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This paper addresses the critical demand for advanced rapid response mechanisms in managing a wide array
of environmental hazards, including urban pipeline leaks, industrial gas discharges, methane emissions from
landfills, chlorine leaks from water treatment plants, and residential carbon monoxide releases. Conventional
sensing and alert systems often struggle with the timely analysis of high-dimensional sensor data and suffer
delays as data volume increases. We propose a novel framework, gloV, which integrates quantum computing
with the Internet of Vehicles (IoVs) to leverage the computational efficiency, parallelism, and entanglement
properties inherent in quantum mechanics. The qloV framework utilizes vehicular-mounted environmental
sensors for highly accurate air quality assessments, where quantum principles enhance both sensitivity and
precision. A core innovation is the Quantum Mesh Network Fabric (QMF), which dynamically adapts the
quantum network topology to vehicular movement, maintaining quantum state integrity among environmental
and vehicular disruptions, thereby ensuring robust data transmission. Furthermore, we implement a variational
quantum classifier (VQC) with advanced entanglement techniques, significantly reducing latency in hazard
alerts and facilitating rapid communication with emergency response teams and the public. Our experimental
evaluations using the IBM OpenQASM 3 platform with a 127-qubit system achieved over 90% precision,
recall, and Fl-score in pair plot analysis, alongside an 83% increase in toxic gas detection speed compared
to conventional methods. Theoretical analysis further substantiates the efficiency of quantum rotation,
teleportation protocols, and the fidelity of quantum entanglement, highlighting the potential of quantum
computing in environmental hazard management.

1. Introduction remain more scalable on conventional hardware, they encounter ex-
ponential computational complexity with extremely high-dimensional

Gas leaks in urban areas present significant hazards, with the ab-
sence of rapid response systems often exacerbating their impact. From
2010 to 2021, the United States experienced over 2600 gas pipeline
leaks [1], while China’s coal mining industry reported 3695 fatalities
between 2001 and 2018 [2]. Additionally, 4901 oil and gas spills were
recorded in the U.S. from 2010 to 2022, with Texas alone accounting
for nearly 40% [3]. The Bhopal gas leak disaster in India, which

data, such as multi-sensor inputs in industrial monitoring. In contrast,
quantum machine learning (QML) leverages quantum parallelism, en-
abling more efficient handling of exponentially complex feature spaces.
Notably, QML models, such as Variational Quantum Classifiers (VQC),
achieve comparable accuracies with up to 50% fewer training samples
and parameters, outperforming classical Al in specific high-dimensional

resulted in thousands of deaths, emphasizes the need for efficient alert
systems [4]. Recent regulatory efforts in the U.S. to address methane
leaks further highlight the ongoing challenges [5]. Early warning sys-
tems play a crucial role in mitigating the impact of environmental
disasters by facilitating rapid evacuations, timely medical aid, and swift
emergency responses, especially during gas leaks [6]. While wireless
sensor networks [7] and classical machine learning algorithms [8]
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problems [9]. Quantum systems, despite their susceptibility to environ-
mental noise and associated error rates, can exploit the sensitivity to
detect subtle environmental changes. This characteristic allows quan-
tum algorithms to identify minute variations in environmental data,
proving especially effective for detecting hazardous gas leaks beyond
the capabilities of classical methods.
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Fig. 1. qloV: A quantum framework for toxic gas detection.

Our research addresses three primary challenges: converting classi-
cal sensor data into quantum formats, employing quantum classifiers
for hazard detection, and leveraging quantum entanglement for effi-
cient alert dissemination within vehicular networks. Given the ubiquity
of vehicles in urban areas, they serve as mobile environmental moni-
toring units equipped with sensors (e.g., MQ2, MQ3, MQ5, MQ6, MQ?7,
MQ8, and MQ135), capable of collecting real-time data critical for
hazard detection. These ‘MQ’ sensors are semiconductor gas detectors,
each calibrated for specific gases — for instance, MQ2 responds to
flammable gases and smoke, MQ?7 is sensitive to carbon monoxide, and
MOQ135 targets carbon dioxide and other air pollutants. By deploying
a spectrum of such sensors, the system can detect a wide range of
toxic gas leaks. However, the volume and complexity of this data
pose challenges for traditional processing methods [10]. The proposed
framework, shown in Fig. 1, integrates a quantum classifier, quantum
mesh fabric (QMF), and quantum server for sustainable environmental
safety. In Step 1, vehicle-mounted sensors detect toxic gasses from
sources such as industrial sites or pipelines, capturing high-resolution
data. Step 2 converts this data into a quantum-compatible format for
processing by quantum algorithms. Step 3 focuses on the QMF and
Quantum Server, where the QMF manages dynamic quantum state en-
tanglement across the network, ensuring reliable communication, while
the Quantum Server processes the data using quantum algorithms.
Step 4 generates actionable intelligence utilizing the QMF to distribute
hazard alerts across the network leveraging quantum entanglement
faster information transmission.

1.1. Motivation

The recurrence of disastrous environmental emergencies and toxic
gas outbreaks globally underscores the urgency of this research. Al-
based control systems, while prevalent in industrial environments,
frequently suffer from high false alarm rates, exceeding 30% due to
sensor noise and machinery-induced interference. Reduced sensor sen-
sitivity and diminished human oversight during nighttime hinder the
effective detection, prediction, and warning of toxic hazards [11]. No-
table examples are the Bhopal gas tragedy in India [12], Philadelphia
refinery explosion, 2019 [13] and frequent toxic gas incidents in China
highlight the increased risks during periods of reduced human activity,
emphasizing the need for continuous, 24-h monitoring systems.

Why chose vehicles? Vehicles, due to their ubiquity and mobil-
ity, offer extensive coverage and continuous presence in urban areas,

making them ideal for large-scale, high-resolution environmental mon-
itoring. Equipped with sensors, vehicles enable constant monitoring
across diverse geographic regions, surpassing the limited spatial range
of fixed sensors confined to specific locations. This mobility allows vehi-
cles to detect gas leaks beyond the reach of stationary systems, such as
along transport routes or near temporary industrial sites. Additionally,
their movement enables the detection of trace gas concentrations that
may be dispersed over distances, detections that stationary systems
often miss due to fixed positioning and signal attenuation. For instance,
a mobile vehicle can identify a diffuse methane leak across a wide area,
while fixed sensors may only register high concentrations within their
immediate vicinity. Thus, vehicles significantly enhance spatial and
temporal resolution, offering a more adaptive and effective solution.

The role of technology? Quantum computing offers transformative
data processing capabilities using quantum bits (qubits), which can
exist in multiple states simultaneously (superposition) and be entan-
gled, creating complex probabilistic relationships. This enables parallel
processing, allowing quantum systems to analyze large datasets and
execute algorithms far more rapidly than traditional computing. In
vehicular networks, this quantum advantage facilitates efficient en-
coding, processing, and interpretation of environmental data collected
by sensors, enabling rapid in-situ analysis and reducing the latency
of hazard detection compared to centralized systems. Furthermore,
vehicular systems can dynamically adapt their QMF topology based
on movement, maintaining stable entanglement and data transmission
even as vehicles change location. This adaptability overcomes the lim-
itations of fixed networks, which often suffer from signal degradation
and data loss due to shifting conditions.

1.2. Contributions

qloV framework introduces an entangled quantum feature mapping
in the context of vehicular networks utilizing multipartite entanglement
to encode sensor data. qloV incorporates quantum feature maps for
data representation and utilizes entanglement directly tied to haz-
ard information encoding and teleportation-based alert dissemination,
which has not been explored before. Furthermore, our integration of
the Quantum Fourier Transform (QFT) for embedding environmental
data and a fidelity-driven VQC optimization mechanism is a novel
combination. The key contributions of this paper are as follows:
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1. Quantum Encoding Scheme: We propose a quantum encoding
scheme that aligns multi-dimensional vehicular sensor data with
quantum states, optimizing rotation angles (R,) based on spe-
cific gas sensor readings to enhance toxic gas detection accuracy.

2. Multipartite Entanglement Model: We introduce a multipartite
entanglement model for vehicular networks using Quantum En-
tangled Feature Maps. This involves systematic qubit entangle-
ment across vehicles through controlled-Z (CZ) and controlled-X
(CX) gates, establishing correlations that reflect the intercon-
nected data patterns from vehicular sensors.

3. Scalable Entanglement Structure: The framework structures en-
tanglement into scalable layers, accommodating dynamic ve-
hicular networks by adjusting entanglement patterns to match
varying network size and complexity.

4. Quantum Circuit Optimization: The framework implements
adaptive quantum circuit optimization, guided by error syn-
dromes and decoherence patterns detected through stabilizer
codes. This approach fine-tunes quantum gate parameters, en-
suring robust error correction and maintaining high fidelity in
quantum state transmission across vehicular networks.

These contributions, particularly the entangled feature mapping and
layered quantum entanglement strategy, represent a novel paradigm
not present in previous Internet of Vehicles or environmental sens-
ing studies. Our framework fuses advanced quantum communication
(teleportation via pre-shared entanglement) with quantum machine
learning for IoV-based environmental hazard detection. The structure
of the rest of the article is as follows: Section 2 reviews the existing
literature on quantum computing in computational contexts. Section 3
outlines the problem definition, while Section 4 details the system
overview and architectural design. Section 5 introduces the proposed
qloV framework. Section 6 presents the simulation results and testing,
and finally, Section 7 concludes the paper.

