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a b s t r a c t

Deduplication is one of the major storage optimisation techniques for Virtual Machines (VMs) in cloud
environment. Usually, hashing of blocks helps in identifying duplicate data blocks. This paper proposes
a novel deduplication approach, QuickDedup that reduces the overall deduplication time, metadata
overhead and the number of hash computations, and subsequent comparisons for the VM disk images.
In addition to minimising the deduplication related metadata, which is a necessary by-product useful in
checking deduplication, QuickDedup, follows novel byte comparison scheme to prepare various block
classes. This way, QuickDedup eliminates or minimises the need for hash calculation and subsequent
comparisons. QuickDedup performs the calculation and comparisons of hashes within the respective
categories only. QuickDedup saves the space required for hash storage during deduplication and makes
deduplication of VM disk images much faster. We conducted a detailed evaluation of QuickDedup on
various metrics with different kinds and sizes of VM images taken from publicly available datasets.
The evaluation results show a substantial improvement of up to 96% in the overall deduplication time
required to deduplicate VM images apart from significant savings in metadata and storage overhead.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Cloud Computing adoption has grown rapidly due to sev-
eral advantages and features such as multi-tenancy, higher util-
isation of servers, energy efficiency and elasticity derived from
on-demand utility computing services [32]. The creation and
deployment of VMs are quick, added with the capability of easy
scalability. The growing popularity of VMs has made ways for the
VM appliances [33], which are pre-configured VM images that
readily run on a hypervisor. The benefits of VM appliances over
traditional software packaging include simplified deployment and
enhanced isolation [11]. As Cloud Computing and Big data are
becoming more prevalent, an increasing amount of data is stored
in the cloud. According to Gartner, enterprise IT‘s biggest chal-
lenge today is double-digit data growth. In fact, data is growing
in enterprise storage banks at the alarming average and will
increase up to 50 times in next decade as predicated.

Deduplication technology helps in handling data growth to
a large extent. It is a data compression technology to eliminate
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redundant/duplicate data from the storage [3,19,23]. VMs are
large in size, which exacerbates the storage problem. There are
multiple contributors, who have provided storage optimisation
solutions utilising deduplication techniques [14,35]. The common
element of many of these techniques is to calculate the hashes of
small chunks of data known as blocks. A hash comparison helps in
identifying common blocks. There are various ways of performing
deduplication, and broadly it is categorised into three categories,
i.e. based on time, level and location [13]. Deduplication can ei-
ther follow a source-based or target-based approach based on the
location of data storage. In source based deduplication, redundant
data is eliminated at the client-side before sending the data to the
server reducing the overall bandwidth cost. In target-based dedu-
plication, the server performs the deduplication process utilising
higher bandwidth as the redundant data also gets transferred
over the network. Based on the level at which the similarity is ex-
ercised, the deduplication can be either at byte-level, block-level
or at the file-level. Byte-level deduplication process compares
bytes to eliminate redundant bytes. On the other hand, block-
level deduplication eliminates redundant block and comparison
takes place at the block level. On the basis of time, it can either
be post-process or inline deduplication. In post-process or offline
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deduplication, there is no computation before storing the data,
ensuring better storage performance. However, duplicate data
is stored for a short time which can be an issue if the storage
system is near full capacity. In-line deduplication requires less
storage as it does not store duplicate data. However, computation
takes time which may degrade the storage performance. As cloud
environment uses pay-as-you-go service model, time becomes
an important factor and cloud resources are enormous therefore
no issue of storage being full. Therefore, an offline algorithm is
preferable for VM deduplication in the cloud. Deduplication can
be source based or target based, depending upon the location
of data storage. From the perspective of deduplication, VM disk
images are classified as flat and sparse VM disk images [13,46].
Popular hypervisors, such as Xen and KVM support sparse format
qcow2 and virtual box supports vdi sparse format. Deduplication
is one of the ways to optimise VM storage over the cloud [24,46].
Deduplication process helps in saving storage space to a large
extent in VM disk images. There are many other areas, where
deduplication is useful like in backup systems, databases, and
networks [10,19].

Deduplication in a traditional file system leads to higher stor-
age utilisation and improves the disk cache efficiency [48]. When
considered from virtualization perspective, deduplication offers
additional benefits like supporting multi-tenancy and reducing
the effects of VM sprawl problem. For each user’s VM, there
exists a VM disk image that stores OS image, applications data,
and other free blocks. Each VM when individually stored oc-
cupies huge space on VM storage, which can be optimised us-
ing deduplication. Deduplication can be done either on the VM
image (intra-VM image deduplication) or among different VMs
(inter-VM image deduplication).

Surveys by AFCOM [1] and COMMVAULT [2] shows that over
63% of data centre surveyed have seen tremendous growth in
their storage costs. However, in the present scenario, the dedu-
plication ratios are not rising proportionately to the data growth.
Therefore, a deduplication technique should be efficient and fast
enough to deduplicate the storage even when the deduplication
ratio is low or moderate.

In this paper, we focus at the important factors contributing
to the overall deduplication process and identify that a ma-
jor amount of effort for deduplication is spent on identifying
exactly same disk blocks. Hash calculation of disk blocks and
subsequent comparison among them helps in identification of
exactly same blocks. We argue the overall deduplication time
can be minimised by minimising the number of hash calcu-
lations, and subsequently the eligible blocks for comparisons.
Our proposed approach QuickDedup utilises a novel byte-to-byte
comparison scheme to reduce the number of candidate blocks
for hash calculations and subsequent comparisons. We perform
a number of performance evaluation experiments to evaluate the
proposed approach which show that it is much faster than the
pure hash-based technique, maintaining the same deduplication
ratio.

1.1. Contributions

The following are the major contributions of our work:

1. Deduplication being an important performance optimisa-
tion for cloud and VM storage, we collate a primary list of
important requirements for deduplication efficiency.

