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Abstract

Resource discovery is of great importance in grid environments. Most of existing approaches treat all resources equally without any

categorizing mechanism. We propose, Resource Category Tree (RCT), which organizes resources based on their characteristics represented by

primary attributes (PA). RCT adopts a structure of distributed AVL tree, with each node representing a specific range of PA values. Though RCT

adopts a hierarchical structure, it does not require nodes in higher levels maintain more information than those in lower levels, which makes RCT

highly scalable. RCT is featured by self-organization, load-aware self-adaptation and fault tolerance. Based on RCT, commonly used queries, such

as range queries and multi-attribute queries, are well supported. We conduct performance evaluations through comprehensive simulations.

c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Grid computing [9] aims at wide-area resource sharing

and coordinated problem solving. Resource discovery is of

paramount importance for achieving this goal. Grid information

service (GIS) [17] is proposed to address resource discovery.

Due to the large-scale, highly distributed and heterogeneous

natures of grid environments, GIS faces many challenges.

During the past years, several popular GIS systems have

been designed, such as Globus MDS [7] and Condor gang-

matchmaking [18]. P2P [13] and semantic-based [11,23] search

are also introduced to deal with resource discovery.

In this study, we consider two challenges faced by GIS,

i.e. efficiency and complex queries including range and multi-

attribute queries. First, as grid systems usually involve millions

of resources including computing power, storage, devices, data

and so on, it is very important and challenging to obtain

resource information in a short time so as to efficiently
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processing user jobs. Most of the existing GIS systems like

MDS [7] simply organize resources based on some overlay,

while information about all resources is treated equally without

any categorizing mechanisms. This leads to traversing the

whole overlay in order to search for desired resources. If

resources can be categorized by some characteristics, we

can further organize resources with similar characteristics by

particular overlay. By this means, queries can be processed

by searching a subset out of a large number of accessible

resources. This is believed to be able to reduce the overhead

greatly and improve resource discovery efficiency. Second, in

order to schedule user jobs to the most appropriate resources,

complex query mechanisms are required. Grid resources are

usually characterized by sets of attributes, and users query

resources by specifying the values of some resource attributes.

A simple example is like “available memory = 500 MB”,

however more complex queries than that are desirable in most

cases. Among of them are range and multi-attribute queries

like “OS = linux and available memory >= 500 MB”.

There has been a lot of research work [3–5,10,14,25] on

range and multi-attribute queries. Most of the work [3,5,10,25]

assumes a DHT (Distributed Hash Table)-based infrastructure,
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however DHT itself destroys data locality, which increases

the overhead to process a range query. Mercury [4] supports

multi-attribute range queries by creating routing hubs and

organizing routing hubs into a circular overlay of nodes. Li

et al. propose DPTree [14] to support various types of queries

on multi-dimensional data in P2P systems based on balanced

tree indexes.

In service grids that are widely accepted by research

and industry communities, grid resources can be generally

categorized into computational resources and grid services

of system and application levels. Computational resources

provide runtime support for services in both system and

application levels. By computational resources, we mean

hardware resources with capacity of supporting computation,

such as clusters, storage, super computers and PCs. On

the other hand, grid services provide certain processing

functions like traditional software. And in our earlier

work [12,21] we have presented the advantages of separating

underlying computational resources from services by hot

service deployment in a service grid [8]. With this separation,

underlying resources and services from different providers

are discovered and provisioned dynamically to meet specific

nonfunctional requirements, such as low costs or high resource

usage. This work is devoted to addressing the efficient resource

discovery in service grids. In the rest of the paper, we will

take the computational resource discovery as an example to

introduce our proposed solution, and explain how the solution

can be applied to service discovery.

In CROWN project [1], we developed many applications

based on CROWN middleware. One of them is developed

to factorize huge integers, which can be categorized as a

computing intensive, one because powerful CPU resources are

urgently required while storage requirement is trivial. Another

one is DSS (Digital Sky Survey) [2] that retrieves data from a

space telescope and provides a GUI interface for end users to

query the star graph of a specified region. DSS needs at least

60 GB storage to store the data from the space telescope while

processing of user queries does not require powerful computing

power. With this experience, we observe that applications

can be characterized by their requirements for computational

resources. Intuitively the resource discovery efficiency will

be improved if we can organize resources according to

the characteristics of application resource requirements. For

example, resources with powerful CPU capacity are organized

as a category to serve computing intensive applications. This is

how our idea is motivated.

Resources are usually described by a set of attribute-value

pairs. Among all attributes of a resource, we choose one

or several attributes that can best characterize the resource

capacity of meeting application resource requirements as

primary attributes (PA). We propose an overlay, RCT (Resource

Category Tree), to organize computational resources based on

PAs. With RCT, data locality is well preserved, which makes it

possible to support efficient range queries.

Our major contributions are as follows:

• We identify the need to organize resources using cate-

gorizing mechanism so as to improve resource discovery

efficiency and we propose an effective overlay, RCT, to or-

ganize resources in a self-organizing, self-adaptive and fault-

tolerant manner.
• We propose load-aware self-adaptation algorithms, through

which RCT nodes can achieve autonomic-access load

balancing:
• Basing on RCT overlay, we propose algorithms to

support four commonly-used resource queries and provide

corresponding complexity analysis.
• We evaluate the performance of RCT through comprehen-

sive simulations.

The rest of this paper is organized as follows. Section 2

presents related work. We give an overview of RCT definition

and resource organization based on RCT in Section 3.