2. Related work

This section focuses on related works that advance our understand-
ing of quantum machine learning, its applications in transportation, and
emerging quantum frameworks and protocols. Additionally, it examines
the current state of quantum technology, including its challenges and
innovations, to establish a foundational context for our research.

2.1. Quantum foundations and data networks

The convergence of machine learning algorithms and quantum com-
puting offers a transformative approach for processing high-dimensional,
complex datasets. A research in [14] demonstrated the potential of
qubits in enhancing computational efficiency, focusing on hybrid
quantum-classical systems that harness quantum advantages. Despite
improved computational capabilities, scalability and inherent noise
remain significant limitations. Further advancements in [15], demon-
strated that modern quantum hardware now supports configurations
with thousands of qubits, significantly enhancing computational speed
and efficiency. However, ongoing challenges, including system instabil-
ity, resource constraints, communication barriers, and security vulner-
abilities, remain critical obstacles. Quantum machine learning’s com-
plexities are also examined in [16,17], highlighting the field’s evolution
amid hardware and algorithmic challenges. A hybrid quantum—classical
framework proposed in [18] addressed network resource optimiza-
tion using quantum annealing for integer programming problems, but
struggled with continuous optimization challenges. Concurrently, [19]
noted a shift from hardware to software innovations, accelerating
advancements in quantum image processing, machine learning, and
sensory technologies.

To tackle quantum networking complexities, [20] analyzed en-
tanglement swapping and optimization within non-associative quan-
tum repeater chains, while [21] introduced a distributed computing
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model for quantum data networks (QDNs) to mitigate scalability is-
sues by pooling computational power from multiple quantum-enabled
devices. Nevertheless, QDNs face challenges such as the no-cloning
theorem, quantum channel loss, stochastic entanglement link establish-
ment, rapid decoherence, and single-photon detection inefficiencies.
Research into QDN transport layer protocols in [22] emphasized ef-
ficient qubit exchange across quantum computers, highlighting the
necessity of dynamic quantum memory management due to its scarcity.
The QuantumFlow framework introduced in [23] proposed a method
for representing data as unitary matrices, enabling input encoding with
fewer qubits and reducing computational costs; however, practical scal-
ability remains limited by current hardware constraints, such as qubit
availability and error rates. Further, [24] investigated the execution of
quantum algorithms beyond current qubit capacities by utilizing the
quantum Internet to distribute tasks across multiple quantum process-
ing units (QPUs), contingent on developing a robust quantum Internet
infrastructure.

2.2. Emerging quantum frameworks and protocols

Focusing on sector-specific applications, [25] examined quantum
computing’s potential in transportation modeling but faced difficulties
in adapting classical algorithms to quantum paradigms due to the
unitary and reversible nature of quantum operations. Similarly, [26]
proposed an edge server placement strategy utilizing binary and quan-
tum encoding, but encountered computational intensity challenges.
In [27], quantum approximate optimization algorithms were applied to
vehicle routing, revealing challenges linked to the early stage of quan-
tum devices. Innovative frameworks by [28,29] integrated federated
learning with quantum teleportation and combined non-fungible tokens
(NFTs) with quantum algorithms for wireless communication and IoVs,
respectively. However, both faced difficulties in managing the complex-
ity of quantum neural networks and IoVs scalability. [30] introduced
an asynchronous entanglement distribution protocol for quantum net-
works, though it required intricate coordination among network nodes,
adding complexity compared to synchronous alternatives. Additional
researchers, in [10,31], discussed hybrid quantum-classical methods
for sensor placement and vehicle routing, underscoring technological
limitations. In other applications, [32] applied quantum machine learn-
ing to asteroid classification, encountering challenges with quantum
processors and data management. Concurrently, [33,34] addressed
database query processing and [oVs resource management, focusing on
scalability, reliability, and the constraints of current quantum comput-
ing capabilities. [35] investigated reconfigurable intelligent surfaces
(RISs) within a quantum computing-based algorithm for RIS selec-
tion to optimize qubit transmission in vehicular networks. While this
method improved communication reliability, it required advanced con-
trol algorithms to manage RISs in dynamic environments. For ease
of understanding Table 1 provide a summary of quantum computing
applications in networks.

Our approach differentiates itself from existing research by employ-
ing entangled quantum feature mapping for intricate data encoding, a
technique not previously explored, which allows for a more accurate
representation of sensor data in quantum states. Additionally, the use
of a parameterized ansatz circuit for quantum state transformation,
combined with a fidelity-based cost function for model optimization,
offers a more precise and adaptable solution than traditional methods.
The implementation of the quantum Fourier transform and Toffoli
gates for state manipulation also introduces an innovative approach to
quantum environmental monitoring.

3. Problem statement
This paper addresses three interrelated aspects: (1) transforming

sensor data into a quantum-compatible format, (2) using a VQC for
accurate prediction of gas concentrations, and (3) leveraging quantum
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Table 1

A summary of quantum computing applications in networks.
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Ref. Key feature Advantage Disadvantage Challenge addressed

[20] Entanglement swapping, Enhanced entanglement Non-associative nature Optimization in quantum repeater chains
repeater chains distribution efficiency of quantum repeater
optimization chains

[25] Quantum transportation Accuracy in transportation Quantum adaptation of Quantum transportation
modeling planning methods

[26] Edge server placements in Scalability of edge server Computational intensity Edge server placements and resource management
IoVs with quantum placement in IoVs
encoding

[27] Quantum approximate Faster routing path Quantum hardware Quantum Vehicular routing
algorithm identification ecosystem

[28] Federated quantum neural Resource optimization and Neural network Quantum Wireless communication
network privacy complexity

[29] NFTs with quantum RL Secure data sharing in IoVs Scalability issues in Resource allocation and security

IoVs

[30] Asynchronous Robust quantum Complexity compared Coordination in quantum networks
entanglement distribution entanglement distribution to synchronous
protocol alternatives

[10] Quantum-classical hybrid Accurate sensor placement Technological Vehicular sensor placement
method complexity

[33] QML for database query Reduced query processing Scalability and Optimizing join order in queries
processing time reliability issues

[34] quantum-inspired RL in Effective resource Computing limitations Resource management in IoVs

IoVs management

entanglement for near real-time transmission of hazard alerts. The
transformation of classical sensor data S, representing gas concentra-
tions detected by vehicles, into a quantum state |1) in a Hilbert space
is achieved through a rotational transformation R,(S), applied to an
initial state |4g):

[4) = Ry(S)lA0) (€Y

This quantum state enables further processing through the VQC, which
predicts hazard levels based on |4). The VQC utilizes a quantum circuit
U(®), where ® represents adjustable parameters, to map the sensor
data S to the probability of hazard levels:

P(hazard level|S) = Tr [IT - U(®)| A AUT(®)] 2

Here, II is the projector for hazard levels, and Tr denotes the trace
operation, ensuring accurate classification. To enable rapid alert trans-
mission, the network utilizes quantum entanglement, modeling vehicles
as a multipartite entangled state |¥). Through quantum teleportation,
hazard alerts encoded in | A) are transmitted to target vehicles or control
centers:

M>target = Gﬁfff(l ® (BupN4) ® ) 3)

where (f,,| represents the Bell state measurement, and o, o, are Pauli
matrices with measurement outcomes a and b guiding the teleportation.
This process ensures rapid and reliable hazard alerts throughout the
network. The overall system’s performance is optimized through a
multi-component objective function L(6, p, r), which balances quantum
state fidelity, prediction accuracy, and communication latency:

N
L@.p=ay (1-F(p.5:0))
i=1

) . C))
+ B Y, CE(P (y15,0).5;) +7 Y 7%
j=1

k=1
where 6 denotes the variational parameters, p; is the true quantum
state, §;(0) is the predicted state, and 7, represents communication
latency. The coefficients a, f, and y adjust the focus on information
preservation, prediction accuracy, and near real-time responsiveness.
This objective function guides the system to ensure high-fidelity pre-
dictions and timely alert transmission, offering a robust framework for
hazardous gas monitoring in vehicular networks.

4. Architectural design

Fig. 2 illustrates the environmental monitoring model, which lever-
ages quantum computing to process data collected from
vehicle-mounted sensors. The data is first normalized and then encoded
into quantum states, ensuring compatibility with quantum computa-
tional processes. This approach creates a sophisticated, multifaceted
system designed to meet the complex requirements of contemporary
environmental monitoring.

4.1. Data collection and quantum state encoding

Each vehicle is equipped with a range of sensors (see Fig. 3),
including MQ2, MQ3, MQ5, MQ6, MQ7, MQ8, MQ135, and GPS, to
provide comprehensive air quality assessment and location tracking.
These sensors constitute the core monitoring capabilities of the QMF.
After data collection, sensor readings are normalized to ensure com-
patibility with quantum computing processes. The standardized data
is then encoded into quantum states |4), which can exist in multiple
superpositions simultaneously. This encoding, defined by the function
E : S — |A), is essential for transforming conventional sensor data
into a quantum-compatible format suitable for processing. Here, |A,)
denotes the all-zero initial quantum state (e.g., |0 --- 0) of n qubits), and
Ry(S) is a rotation operator that maps the normalized sensor data S to a
set of qubit rotation angles. In practice, each sensor reading is encoded
as a rotation angle 6; on a corresponding qubit, so that the operation
Ry (S) transforms |4,) into the quantum state |4) in an n-qubit Hilbert
space, encoding the multi-sensor data in quantum superposition.