2. Through extensive experiments on VM disk image datasets,
we observe that the major factor in deduplication process
is hash computation of each block and subsequent com-
parison among them to identify duplicate blocks. We de-
sign QuickDedup, where at initial stages of preprocessing,

we make byte-to-byte comparisons to identify deduplica-
ble blocks, which allows to reduce the total number of
hash-based comparisons quickly.

3. We propose a set of byte comparison strategies with differ-
ent aspects of their suitability with the types of disk blocks
such as filled, zero blocks, and partially filled blocks.

4. QuickDedup with the help of a novel meta-data structure,
Deduplication Data Tree (DDT), provides savings by min-
imising the number of hashes (up to 95%) and the overall
deduplication time (up to 96%). These savings also helps in
reducing the meta-data overhead during the deduplication
process.

1.2. Organisation

The rest of the paper is organised as follows: Section 2 pro-
vides a deduplication background listing the necessary criterion
for an efficient deduplication technique. Section 3 comprises of
literature survey and discusses various file systems that imple-
ment deduplication for VMs and traditional systems. In Section 4,
we propose the QuickDedup algorithm and its design in detail.
Section 5 consists of experiments and their results to test the
efficiency of our proposed technique. Section 6 discusses various
cases where QuickDedup provides best and worst case perfor-
mance. In Section 7, we conclude and propose future work for
further improving deduplication in context of different operating
systems.

2. Deduplication: Background

There are a large number of deduplication techniques pro-
posed in the literature. However, a unified set of requirements
to test and verify the suitability of a deduplication technique
are missing. Before proceeding towards identifying the key re-
quirements, we provide an overview of the deduplication ratio
calculation among inter and intra-VM Images. Let us consider
that size (Vi) denotes the original size of a VM and dedup_size(Vi)
represents the size of a VM after deduplication where i = 1,
2, 3 · · · k images. Eq. (1) gives the deduplication ratio of intra-
VM image deduplication of ith VM. Inter-VM image deduplication
ratio for VM images from V1 to Vk is given by Eq. (2).

Deduplication_Ratio(Vi) = 1 −
dedup_size(Vi)

size(Vi)
(1)

Deduplication_Ratio(V1, V2, . . . , Vi) =

1 −
dedup_size(V1 + V2 + · · · + Vk)

size(V1 + V2 + · · · + Vk)
(2)

Critical requirements for an efficient deduplication technique
are listed below:

1. Least number of hashes: The key task in a deduplication
system is to determine whether two or more blocks are
same or not. A preferred way to do this is by calculating
and comparing hashes. A hash calculation, being an ex-
pensive task as the number of hashes grows, the metadata
increases. Hash calculation also requires a considerable
amount of time. Hash calculations should be minimised to
save space, time and computational overhead.

2. Least number of comparisons: VM disk images are of
multi-gigabytes in size. Before storing an incoming VM,
it is determined whether any block of that VM already
exists in the storage. For this, hash calculation and com-
parison are performed, among incoming VM blocks and the
already stored blocks. Inline deduplication calculates per-
forms hash calculation and comparison before storing the
VM disk image that mostly affects the storage performance.
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Even if the client side computes the hashes, their compar-
isons are carried out at the time of storage only. There-
fore, the number of comparisons should be minimised to
improve the storage performance.

3. Minimum Metadata: A large amount of additional (some-
times temporary) data is generated during a deduplication
process. This data includes the hashes generated for each
block; the copy created for the block, when a VM accesses a
shared block. Since deduplication is performed to optimise
the use of available storage, the overhead of additional data
generated should be minimised.

4. Optimum block size selection: Selection of appropriate
block size for deduplication is a vital factor that affects the
deduplication ratio [13,22]. On increasing the block size,
the deduplication ratio falls and opting for small block size
leads to difficulty in managing a large number of blocks and
proportionately increased hash calculations. The block size
should be chosen such that, a good balance between both
these factors can be achieved.

5. Fast Retrieval: VM can be created and deployed quickly,
however deduplication may cause fragmentation in VM
storage. At the time of retrieval of a VM, it becomes slower
since the VM blocks do not remain sequential because the
common block of different VMs gets stored at a single
location. The blocks of first VM are stored sequentially,
afterwards, if next VMs have deduplicate blocks then those
blocks are not stored, only a reference is passed. The dedu-
plicable and non-deduplicable blocks of a VM are stored at
a separate location in the storage. For backup systems, it
can be made faster using RevDedup [20].

3. Related work

There are various file systems which implement deduplication
strategies to improve storage efficiency. Deduplication is applied
in several system domains viz. databases, VM disk images, data
files and network data, which in turn benefits both the user
and the resource provider. LIQUID [46] and LiveDFS [21] are
file systems, which implement deduplication for VMs. LIQUID,
a VM deduplication file system, along with deduplication offers
features as instant cloning, on-demand fetching, low storage con-
sumption, P2P data transfer of data and caching with local disks.
Fingerprints are calculated using MD5 and SHA-1 for all blocks. In
QuickDedup, we focus on early detection of deduplicable blocks
and minimise the total number of hash calculations. LiveDFS,
along with deduplication comprises of prefetching of metadata,
spatial locality, and journaling. The main idea here is to place
metadata and actual data nearby, for reducing seek overhead.
The metadata consists of fingerprints of blocks present in the
block group. Fingerprint filter and fingerprint store are being
introduced for speeding up the hash comparison task, whereas
we minimise the number of hash comparison by categorising
the blocks into various categories based on the byte read due to
which inter-category hash comparisons are never required. We
only perform intra-category comparisons. VMDedup [26] detects
duplicacy among the memory pages by comparing the hashes of
the pages. Hash is calculated for all the pages, however for disk
deduplication, the number of hashes are comparatively high.

