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Abstract—Quantum networks promise unprecedented capabil-
ities for secure communication and distributed quantum com-
puting through entanglement distribution. However, the fragile
nature of quantum entanglement and its exponential decay
present significant challenges for efficient resource allocation.
This paper introduces SPEP (Strategic Predictive Entanglement
Pre-positioning), a novel framework that leverages machine
learning techniques to anticipate communication demands and
proactively establish entangled links. We implement and evaluate
multiple prediction models including LSTM neural networks and
ARIMA time series analysis, comparing them against traditional
reactive and greedy routing approaches. Through comprehensive
simulations across four distinct network topologies with over
multiple simulation runs, our SPEP framework demonstrates
significant improvement in success rates, 15% reduction in
average latency, and 25% better resource utilization compared
to baseline methods. The results provide strong evidence that
machine learning-driven prediction can significantly enhance
quantum network performance, particularly in networks with
temporal demand patterns.

Index Terms—quantum networks, entanglement distribution,
SPEP framework, resource allocation, LSTM, network optimiza-
tion

I. INTRODUCTION

The emergence of quantum networking represents a
paradigm shift in communication technology, enabling fun-
damentally secure quantum key distribution [1], distributed
quantum computing [2], and quantum sensing applications
[3]. At the heart of these applications lies entanglement
distribution—the process of establishing quantum correlations
between distant nodes through intermediate quantum repeaters
and links.

Unlike classical network resources, quantum entanglement
exhibits unique characteristics that pose significant challenges
for network management. Entanglement is inherently fragile,
suffering from decoherence and fidelity degradation over time
[4]. The no-cloning theorem prevents duplication of quantum
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states, making resource sharing fundamentally different from
classical networks [5]. Additionally, entanglement swapping
operations are probabilistic and can fail, requiring sophisti-
cated retry mechanisms [6].

Current quantum network protocols primarily employ reac-
tive strategies, establishing entangled paths only after com-
munication requests arrive [7], [8]. This approach suffers
from several limitations: (1) high latency due to on-demand
entanglement generation, (2) suboptimal resource utilization
due to lack of foresight, and (3) increased failure rates during
peak demand periods. While some recent works have explored
proactive strategies [9], [10], they typically rely on simple
heuristics rather than sophisticated demand prediction.

This paper addresses these limitations by proposing SPEP
(Strategic Predictive Entanglement Pre-positioning), a com-
prehensive framework that anticipates future communication
demands using machine learning techniques. Our key contri-
butions are:

o The SPEP framework that combines temporal demand

analysis with intelligent resource pre-positioning

o Implementation and evaluation of multiple prediction

models including LSTM neural networks, ARIMA time
series analysis, and frequency-based approaches

o Comprehensive experimental evaluation across diverse

network topologies demonstrating significant perfor-
mance improvements

« Statistical analysis with rigorous hypothesis testing vali-

dating the effectiveness of the SPEP approach

II. RELATED WORK
A. Quantum Network Routing

Early quantum network routing protocols focused on es-
tablishing entangled paths through greedy approaches. The
SLMP protocol [11] introduced distributed entanglement rout-
ing but suffered from scalability issues. More recent works



have explored shortest-path routing [12] and fidelity-aware
routing [9] to optimize different performance metrics.

Chakraborty et al. [13] proposed a distributed quantum net-
work routing protocol that considers both distance and fidelity
metrics. However, their approach remains reactive and does
not leverage temporal demand patterns. Similarly, the work
by Dahlberg et al. [7] focused on link-level protocols without
addressing network-wide resource allocation strategies.

Recent work by Sutcliffe and Beghelli [14] introduced
fidelity-aware multipath routing for multipartite state distribu-
tion, focusing on routing algorithm optimization rather than
demand prediction. While their approach improves routing
efficiency through multipath strategies, it remains reactive
and does not incorporate predictive elements. This work is
complementary to our SPEP framework, as their routing op-
timizations could potentially be integrated with our predictive
pre-positioning approach.

B. Resource Allocation in Quantum Networks

Resource allocation in quantum networks has received in-
creasing attention. Kozlowski et al. [8] investigated scheduling
strategies for quantum repeater networks, focusing on memory
allocation and timing optimization. Chen et al. [10] proposed
optimization frameworks for quantum network resource allo-
cation but considered only static demand patterns.

Recent work by Shi et al. [9] introduced concurrent en-
tanglement routing to improve network throughput. However,
their approach lacks predictive capabilities and relies on
instantaneous network state information.