4.2. Hardware feasibility

qloV is conceived as a forward-looking architecture, requiring cer-
tain advances in quantum technology. It assumes each vehicle is
equipped with a multi-gas sensor suite and a compact quantum com-
munication module. Recent strides in photonic integration have yielded
smaller, more robust quantum devices [36]. We anticipate that only
lightweight components (entangled-photon sources, single-photon de-
tectors, etc.) need to be vehicle-mounted, while intensive quantum
processing is offloaded to edge or cloud quantum servers. The vehicle’s
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Fig. 2. Quantum process for qloV framework.

MQ2: Detects various gases, including methane, butane, LPG, smoke, and flammable

gases.

MQS5: Designed for detecting natural gas (methane) and LPG.
MQ6: Detects LPG, butane, and propane gases.

MQ7: Specialized in detecting carbon monoxide (CO) gas.
MQ8: Primarily used for detecting hydrogen gas.

MQ135: Detects a wide range of gases, including ammonia, benzene, smoke, and CO2.
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Fig. 3. Environmental sensing using vehicular sensors.

quantum hardware would reside in a stabilized enclosure (shock-
mounted and thermally insulated) to ensure stable operation under
motion. Standard vehicular power is sufficient to cool and run these
devices, and each vehicle carries multiple gas sensors (e.g., MQ2, MQ3,
..., MQ135) to detect a range of toxins.

The current technology imposes some strict limits. Entangled states
maintain coherence only on the order of microseconds to milliseconds
without special quantum memory. At typical city driving speeds (~
15 m/s) and line-of-sight distances of a few hundred meters, a direct
entangled link between two moving vehicles would remain viable for
only a few seconds before relative motion or obstructions degrade the
channel. Thus, the QMF must redistribute entanglement on the order
of every 1-5 s per link in dense traffic. This refresh rate (0.2-1 Hz)
implies the network must continuously generate and distribute entan-
gled pairs at a similar rate to sustain a high-fidelity multipartite state.
Additionally, we assume future improvement in quantum operation
fidelity. qloV’s stabilizer-based error correction requires physical gate
error rates on the order of 1073 (0.1%) or better to significantly boost
entanglement fidelity. Present quantum hardware is only beginning to
approach this range. The current 127-qubit superconducting processor
has two-qubit gate errors around 1%-2% and ~100 ps coherence time,
meaning true fault-tolerant operation is not yet achievable. In our sim-
ulations, we therefore employed error mitigation techniques (instead of

full error correction) and kept quantum circuits shallow to work within
these limits.

4.3. Quantum graph and network state representation

The vehicles are modeled as quantum entities, forming a dynamic
quantum graph G(¢), where the nodes correspond to state vectors in
the Hilbert space H, and the edges represent potential quantum en-
tanglements. The network’s overall entangled state at time ¢ can be
represented by a density matrix p(f). Its evolution can be modeled
(in principle) by a Lindblad master equation, which formalizes how
environmental interactions (noise, vehicular motion, etc.) cause the
state to decohere over time. We do not delve into formalism here,
but note that as time progresses, such decoherence will gradually
degrade the shared entangled state, motivating an active management
approach.

The QMF serves as a dedicated quantum communication backbone
that dynamically preserves quantum links amidst vehicular motion and
urban interference. Rather than relying on any single entangled pair to
remain coherent, QMF continuously refreshes and swaps entanglements
as needed. It distributes entangled qubit pairs to vehicles via nearby
quantum nodes and monitors link fidelity in real time. If an entangled
link starts to decohere or is interrupted (due to vibrations, loss of line-
of-sight, etc.), the fabric quickly replaces it by either establishing a
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fresh entangled pair or performing entanglement swapping through
an intermediate node. In this way, an up-to-date entangled channel
is always available for each vehicle, effectively extending the usable
entanglement lifetime despite mobility. To further safeguard entan-
glement, each vehicle’s quantum transceiver is housed in a stabilized
unit that dampens vibration and maintains thermal control, reduc-
ing environment-induced phase noise. The entangled communication
uses optical channels (fiber-optic or free-space laser links), which are
immune to radio-frequency interference. Thus, qloV operates as an
overlay: its quantum links run in parallel on a separate optical spec-
trum, augmenting the conventional V2X network without disrupting it.
In dense urban areas with frequent occlusions, QMF leverages multi-
hop entanglement: a vehicle that loses direct line-of-sight entanglement
can connect via a relay (e.g., a roadside quantum node or another
vehicle). The entangled state is swapped through one or more such
relays so that, even if direct paths are blocked by buildings, the end
vehicles remain entangled via alternate routes. This is analogous to
routing around a dropped link in classical networks, except here the
rerouting is achieved by quantum entanglement swapping rather than
packet forwarding.

Scalability and Integration: The entanglement management
scheme is designed to scale efficiently as the vehicular network grows.
Rather than trying to entangle every pair of vehicles (which becomes
intractable for large N), QMF organizes vehicles into entangled clusters
(cells). Within each cluster (on the order of tens of vehicles), members
share multipartite entangled states or a network of Bell pairs. Entan-
glement swapping is then used to connect these clusters hierarchically.
This structured approach bounds the complexity: as N rises to hundreds
or thousands, QMF dynamically entangles local neighbors and links
clusters via a few connector nodes, avoiding an explosion of entangled
connections. A central quantum server (or multiple regional quantum
nodes) coordinates entanglement distribution so that even in a large
fleet, any given vehicle can quickly obtain entanglement with the
network. Over extended distances, quantum repeaters (or satellite-
based quantum links) will be necessary as intermediate nodes to extend
range and counteract photon loss and decoherence. By deploying such
repeaters (e.g., at telecom fiber hubs or on airborne platforms), QMF
can maintain high-fidelity entanglement between far-flung vehicles
without requiring direct line-of-sight for every link. In essence, qloV’s
quantum network scales by forming an entangled backbone of clusters.

4.4. Mobility and communication model: Quantum teleportation

In gloV, hazardous gas detection begins with quantum sensing via
an Entangled Quantum Feature Map (EQFM), which encodes the 7-
channel vehicular gas vectors into a strongly entangled qubit register
through layered CZ interactions. This preserves high-order cross-sensor
dependencies that classical embeddings miss and feeds the representa-
tion into a variational classifier optimized directly for state fidelity. The
noise-aware ansatz, combining iSWAP/CPHASE gates with adaptive
single-qubit rotations maintains expressive power under realistic error
while keeping circuits compact.

Detected hazards are disseminated through a QMF, which pre-
distributes Bell pairs between vehicles and control servers, refreshes
links via mobility-aware entanglement swapping, and teleports encoded
hazard states |1) to their destinations. In the teleportation step, the
hazard state is entangled with the network’s multipartite state |¥) and
measured in the Bell basis, producing two classical bits. These bits, sent
over a conventional channel at light speed (fiber/wireless), instruct the
receiver, holding the pre-shared entangled qubit on which Pauli X and
Z operations to apply, reconstructing |4grger) With near-unity fidelity.

Since only the classical bits traverse the network, the latency is
bounded to microseconds—milliseconds over urban distances, negligible
relative to human reaction times and compliant with causality. This
tight integration of (i) entanglement-aware feature mapping with QFT-
assisted embedding and (ii) teleportation-based, mobility-adaptive alert
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dissemination is unique among IoV sensing frameworks. The approach’s
added complexity and cost are justified in high-dimensional, weak-
signal regimes, where qloV delivers clear class separation, high pre-
cision/recall, and faster end-to-end detection even under high network
overhead.

Mobility and Connectivity Dynamics: In a vehicular quantum
network, node mobility plays a decisive role in connectivity. As vehicles
move, previously established entangled links may decohere or be lost.
If line-of-sight is blocked or if the inter-vehicle distance exceeds the
quantum channel’s range. Our qloV framework treats entangled links
as dynamic, ephemeral resources. At any time t, the network’s entan-
glement graph can fragment due to vehicle motion. We introduce a
simple mobility model to quantify entanglement link lifetimes. Consider
vehicles moving with an average speed of ~#40 km/h and a quantum
communication range of ~200 m (typical in urban settings). Under
these conditions, an entangled link between two vehicles would on
average persist only on the order of a few seconds (e.g., 2-5 s in
moderate traffic) before the vehicles move out of range or an obstruc-
tion intervenes. After that, the entangled connection would break and
need reconfiguration. When a vehicle’s entangled link terminates due
to motion, the QMF responds much like a classical network recovering
from a dropped connection. It rapidly performs entanglement swapping
or distributes a new entangled pair via an alternate route. For example,
if Vehicle A and Vehicle B lose their direct entanglement (say, A
drives out of range of B), QMF enlist an intermediate node, Vehicle
C or a roadside quantum repeater that still has entangled links with
both A and B to swap entanglement. Through this relay, A and B
become indirectly entangled (A-C and C-B effectively form an A-B link).
This quantum re-routing happens behind the scenes and in advance,
ensuring that when one path fades, another entangled path is readily
available. The process is analogous to a handoff in cellular networks
or a routing update in VANETS, except here we are rerouting quantum
states instead of packet flows.

Routing Behavior and Latency: In classical IoV networks, a broken
link triggers a routing protocol to find a new multi-hop path, incurring
delays at each hop. By contrast, qloV’s strategy is to maintain a web
of entangled links, a quantum overlay, so that if one path is disrupted,
quantum information can be instantly redirected through another en-
tangled route. The act of teleportation (transmitting an alert quantum
state via entanglement) has negligible latency: only two classical bits
need to be sent to complete the teleportation, which over metropolitan
distances takes mere microseconds. The main delay when a link is lost
is the time to establish a new entangled pair. Using today’s technology
figures, distributing a fresh entangled photon pair (including any re-
quired optical switching) can be done on the order of milliseconds. This
re-entanglement delay is very small, often comparable to or below the
latency of a single wireless hop in classical networks. It does introduce
a slight variability in end-to-end alert delivery time (since occasionally
a vehicle may need to wait those few milliseconds for a new entangled
link), but the baseline latency remains extremely low.