Apart from VMs, deduplication applies to different file systems
and fields. ZFS and Opendedup are file systems, which support
inline deduplication. However, the memory requirement of both
of these filesystems is quite large as they calculate fingerprints
of all blocks. MAD2 [34] and HYDRAstor [6] proposes distributed
deduplication architectures. Former uses scalable secondary stor-
age and bloom filter, which is not suitable for VM image storage

and later uses hash table. Lithium [9] is a cloud-based VM im-
age storage system that aims for fault tolerance, but it does
not consider deduplication. In Chord [29] and Droplet [44], the
data is distributed over virtual nodes, which is migrated when
needed to balance the load. Extreme Binning [4] makes use of
file similarity for performing deduplication rather than chunk
locality. Singleton [27] increased the memory usage efficiency
by solving the problem of double-caching i.e. pages are cached
both at the hypervisor and the VM. DBLK [30], a deduplication
based primary storage system used multilayer bloom filters for
reducing the data structure in the memory for indexing. For
improving the performance of searching hash, Zhu et al. [48] had
utilised spatial locality of data. iDedup [28], an inline storage
deduplication system that minimised the I/Os and seeks using
spatial locality and temporal locality in the access pattern for
optimisation. DeDE [5], a decentralised deduplication system that
performs block-level deduplication atop an existing file system.
HPDV [17] parallelise the resource-intensive chunking process, by
making use of idle CPU. It divides the globally shared fingerprint
into sub-index based on the OS on the VM images to parallelise
I/O. These existing technique are either not suitable for VMs being
large in size, or calculates the hashes for all blocks to check
duplicacy.

In many cases, deduplication is also used to speed up the
backup process in VMs [8,41,45]. Upadhyay et al. [31] provided
a deduplication approach that makes use of ‘‘Binning’’ at an
initial stage based on block size. KSM (Kernel Samepage Merg-
ing) [3] is a deduplication feature that periodically scans the
registered areas of user memory and looks for pages of identical
contents to be replaced by a single page that is write-protected.
These are granularity, locality, timing, indexing, technique, and
scope. Zhang et al. [42] increases the efficiency of the VM-centric
backup service by making use of the VM-centric file system
block management which increases the VM snapshot availability.
PDedup [36] makes use of both inline and post process dedupli-
cation. It estimates the temporal locality of data streamed and
allocate the cache based upon priority. In an analysis performed
over 525 VM Images, Jayaram et al. [12] showed that an image
is more likely to be similar to a small subset in a repository
and fixed size chunking is more appropriate for the VMs. Ethan
et al. [13] have studied various factors that affect deduplication
in VMs showing that fixed sized chunking is better for VM disk
images. The choice of operating system of the VM has a huge
impact on the deduplication ratio. Another important contribu-
tion in this direction is by Bloom filters. Bloom filter is capable
of efficient and fast searching, uses probabilistic approach which
leads to false positive results. When considered for large VMs
over the cloud, the data is enormous. If bloom filter is being used
there, then chances of a false positive result will increase to a
large extent. QuickDedup uses fixed size block chunking as, fixed
size chunk yields best result in terms of deduplication ratio in
case of VMs.

DARE [38] made use of adjacency based resemblance detection
for performing deduplication for backup systems. Their work
aims to find the best possible blocks for delta compression in
low overhead. Li et al. [16] improve the efficiency of the backup
storage system by imparting both the inline and out-of-line dedu-
plication. As deduplication causes fragmentation that degrades
the read performance, Mao et al. [18] worked to improve the
read performance. Ddelta [40] provides fast chunking algorithm
and greedy byte-wise scanning to find more redundancy using
delta compression. Fu et al. [7] make use of application aware-
ness for improving data deduplication efficiency. It provides a
balance between saving cloud storage capacity and duplication
time. P-Dedupe [39] aims to minimise the time required by a
deduplication process by parallelising the hash calculation pro-
cess, however hashes are calculated for all blocks. Asymmetric
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Extremum [43] based on content defined chunking provides a fast
chunking algorithm with low computational overhead and higher
throughput efficiency. Koller and Rangaswami [14] improved
the I/O performance during deduplication by exploiting content-
based similarity. SiLo [37] and Zhou et al. [47] utilised both
locality and similarity of the content for attaining high dedupli-
cation throughput. HANDS [35], based on access pattern, placed
correlated data together so that it can be atomically accessed
when needed, reducing the memory access. Seo and Lim [25]
used NAND flash memory to reduce computational overhead,
and depending upon the casualty between I/O. Our work fo-
cuses on improving the efficiency of the out-of-line deduplication
performed on VM disk images.

As per the literature, the majority of the approaches make use
of pure hash-based approach for checking similarity of the blocks.
Our novel approach instead of calculating hashes of all the blocks,
based on byte comparisons, categorises the blocks. Along with
the reduction in deduplication time, QuickDedup also minimises
the metadata generated by eliminating the need to calculate the
hash of all the disk blocks. In addition, most of the existing
deduplication approaches are specific to backup, network or VM.
Though, we evaluate and study QuickDedup for VM images, it
is equally applicable to any storage domain with deduplication
needs.

4. QuickDedup: An new approach for efficient deduplication

An efficient deduplication technique for VM is the one that
follows the criteria listed in Section 2. Based on these, we pro-
pose QuickDedup, which is useful for VM appliance stores and
VM disk backup/snapshots. QuickDedup is an offline algorithm
where at initial stage complete VM image is stored. At a later
stage, the deduplication process is invoked, which checks for the
presence of deduplicable blocks. Initially, we store the VM image
sequentially. During the categorisation process, only the block
numbers are placed in different categories, whereas the data
blocks remain intact. Once QuickDedup completes the processing,
the space corresponding to the blocks numbers which fall under
the ‘‘deduplicable blocks’’ is freed. We perform hash calculation
using SHA-1 which can be replaced by any other hash algorithm
based on the requirements. QuickDedup is specially applicable
for VMs, as there are various parameters regarding QuickDedup
which we have decided based on VMs. In the case of block
size selection, we selected the optimum block size which is best
for VMs. We follow fixed-size chunking which is usually better
for VM disk images as discussed in [13]. However, QuickDedup
can be applicable to general storage or file systems after the
selection of the best suitable parameter based on general storage
or filesystem.