Section 4 presents the design details. We describe the evaluation

methodology and results in Section 5. Section 6 presents how

RCT can be applied to service discovery, and we conclude this

paper in Section 7.

2. Related work

Resource discovery is an important issue in grid environ-

ments. Two protocols (GRIP and GRRP) and two components

(GIIS and GRIS) are proposed in Globus MDS [7] to construct

a hierarchical grid information service. Condor [18] leverages

ClassAd language to describe both queries and resources, and

gang-matchmaking is proposed to match user queries with ap-

propriate resources. In [24], a thorough performance evaluation

of MDS and Condor is provided. P2P search technologies have

also been adopted to address resource discovery in grids [13,

15,22]. The above-mentioned approaches mainly focus on how

to route user requests to target nodes, and the characteristics of

application resource requirement are not considered. An over-

lay SOG is proposed in [16] to organize resources based on

similarities of specific resource characteristics, using a hybrid

P2P structure. A group is formed by a collection of nodes with

some similarities in their characteristics and a leader is elected

through gossip protocol. A group in SOG is similar to an RCT,

but they are different in that resources in an RCT are further

organized according to the value of primary attributes. Addi-

tionally, RCT considers application resource requirement when

defining an RCT.

Through mapping resource key to resource locations, DHT

(Distributed Hash Table) technologies, such as Chord [20] and

CAN [19], can effectively address target resource by searching

a limited number of nodes. But to support range and multi-

attribute queries, additional efforts are needed. Many resource-

discovery mechanisms based on DHT [3,5,6,10,25] have been

proposed over the past few years to address range and/or multi-

attribute queries. For example, the study in [6] presents a

DHT-based peer-to-peer approach for computational-resource

discovery. The static and dynamic parts of resource attributes

are combined into a Resource ID that serves as a key in a Pastry-

based system. The resources are represented as overlapping arcs

on a Pastry ring. The beginning of an arc represents the static

attribute set and the length represents the spectrum of dynamic

states. However, no mechanisms of load-aware adaptation are
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provided to eliminate possible bottlenecks caused by hot spot

query. The authors in [10] propose a logical binary tree RST

(Range Search Tree) on the basis of DHT infrastructure to

support range queries. One advantage of RST is that it does

not need to maintain the tree structure dynamically because the

domain of an attribute is split into 2n sub ranges beforehand and

each node can deduct the tree structure locally. The dynamic

RST is adaptive to the query and registration load. However,

RST requires resources to register with many nodes whose

responsible ranges cover the resource attribute value, incurring

huge overhead in dynamic grid systems where resources need

to frequently update status. In practice, as DHT itself destroys

data locality due to the use of randomizing hash functions, it

will generate many lookup (key) operations to process a range

query in DHT-based solutions, which is believed to be increase

much overhead compared to data locality-preserving solutions.

There also has been research work [4,14] on range and

multi-attribute query that is not based on DHT. Mercury [4]

supports multi-attribute range queries by creating routing hubs

and organizing routing hubs into a circular overlay of nodes.

A routing hub is a logical collection of node sin the system

and responsible for a specific attribute in the overall schema.

When there are a large number of attributes, the overlay

maintenance overhead is very large. Different from Mercury,

RCT organizes resources on the basis of selected attributes

(i.e. primary attributes), not every attribute. Li et al. propose

DPTree [14] to support various types of queries on multi-

dimensional data in P2P systems based on balanced tree indexes

(R-Tree). DPTree adopts a skip graph-based overlay and maps

a logical R-Tree to the overlay network in a distributed

manner. RCT adopts a balanced binary search tree structure

and corresponding overlay network, and RCT provides a load-

aware self-adaptation mechanism.

3. RCT overview

In this section, we describe RCT definition and the

architecture of resource organization based on RCT.

3.1. Resource description

The attribute-based approach is widely adopted for

describing resources in grid-computing environments. In this

paper, we also choose this approach to describe computational

resources. Each computational resource is characterized by a

set of attribute-value pairs. In practice, we are mainly concerned

about dynamic attributes (e.g. CPU load) of a resource in a

real computing environment because dynamic status represents

available capacity of a resource.

3.2. RCT-resource category tree

Grid applications can be characterized by their requirements

for computational resources, e.g. computing intensive and data-

intensive applications. In turn, we can categorize computational

resources based on certain resource characteristics that

can meet application resource requirements. By doing so,

Fig. 1. An example of RCT.

resource discovery is performed on specific resource categories

efficiently. For example, we know that resources with huge

storage can better serve a data-intensive application, thus we

can organize them together based on an overlay structure.

Furthermore, we observe that values of most resource

attributes are numerical, e.g. values of disk size. And attributes

whose values are not numerical can be converted to be

numerical through certain mathematical methods. Based on

this consideration, RCT adopts an AVL tree (or balanced

binary search tree) overlay structure to organize resources with

similar characteristics. The attribute that can best describe the

characteristic of resources organized by an RCT is named a

primary attribute or PA. Fig. 1 is an example of RCT. The

chosen PA is available memory size, and the value domain of

available memory ranges from 0 to 1000 MB.

Compared to traditional AVL, each node of RCT manages a

range of values, instead of a single value. Each node only needs

to maintain its connection with direct child nodes and parent,

and operations like registration, updating and query can start

from any node. Unlike in traditional AVL structure, higher-level

nodes of RCT are not required to maintain more information or

bear more load than those in lower levels, which provides the

basis for RCT to scale easily.