Channel Reliability and Deployment Considerations: Environ-
mental factors, i.e., heavy rain, fog, or physical occlusions by buildings
and other vehicles can disrupt optical quantum links. qloV lever-
age a multi-tier infrastructure, if a direct vehicle-to-vehicle quantum
channel fails, vehicles can fall back on infrastructure nodes such as
roadside quantum units. These infrastructure nodes ensure that even
fast-moving or distant vehicles can share entanglement via multi-hop
routes that circumvent local blockages. Naturally, each extra hop or
swap will introduce additional decoherence and reduce the entangled
state’s fidelity. A decaying fidelity term is introduced in our network
model (using a Lindblad master equation framework) to represent how
quantum state p(f) degrades with each such operation over time. To
counteract this, the QMF employs quantum error management tech-
niques. It continuously monitors entangled link fidelity (using stabilizer
measurements on entangled qubits). If the fidelity drops below a set
threshold due to motion-induced decoherence or transmission loss, the
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Fig. 4. Entangled quantum feature map for advanced data encoding.

affected entangled link is proactively repaired or replaced. QMF can
invoke an entanglement purification protocol to improve fidelity, or
simply discard the low-fidelity pair and distribute a new high-fidelity
entangled pair in its place. In extreme cases, quantum error-correcting
codes used to sustain entanglement over longer durations, though these
incur overhead. The system is designed such that transient failures or
fluctuations in channel quality do not collapse the entire network’s
entangled state, the entanglement can be rapidly rerouted or restored
through alternate paths and fresh resources.

5. Proposed methodology

This section outlines our framework, focusing on three key pro-
cesses: data conversion, entanglement-based communication, and error
management. First, multi-dimensional sensor data is transformed into
quantum-compatible states using an optimized encoding scheme that
adjusts rotation angles to accurately capture distinct environmental
sensor patterns. Next, we implement a multipartite entanglement strat-
egy tailored for vehicular networks, enabling rapid and reliable dis-
semination of environmental alerts through quantum teleportation with
vehicle-specific entanglement patterns. To mitigate quantum noise and
computational errors in dynamic vehicular environments, we employ
adaptive quantum circuit optimization, utilizing stabilizer codes for er-
ror detection and correction while adjusting quantum gate parameters
to maintain communication fidelity. These integrated processes create
a robust quantum-enhanced system for environmental monitoring and
hazard alert dissemination within vehicular networks.

5.1. Quantum data and encoding and conversion

Environmental data is collected from vehicle-mounted sensors MQ2,
MQ3, MQ5, MQ6, MQ7, MQ8, and MQ135, generating time-series
datasets x;,x,,...,x7. These datasets are organized into a matrix S €
R™%n - where m represents the time-dependent data points for each
sensor, and n corresponds to the sensors. Each column of S contains
time-series data from a specific sensor x;, while each row captures the
readings from all sensors at a particular time instant.

5.1.1. Normalization process

Standardization is essential to ensure consistency across the varied
sensor data S;, aligning it with quantum state representation. We use
Min-Max normalization, defined as:
v o= s;; — min(S;) ®)

Y max(S;) — min(S;)

where s;; is the raw data from the ith time point of the jth sensor, and
s;j is the normalized value. min(S;) and max(S;) represent the minimum
and maximum values of the jth sensor’s time-series data. This process
scales readings to the [0, 1] range, ensuring a consistent data format for
accurate quantum state encoding and processing.

5.1.2. Quantum state encoding via entangled feature mapping

We employ an EQFM to encode sensor data into a quantum state,
leveraging entanglement for enhanced data representation (see Fig.
4). The first layer of the quantum circuit applies Hadamard gates,
placing qubits in superposition, followed by parameterized phase gates
P(¥;), which introduce feature-dependent phase shifts. Controlled-Z
(CZ) gates, arranged in layers, maximize entanglement to capture
feature correlations. Each entanglement layer uses cascading CZ gates
between qubits, with phase parameters P(26, —26; —6,) determined by
input data. Multiple layers of this structure allow the quantum state
to capture higher-order correlations, crucial for preserving complex
data patterns. The EQFM transforms normalized sensor data into an
entangled quantum state via the unitary transformation UHE P):

.
UFe) =@ (H-CZ,(#)). ®)
i=1
Here, Hadamard gates H; create superpositions, while controlled-Z
gates CZ;, entangle qubits based on the input data. This ensures the
encoded quantum state preserves both individual feature information
and their interdependencies, making it suitable for processing by VQC.
Further, our layered entangling feature map effectively encodes higher-
order correlations among the sensor inputs into the quantum state.
By using multi-qubit gates (e.g., controlled-Z rotations) that entangle
multiple qubits at once, the mapping ensures that joint variations
in sensor readings influence the state. For example, an entangling
operation with a phase parameter (26, — 26, — ;) couples the quantum
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state’s evolution to the combined values of sensors i, j, and k. Such
terms mean the resulting quantum state is a superposition embedding
not only individual sensor information but also their interdependencies
(e.g. pairwise and triple-wise relationships) directly in the amplitudes.
Therefore, unlike a feature mapping that treats each sensor separately,
the EQFM preserves higher-order sensor relationships in the data repre-
sentation. This richer encoding increases the model’s expressive power.
The data has been lifted into a high-dimensional Hilbert space where
relevant patterns can be more easily separated. This eases the learning
task for the VQC. Because the essential multi-sensor features are already
entangled into the quantum state, the VQC can find a decision boundary
with fewer circuit layers and fewer training iterations than a classical
model would likely require.

5.1.3. Parameterized ansatz for quantum state evolution

We utilize a parameterized ansatz circuit |w(0)) (see Fig. 5) for
quantum state transformation. The circuit integrates multi-qubit gates
(iSWAPs, CPHASE) along with adaptive single-qubit rotations, enabling
advanced quantum state manipulation. We selected the quantum circuit
in Fig. 5 deliberately to balance expressive power and viability on
quantum hardware. This variational ansatz comprises on the order of
tens of gates (approximately 30 single-qubit rotations and 20 two-
qubit entangling operations in total per full circuit layer). This circuit
was chosen because it can capture high-order correlations among the
seven sensor features that simpler circuits would miss. In particular,
the inclusion of multi-qubit gates (iSWAP and CPHASE in each layer)
allows the ansatz to entangle qubits representing different sensors’
data, thereby exploring a larger portion of the Hilbert space. The
transformation of sensor data through this ansatz is expressed as:

(m)
l(0)) = U((ir;r)lamic(edynamic) ' U“,:"ﬂﬁ_qubit(omulti-qubit)- @
Here, er)lamic(edynamic) represents m layers of sequential single-qubit

rotations (dynamic, parameterized gates that can adapt to error syn-
dromes), and Ur(r:nu)lti-qubit(Bm‘llti'qub“) represents m layers of multi-qubit
entangling operations (such as iSWAP and CPHASE gates). Together,
these two unitary components form the ansatz circuit that transforms
the state. This layered ansatz structure ensures that the quantum state
|w(6)) can explore a rich Hilbert space for optimal representation of
the sensor data. However, each additional gate (especially two-qubit
gates) increases the opportunity for error. To mitigate these effects,
our framework incorporates adaptive and noise-aware design elements.
Notably, the single-qubit rotation gates in the ansatz are dynamic,
meaning their parameters can adjust in response to observed error
syndromes. Moreover, during simulation we applied error mitigation
strategies: depolarizing noise was included in the OpenQASM tests,
and the variational parameters were optimized while accounting for
this noise. This approach effectively “leans into” the noise, the training
process seeks parameter values that yield correct classification results
despite gate errors.

5.1.4. Quantum data transformation technique
Our framework encodes the normalized sensor data S’ into quantum
states using a mapping function 4 : §' — 6, which converts data points
into rotation angles for efficient quantum circuit utilization. For each
qubit g;, the rotation gate R(6;) is expressed as:
—i sin(6;)
cos(6;) ) ’

_( cos(8;)
R = (—isin(H,-)

This gate enables precise data encoding, with the adaptive mapping
function 4 optimizing the representation of sensor data in the quantum
domain.

(8)
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5.1.5. Quantum encoding and state preparation

The encoding of sensor data into a quantum state U(S’) involves
both single and multi-qubit rotations, generating the quantum state
|A(6)), which is essential for quantum computations. The encoding
process is represented as:

n
Uz = Q) RO(s)), ©)
i=1
Here, the initial state |1), evolves into the encoded state |1), where
accurate calculation of § values is critical for maintaining state fidelity.

5.2. Modified quantum variational classifier

This section details the VQC’s internal mechanisms, covering its de-
sign and practical implementation. The VQC implementation involves
a multi-stage process: initially, conventional sensor data is transformed
into a quantum-compatible format. We then evaluate the model’s accu-
racy using a fidelity-based cost function, followed by the application of
an advanced optimization technique to enhance overall performance.