4.1. Stages of algorithm

Broadly, the QuickDedup algorithm has two stages: Prepro-
cessing stage and Deduplication stage. Further, deduplication
stage has various functions to perform the overall deduplication
activity. For easy understanding of the algorithm, Fig. 1 depicts
the algorithm flow using a flowchart.

4.1.1. Preprocessing stage
In this stage, QuickDedup reads the first byte of each block

and based on its character value; QuickDedup places blocks into
different categories. Each category is named on a single character

which identifies all the blocks having first byte same as the name
of the category. The categorisation process places blocks into
various categories based on their first byte character. This process
reduces the number of blocks eligible for hash calculations and
hash comparisons. Many blocks get classified as unique blocks
on the basis of a single byte read. Therefore, for those blocks, the
need for deduplication (having steps such as hash computation
and subsequent comparison) does not arises. With this stage, one
‘‘pass’’ of the QuickDedup algorithm is completed.

4.1.2. Deduplication stage
At this stage, QuickDedup further processes only the cate-

gories having more than one block. Rest of the categories, having
only one block, show that those blocks are unique. We term
‘‘Pass’’ as a complete phase when all the blocks of a VM image are
processed and categorised into a specified category based upon
the value of the byte selected in that pass. For next ‘‘pass’’ another
byte position is read depending upon the byte selection strategy
explained in Section 4.2. For all the blocks of these categories,
QuickDedup reads the next selected byte and depending upon
the value of the selected nth positioned byte in each non-unique
block, we perform another categorisation. This process repeats for
‘M ’ passes. At the end of the last pass (M th), for all the categories
having more than one blocks, hash calculation and comparison
of those blocks within that category is made. Number of passes
(M) is a crucial performance factor which we discuss later in
Section 5.3.

4.2. Byte selection strategy

In the first pass, QuickDedup reads the first byte of each
block and for all subsequent passes, it reads a fixed byte of each
block from a position decided by the algorithm for performing
comparisons. We chose single-fixed byte as ‘‘far’’ as possible from
the last read byte, as the chances of two consecutive read byte
of two different blocks, of being equal are quite high [15,37].
It is the most important reason for selecting bytes in a non-
consecutive manner. For a quick categorisation, after each pass,
the position of byte chosen should be in such a way that it
can differentiate blocks in separate categories quickly. We do
not consider hash collisions or performance of hash algorithm in
general in QuickDedup. On the other hand, the byte comparison
approach is collision free. We created multiple combinations of
byte selection strategies. However, experiments show that out of
5 different strategies, the fixed byte selection strategy yields the
best results.

1. Sequential Byte Selection: The byte in each pass is read in
sequential order for comparison i.e. Pass 1, 1st byte of the
block; Pass 2, 2nd byte; Pass 3, 3rd byte and so on.

2. Random Byte Selection: In this strategy, in each pass
a random number is generated between 1 to BS (block
size). The random number generated is the next byte for
comparison in that pass.

3. Multiple of 100: In each pass, the byte read is in multiple
of 100. As in 2nd pass, byte read is 200th byte, in 3rd pass it
is 300th byte and so on.

4. Power of 2 Selection: In this strategy, selected bytes are in
a power of 2 i.e. 2pass_no.. Byte read are in the order 2nd, 4th,
8th, 16th and so on.

5. Fixed Byte Strategy: In this, the byte read follows a fixed
pattern. For Pass 1, 1st byte; Pass 2, last byte; Pass 3, the
middle byte of block size (BS); Pass 4, byte at 1/4th position
of block size (BS) and so on. Fig. 2 shows categorisation of
a single block after each pass of the algorithm. In pass 1,
the first byte of block 5 is read, which is having character
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Fig. 1. Flowchart of Algorithm 1.

Fig. 2. Processing for Single Block: Block no. 5 getting categorised in five passes.

value (‘@’) and the ASCII value (64). We categorise this
block under the category named ‘64’.

In pass 2, QuickDedup reads the last byte of the block which
is ‘e’ having ASCII value ‘101’, so the category formed is ‘64_101’
and this block gets listed. This process continues till the M th

pass as discussed in Section 5.3. The categories are named by
their appended ASCII value. These bytes of each block, for naming
categories in each pass are read in a single go in the first pass
when the block comes into memory. It helps in saving the access
cost which incurs in accessing the same block multiple times.

Fig. 3 illustrates the categorisation among multiple blocks of
the VM disk using the QuickDedup algorithm, named as Dedu-
plication Data Tree (DDT). After each pass, the category that has
only one block, is not processed further as the block of these
categories are unique. As shown, block 6, after pass 2, is not
categorised further. After the M th pass, categories having more
than one block, are processed. Hashes are only calculated for
blocks inside these categories.

4.3. QuickDedup working in case of VM update

VMs once stored after deduplication can later be updated
by the users. During updation, QuickDedup fetches the required
blocks from the storage and update them. At the time of saving
the updated block (s), QuickDedup reads all the required bytes
(depending upon the byte selection strategy). These bytes depict a
category name in which the block falls. If a category similar to the
block exists among the DDT leaf nodes, then QuickDedup places
the block that category. After that, QuickDedup calculates the
hash of the block and compares it with the hashes of the already
existing blocks in the category. If no such category exists, then
QuickDedup creates a new category with the name of the block
and placed the block in the DDT. In this case, no hash comparison
is required.

4.4. QuickDedup algorithm

The basis of our proposed technique is optimising the num-
ber of comparisons during deduplication, and minimising or
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eliminating the need for hash calculation as much as possible.
Instead of calculating hashes of all the VM blocks, blocks can
be categorised into various categories on the basis of our byte
selection and comparison strategy. Performing the same process
on multiple bytes will result into many distinct groups, among
which need for comparison does not arise. The idea behind the
proposed Algorithm 1 of QuickDedup lies in the fact that the byte
comparison is quite efficient as compared to comparison of two
hash values.