Suppose D is the value domain of the PA of an RCT. Each

node n of an RCT is responsible for a subrange of D, or

Dn . All resources with PA values belonging to Dn register

themselves to node n. We name each RCT node an HR (Head

of a subrange). And terms of “HR n” and “node n” will be

used interchangeably in the rest of this paper. In Fig. 1, the

circles denote HRs, while the squares below an HR denote

computational resources registered with an HR.

Suppose N is the total number of HRs in an RCT, lc(n) and

rc(n) are the left and right child nodes of HR n respectively.

Since an RCT is a binary search tree, we have the following

observations:

N
⋃

i=1

Di = D (1)

Di ∩ D j = φ, ∀i, j ∈ [1, N ] (2)

Dlc(i) < Di < Drc(i), ∀i ∈ [1, N ]. (3)

We say Di < D j if the upper bound of Di is less than the lower

bound of D j , e.g. [1, 2] < [3, 4].
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Fig. 2. Resource organization with RCT.

If the ranges of node i and node j , i.e. Di and D j , are

adjacent, node i is referred to as a neighbour of node j , and

vice versa. If node i is a neighbor of node j and Di < D j , node

i is called left neighbour of node j (denoted by L-neighbor(j));

node j is called right neighbour of node i (denoted by R-

neighbour(i)). Note there are two exceptions: the leftmost HR

and the rightmost HR, the former has no left neighbor and the

latter has no right neighbour.

As shown in Fig. 1, C2 and B2 are neighbours of A, while C2

is L-neighbour of A and B2 is R-neighbour of A. Note that C1

does not have a left neighbour and B2 has no right neighbour.

3.3. Organizing resources with RCT

As resources are owned and managed by different resource

providers, providers may define different PAs for their

resources, which results in constructing multiple RCTs. In

Fig. 2, we present a 2-layer architecture for organizing

resources across resource providers by using RCT. In the lower

layer, each resource provider defines a set of PAs that can

best describe their resources. Based on PAs, resources are

organized through a certain number of RCTs. To enable wide

area resource discovery across different providers, an RCT

index service (RIS) is deployed by each service provider in

the upper layer. RIS is a basic service that stores information

about PAs of a provider and entry points of RCTs. RISs can

be implemented, e.g. as web services or grid services, and find

each other using services like UDDI.

In practice, a resource may have many attributes, but only a

few of them are chosen as primary attributes. So there will not

be too many RCTs. When a query request cannot be satisfied

by a resource provider, the RIS will contact other RISs to

recommend another resource provider for further discovery

operations.

4. Design of RCT

Three goals are considered in RCT design: (1) self-

organization, which is very important for dynamic grid

environment. Manual operations should be as few as possible

so as to allow resources to join or leave freely and keep the

system scale easily. (2) load-aware self-adaptation, which is

necessary to improve the availability and scalability when load

of registration, query and updating is not balanced among

HR nodes. (3) fault-tolerance, which is critical to handle

unexpected failures of RCT nodes. In this section, we present

how the design of RCT achieves these three goals. Following

that, we describe the resource searching algorithm based on

RCT.

4.1. Bootstrapping an RCT

As an RCT consists of a set of HRs, before building an RCT

we need to consider how an HR is set up. To make RCT a self-

organizing system, we require HRs to be chosen automatically

from resources themselves.

At first thought, it is a simple way to choose an HR randomly

from resources. Nevertheless, if the chosen HRs are unstable or

weak in capacity, the instability will affect the availability of

RCT, and the weak capacity will lead to bottlenecks. Hence, we

need to consider both availability and capacity when choosing

a qualified HR. A resource with long online time means that it

is much more stable and available. Additionally, a resource with

powerful capacity can ensure that it is capable of serving as an

HR to manage a set of resources. The availability of a resource

is defined as its online probability p(p = ton/(ton + toff), ton)

and toff are the online and offline time during a past period of

time respectively); the capacity is measured by the computing

power c (e.g. c = CPU Frequency).

At the beginning of the initialization stage, no RCTs or

HRs exist in a grid environment. An RCT index service (RIS)

is configured and deployed to maintain the RCT information

including primary attributes, their value domains, and entry

points of at least one HR. The procedure of building an RCT

is as follows:

(1) A resource queries RIS to get information about RCT

configurations of PAs.

(2) The resource checks whether it can satisfy the condition of

being an HR of an RCT. If yes, go to step (3); else, the

resource is not qualified to be organized.

(3) The resource sends an HR-application request to RIS. The

request contains information about which RCT it aims to

build and data of its availability and capacity.
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(4) The RIS stores the data of the candidate resources. When

the candidates for an RCT reach a certain number, RIS will

compare the data of availability and capacity to select the

most qualified one as the first HR of the relevant RCT. Then

the RIS notifies other candidate resources to register with

the selected HR.

The RIS serves as the bootstrapping service for building an

RCT. After an RCT is built, resources can get an entry point

to the RCT from RIS, but this is not the only approach. The

information can be cached locally for later use, and a resource

may get this information from other resources. Note that RIS is

only responsible for building the first HR of an RCT, and the

building of other HRs leaves to the RCT itself, which will be

introduced in next section.

4.2. Load-aware self-adaptation

Resource maintenance. Due to the dynamic nature of

resources, we need to address resource joining, leaving and

status changing.