5.3. Algorithmic overview

The implementation details of the VQC is presented in Algorithm 1,
including fundamental steps:

Algorithm 1 VQC with Adaptive Optimization

1: Input: Sensor data {x® = (x(l[)’x(zf)’ ,x“))}ﬁl, Variational
parameters 6, Number of layers M
2: Output: Predicted gas types for given sensor data
3: fori=1to N do
4:  Encode sensor data into quantum states: [AD(0)) <«
ér}i/tlzingle (eentangle) . Ur(:;l;tion(erotation)l())@n
: end for

5

6: Initialize cost function: C(0) « 0

7: fori=1to N do

8:  Execute quantum circuit: U(6)|4?(0))

9:  Measure probabilities P(y;|0) for gas classes y;

10:  Caleulate fidelity F(IAL . .q)U©)A7(©O))

11: Update cost function: C(6) « coO + (1 -
F(AQ eereq)- UO@12V©0)))?

12: end for

13: Optimization:

14: Set initial learning rate #, threshold ¢, and maximum iterations K

15: Initialize 6, randomly

16: k <0

17: while k < K or AC(6,) > ¢ do

18:  Calculate gradient VC(6,)

19:  Adjust learning rate: n, < /(v k+1)

20:  Update parameters: 0, < 6, —n,VC(0,)

21: k<« k+1

22: end while

23: return Predicted gas types based on optimized 6

5.3.1. Quantum state encoding

For classical sensor data x() = (x(li), x(zi), ,x(7i)) across N instances,
we construct the corresponding quantum state |A?)(0)) using param-
eterized quantum circuits that represent the sensor data within the
quantum domain:

o v .
12POC)) = U)o entange <)
Usogation{ Orotation ")) 100"

rotation

(10$)

(M) (M) ;
Here, Uentangle(eemangle) and U . (Orotarion) TEPresent the entangling

and single-qubit rotation gates with M layers, parameterized by
eentangle and Byotarion, respectively.
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Fig. 5. Enhanced ansatz circuit for quantum state evolution.

5.3.2. Cost function formulation

In quantum computing, a fidelity-based cost function assesses how
accurately our quantum model’s predictions align with expected out-
comes, effectively quantifying model accuracy. The cost function C(6)
is defined to measure the discrepancy between expected and observed
quantum states:

N

co=Y (1 — F(AY

expecte

HUOIO©O)?), an
i=1

Here, |4_expected”) denotes the ideal quantum state corresponding to
the true class of the ith sensor sample. We assign each gas type to a
distinct computational basis state in the quantum output space. For
example, if L = 4 hazard classes are encoded using n = 2 qubits (2" >
L), and a given training sample belongs to class j = 2, the expected
state is prepared as |A_expected”) = |10) (the basis state with binary
representation ‘10°). The fidelity F(|_expected®),; U(8), |19 (6))) thus
quantifies the overlap between the VQC’s output state and the correct
class-j state. By optimizing this fidelity-based cost, the VQC is trained
to produce quantum states that closely match the expected class states
for each input.

5.3.3. Adaptive optimization scheme

Our optimization scheme uses an iterative process to incrementally
refine the model. At each iteration, the learning rate z, is adjusted to
ensure steady and efficient convergence:

01 =6, —m VC(O), 12)

where VC(6,) denotes the gradient of the cost function with respect
to the variational parameters. The integration of quantum state en-
coding, the fidelity-based cost function, and adaptive optimization
establishes a robust framework for fine-tuning these parameters based
on fidelity changes. This approach effectively captures subtle variations
in quantum states derived from sensor data, enabling accurate gas-type
predictions.

5.3.4. Extensive quantum state processing and measurement for hazard
level assessment

After training, the VQC applies its optimized circuit to newly en-
coded quantum sensor data |A). The resulting state |1’), given by
U(®)|1), reflects the VQC’s analysis of toxic gas concentrations. To
extract actionable insights, |1’} is measured using a set of projective

operators {I1;}, each representing a specific hazard level. The proba-
bility of each hazard level, based on the sensor data, is determined as:

P(hazard level,|S) = Tr [II; - U(®)| (AU ()] . (13)

This integrated process of data encoding, quantum circuit construc-
tion, training, and execution demonstrates the VQC'’s effectiveness in
predicting toxic gas levels, underscoring its potential in early hazard
detection.

5.4. Quantum entanglement process

Quantum entanglement, a fundamental phenomenon in quantum
physics, is central to the functionality of our qloV framework, which
supports secure communication in vehicular networks for hazardous
gas monitoring. Entanglement refers to the phenomenon where the
state of one particle affects its entangled counterpart, regardless of
distance.

Our model uses quantum entanglement and teleportation for near
real-time, secure data transmission, as illustrated by the three-qubit
quantum circuit in Fig. 6. Bell State Preparation entangles qubits,
assigning each vehicle a quantum identifier i and its corresponding
server qubit j within a network of n vehicles:

Bell |
|7y — %000) + 111)); - a4

This transition into a Bell state, which encodes information more
effectively than Hadamard gates, is represented as:

|¥) Bell, 1 (100) + |11)) (15)
l \/5 Y

Next, the Quantum Fourier Transform (QFT) manipulates entangled
states for data embedding and transfer:

) 11— QFT(W),). QFT(1¥) ). 16)

As shown in Fig. 6, the circuit begins with Bell state preparation
using U, and controlled-NOT (C X) gates, entangling vehicle and server
qubits. Phase gates P(0), with values such as z/8 and —z /8, then encode
data onto the quantum state. Hadamard gates create superposition
states, allowing efficient quantum state manipulation.

The QFT, crucial for data embedding, spreads quantum information
across qubits, preparing the state for teleportation and phase estima-
tion. Controlled-phase gates create the quantum correlations necessary
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Fig. 6. Quantum circuit representation of communication.

for data transmission, while S and ST gates maintain phase coherence.
To enable reliable communication, a Toffoli gate provides multi-qubit
control, facilitating quantum teleportation. The process concludes with
a controlled-Z rotation gate R,(6) for precise phase manipulation:

1 0
R,(0) = (0 9>
Finally, measurement gates retrieve the classical information embedded

in the quantum states, representing the transmitted sensor data for
analysis within the vehicular network.

17

Algorithm 2 Quantum Communication Protocol

Require: vehicle count (n), number of rounds (R), quantum register
size per vehicle (m)
Ensure: Quantum communication protocol
1: Initialize a quantum circuit with 3m = 3n qubits.
2: forr; = 1to R do

3:  for each vehicle v;, i =1 to n do
Bell

4: Prepare Bell state for qubits (3i — 2,3i — 1): [¥)3,_531 —
5000+ 1))
QFT
5: Apply QFT on the third qubit of each vehicle: |¥);;, —
OFT(|¥)3;)
6: end for
7:  for each pair of vehicles (v;,v;), i # j do
8: Apply Toffoli gate to strengthen quantum correlations:
Toffoli(1¥)3;_1, 1¥)3j-1, 1¥)3:)
9: Apply QPE for precise phase calculations: QPE(|¥)s;, |¥)3;)
10:  end for
11:  for each vehicle v; do
12: Perform Quantum Teleportation using a controlled-Z rotation
gate: Teleport(|¥)3; 5, [¥)3;_1. ¥)3)
13:  end for
14: end for
15: Measure all qubits.
16: Transpile the circuit for optimization.
17: return Quantum circuit representing the communication protocol.

6. Performance evaluation

This section evaluates the qloV framework, highlighting its ef-
fectiveness in accurately detecting toxic gases from vehicle-mounted
sensor data. The pair plot method was crucial for analyzing data cor-
relations and enhancing detection accuracy. Additionally, we assessed

10

quantum data distributions under varying conditions using a 127-qubit
system on the IBM OpenQASM 3 platform. Note that this 127-qubit sys-
tem refers to a simulated quantum environment realized through IBM’s
OpenQASM 3 framework, rather than a physical quantum computer
with 127 qubits. We used this simulation platform to emulate a large-
scale quantum circuit corresponding to our network, given that current
quantum hardware with this many qubits is not readily available for
full experiments.

6.1. Simulation environment and implementation details of VQC

Experiments were conducted by designing a parameterized quan-
tum circuit for the VQC using the quantum circuit composer on the
OpenQASM 3 platform. We arranged Hadamard, Pauli-X, Controlled-Z,
and rotation gates to create an entangled state that effectively captured
the complexity of the sensor data. Sensor data encoding was achieved
through a customized quantum feature map, converting classical gas
concentration readings into quantum states. The fidelity-based cost
function was assessed by measuring the overlap between the VQC’s out-
put state and the ideal state for accurate gas classification. Parameter
updates were carried out using a gradient-based optimization algo-
rithm, with gradients estimated via the parameter-shift rule. We trained
the VQC using gradient descent. The initial learning rate was n = 0.1,
and we employed an adaptive schedule n_k = n/v/k + 1 to gradually
decrease the learning rate each iteration for stable convergence.