5. Performance evaluation

To evaluate QuickDedup algorithm, we conduct extensive ex-
periments to demonstrate the efficiency of QuickDedup com-
pared to the traditional approaches on various parameters. These
experiments also demonstrate the selection of optimal block size
and number of passes for QuickDedup technique to achieve the
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Fig. 3. Deduplication Data Tree (DDT): Categorisation of all blocks after each pass based on read byte and naming of category at each pass.

best results. The details of the experimental configuration used
for the evaluation purpose, are provided in Table 1. We used SHA-
1 to showcase our experimental results owing to the popular
and generic nature of SHA-1 algorithm. In addition, the overall
goal of our experimental evaluation was to compare a traditional
pure hash-based approach to the proposed QuickDedup approach
which has seldom use of a hash based comparisons. We believe
that a faster hash algorithm will certainly affect and reduce the
overall deduplication time, however, the total number of hash
comparisons will remain same in both the approaches. We down-
load the VM images 2,3,4,5 and 6 from [33]. These VMs are of
different operating systems and are of variable sizes. The number
of deduplicable blocks also varies among them. We created the

VM images 1,7,8,9 and 10 in virtual box as no VMs having all
deduplicable blocks or zero deduplicable blocks are available.

We performed a total of six different evaluation sets. We
design each evaluation set to show important metrics related to
various folds of proposed deduplication approach.

5.1. Evaluation set I: Byte and hash comparison

In the first evaluation set, we compare primitive Byte-to-Byte
comparison with comparison of two hash values. This evaluation
compares the time-taken by two approaches of block comparison.

Hash comparison: We read two blocks one by one from a
VM image and calculate their hashes. We compare these hashes
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Table 1
Experimental configuration.
Component Specification

Hardware
Processor: Intel i5
RAM: 4 GB
Harddisk: 500 GB, 2 TB

Operating system Ubuntu 14.04 (64-bit)

Dataset Data from [33] and additional dataset of created VM
images (Table 3)

Hashing algorithm SHA-1

Fig. 4. Time variation on varying the byte read vs direct hash calculation and
comparison. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

for similarity check. The time-taken by the complete process
is 1.306 ms which comprises following components given by
Eq. (4).

THash = 2TSeek/Access + 2TBlock_Read + 2THash_Cal + THash_Comp (4)

where
THash = Time-taken by Hash
TBlock_Read = Time to read a block
THash_Cal = Time required to calculate hash of a block
THash_Comp = Time-taken to compare two hashes
TSeek/Access = Time required to access the block

Byte-to-Byte comparison: In this, we read the first byte of each
block and then compare them for similarity. The time-taken by
this process is 0.254 ms. This time is much lesser than hash
comparison time, as in this approach only bytes are read and
compared, no hash is calculated. Various components of this
approach are represented by Eq. (5).

TByte−Byte = 2TByte_Seek + 2TByte_Read + TByte_Comp (5)

where
TByte−Byte = Time-taken by Approach Byte–Byte comparison
TByte_Read = Time to read a byte from a block
TByte_Comp = Time-taken to compare one byte with other
TByte_Seek = Time taken to access one byte

THash ≫ TByte−Byte (6)

To see whether the byte-byte comparison time is multiplica-
tive with respect to the number of bytes, we perform another
experiment. Fig. 4 indicates the number of bytes read from two
blocks, and the time-taken for their reading and comparison. The
red line in Fig. 4 shows that the amount of time taken for reading
and comparing bytes as we increase the number of bytes. The
green line shows the time taken by calculating hashes of two
blocks and their subsequent comparison. Time-taken by byte-
byte comparison is still smaller as compared to hash comparison
even if we compare 150 bytes.

Fig. 5. Comparison of different types of blocks present in various VM Images.

Table 2
Type of blocks in various VM disk images.
S.No. VM image size Completely filled Partially filled Empty

1 285.2 MB 18773 119100 250216
2 969.3 MB 1596017 284341 12737
3 1300 MB 2091607 335719 14145
4 1600 MB 2625016 426545 18530

5.2. Evaluation set II: Byte selection strategy

This experiment demonstrates the suitability of fixed byte
strategy for comparison explained in Section 4.2. The fixed byte
selection strategy aims to choose the comparison byte ‘‘far’’ or
distant from a previously read byte. This idea is useful when
maximum blocks of the VMs are completely-filled, as in the case
of partially or empty block, the last byte will always be zero or
garbage.

We conduct this experiment to determine the number of
blank, partially-filled and completely-filled blocks exist in various
VMs. Table 2 shows the type of blocks present in the different VM
disk images. The outcome shows that most of the blocks of VMs
are completely-filled. It shows that using fixed byte strategy is
beneficial, as in fixed byte we are reading the last byte, in the
second pass. If most of the blocks are half-filled or blank, then
reading the last byte would not categorise the block well. Fig. 5
shows the presence of different types of blocks in various VM
images.

5.3. Evaluation set III: Selection of number of passes (M)

One of the important factors on which the efficiency of
QuickDedup algorithm depends, is the number of passes for
categorisation. With increasing the number of passes, the number
of categories increases as the number of bytes read increases as
shown in Fig. 3. We evaluated QuickDedup on various number of
passes, to determine the threshold. As shown in Fig. 6, initially
as the number of passes increases, the time taken for the overall
deduplication process decreases. However, after a certain thresh-
old i.e. 7th pass, the time taken starts increasing. This shows that
after 7th pass, the time taken in reading bytes and categorisation
exceeds the time saved through categorisation. Hence, we set the
threshold as 7 passes for best efficiency.