When a computational resource connects to a grid system, it

will first try to find an RCT to register itself. This can be done

through RCT index service. Eventually a resource will know

the address of at least one HR, then sends its joining request

to the HR. According to the PA value of the resource, the

HR checks if it should manage the incoming resource. If yes,

the resource is registered with the HR; otherwise, the HR will

traverse RCT to find the HR that the resource should register

with. After registration, a resource will periodically update its

status including PA value to the corresponding HR. However, if

the PA value of an incoming resource lies out of the ranges of

all HRs in an RCT, this means the current RCT cannot accept

the registration of the resource. Then the incoming resource can

find another appropriate RCT to register with.

A resource can leave without any notification. An HR should

recognize the leaving of a resource as early as possible. For

this purpose, a resource is required to send updating message to

its HR periodically even its status is unchanged. The updating

message is empty in case of unchanged resource status. On the

other side, an HR will remove the related resource information

if it has not received updating message from a resource for a

period of time.

An HR only manages resources whose PA values belong to

the HR’s responsible range. When the PA value of a resource

is out of an HR’s range due to dynamic changes, the HR will

traverse RCT to find a proper HR to transfer the resource to. For

the transferred resources, this is similar to a re-registration to a

new HR.

Note that the resource status of an HR itself also changes

dynamically. One interesting question: when an HR’s PA value

no longer belongs to the subrange it is responsible for, will the

HR be degraded to be a common computational resource? The

answer is no, otherwise it will cause RCT to be unstable. A

resource that serves as an HR also serves as a common resource

as well. Therefore, as a resource, an HR is also managed by

another HR that is not necessary to be itself.

Algorithm 1: Balance an overloaded HR n

1: //Initialize splitting policy

2: policy = AVS;

3: //Retrieve neighbors’ load information

4: loadn1 = getLoad (L-neighbor (n));

5: loadn2 = getLoad (R-neighbour (n));

6: if loadn1 <= lwarning AND loadn2 <= lwarning then

7: // split Dn into 3 subranges

8: split (Dn , D1, D2, policy);

9: // transfer resources in D1 from n to n1

10: transferLoad (n, n1, D1);

11: //transfer resources in D2 from n to n2

12: transferLoad (n, n2, D2);

13: else if loadn1 <= lwarningthen

14: // split Dn into 2 subranges

15: split (Dn , D′, policy);

16: // transfer resources in D′ from n to n1

17: transferLoad (n, n1, D′);

18: else if loadn2 <= lwarningthen

19: // split Dn into 2 subranges

20: split (Dn , D′, policy);

21: // transfer resources in D′ from n to n2

22: transferLoad (n, n2, D′);

23: else

24: split (Dn , D′, policy);

25: select an HR n′ from resources in D′;

26: Insert HR n′ into current RCT;

27: balanceTree();

28: end if

Load-aware adaptation. There are several cases in which an

HR can be overloaded. For example, if an HR is responsible

for a big range of PA values or the range of an HR is

a “hot spot”, a large number of messages of registration,

updating and query will overwhelm the relevant HR. Therefore

if no appropriate measures are taken, the overloaded HRs

will become the bottlenecks. On the one hand, when an HR

is overloaded, its subrange should be split, which results in

new HRs being chosen or some resources are transferred to

others. On the other hand, when an HR is light loaded and no

other HRs transfer resources to it as well, we should consider

deleting it and merging its range with other HRs responsible

for adjacent ranges. Deleting a light-loaded HR and merging

corresponding subranges can reduce the average search length.

In all, RCT must have the ability to adapt according to load

state.

Before going further, a metric should be defined to represent

an HR’s load l. As the data for describing a resource is

only a few attribute-value pairs, managing resources will not

consume much storage of an HR. We use CPU load to represent

an HR’s load. Light-loaded threshold llight and overloaded

threshold lover are defined respectively. Additionally, a warning

threshold lwarning is defined (llight < lwarning < lover) to

avoid oscillation problems, i.e. a node easily may become

overloaded after receiving load from others. When the load

of an HR is above lwarningand below lover, it indicates that

the HR is near to be overloaded and cannot accept new load
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transferred from other HRs. For example, when l is greater

than 90% (lover = 90%), an HR is considered as overloaded;

when l is less than 10% (llight = 10%), an HR is light

loaded when l is less than 80% (lwarning = 80%) and greater

than 10%; an HR is ready to help its neighbours to balance

load.

Note that an HR is also a computational resource that is

used to process user jobs. To ensure the user job processing

will not affect an HR’s organizing resources in RCT, a resource

reservation mechanism is needed. For example, if a resource

acts as an HR, 20% of CPU time will be reserved for its

responsibility in RCT. This will rely on resource manager’s

reservation functionality. Hence the definitions of llight, lover

and lwarning are based on the reserved capacity for organizing

resources.

Suppose Dn is the range an HR n is responsible for and HR

n becomes overloaded. According to the above analysis, Dn

will be split to balance the load. We design two policies for

splitting a range: Average Split (AS) and Analysis of Variance-

based Split (AVS). With AS, Dn is split evenly into two or three

subranges; AVS considers load distribution across Dn based on

analysis of variance. For example, suppose [10,100] is a range,

and load is mainly distributed in [80,100]. With AS, the range

may be split into [10,55) and [55,100]; while with AVS, the

splitting results can be [10,90) and [90,100]. In order to be

consistent with the three observations presented in Section 3.2,

an HR only transfers load to two neighbours, which means Dn

is split at most into three subranges for each time.