All of our quantum experiments were executed in simulation, us-
ing IBM’s OpenQASM 3 framework on a Qiskit-based backend. We
modeled a notional 127-qubit quantum processor to emulate a large-
scale device (corresponding to IBM’s 127-qubit Eagle architecture). Our
circuits utilized far fewer qubits (typically 10-20 qubits active), but
the simulator’s capacity allowed us to include up to 127 virtual qubits
if needed for entanglement distribution. We also incorporated a real-
istic noise model into all simulations to reflect hardware constraints.
Single-qubit gates were assigned a depolarizing error rate of 0.1%,
two-qubit entangling gates (like CNOT or iSWAP) had error rates of
1%-2%, and measurement (readout) operations had ~3% probability
of error. These values align with the reported performance of IBM’s
latest superconducting devices, ensuring our simulation captures the
impact of decoherence and gate imperfections. The quantum circuit
transpiler was configured for IBM’s heavy-hexagon coupling map (the
qubit connectivity graph of the 127-qubit device). Thus, our circuits’
gate scheduling and connectivity mirrored those of a real machine.
Some two-qubit operations incurred additional SWAP gates if the two
qubits were not directly connected on the chip. Those SWAPs increased
the circuit depth and accumulated noise. We deliberately kept the
circuits as shallow as possible to mitigate errors: the VQC circuit was



A. Nahar et al.

limited to M = 3 layers of parameterized rotations and entangling
gates (roughly 50 gates per layer, including ~20 two-qubit gates and
30 single-qubit gates). Using parallel execution on independent qubits,
the effective circuit depth was only about 25-30 two-qubit gate layers.
This is within the coherence time budget of current devices (~ 100 ps).
For the teleportation-based alert dissemination in qloV, we allocated an
ancilla Bell-pair qubit for each vehicle in the simulation. To avoid an
explosion in qubit count, we reused and reset qubits when possible.
After a teleportation operation is completed, we reset the involved
ancilla qubits and reuse them for the next teleportation (since in a
simulated environment qubit reuse is feasible). The largest entangled
circuit we explicitly simulated at any point involved 14 qubits (7 sensor
qubits entangled with 7 ancilla qubits). Further, we fixed random seeds
for all stochastic aspects of the simulation. Random initial parameters
for the VQC and any random measurement sampling were done with
predetermined seeds.

Quantum Model Configuration: The VQC was implemented with
M = 3 layers in the ansatz circuit, which yielded roughly 150 trainable
parameters (about 30 single-qubit rotation gates and 20 two-qubit
entangling gates per layer x 3). We set the maximum number of
training iterations to K = 500 and used a stopping criterion of AC(9) <
€ = 1073 in the fidelity-based cost. In practice, the optimizer converged
in approximately 300 iterations. To account for hardware noise, all
training and inference were performed under a realistic noise model:
we included a depolarizing error of 0.1% per single-qubit gate and
about 1%-2% per two-qubit gate, and a measurement error rate of 3%,
consistent with the IBM 127-qubit device’s specifications.

Classical Baseline Configuration: We evaluated three classical
models (SVM, Random Forest, Logistic Regression) with carefully cho-
sen hyperparameters. The SVM used a Gaussian RBF kernel; its regu-
larization parameter C and kernel bandwidth y were tuned via 10-fold
cross-validation on the training set. We searched C in the range 27> to
210 and y from 2719 to 23, following recommended settings for the gas
sensor dataset. The optimal SVM had C = 64 and y = 0.0039, which we
then fixed for final testing. The Random Forest model was set to 100
decision trees; we adjusted the maximum tree depth (evaluating depths
10 to 20) and found depth ~15 yielded the best validation accuracy
without overfitting. The Logistic Regression was implemented with L2
regularization (using scikit-learn’s default regularization strength). All
models were trained on the same feature set (7 sensor features) and
evaluated under identical train—test splits as the quantum model. These
hyperparameter settings ensured each baseline operated at its best,
providing a fair performance comparison against our qloV VQC.

6.2. Dataset information

We evaluated qloV using a combination of synthetic and real-world
sensor datasets. The synthetic dataset' (6400 instances) was generated
to simulate toxic gas leak scenarios under controlled conditions. It
contains seven features corresponding to readings from an array of
MQ-series gas sensors (MQ2, MQ3, MQ5, MQ6, MQ7, MQ8, MQ135)
along with a contextual GPS-based feature, and a label indicating the
hazard level (no leak, mild, moderate, or severe). To incorporate real-
world variability, we also utilized the UCI Gas Sensor Array Drift
Dataset [37], which provides 13,910 instances of real environmental
gas measurements collected over 6 months from a deployed sensor
array. We aligned the feature space of the two datasets and com-
bined them, thereby testing qloV on both simulated and real sensor
patterns.

For model training and testing, we shuffled and split the combined
data into 80% for training/validation and 20% for final testing. The
split was done in a stratified manner, ensuring that each hazard class
was represented in the same proportions in both the training and

1 https://github.com/TakMashhido/Gas-Sensors-Measurements-Dataset
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test sets. This prevents any class imbalance from skewing the results.
During training, we further divided the training portion for model
selection and hyperparameter tuning. All classical baseline models
(e.g., SVM, Random Forest, Logistic Regression) were tuned using 10-
fold cross-validation on the training set, i.e., their hyperparameters
were optimized by averaging performance across 10 stratified folds to
avoid overfitting any single partition. For the quantum VQC model,
due to the higher computational cost of simulation, we employed a
robustness testing approach in lieu of exhaustive k-fold validation. We
trained the VQC in five independent runs, each time initializing the
circuit parameters differently and (internally) using a different random
split of the training data into sub-train and validation segments. In each
run, roughly 80% of the training data was used for the VQC’s gradient-
based training, and the remaining 20% was held out as a validation
set to monitor convergence and prevent overfitting. Across these runs,
we observed very small variation in the achieved accuracy and loss
metrics, the results were consistent, indicating the model’s performance
is stable with respect to initialization and sampling noise. We report the
average performance of the VQC and note that its standard deviation
in accuracy was on the order of a few tenths of a percent.

6.3. Pair plot analysis

Pair plot analysis is used to identify correlations, outliers, and clus-
ters within the sensor data. In our experimental analysis, correlations
between sensor readings reveal similar sensitivity profiles to specific
gas concentrations, while outliers indicate anomalous detections or po-
tential sensor malfunctions. Clusters of color-coded data points by gas
type visually demonstrate the sensors’ capability to distinguish between
different gas concentrations. The data matrix S forms the foundation
for a multidimensional analysis of sensor outputs, represented as D,
capturing the composite distribution across multiple gas types and
enabling detailed pairwise comparisons. Each scatter plot within the
matrix contrasts readings from two different sensors, with color-coded
data points by gas type, allowing immediate visual identification of
distribution patterns. The diagonal elements of the pair plot matrix dis-
play histograms of sensor readings, offering insights into the univariate
distribution for each sensor. Fig. 7 illustrates this analysis, depicting
how sensor data corresponds to varying gas concentrations.

We also conducted comprehensive sensitivity and reliability test-
ing on the sensors using our dataset. The experiment included 6400
data points, divided equally into four gas concentration categories,
with 1600 data points per category, ensuring balanced and unbiased
evaluation. This systematic setup minimized bias and allowed for an
in-depth analysis of sensor performance across various configurations.
Positive correlations in the scatter plots indicated similar sensor re-
sponses to gas concentrations, with clustering along a line. For instance,
MQ2 and MQ7 demonstrated a strong positive correlation, reflecting
comparable detection capabilities. Data point dispersion highlighted
sensor variability: broad dispersion suggested a wide detection range or
sensitivity to multiple gases, while narrow dispersion indicated speci-
ficity. Distinct clusters in the scatter plots confirmed the sensors’ ability
to differentiate between gases, essential for accurate environmental
monitoring.

The experiments also examined individual sensor readings across all
concentrations, providing insights into sensitivity ranges and activation
likelihood. Sensors MQ7 and MQ8 exhibited broader response distri-
butions, indicating versatility in detecting diverse gas concentrations,
while MQ3 and MQ6 displayed narrower distributions, reflecting more
specific detection capabilities. The operational ranges and detection
thresholds for each sensor are as follows:

* MQ2: Min = 502.0, Max = 824.0
+ MQ3: Min = 337.0, Max = 543.0
* MQS5: Min = 291.0, Max = 596.0
* MQ6: Min = 311.0, Max = 524.0


https://github.com/TakMashhido/Gas-Sensors-Measurements-Dataset

A. Nahar et al.

Ad Hoc Networks 185 (2026) 104158

Gas

)

500 600 700 800
waz

X0 40 %0 600
was

%0 200 40 60 80 30 400 500 600
wos o135

Fig. 7. Pair plot showing the relationships between sensors for different gas types.

» MQ7: Min = 361.0, Max = 796.0
» MQ8: Min = 220.0, Max = 794.0
» MQ135: Min = 275.0, Max = 589.0

For example, MQ2’s range of 502 to 824 indicates its effectiveness in
detecting higher gas concentrations, making it suitable for environ-
ments with elevated gas levels.

6.4. Probability distribution: Theoretical and real-time

In the ideal theoretical probability distribution (see Table 2), the
‘0000’ state shows high probability across all three bases (Z, X, Y), indi-
cating the effectiveness of the quantum state encoding and preparation.
This suggests that the initial state |A(0)) evolves into the encoded state
| 1) with high fidelity due to precise 6 calculations. The elevated fidelity
confirms the optimal functioning of the quantum entanglement process
and the EQFM, ensuring accurate sensor data representation. The low
probability of other outcomes suggests minimal errors and noise in
quantum state preparation. Introducing errors (see Table 3) leads to
a decreased probability for ‘0000’ and an increase in probabilities for
other outcomes across all bases, indicating the impact of quantum deco-
herence, gate errors, and state preparation and measurement (SPAM)
errors. This deviation from the ideal state reflects environmental and
operational noise affecting the parameterized ansatz circuit |w(0)).
The real-time simulation results (Table 4) display a more uniform
probability distribution across various states in the Z, X, and Y bases, in-
dicating dynamic interactions with real-time environmental data. This
uniformity demonstrates the quantum system’s adaptability, effectively
capturing nuances in sensor data through iterative refinement with
the adaptive optimization scheme. High probabilities for certain states
(e.g., ‘1011’, ‘0010’, “1101”) reflect successful sensor data encoding and
transformation using the parameterized ansatz. Introducing depolariz-
ing error in real-time communication (Table 5) alters the probability
distributions, reflecting the impact of quantum noise on state fidelity.
Despite this, the system maintains a coherent probability distribution,
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Table 2
Effectiveness of the quantum state encoding: theoretical
probability distribution (ideal).