The results show that corresponding to each VM in the set, as
the number of passes increases, the deduplication time decreases,
but after 7th pass the deduplication time starts increasing. Even
after 7th pass, the categorisation gets better and the number of
hash comparisons and calculations decrease. However, the time
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Table 3
Comparison of ‘‘QuickDedup’’ with ‘‘Pure hash-based’’ approach.
VM images Pure hash-based approach QuickDedup approach δd εe (%)

S.No. Name Size αa βb γ c αa βb γ c

1 Blank Image 200 MB 5 17 14 5 28 22 1.00 0
2 Tiny Linux (VM1) 122 MB 2 49 30 2 18 13 0.37 0
3 DeLi Linux (VM2) 285 MB 6 1030 850 3 45 38 0.09 50
4 TinyMe (VM3) 660 MB 16 5590 4905 5 76 63 0.05 68
5 CentOS (VM4) 1304 MB 30 7048 6019 1 101 89 0.12 96
6 FluxUbuntu (VM5) 2048 MB 47 9541 8788 35 447 398 0.14 25
7 Windows (VM6) 10 GB 2121 86413 68266 122 58128 23418 0.60 94
8 Windows (VM7) 50 GB 1011 301176 232727 812 195182 173294 0.48 19
9 Ubuntu (VM8) 105 GB 2210 490958 597333 1128 235881 281183 0.22 49
10 Ubuntu (VM9) 1000 GB 20121 3953667 3413321 12521 2011813 1825519 0.37 37

aα = No. of hashes calculated (104).
bβ = Time (s) (without using Hash Table).
cγ = Time (s) (with Hash Table).
dδ = Deduplication Ratio.
eε = Approximate percentage of hash calculation reduction using QuickDedup.

Fig. 6. Variation of time corresponding to variable passes of QuickDedup.

saved in this case is less than the extra time-taken in categori-
sation process as the number of passes increase. Based on the
results of this experiment, we set the pass threshold (M) at 7.
We perform all the other experiments considering 7 passes for
best performance. For a detailed and wide performance check, we
choose various block sizes between 512 bytes to 100 kB for each
pass and performed the evaluation.

5.4. Evaluation set IV: Block size selection

Another factor that affects the deduplication efficiency, both in
terms of deduplication time and deduplication ratio, is block size.
Since block size affects the deduplication ratio and deduplication
time in a different manner, a block size should be chosen in such
a way that it provides a good balance between both deduplication
ratio and deduplication time. We perform experiments on given
VM disk images by varying block size from 512 bytes to 100 kB,
keeping the number of passes constant. Based on these sizes,
we compare our approach in terms of deduplication ratio and
deduplication time. In the case of deduplication ratio, it falls as we
increase the block size. It is obvious that the probability of finding
similar blocks decreases while we go for higher block sizes. Fig. 7
shows that the decrease in deduplication ratio is higher for block
sizes 4 kB.

Fig. 8 shows the variation of deduplication time corresponding
to various block sizes. Initially, on increasing the block size up to

4 kB, the decrease in deduplication time is quite high. After 4 kB,
even after varying the block size to a large extent, there is a small
decrease in deduplication time, as compared to the deduplication
time of blocks size less than 4 kB. One important reason for this
relation is that the disk reads the VM disk image in blocks of 4
kB. Even when the selected block size is greater than 4 kB, the
data is fetched in blocks of 4 kB from disk. Therefore, there is no
significant decrease in deduplication time for block sizes more
than 4 kB. Based on both comparisons, we select the optimum
block size as 4 kB as it provides a good balance between both the
factors.

5.5. Evaluation set V: Comparison of ‘‘QuickDedup’’ with ‘‘pure hash-
based’’ approach

Most of the existing deduplication techniques [13,21,46] use
hash comparison [34] to check the similarity of two blocks. Two
blocks, similar in content, will have the same hash. For every
incoming block, its hash is compared with all the previously
stored hashes to decide whether its deduplicable or not. The
hashes are stored in a hash table so that searching becomes fast.
As there is no benchmark specified for the various criteria of a
deduplication algorithm against which we can test the efficiency
of our proposed approach. For comparison purpose, we design a
benchmark that follows pure hash-based approach for dedupli-
cation. Designed benchmark calculates hashes of all blocks of a
given VM.

For the experimental evaluation, few VMs are pre-made VM
disk appliances, consisting of different operating systems from [33]
and few are created in Virtualbox as detailed in Table 1, to
perform the efficiency test. QuickDedup aims at improving the
efficiency of the overall deduplication process with a focus on
the aspects such as deduplication time and the metadata over-
head without focusing on improving the deduplication ratio.
Considering that the deduplication ratio is fixed and depends
on the similarity of the data among the blocks, we evaluated
our approach on a set of 10 VMs. Our results are independent
of the number of VMs under consideration, as different kinds
of VMs would only vary the deduplication ratio. On the other
hand, size of a VM affects the results, therefore, we considered
VM having size up to 1000 GB for our performance evaluations.
Table 3 shows the comparison between the proposed approach
and the pure hash-based approach. The first two columns of
Table 3 shows the names and sizes of the VM image among
which we perform the evaluation. Next 3 columns of Table 3
consist of 3 parameters of pure hash-based approach which are
compared with the similar parameters of QuickDedup approach
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Fig. 7. Variation of deduplication ratio corresponding to variable block sizes.

Fig. 8. Variation of deduplication time corresponding to variable block sizes.

(last 3 columns of Table 3). Here, we evaluate the approaches
both using hash table (for efficient search) and without making
use of hash table. The comparison between the number of hashes
calculated and time taken by both the approaches is shown in
Fig. 9 and Fig. 10 for better comprehension of the evaluation.
Fig. 9 depicts that in comparison of pure hash-based approach
using hash-table, QuickDedup performs much better in terms of
time-taken for deduplication. The worst case scenario is only the
case of completely blank VM, when QuickDedup takes more time
than pure hash-based approach.

We evaluated QuickDedup against pure hash-based approach
on various parameters viz. number of hashes calculated, total
time-taken, and the amount of metadata generated. We stress
that the existing deduplication approaches do not show per-
formance evaluation based on these important parameters. To
support our claims, we compared our proposed approach with a
pure hash-based approach. In addition, almost all the existing ap-
proaches mentioned in Section 3 focus on calculating the hashes
for all the blocks. The results show that both hash calculations
and hash comparisons by QuickDedup are much less as compared
to pure hash-based approach. In the pure hash-based approach,
there is no byte comparison, however QuickDedup performs byte
comparison. In spite of byte comparison, the overall deduplication
time by the QuickDedup for determining the deduplicated blocks,

Fig. 9. Comparison of Hash calculations ‘‘QuickDedup’’ with ‘‘Pure hash-based’’
approach.