Algorithm 2: Resign a light-loaded HR n

1: //Initialize splitting policy

2: policy = AS;

3: //Retrieve neighbours’ load information

4: loadn1 = getLoad (L-neighbour (n));

5: loadn2 = getLoad (R-neighbour (n));

6: while (loadn1 > lwarning AND loadn2 > lwarning) do

7: sleep (t);

8: if loadn1 <= lwarning AND loadn2 <= lwarning then

9: // splitDn into 2 sub ranges:D1 < D2

10: split(Dn , D1, policy);

11: D2 = D1; D1 = Dn ;

12: // transfer resources inD1 from n to n1

13: transferLoad (n, n1, D1);

14: //transfer resources inD2 from n to n2

15: transferLoad (n, n2, D2);

16: else if loadn1 <= lwarning then

17: D1 = Dn ;

18: // transfer resources inDn from n to n1

19: transferLoad (n, n1, D1);

20: else if loadn2 <= lwarning then

21: D2 = Dn ;

22: // transfer resources inDn from n to n2

23: transferLoad (n, n2, D2);

24: end if

25: resign (n);

26: balanceTree();

Algorithm 3: Complete load-aware adaptation for HR n

1: while (true) do

2: //Retrieve HR n’s load information

3: loadn = getLoad (n);

4: if loadn >= loverthen

5: balance the load of HR n; //Algorithm 1

6: else if loadn <= llightthen

7: resign HR n; //Algorithm 2

8: end if

9: sleep (t);

Algorithm 1 is designed to balance an overloaded HR. We

first initialize the splitting policy as AVS (Line 2); then the load

of two neighbours is obtained (Lines 4–5); according to the load

status of neighbours, the range is split and load is transferred to

relevant neighbours (Lines 6–22); in case both neighbours are

not available, a new HR is selected to balance the load, and

RCT itself needs to be balanced (Lines 24–27).

In contrast to the overloaded case, when HR n is light loaded,

it will try to merge itself with its neighbours and resign the HR

post so as to reduce the average search length. As the average

search length of RCT has great impact on searching efficiency,

the merge of light-loaded HRs will lead to higher efficiency of

resource discovery. This procedure is shown in Algorithm 2.

Here the splitting policy is set as AS (Line 2), because the

whole range of current HR has light load; then the neighbours’

load is obtained (Lines 4–5); if both of neighbours’ load are

above warning threshold, it has to wait for next period to try

again (Lines 6–7); the load is transferred to left neighbour

and/or right neighbour (Lines 8–24); eventually the HR resigns

and operation is performed to balance RCT (Line 25–26).

Based on Algorithms 1 and 2, we have the complete load-

aware adaptation algorithm, as shown in Algorithm 3. The

algorithm runs periodically at each HR to ensure the HR works

in a normal load state.

HR failures. The leaving of an HR can be categorized as normal

leaving and abrupt failures without notification.

If an HR leaves normally, it will choose a new HR from

resources it manages to replace itself. However, the unexpected

failure of an HR is much more complicated, which makes the

child trees of the failed HR disconnected with the other HRs

of the relevant RCT. Therefore, it is desirable to have a fault-

tolerant design to handle such failures. In practice, the HR

failures can be caused by software or hardware breakdown

(e.g. memory overflow), or network disconnection.

We detect an HR’s failure by sending keep-alive messages

periodically between a node and its parent. As a result, the

parent node or direct child nodes of a failed HR will first notice

the failure of an HR. One straightforward way of recovering

RCT is to locate the disconnected child trees and assign new

parent HRs for them. This procedure is much more complex

if several HRs fail simultaneously. In that case, an HR is

required to maintain information of either all of predecessors

or offspring, which means an HR’s leaving or joining has to be

notified to many other HRs. In case of frequent HRs joining or

leaving, this will definitely add a large overhead to the whole

system.
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Instead we choose a rather simple but effective approach

that is based on redundancy. Note that the online time is an

important factor in defining the criteria for selecting an HR.

Therefore, an HR has better availability than other resources.

And the probability of the simultaneous failure of multiple HRs

will be small. Based on the above analysis, we require each HR

to have an alternate backup. When the primary HR crashes, the

backup HR will be activated to work as primary HR and a new

backup is selected at the same time. Even in case that both HRs

fail, the disconnected resources can join the RCT again later

after they realize this.

4.3. Searching with RCT

The ultimate goal of RCT design is to process resource

queries and return resources that best meet users’ query

requirements. Given the resource organization defined by RCT,

we present the search mechanisms in this section.

First, we identify four types of commonly used queries from

two dimensions, as shown in Fig. 3. Here we provide examples

for these four types of queries: Q1: “Available storage =

90 GB”; Q2: “CPU load < 50%”; Q3: “Available storage =

100 GB AND OS = WindowsXP”; Q4: “Availablememory >

256 MB AND CPU load < 80%”. We refer to searches

corresponding to the four types of queries as Q1-search, Q2-

search, Q3-search and Q4-search respectively.

RCT supports all these four types of queries while we only

present searching algorithm for Q2-search and give description

to show how Q2-search can be extended easily to support the

other three. In order to balance the query load, the algorithm is

designed to allow a query starting from any node of an RCT,

instead of only from the root node.