C. Predictive Network Management

In classical networks, predictive approaches have shown
significant benefits. Machine learning techniques for traffic
prediction [15], [16] have enabled proactive resource al-
location and improved quality of service. However, direct
application of classical techniques to quantum networks is
challenging due to the unique properties of quantum resources.

Recent quantum networking research has begun exploring
prediction-based approaches. Jiang et al. [17] investigated
machine learning for quantum error correction in network
settings, while Kumar et al. [18] explored reinforcement
learning for quantum network optimization. However, com-
prehensive predictive entanglement pre-positioning remains
largely unexplored.

III. SYSTEM MODEL
A. Network Model

We model the quantum network as an undirected graph
G = (V,E) where V represents quantum nodes and F
represents quantum links capable of distributing entanglement.
Each node v € V is equipped with quantum memory capable
of storing entangled qubits for limited durations.

Each edge e € E is characterized by:

« Entanglement generation probability p. per time slot

« Initial entanglement fidelity Fj

« Transmission distance affecting decoherence rates

B. Entanglement Model

We adopt the Werner state model for entanglement fidelity
evolution. The fidelity of an entangled pair created at time %,
evolves according to:

F(t)=Fy-p'~t 1)

where p < 1 is the decay factor and ¢ is the current time.
Entanglement becomes unusable when F'(t) falls below a
threshold Fi,,;,-

For multi-hop paths, the end-to-end fidelity is computed
through entanglement swapping operations:
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where F; is the fidelity of the i-th link and the factor 2£+L
represents the Werner state fidelity conversion.

C. Demand Model

Communication requests arrive according to temporal pat-
terns reflecting realistic usage scenarios. Each request r is
characterized by its source and destination nodes (s, d), the
arrival time ¢,, a required fidelity threshold F,.,, a deadline
tq, and an associated priority weight w. We model both pe-
riodic patterns (e.g., business hours) and stochastic variations
to capture realistic demand characteristics.

IV. SPEP METHODOLOGY
A. SPEP Framework Overview

Our SPEP (Strategic Predictive Entanglement Pre-
positioning) framework consists of three main components:

1) Demand Predictor: Analyzes historical communication
patterns to forecast future requests

2) Pre-positioning Engine: Strategically establishes en-
tangled paths based on predictions

3) Resource Manager: Balances pre-positioned and on-
demand entanglement allocation

Figure 1 illustrates the complete SPEP system architec-
ture, showing the interaction between prediction models, pre-
positioning logic, and network resource management. The
overall SPEP system workflow is detailed in Algorithm 1.

B. Demand Prediction Models

1) Basic Frequency Predictor: Our baseline predictor ana-
lyzes historical request frequencies for each node pair during
specific time periods. For a node pair (s,d) and time slot ¢,
the prediction probability is:

N(s,d,t)
Ntotal (t)
where N (s,d,t) is the number of requests for pair (s, d)

during time slot ¢ in the history window, and Nyiq(t) is the
total number of requests.

P(s,d,t) = 3)
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Fig. 1. SPEP Framework Architecture showing the interaction between
demand prediction, pre-positioning engine, and resource management com-
ponents. Historical request data feeds the prediction models (LSTM, ARIMA,
Basic Frequency), which inform strategic pre-positioning decisions executed
by the resource manager on the quantum network. Real-time network state
information flows between components to enable adaptive resource allocation.

Algorithm 1 SPEP Framework: Strategic Predictive Entan-
glement Pre-positioning

1: Initialize: Network G, predictor P, max pre-positions K
2: pre_positioned <

3: request_queue < ()

4: while simulation running do

5. current_time < getCurrentTime()

6: cleanupExpired Entanglement()

7. cleanupExpired Prepositions()

8:  generateEntanglement()

9:  for all request € getArrivingRequests() do
10: request_queue.add(request)

11 P.addRequest(request)

12 end for

13:  if |pre_positioned| < K then

14: predictions < P.predict Demand(current_time)
15: spepPrePosition Entanglement(predictions)
16:  end if

17:  processRequests(request_queue)
18: current_time < current_time + 1
19: end while

2) LSTM Neural Network Predictor: We employ Long
Short-Term Memory (LSTM) networks to capture complex
temporal dependencies in demand patterns. The LSTM pro-
cesses sequences of historical demand vectors to predict future
demand probabilities.

The network architecture consists of:

« Input layer: Sequence of demand vectors of length L
e Two LSTM layers with 50 hidden units each

o Dropout layers (0.2) for regularization

« Dense output layer with sigmoid activation

Training uses the Adam optimizer with mean squared error
loss.

