXperiments and Technologies, Orlando, FL, USA, 2019,
pp. 37-39.

[5] D. Bermbach, A.S. Karakaya and S. Buchholz, “Using application
knowledge to reduce cold starts in FaaS services,” in Proceedings of
the 35th Annual ACM Symposium on Applied Computing, Brno, Czech
Republic, 2020, pp. 134-143.

[6] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak and V.
Sukhomlinov, “Agile cold starts for scalable serverless,” in
Proceedings of the 11th USENIX Conference on Hot Topics in Cloud
Computing, Renton, WA, USA, 2019.

[7] H. Shafiei, A. Khonsari and P. Mousavi, “Serverless computing: A
survey of opportunities, challenges and applications,” arXiv preprint
arXiv:1911.01296v3, 2019.

[8] J. Manner, M. Endreß, T. Heckel and G. Wirtz, “Cold start influencing
factors in function as a service,” in Proceedings of the 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion), Zurich, Switzerland, 2018, pp. 181-188.

[9] K. Solaiman and M.A. Adnan, “WLEC: A not so cold architecture to
mitigate cold start problem in serverless computing,” in Proceedings
of the 2020 IEEE International Conference on Cloud Engineering
(IC2E), Sydney, NSW, Australia, pp. 144-153.

[10] J. Santos, T. Wauters, B. Volckaert and, F. De Turck, “Towards
network-aware resource provisioning in kubernetes for fog computing
applications,” in Proceedings of the 2019 IEEE Conference on Network
Softwarization (NetSoft), Paris, France, 2019, pp. 351-359.

[11] S. K. Mohanty, G. Premsankar and M. Di Francesco, “An Evaluation
of open source serverless computing frameworks,” in Proceedings of
the 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Nicosia, Cyprus, 2018, pp. 115-
120.

[12] L. Schuler, S. Jamil and N. Kühl, “AI-based resource allocation:
Reinforcement learning for adaptive auto-scaling in serverless
environments,” arXiv preprint arXiv:2005.14410, 2020.

[13] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly and S. Pallickara,
“Serverless computing: An investigation of factors influencing
microservice performance,” in Proceedings of the 2018 IEEE
International Conference on Cloud Engineering (IC2E), Orlando, FL,
USA, 2018, pp. 159-169.

[14] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

[15] Kubernetes Documentation | Homepage[Online]. Available:
https://kubernetes.io/docs/home/

[16] Kubeless – Kubernetes native serverless[Online]. Available:
https://kubeless.io/docs/

[17] Apache JMeter – Getting Started[Online]. Available:
https://jmeter.apache.org/usermanual/index.html

803