The Algorithm 4 is designed for Q2-search. Dq is supposed

to be the range of a user query for a primary attribute (PA), and

Dn is the range that HR n is responsible for. Dl−childT (n) and

Dr−childT (n) are ranges that the left child tree and right child tree

of n are responsible for respectively. The algorithm is designed

as a recursive function. The query results will be aggregated

in a data structure called ResultSet. We first split Dq into three

subranges: D0, D1 and D2 (Line 4). D0 is the intersection of

Dn and Dq ; D1 and D2 are subranges of Dq that are adjacent

to the left and right ends of D0 respectively. If D0 is not empty,

search is performed locally for the range of D0 (Line 5); if D1

is not empty, search is performed in the left child tree (Line

6); if D2 is not empty, search is performed in the right child

tree and/or at parent node depending on the relationship of D2

and Dr−childT (n) (Lines 7–9); Finally, the complete result set

containing the results from all the search processes is returned

(Lines 10).

To implement the above algorithm, each HR n is required

to know the total range that its child tree is responsible for.

With this information, Dr−childT (n) and Dl−childT (n) can be

calculated. To achieve this, when load is transferred to/from a

node, the node will not only update range information of its

child trees but also notify relevant child nodes to update range

information of their respective child trees.

Fig. 3. Four types of commonly used queries.

With the Q2-search algorithm, Q1-search is much simpler

because Q1-search is indeed a Q2-search with the Dq of only

one element.

Q4-search is the most complicated among the four types

of searches. Based on Q2 search, it can be dealt with in the

following three steps. (1) We first identify a PA in query

constraints. (2) Then based on Algorithm 4, searching is

performed with the query range of selected PA. (3) If a node

satisfies the constraints on selected PA, further search will be

performed at current node on constraints of other attributes.

For example, if a query is “Available storage >70 G AND

CPU Load < 20%” and “Available storage” is identified as PA,

search will be performed on an RCT whose PA is “Available

storage”. If HR n satisfies the constraint of “Available storage

> 70G”, the resources managed by HR n will be searched

further, based on “CPU Load < 20%”.

And Q3-search, which is multi-attribute and point search, is

a simplified version of Q4-search.

As a query can start from any node, the search length of a

point query will be 2 log N at most. For the range query, the

complexity is highly dependent on the length of a query range,

and we will study this in Section 5.

Algorithm 4: Q2-search from HR n

1: func search (Dq , n) : ResultSet

2: ResultSet rs1, rs2, rs3, rs4;

3: D0 = Dq ∩ Dn ;

4: split Dq − D0 into D1 and D2 (D1 < D2);

5: if D0! = φ then rs1 = perform local search for D0;

6: if D1! = φ then rs2 = search (D′, lc(n));

7: if D2! = φ then D′ = D2 ∩ Dr-childT (n);

8: if D′! = φ then rs3 = search (D′, rc(n));

9: if D2 − D′! = φ AND parent(n)! = null then

rs4 = search(D2 − D′, parent(n));

10: return rs1 ∪ rs2 ∪ rs3 ∪ rs4

11: end func

One thing to note is that an incentive mechanism is

introduced to the HR’s local search. Considering that HRs

contribute their capacity for RCT, we increase their priority

to be searched. That means if two resources including an HR

meet user query requirements and the user only need a limited

number of resources, the HR will be returned to a user with a

higher priority.
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4.4. Parallel search

AS each HR is responsible for a different range of value

domain of a PA, the bigger length of a query range means more

hops are needed for processing a query. Thus Algorithm 4 could

be inefficient if the length of a query range is very large. If the

ranges of all HRs are known beforehand, we can split the query

range into multiple subranges so that each subrange matches an

HR exactly. Thus searches can be performed in parallel for each

subrange. In Section 4.2, we mention that in order to maintain

parent-child relationship of HRs, a child is required to send

keep-alive message to its parent periodically. An HR can utilize

this message to piggyback information about the HRs and their

responsible ranges. In this way, each HR will know others’

ranges, and parallel search can be implemented. When the

range of an HR changes due to self-adaptation, the change will

be known to all HRs after at most log2 N keep-alive periods.

Before receiving notification about range changes, using stale

information can cause some parallel searches to fail. In such a

case, Algorithm 4 will be used for searching.

4.5. Complexity analysis

In this section, we analyse the complexity of searching

algorithms with RCT. From Section 4.3, we can see that range

search and multi-attribute search are just variations of Q2-

search. And Q2-search can be reduced to Q1-search if parallel

search introduced in Section 4.4 is adopted. Thus we only

analyse the complexity of Q1-seach that is a random search

against RCT.
We start from a complete BST (Binary Search Tree) with n

nodes and the height of h.
Suppose the entrance of searching is nodek (k > 2) that lies

in the kth level of the BST, then the target node nodetarget is

possible to locate in the 3 shaded areas shown in Fig. 4. We use

TSL(M, subtree(N)) to denote the total search length when the

searching starts from node M and traverse all the nodes in the

subtree rooted at node N, and ASL (Average Search Length) to

denote the average number of nodes that are traversed when the

target node is randomly chosen with equal probability.
Case 1:

For all nodetarget in the subtree rooted at nodek ,

i.e. nodetarget ∈ subtree (nodek), the depth of the subtree is

h − k + 1. So the TSL from nodek to all the nodes within the

subtree is

TSL(nodek, subtree(nodek))

= (h − k + 1 − 1) × 2h−k+1 + 1

= (h − k) × 2h−k+1 + 1.

Case 2:
For all nodetarget on the path from nodek to root,

i.e.nodetarget ∈ path(nodek, root), given that there are k − 1

nodes on the path, the TSL from nodek to all the nodes on the

path is

TSL(nodek, path(nodek, root)) = 2 + 3 + 4 + · · · + k

=

k−1
∑

i=1

(i + 1) =
(k + 2)(k − 1)

2
.

Fig. 4. Searching from a node in the kth level.