Fig. 10. Comparison of deduplication time ‘‘QuickDedup’’ with ‘‘Pure hash-
based’’ approach (with hash table).

is much less than the pure hash-based approach. Fig. 9 shows
the hash calculation comparison between both the approaches.
Fig. 10 depicts that in comparison of pure hash-based approach
using hash-table, QuickDedup performs much better in terms of
time-taken for deduplication. The worst case scenario is only the
case of completely blank VM, when QuickDedup takes more time
than pure hash-based approach.

5.6. Evaluation set VI: Stage-wise time-taken evaluation

We conduct this experiment to evaluate the time taken in both
the stages of QuickDedup. The experimental results shown in Ta-
ble 4, depict that the ‘‘preprocessing stage’’ consumes less amount
of time in comparison to the ‘‘deduplication stage’’. The only case
when ‘‘preprocessing stage’’ takes more time than ‘‘deduplication
stage’’, is when the deduplication ratio is very low and only
few number of hashes are calculated at the end of QuickDedup
approach.

6. Analysis of QuickDedup complexity

6.1. Time complexity analysis

In case of deduplication of a VM image having completely
unique blocks, QuickDedup performs its best. As QuickDedup
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Table 4
Time taken in the ‘‘Preprocessing’’ and ‘‘Deduplication’’ stage of QuickDedup.
VM images Preprocessing stage Deduplication stage Total

Name Size Time (s) Time (s) Time (s)

Blank Image 200 MB 7 15 22
Tiny Linux (VM1) 122 MB 4 9 13
DeLi Linux (VM2) 285 MB 12 26 38
TinyMe (VM3) 660 MB 25 38 63
CentOS (VM4) 1304 MB 53 36 89
FluxUbuntu (VM5) 2048 MB 87 311 398
Windows (VM6) 10 GB 608 22810 23418
Windows (VM7) 50 GB 3142 170152 173294
Ubuntu (VM8) 105 GB 5812 275371 281183
Ubuntu (VM9) 1000 GB 61132 1764387 1825519

Table 5
Size of metadata generated by ‘‘QuickDedup’’ and ‘‘Pure hash-based’’ approach.
VM images Pure hash-based QuickDedup

Name Size

Blank Image 200 MB 20 MB 22 MB
Tiny Linux (VM1) 122 MB 1.22 MB 0.98 MB
DeLi Linux (VM2) 285 MB 2.84 MB 1.32 MB
TinyMe (VM3) 660 MB 6.60 MB 2.90 MB
CentOS (VM4) 1304 MB 13.04 MB 3.90 MB
FluxUbuntu (VM5) 2048 MB 20.48 MB 14.60 MB
Windows (VM6) 10 GB 102.20 MB 69.80 MB
Windows (VM7) 50 GB 512 MB 342 MB
Ubuntu (VM8) 105 GB 1075 MB 718 MB
Ubuntu (VM9) 1000 GB 10240 MB 7568 MB

categorises blocks based on byte comparison, all blocks being
unique, fall into different categories i.e. each category will have
only one block. After the last pass, when each category is checked,
each category will have only one block, therefore, the need for
calculating and comparing any hash, will not arise. In the best
case, the number of hashes computed and compared will always
be zero. As the hash table is used as a structure for hash storage,
searching has O(1) time complexity. Even without using a hash
table, QuickDedup algorithm has O(1) searching time complexity
in this case, as each category has only single block. Therefore,
maintaining a separate category, is advantageous and useful.
Since in this case we do not calculate any hash, it saves the time
of hash calculations. The deduplication time is represented by
Eq. (7).

TTotal = TByte_Comp + THash_Cal + THash_Comp (7)

where
TByte_Comp = Time-taken in byte comparison
TTotal = Time required for deduplication
THash_Cal Time-taken in hash calculation
THash_Comp = Time-taken in hash comparison

Here for this case, THash_Comp is O(1) and since no hash is
being calculated, THash_Cal and THash_Comp will be zero. The total
deduplication time can be represented by Eq. (8).

TTotal = TByte_Comp (8)

To perform deduplication, pure hash-based approach calcu-
lates hash of all the unique blocks of a VM. It compares every new
incoming block based upon hash table searching, i.e. searching
time complexity will be O(1). Eq. (9) represents the deduplication
time of pure hash-based approach.

TTotal = THash_Cal + THash_Comp (9)

The hash comparison time is same in both the cases. Eq. (8)
consists of time-taken by byte comparison and Eq. (9) consists
of time-taken by hash calculations of all blocks. Experiment I
shows that the time-taken in reading and comparing a byte is
significantly less than that of hash calculation and comparison.

Approximately 150-byte comparison takes equal amount of time
as of two hash calculation and their comparison. The overall time-
taken by Eq. (9) is more than Eq. (8) i.e. QuickDedup performs
notably better in the best case.

For QuickDedup, the worst case is when a deduplicated VM
has all duplicate blocks. In this case, after each pass and byte com-
parisons, all blocks fall under only one category. Hence, QuickD-
edup calculates hash for all ‘n’ blocks. Hash table implementation
also requires ‘n’ number of comparisons for a new incoming block
as all blocks are same and lead to the same hash value, which is
worst case searching in hash tables. QuickDedup complexity in
the worst case is O(n). It is the only case, when the categorisation
idea of QuickDedup leads to an extra overhead.

Here, pure hash-based approach using a hash table gives same
complexity as O(n), since the hash of all the blocks will lead
to the same value in the hash table, forming a chain, which is
sequential. In the worst case, the number of hash calculations
and comparisons are same in both approaches. The only extra
overhead in QuickDedup is of byte comparisons for categorisa-
tion. Except this case, in all other cases, QuickDedup beats the
pure hash-based approach in terms of hash calculated and time
required for deduplication.