3) ARIMA Time Series Predictor: For comparison, we
implement ARIMA(p,d,q) models for time series prediction
of demand patterns. The model parameters are automatically
selected using the Akaike Information Criterion (AIC).

C. SPEP Pre-positioning Strategy

Based on demand predictions, the SPEP pre-positioning
engine selects paths for proactive entanglement establishment.
Algorithm 2 details the SPEP pre-positioning strategy.

Algorithm 2 SPEP Pre-positioning Strategy

Require: Predictions P, Network GG, Current pre-positions C
Ensure: Updated pre-positioned entanglement

1: candidates < ()

2: for all (src,dst, prob, time) € P do

3. if prob > threshold AND
not Already Prepositioned(src, dst) then
4: path < findShortestPath(G, src, dst)

: if path #+ null AND
computePathFidelity(path) > min_fidelity
then

6 score < prob x computePathFidelity(path)
7 candidates.add((src, dst, path, score))

8: end if

9 end if

10: end for

11: Sort candidates by score (descending)
12: placed < 0
13: for all (src,dst, path, score) € candidates do
14:  if placed < max_new_prepositions
AND |C| < K then

15: if consumePathFor Preposition(path) then

16: C.add(PrePositioned Entanglement(path,
current_time))

17: placed < placed + 1

18: end if

19:  end if

20: end for

D. Evaluation Metrics

We evaluate SPEP system performance using four key
metrics:



o Success Rate: Fraction of requests successfully served
within deadlines

o Average Latency: Mean time from request arrival to
successful completion

o Average Fidelity: Mean end-to-end fidelity of estab-
lished connections

o Resource Utilization: Fraction of generated entangle-
ment actually used for communication

V. EXPERIMENTAL SETUP

A. Simulation Parameters

Our SPEP evaluation employs discrete-time simulations
with the following parameters:

o Network size: 16 nodes

o Simulation duration: 2000 time slots

o Number of simulation runs: 20 per configuration
« Entanglement generation probability: 0.12

o Initial fidelity: 0.92

o Fidelity decay rate: 0.96 per time slot

e Maximum entanglement lifetime: 15 time slots

o Prediction window: 15 time slots

e Maximum pre-positioned paths: 8

B. Network Topologies

We evaluate SPEP performance across four distinct network
topologies to ensure generalizability:

1) Erdds-Rényi: Random graphs with edge probability
0.25

2) Regular: Regular graphs with degree 3

3) Small-world: Watts-Strogatz graphs with rewiring prob-
ability 0.3

4) Scale-free: Barabasi-Albert graphs with preferential at-
tachment

Figure 2 shows representative examples of each topology
type used in our SPEP evaluation.

C. Workload Generation

We generate realistic workloads with temporal patterns
by modeling business hours (9 AM-5 PM) as periods of
higher demand. Within these workloads, 50% of the total
traffic is concentrated on high-demand node pairs, while the
remaining traffic is distributed among medium-demand pairs.
The requests also incorporate varying fidelity requirements in
the range of 0.6 to 0.9 and are subject to deadlines spanning
from 3 to 12 time slots.

D. Baseline Algorithms

We compare our SPEP approaches against three baseline
algorithms:

1) Reactive: Establishes paths only after requests arrive

2) Shortest Path: Always selects shortest available paths

3) Highest Fidelity: Prioritizes paths with maximum end-
to-end fidelity

VI. RESULTS AND ANALYSIS

Key findings include:

o SPEP with LSTM predictor achieves the highest success
rates (up to 41% in Erd6s-Rényi networks)

« All SPEP-based predictive methods show reduced latency
compared to reactive approaches

o Resource utilization improves significantly with SPEP
pre-positioning

« Performance gains are consistent across different network
topologies

A. Success Rate Analysis

Figure 3 shows success rate comparisons across all topolo-
gies with 95% confidence intervals. The SPEP-based predic-
tive approaches demonstrate statistically significant improve-
ments:

o Erd6s-Rényi networks: 39-41% success rate vs. 29% for
shortest path

o Regular networks: 13-14% vs. 8% for shortest path

o Small-world networks: 33-35% vs. 26% for shortest path

o Scale-free networks: 20-21% vs. 14% for shortest path

Statistical analysis using Mann-Whitney U tests confirms
significant differences (p < 0.05) between SPEP-based pre-
dictive and non-predictive approaches in all topologies.

B. Latency and Fidelity Analysis

Figure 4 shows latency performance across topologies,
while Figure 5 presents fidelity results. SPEP approaches
achieve consistent improvements in both metrics.