Case 3:
For all nodetarget in the subtree with a (k − 1)th level

node on path(nodek, root) as its parent, i.e. nodetarget ∈

subtree(siblingNodek), the TSL from nodek to all the nodes

within the subtree is

TSL(nodek, subtree(siblingNodek))

= 2 × (2h−k+1 − 1) + (h − k) × 2h−k+1 + 1.

Similarly, for all nodetarget in the subtree with a k − 1

level node on path(nodek, root) as its parent, i.e. nodetarget ∈

subtree(siblingNodek−1), the TSL from nodek to all the nodes

within the subtree is

TSL(nodek, subtree(siblingNodek−1))

= 3 × (2h−k+2 − 1) + (h − k + 1) × 2h−k+2 + 1.

It can be seen that if nodetarget is in the subtree with a (k−i)th

level node on path(nodek, root) as its parent, i.e. nodetarget ∈

subtree(siblingNodek−i+1), the TSL from nodek to all the nodes

within the subtree is

TSL(nodek, subtree(siblingNodek−i+1))

= (i + 1) × (2h−k+i − 1) + (h − k + i − 1) × 2h−k+i + 1

= (h − k + 2i) × 2h−k+i − i − 1.

Thus, the TSL from nodek to all the nodes within the

neighbouring subtrees is

TSL(nodek, siblingSubtree(nodek))

=

k−1
∑

i=1

T SL(subtree(siblingNodek−i+1))

=

k−1
∑

i=1

[(h − k + 2i) × 2h−k+i − i − 1]

= (h − k) × 2h−k × (2k − 2) + 2h−k+1

× [(k − 2) × 2k + 2] −
(k + 2)(k − 1)

2
.

Hence, from the results of Cases 1–3, we can obtain the TSL

from nodek to all the nodes within the BST as follows:
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ASLtotal =
TSLtotal

SearchTimestotal

=
[2h × (h − 4) + 1] × (2h − 1) + 2h × [(h − 1) × 2h + 1] + h × 2h+1

(2h − 1)2

≈ h − 4 + h − 1 = 2h − 5

Box I.

ASLtotal =

h
∑

k=1

[p(nodek) × ASL(nodek)]

=

h
∑

k=1

[

2k

2h − 1
×

2h × (h + k − 4) + 2h−k+2 + 1

2h − 1

]

×
[2h × (h − 4) + 1] × (2h − 1) + 2h × [(h − 1) × 2h + 1] + h × 2h+1

(2h − 1)2

≈ h − 4 + h − 1 = 2h − 5

Box II.

TSL(nodek, subtree(root))

= TSL(nodek, subtree(nodek))

+ TSL(nodek, path(nodek, root))

+ TSL(nodek, siblingSubtree(nodek))

= (h − k) × 2h−k+1 + 1 +
(k + 2)(k − 1)

2

+ (h − k) × 2h−k × (2k − 2) + 2h−k+1

× [(k − 2) × 2k + 2] −
(k + 2)(k − 1)

2

= 2h × (h + k − 4) + 2h−k+2 + 1.

Then the total TSL from each node within the BST to all the

nodes within the BST is:

TSLtotal

=

h
∑

k=1

[NumberOf (nodek) × TSL(nodek, subtree(root))]

=

h
∑

k=1

{2k−1 × [2h × (h + k − 4) + 2h−k+2 + 1]}

= [2h × (h − 4) + 1] × (2h − 1) + 2h

× [(h − 1) × 2h + 1] + h × 2h+1.

With our three assumptions mentioned above, we have the

average search length ASL: See Box I

The above result can also be obtained through the following

approach, where p (nodek) is the probability of the presence of

all the kth-level nodes in a BST:

ASL(nodek) =
TSL(nodek, subtree(root))

2h − 1

=
2h × (h + k − 4) + 2h−k+2 + 1

2h − 1
.

Thus, we have the following result in Box II:

It can be easily calculated that when h <= 2, the ASL is

one. Thus we have the conclusion that the average length of

random search with complete BST is roughly equal to 2h − 5.

Here, we give an estimation of average length of random search

with AVL.

The difference between a complete BST and an AVL is that

the number of leaf nodes in an AVL can ranges from 1 to 2h−1.

Therefore, the average search length will be less than that of

complete BST with the same depth. Furthermore, the average

search length should be larger than that of complete BST with

h − 1 depth. Then, we can conclude

{

ASLAVL ∈ (2h − 7, 2h − 5], h ≥ 3

ASLAVL = 1, h ≤ 2.
(4)

For example, the average search length of an AVL with 100

nodes is larger than seven and less than/equal to nine.

5. Performance evaluation

5.1. Simulation methodology

The RCT algorithms are simulated through an event-driven

approach with Java codes. The simulated RCT has 100 nodes

(HRs). The value domain D of selected PA is [0,100], and D is

evenly split across the HRs, which means the length of an HR’s

subrange is one. The query arrival is modelled as a Poisson

distribution.

The metrics we use are as follows: (1) Number of queries

per node. This metric is used to evaluate the average query

load of an HR in different situations. With this metric, we can

know the overhead of RCT when facing different numbers of

simultaneous queries. (2) Average Search Length (ASL). ASL

indicates the average number of HRs that a request is passed

before being processed. Combining metrics (1) and (2), we

can evaluate the efficiency of resource discovery. (3) Standard

deviation of query load. As RCT has the ability of load-aware
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Fig. 5. Query rate vs. Query load per HR.

adaptation, this metric is used to evaluate how a load is balanced

across HRs. The smaller value of this metric indicates a better

balancing effect.