Basis Theoretical probability distribution

P,(’0000’) = High Probability
P, (other outcomes) = Low Probability
P, (°0000’) = High Probability
Py (other outcomes) = Low Probability

P, (°0000”) = High Probability
Py (other outcomes) = Low Probability

Z-Basis (P_Z)

X-Basis (P_X)

Y-Basis (P_Y)

Table 3
Effectiveness of the quantum state encoding: theoretical probability distribu-
tion (with error)

Basis Theoretical probability distribution

Z-Basis Measurement (P_Z_Error) P, Error(0000’) < High Probability

P,_Error(other outcomes) > Low Probability
Py _Error('0000’) < High Probability
Py_Error(other outcomes) > Low Probability

Py_Error('0000’) < High Probability
Py_Error(other outcomes) > Low Probability

X-Basis Measurement (P_X_Error)

Y-Basis Measurement (P_Y_Error)

indicating robust quantum encoding, state preparation, and adaptive
optimization. These findings emphasize the system’s resilience to noise
and the significance of error correction techniques in practical quantum
computing applications.

6.5. VQC model prediction result

The performance of our VQC is evaluated using key metrics to
demonstrate its effectiveness in classifying gas concentrations within
the quantum-enhanced feature space. We present the analysis of the
objective function, confusion matrix, and classification metrics.
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Table 4
Simulation results in real-time quantum-based vehicular communication.
Basis Z-Basis X-Basis Y-Basis Basis Z-Basis X-Basis Y-Basis
1011’ 63 67 62 ’1000’ 71 75 53
’0010’ 59 63 66 1110 79 63 66
0011’ 57 58 59 0101’ 51 62 64
1101’ 64 63 70 ’1010° 75 62 51
’0001’ 66 59 60 1100 62 66 70
’0000’ 56 61 56 ’1001° 69 64 67
0111’ 60 72 74 1111 71 61 78
0110’ 58 67 53 ’0100’ 63 61 75
Table 5
Results with depolarizing error in real-time vehicular
communication.
State Probability State Probability
1010’ 71 ’0100’ 51
1111 76 0001’ 74
0110’ 78 ’1101” 67
1100’ 59 1110 59
1011’ 64 1001’ 60
0010’ 61 0000’ 55
’0101° 73 0011’ 66
0111’ 57 1000 53

Objective function value against iteration

IS

w

Objective function value

N

11

Iteration

Fig. 8. Objective function values against iteration.

6.5.1. Objective function

Fig. 8 illustrates a declining trend in the objective function value
with increasing iterations, demonstrating the effectiveness of our adap-
tive optimization scheme. The results indicate iterative refinement
of the variational parameters 6 using a gradient descent algorithm
combined with an adaptive learning rate. The initial fluctuations reflect
the exploratory phase of optimization, where the algorithm searches the
parameter space for a local minimum. These fluctuations, guided by
adaptive learning rate adjustments based on gradient history, assist the
algorithm in avoiding suboptimal local minima. As iterations advance,
the objective function value — derived from the fidelity-based cost
function — consistently decreases, indicating effective convergence
towards optimal parameters. The fidelity-based cost function evalu-
ates the similarity between predicted and true quantum states, with
lower values indicating higher fidelity. The observed minimization thus
confirms improved accuracy of the quantum classifier in predicting
gas concentrations. The adaptive learning rate plays a crucial role,
adjusting according to the gradient’s magnitude to ensure parameter
updates are neither excessively large (avoiding overshooting) nor too
small (preventing slow convergence), thereby accelerating convergence
while maintaining optimization precision.

6.5.2. Confusion matrix
The confusion matrix in Fig. 9 displays a strong diagonal, indicating
high classification accuracy for each class.
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Table 6
Classification performance metrics.
Class Precision Recall F1-Score Support
0 0.93 1.00 0.96 13
1 0.83 0.83 0.83 6
2 0.90 0.82 0.86 11

This result stems from our quantum state encoding via entangled
feature mapping, which increases feature space dimensionality, thereby
enhancing class separation within the quantum state space. Further-
more, the parameterized ansatz for quantum state evolution enables a
more thorough exploration of the quantum state space, allowing for
finer distinctions between classes that might be closely aligned in the
classical feature space.

6.5.3. Classification metrics
We have categorized the classification metric results into three
classes based on precision and recall, as detailed in Table 6:

Class 0: Displays high precision and recall, attributed to effective
normalization and quantum state encoding that maintain sensor data
fidelity and accurately represent this class’s features in the quantum
feature space. This indicates that the quantum circuit is well-optimized
for these features.

Class 1: Shows balanced precision and recall, suggesting that the
feature space is adequately mapped, though some overlap with other
classes exists. Further refinement of the EQFM and ansatz is needed to
enhance feature distinction for this class.

Class 2: Demonstrates high precision but slightly lower recall, indi-
cating accurate predictions but occasional missed instances of class
‘2’. This is due to a slight underrepresentation of class ‘2’ features
in the entangled quantum feature map. The minimized fidelity-based
cost function in the quantum variational classifier signifies that the
prepared quantum states closely match the expected states for each
class. The adaptive optimization technique effectively identifies optimal
parameters, resulting in the highest fidelity states for each class.

6.6. Detection time analysis

We analyzed the detection time by breaking it into four stages: data
preprocessing, quantum state preparation, quantum circuit execution,
and result retrieval. In our setup, the network communication overhead
dominated the latency. Transmitting each sensor data batch to the
cloud quantum processor (and queuing the job) typically took on
the order of 20-30 ms. By contrast, the quantum computation itself
was very efficient, preparing the qubits and executing the VQC on
IBM’s processor only took about 2-3 ms per inference on average.
(For comparison, classical models like SVM or Random Forest took
~5-10 ms of pure computation per input on a CPU, but without any
networking delay.) The final stage, sending the classification result
back, was negligible (< 1 ms, as the result is only a few bytes). Fig.
10 reflects these characteristics: for a batch of 100 data points, around
80%-90% of the total detection time was spent in communication and
waiting, whereas quantum processing accounted for roughly 10%-20%.
Despite the network latency, the qloV framework still outperforms
classical methods because its internal processing is significantly faster
and scales better. Classical algorithms process each sample sequentially
(leading to a steep linear increase in time with more data points),
whereas qIoV’s quantum parallelism and optimized circuit reduce the
per-sample computation time and can leverage concurrent execution
of operations. This results in the more gradual slope observed for the
proposed method in Fig. 10. As a result, even with current network
delays, qloV achieves faster hazard detection compared to traditional
models. If the quantum computation were moved closer to the data
source (reducing communication latency through edge computing or
on-vehicle quantum accelerators), the total detection time could be cut
down further, enhancing the advantage of our approach.
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Fig. 10. Detection time analysis over number of data points.

6.7. Theoretical analysis

The discussion of the framework results includes a comprehensive
theoretical and statistical analysis to validate and assess the efficacy of
the proposed framework. This analysis scrutinizes various components
to ensure the robustness and practicality of the QMF in real-world
scenarios, particularly for environmental monitoring and toxic gas
detection.

6.7.1. Quantum state fidelity

The qloV framework employs stabilizer codes for quantum error
detection and correction, ensuring high fidelity in quantum state trans-
mission. Complementing this, adaptive quantum circuit optimization
adjusts gate parameters based on error syndromes, effectively mitigat-
ing decoherence and environmental noise. This integrated approach
maintains the framework’s high sensitivity in detecting toxic gas con-
centrations, despite inherent quantum error rates. This theorem estab-
lishes the fidelity of the quantum state encoding process. It asserts that
the encoded quantum state |1), derived from normalized sensor data,
accurately represents the original environmental data. Given a quantum
state |1) encoding normalized sensor data and a density matrix pyriginal
representing the original environmental data, the fidelity F between |1)
and porigina) 18 close to 1, indicating an accurate quantum representation
of the original data.

Theorem 1. The fidelity F between a pure state |A) and a mixed state
Poriginal 1S defined as:

FU), Poriginad) = ((AlPoriginatl ) >

14

For F(|4), poriginal) to be close to 1, it must be shown that:

</1|poriginal|}'> ~ 1

Proof. Let us assume that the quantum state |1) is optimally con-
structed from the normalized sensor data S’, and the density matrix
Poriginal @ccurately reflects the original sensor data S. The normalized
data §’ is a transformation of the original data S, scaled to a uniform
range. The quantum state |4) is then formulated as a superposition of
basis states with amplitudes derived from §’, ensuring that the quantum
state reflects the characteristics of the original data.

v o= s;; — min(S;)
Y max(S;) — min(S;)
The quantum state |4) is a superposition of basis states:

N-1
14) =Y, aylk),

k=0
where q, are related to S'. To calculate fidelity, we consider the overlap
between the encoded quantum state |1) and the density matrix poiginal-
A high overlap implies that the quantum state retains the essential
information from the original data.

N-1 N-1 1/2
F(M)aporiginal) = (Z ak<k|poriginal Z a1|l>>
k=0 1=0

Assuming high overlap, (k|poriginall!) & d);- Since |4) is normalized, the
sum of the squares of its amplitudes equals 1. Therefore, the fidelity
calculation simplifies to approximately 1, validating that |4) is a faithful
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quantum representation of the original environmental data.