QuickDedup is an offline algorithm. The storage space reserved
by VMs before deduplication is reusable, once it free the storage
blocks which are deduplicable after QuickDedup. QuickDedup
also supports deduplication among multiple VMs. QuickDedup
performs byte-comparison between the blocks of the VM(s) for
checking similarity. For multiple VMs, QuickDedup considers the
blocks of all the VMs in one-go and performs comparisons same
as in case of single VM. QuickDedup can also work online effi-
ciently if the block size chosen for deduplication is same as that
of disk read block size i.e. 4 kB. When the disk-read block size
and deduplication block size differs, then after deduplication the
blocks are written to the disk according to the deduplication block
size. When read and write block size differs, the overhead of
either disintegrating a larger block in smaller block or integrating
smaller ones into larger on the fly for performing deduplication
increases. Therefore, when disk-read and deduplication block size
varies, the efficiency of online QuickDedup degrades.

6.2. Overhead analysis of metadata

As identified in Section 2, one of the criteria, which needs
optimisation for a deduplication technique is to minimise the
generated metadata. In the case of QuickDedup, the metadata is of
the categories made after each pass. Each category only consists
of the block numbers, based on byte comparison. After the last
pass, if the need for hash calculation arises, then QuickDedup also
stores hashes as metadata. Pure hash-based approach, stores the
hashes of all the blocks of the VM for performing deduplication.

Example: Consider a VM of size 1 TB, undergoing deduplication
process. The block size for deduplication is 4 kB. The VM will have
2.5 × 108 blocks of size 4 kB.
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Table 6
Timing comparison between ‘‘Pure hash-based’’, ‘‘QuickDedup’’ and ‘‘QuickDedup (Improved Data Access)’’
approaches.
VM images Pure hash-based QuickDedup QuickDedup (Improved)

Name Size Time (s) Time (s) Time (s)

Blank Image 200 MB 14 22 19
Tiny Linux (VM1) 122 MB 30 13 12
DeLi Linux (VM2) 285 MB 850 38 33
TinyMe (VM3) 660 MB 4905 63 56
CentOS (VM4) 1304 MB 6019 89 77
FluxUbuntu (VM5) 2048 MB 8788 398 372
Windows (VM6) 10 GB 68266 23418 23228
Windows (VM7) 50 GB 232727 173294 172244
Ubuntu (VM8) 105 GB 597333 281183 279279
Ubuntu (VM9) 1000 GB 3413321 1825519 1796206

QuickDedup: Since the VM contains the blocks in multiple of
108, so the last block number will be at most of 10 bytes. For
storing all block numbers, the maximum storage requirement is
10 × 2.5 × 108 which is 2.5 GB. In addition to it, the hashes, if
calculated are stored.

Pure hash-based Approach: This approach stores the hashes of
all the blocks. If the SHA-1 function is used for hash calculation,
which generates a 160 bit or 20-byte hash as an output for 1
block. A SHA-1 hash value is typically rendered as a hexadecimal
number, 40 digits long. For entire VM, the hashes generated will
be of 40 × 2.5 × 108 i.e. 10 GB.

In the best case, when all blocks are unique, QuickDedup will
have the metadata only of categorisation which is 2.5 GB, since no
hash is calculated, whereas pure hash-based approach will have
10 GB metadata. In worst case QuickDedup will have 2.5 GB +

10 GB i.e. 12.5 GB data. It is the only case when QuickDedup
will have more metadata than the hash-based approach. In rest
of the cases, it generates less metadata as compared to hash-
based traditional approach. Table 5 shows the size of metadata
generated by both approaches for variable size VM images.

6.3. Data access/movement improvement

To improve the data access overhead for reading bytes in
every pass, we present a modified version of QuickDedup, where
data access mechanism in ‘‘preprocessing stage’’ is improved. In
improved version, QuickDedup reads all the seven bytes together,
which are required for construction of DDT, in the first pass when
the block gets into memory as shown in Fig. 3. This helps us
in reducing the data access from disk and minimises the overall
time taken in deduplication stage. Table 6 shows the details of
the experiment conducted using this optimised ‘‘byte reading
strategy’’.

7. Conclusions and future work

Deduplication process is an important storage optimisation
technique for emerging virtualization based cloud storage. In this
work, we first collate a number of important performance re-
quirements for an efficient deduplication process. Based on these
essential factors, we propose a novel deduplication technique,
‘‘QuickDedup’’, which outperforms traditional hash-based dedu-
plication approaches on various metrics. Instead of calculating
hashes for each block in the disk, QuickDedup uses a novel byte-
byte comparison strategy, based on which the overall population
of comparable blocks are minimised and reduced to only a hand-
ful of partially similar blocks. The categorisation process involves
a meta-data structure known as Deduplication Data Tree (DDT)
which helps in minimising the overall hash calculations which
subsequently reduces the number of eligible comparable blocks.
At a later stage of the proposed approach, QuickDedup calculates

the hashes of only a smaller set of blocks which are shown to be
reduced up to 95%. We conduct extensive experimental evalua-
tions to test the efficacy of QuickDedup. Proposed approach beats
hash-based approach in terms of the number of hashes calculated,
number of hash comparisons made, and overall deduplication
time. Except in worst case, which is rare for VM disk images,
QuickDedup performs better in all specified criterion collated
as important requirements. Additionally, QuickDedup saves on
deduplication time up to 96% with a huge reduction on space
required for hash storage. Additionally, it outperforms all other
approaches, on various parameters to judge the efficiency of any
deduplication approach.

There are multiple open research issues, which are related to
the deduplication. For making this deduplication file system more
efficient, the retrieval process needs to be quicker in addition to
fixing the issues related to disk fragmentation. We also feel that
factors such as VM image type, operating system type, format,
and application type may also help in reducing the deduplication
time further, maintaining the deduplication ratio.
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