5.2. Evaluation results

We design three experiments to evaluate RCT based on the

three metrics defined above.

In first experiment, we evaluate RCT performance in terms

of metric (1) and (2) through varying query rate. The query

rate varies from 500 per second to 10,000 per second, and

queries are distributed equally to 100 HRs. The queries in

this experiment are Q1 queries that are single attribute and

point queries. We compare RCT performance with hierarchical

scheme. Globus MDS [7] is a hierarchical scheme, but it allows

data replication across levels, and here we do not consider

replication. From Fig. 4, we observe that RCT incurs less

overhead to each node than hierarchical scheme. To show

results better, the query load of an hierarchical scheme is

reduced by 50 times in Fig. 5. Fig. 6 shows that a query

is processed with smaller ASL than an hierarchical scheme

under different query rates. From the conclusion drawn from

Section 4.5, we know the ASL with RCT is between 8.5 and

9. We can say RCT outperforms an hierarchical scheme (no

replication) in all cases.

As range query is widely used in grids, our second

experiment is to evaluate how RCT performs with different

lengths of query ranges. The lengths of query range vary from

1 to 100. Fig. 7 shows the results in terms of metric (1)

using Algorithm 4. As the length of query range increases,

the average load of an HR increases linearly. This is because

query ranges are split into more subranges in the process of

searching across RCT when the length of query range increases.

Fig. 8 plots the comparison of parallel search with Algorithm

4 in terms of metric (2). The ASL with Algorithm 4 and

parallel search increases linearly along with the length of

query range, although parallel search can reduce ASL to some

extent. Indeed, parallel search can reduce the total search time

greatly by performing subsearches simultaneously. Note that

although the second experiment is designed for single attribute

Fig. 6. Query rate vs. ASL.

Fig. 7. Length of query range vs. Query load per HR.

Fig. 8. Length of query range vs. ASL.

and range queries, the results are similar with multi-attribute

and range queries. This is because multi-attribute queries are

first processed by performing search against the PA attribute

contained in the given query constraints, and the constraints for

other attributes will be processed locally in an HR node.
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Fig. 9. Standard deviation of query load.

Fig. 10. Number of HRs during adaptation.

Since RCT is designed to be adaptive based on its load

status, we design the third experiment to evaluate how RCT

adapt in overloaded and light-loaded situations. In practice,

the aforementioned thresholds of lover, llight and lwarning can

be defined as number of quires to process per second. In this

experiment, they are set to be 50, 25 and 40 respectively. We let

90 HRs work normally with a load of 40 queries per second.

The load of other 10 HRs varies from 1 to 120, which is a

process of being light-loaded, normal and overloaded. Fig. 9

shows that the load-aware adaptation mechanism of RCT can

balance the query load effectively in both overloaded and light-

loaded cases and greatly reduces the risk of system bottleneck.

Fig. 10 plots the total number of HRs during adaptation

according to the changing load of the selected 10 HRs. When

the selected 10 HRs are light-loaded, they will merge with other

HRs, and the number of HRs reduces. While in overloaded

situation of the 10 selected HRs, new HRs are born to share

the load, resulting in an increase of HR number. From Figs. 9

and 10, we can observe that not only load of each HR but also

the RCT structure adapts automatically along with load status

of HRs.

6. Application to service discovery

In the previous sections, we have taken computational

resource discovery as an example to introduce an RCT scheme.

Note grid services are another important category of resources

in servicing grid systems. This section is devoted to explaining

how RCT can be applied to service discovery.

For the metadata description of services, attribute-value

pair is a simple and effective method though more complex

approaches like ontology technologies exist. We make use of

a set of attribute-value pairs to describe grid services. Among

the attributes describing a service, there should be an attribute

for describing which application domain the service belongs to,

e.g. tModels in UDDI. Thus we can categorize services based

on their application domain and organizing services of the same

application domain into one RCT tree.

However, different from computational resources, most of

the attributes of grid services are not numerical, which makes

it unsuitable to distribute services of an application domain

across tree nodes of an RCT. Therefore in order to apply

RCT to service discovery, we need to convert nonnumerical

attributes to be numerical ones. This can be done by adoption

of Hash functions as DHT-based peer-to-peer technologies

do. Compared to DHT schemes, our solution is featured

by a categorizing mechanism before routing user request to

destination nodes, which results a shorter routing path.

With the above two steps, service discovery can be supported

efficiently using RCT scheme. Therefore, we can say RCT can

be adopted to build a complete grid information service for

service grids.

7. Conclusion

In this paper, we propose an overlay RCT for effective

resource discovery in grid. RCT leverages application resource

requirement to organize resources based on AVL tree. Although

RCT is hierarchical, nodes in higher levels need not maintain

more information than those in lower levels, which makes RCT

very scalable. RCT is designed to be self-organizing, self-

adaptive and fault-tolerant. Commonly used queries such as

range queries and multi-attribute queries are well supported by

RCT. We conduct extensive evaluations through simulations.

Finally, with thorough explanation that RCT can also support

service discovery, we conclude that RCT provides a complete

solution for grid resource discovery.

Currently, we mainly focus on computational resource

discovery and present the basic ideas to apply RCT to service

discovery. We will further complete the design of RCT to

provide an integrated solution to grid resource discovery. Then

we plan to implement the corresponding scheme and deploy the

resultant system in real grids like our CROWN grid.
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