C. Distribution Analysis

Figures 6 through 9 present the latency and fidelity dis-
tributions for each topology. The SPEP approaches demon-
strate reduced latency variance as a result of pre-positioned
resources, while maintaining consistent fidelity performance
across diverse demand patterns. Moreover, they exhibit im-
proved tail behavior, with fewer instances of extremely high-
latency requests.

D. Topology-Specific Analysis

SPEP performance varies significantly across network
topologies:

Erdés-Rényi networks benefit most from SPEP prediction
due to diverse path options and random connectivity patterns
that create bottlenecks.

Regular networks show modest SPEP improvements as
uniform connectivity limits the impact of intelligent pre-
positioning.

Small-world networks demonstrate good SPEP predictive
performance due to clustering properties that align with de-
mand locality.

Scale-free networks show moderate SPEP improvements,
with hub nodes becoming critical resources for pre-positioning
strategies.
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Fig. 2. Network topology examples used in SPEP evaluation. (a) Erd6s-Rényi random graph with 16 nodes and edge probability 0.25. (b) Regular graph with
degree 3. (c) Small-world network with rewiring probability 0.3. (d) Scale-free network generated using preferential attachment.

‘Success Rate Across Topologies

om0
gm
on
B '
om

et som et
[——

Fig. 3. Success rate comparison across all network topologies. SPEP-based
algorithms consistently outperform baseline methods, with particularly strong
performance in Erdds-Rényi and small-world networks.
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Fig. 4. Average latency comparison across network topologies. SPEP predic-
tive pre-positioning reduces latency by enabling immediate path availability
for anticipated requests.
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Fig. 5. Average fidelity comparison across network topologies. SPEP pre-
positioned entanglement maintains high fidelity through optimal timing and
path selection.
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Fig. 6. Latency and fidelity distributions for Erd6s-Rényi topology. SPEP
algorithms show improved distribution characteristics with reduced variance.
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Fig. 7. Latency and fidelity distributions for regular topology showing SPEP
performance benefits.
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Fig. 9. Latency and fidelity distributions for small-world topology with SPEP
improvements.



E. Prediction Model Comparison

Among the SPEP prediction models, the LSTM-based ap-
proach consistently outperforms others, especially in complex
topologies, owing to its ability to capture intricate temporal
dependencies. The ARIMA model demonstrates competitive
performance in networks with strong temporal patterns, while
even the basic frequency predictor delivers substantial im-
provements over non-predictive baselines despite its sim-
plicity. Overall, the LSTM model proves to be particularly
effective for SPEP quantum network demand prediction.

FE. Resource Utilization Analysis

SPEP approaches achieve significantly better resource
utilization, providing a 25-30% improvement across most
topologies. This gain stems from reduced waste due to expired
unused entanglement and more efficient allocation of pre-
positioned resources enabled by the predictive intelligence
of SPEP. This improved efficiency is crucial for quantum
networks where entanglement generation is costly and time-
consuming.

VII. DISCUSSION
A. Implications for Quantum Network Design

Our SPEP results have several important implications. The
15-time-slot prediction window proves effective for SPEP,
balancing prediction accuracy with resource commitment du-
ration. Limiting pre-positioned paths to eight prevents re-
source over-commitment while still providing sufficient proac-
tive coverage. Moreover, the network topology significantly
influences the effectiveness of SPEP strategies, highlighting
the need for topology-aware optimization.

B. Practical Considerations

Real quantum network deployments using SPEP must con-
sider several factors. First, prediction accuracy is critical, as
SPEP’s machine learning models require sufficient historical
data for effective training. Second, computational overhead
must be minimized, since SPEP prediction and optimization
algorithms need to operate within tight timing constraints.
Finally, network dynamics such as node failures and link
quality variations demand adaptive SPEP prediction models
to maintain robustness and reliability.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a study of predictive entanglement pre-
positioning in quantum networks using the SPEP framework.
Simulations across diverse topologies show up to 45% higher
success rates, 15% lower latency, and 25% better resource
utilization. These results highlight machine learning—driven
predictive resource management as a promising approach for
practical quantum network optimization, supported by the
open-source SPEP simulator for reproducible research.

Future SPEP research directions include integrating with
realistic quantum hardware models to account for physical
constraints and imperfections, investigating federated learning
approaches for distributed SPEP prediction across multiple

network nodes, extending the framework to handle multi-
application quantum networks with diverse requirements, and
developing real-time adaptation mechanisms that can dy-
namically adjust to changing network conditions and traffic
patterns.
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