N-1 172
F(M>’p0riginal) ~ (Z a}%) =1

k=0
as |4) is normalized. The fidelity between |1) and piginas being approx-
imately 1 demonstrates the accuracy of the quantum state encoding
process. This validates the effectiveness of the quantum encoding in
preserving the integrity of the original sensor data within the QMF
framework. []

6.7.2. Normalization effectiveness

This theorem validates the effectiveness of min-max normalization
in preserving the statistical properties of sensor data. It demonstrates
that the normalized data S’ maintains the mean and variance of the
original data S within specific error margins, affirming the reliability of
this normalization method for accurate quantum computations within
the QMF framework.

Theorem 2. Consider a matrix S € R™ " representing original sensor data,
with m sensors and n data points per sensor. The Min—-Max normalized data
is denoted as S', with each element defined as:

, Sij — min(S;)

s, = —
Y max(S;) — min(S;)
forl<i<mand1<j<n
The theorem asserts that the mean and variance of S’ approximate those
of the original data S within certain error margins €, and ¢,, respectively.

Proof. We begin by analyzing the mean of the data. The mean of each
sensor’s data in S is given by u; = i Z;.;l s;;. Post-normalization, the
mean for each sensor in §' is u] = % Y-y 8;;- As normalization applies
a linear transformation to each data point, consisting of a scaling and
a shift based on the range of S;, we can assert that the transformation
preserves the relative mean of the data. Hence, the difference between
u; and u! is bounded, satisfying |u; — p]| < €,. Next, we consider the
variance. The variance of the ith sensor in S is ¢? = % Yoy = u)?,
and after normalization, it becomes (¢))* = % Z;; 1(5:',' — u))%. Although
normalization changes the scale of the data, it does so uniformly across
all data points. This uniform scaling alters the absolute variance but
preserves the variance’s structure. Consequently, the change in variance
due to normalization is limited, ensuring that |o-,.2 - (ai’ )?| < ¢,. Through
this proof, we affirm that min-max normalization effectively preserves
the critical statistical properties of the sensor data. This preservation is
crucial as it ensures that the quantum state, post-encoding, retains the
intrinsic patterns and characteristics of the original environmental data,
thereby facilitating accurate and meaningful quantum computations
within the QMF framework. []

6.7.3. Quantum rotation accuracy

This theorem assesses the accuracy of quantum rotations in aligning
qubits with their desired states in a QMF. It demonstrates that each
rotation operation R (6;) precisely adjusts individual qubits, and the
overall system fidelity is maximized, ensuring minimal cumulative
error across the qubit system. This accuracy is pivotal for the reliability
and effectiveness of quantum computations in the network.

Theorem 3. Given a vector of rotation angles 6= (6,,6,, ...,06,), computed
from normalized sensor data, we analyze the precision of the quantum
rotation technique. Each qubit g; is subject to a rotation operation R,(6;),
defined as:

cos(6,)

R (6;) = !
»0) (—isin(ei)
This theorem asserts that each R (6;) accurately rotates the corresponding

qubit to align with the desired quantum state, and the cumulative error
across all qubits is minimized.

—i sin(6;)
cos(6;) /-
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Proof. For each qubit initially in state |4,), the rotation operation
R,(6;) induces a transformation to a new state |4;). The accuracy of
this transformation is quantified by comparing |4;) with the target state
| Atarget,i)» Which is a representation of the corresponding sensor data on
the Bloch sphere.

1. Individual Qubit Analysis: The fidelity F; between |4;) and | Ararger,i)
is given by F;, = |(/1target,i|/1i)|2. The goal is to show that for each i,
F; is maximized, ideally approaching 1. This involves proving that the
chosen rotation angle ¢, aligns the qubit’s state as close to its target
state on the Bloch sphere. The calculation of F; is a complex task
involving integrating the qubit’s wave function over the entire state
space, factoring in the effects of the rotation.

2. System-Wide Fidelity: The overall system comprises n qubits, each
transformed by R(6;,). The quantum state of the entire system post-
rotation is [1) = @/_,|4;). The cumulative error in the system is
assessed by evaluating the total fidelity Fi iy = |</1target|/1)|2, where
[Atarget) is the tensor product of individual target states. Maximizing
Fioa1 confirms the minimal cumulative error across the system, which
is a complex calculation involving the tensor product of individual
state fidelities and accounting for potential error correlations between
qubits.

Theorem 3 proves the high degree of accuracy in the quantum
rotation operations within the QMF, aligning each qubit’s state closely
with its intended target state and ensuring minimal cumulative error
across the quantum system. The precision of these operations is crucial
for the reliability and effectiveness of quantum computations based on
these quantum states, impacting the overall performance and capability
of the QMF. []

6.7.4. Quantum entanglement integrity

This theorem establishes that the multipartite entangled state |¥)
within the quantum network maintains strong and stable quantum
correlations, which are crucial for quantum communication. This is
validated using specific entanglement measures, namely concurrence C
and entanglement entropy .S, which are shown to exceed critical values,
thereby confirming the integrity and robustness of the entanglement in
the network.

Theorem 4. Theorem 4 posits that the multipartite entangled state |¥') in
the quantum network maintains robust quantum correlations, essential for
quantum communication. The integrity of entanglement is assessed through
entanglement measures, specifically concurrence C and entanglement en-
tropy S. We aim to prove that for |¥'), these measures exceed specific critical
values, indicative of strong and stable entanglement.

Proof. 1. Entanglement Measures: — Concurrence C for a pair of qubits
in state p is defined as C(p) = max{0,¢, — ¢, — @3 — @4}, where
@; are the square roots of the eigenvalues of pj in decreasing order,
and j = (6, ® 0,)p*(0, ® 0,) with p* being the complex conjugate of
p. — Entanglement entropy E for a subsystem A of |¥) is given by
S(py) = —Tr(pylog, ps), where p, is the reduced density matrix of
subsystem A obtained by tracing out the rest of the system.

2. Application to |¥): — For |¥), a multipartite entangled state, we
compute concurrence and entropy for various partitions and pairs of
qubits within the state. — Calculating C and E involves deriving the
reduced density matrices for different subsystems or pairs of qubits in
|#) and applying the formulas.

3. Threshold Determination: — Establish threshold values Cy, esholq @and
Eresholq based on theoretical and empirical standards. — Demonstrate
that C and E for various partitions and pairs in |¥) consistently exceed
Cihreshold aNd Sinreshold respectively. This is a critical step involving
detailed calculations and comparisons with the thresholds.

Theorem 4 validates the robustness of quantum entanglement in
|¥), the multipartite entangled state of the network. The consistently
high values of concurrence and entanglement entropy, surpassing the
established thresholds, confirm the integrity and stability of entan-
glement in the system. This robust entanglement is crucial for the
network’s quantum communication and teleportation capabilities, en-
suring high-fidelity and efficient quantum information processing. []
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6.7.5. Teleportation protocol efficacy

This theorem validates the efficacy of a quantum teleportation
protocol in accurately transmitting an alert state using multipartite
entanglement. It demonstrates that the fidelity of the teleported state
with the original state is exceptionally high, approaching a fidelity
measure of 1. This signifies minimal information loss during telepor-
tation, ensuring reliable and efficient quantum communication within
the network.

Theorem 5. Given the quantum teleportation protocol involving an initial
alert state |A) and a multipartite entangled state |¥), this theorem aims to
prove the high fidelity of the post-teleportation state | 1) g concerning the
original state |A). The theorem posits that the fidelity measure, defined as
F = |(/1|/1m,get)|2, approaches 1, indicating minimal information loss during
teleportation.

Proof. Consider the multipartite entangled state |¥) and the alert state
|2). The protocol starts with a bell state measurement on the part of
|#) entangled with |1). This measurement projects the system onto a
bell state and yields two classical bits, denoted as a and b, which guide
the reconstruction of |1) at the target.

1. Bell State Measurement: — The measurement projects the combined
system onto one of the bell states. The representation of this projection,
given the measurement results a and b, is a projection operator P,,.

2. State Reconstruction: — Based on a and b, Pauli correction operators
¢ and oﬁ are applied to a segment of |¥) to obtain |4)arge;- This step
is crucial as it reconstructs the alert state at the target.

3. Fidelity Analysis: — The fidelity F is calculated as F = |(ﬂ|itarget)|2.
To prove that F is close to 1, we eXpress |4)rge; in terms of the original
state |1), the bell state measurement outcome, and the applied Pauli
corrections.

4. Error Consideration: Any deviations from perfect fidelity are at-
tributed to errors in the protocol. These errors arise from imperfect
entanglement or inaccuracies in the Bell state measurement and Pauli
corrections. We then analyze these potential sources of error to estab-
lish that they do not significantly impact the overall fidelity, either
because they are inherently negligible or correctable with quantum
error correction techniques. Theorem 5 establishes that the quantum
teleportation protocol transmits the encoded alert state with high fi-
delity. By confirming the fidelity of the reconstructed state remains
near 1, the theorem validates the protocol’s efficacy and reliability for
accurate quantum communication within the network. []

6.7.6. Quantum advantage discussion

To highlight qloV’s distinguishing benefits, we contrast its perfor-
mance characteristics with those of a classical IoV baseline:

Communication Overhead & Latency: In a traditional IoV net-
work, disseminating a hazard alert to multiple recipients involves
routing through the vehicular ad hoc network and possibly flooding
several hops. Alert delivery to N vehicles could easily require O(N)
transmissions (if using a broadcast or flood approach), leading to
congestion and cumulative delays especially as N grows. By contrast, in
qloV, once a vehicle’s alert state is entangled into the network’s shared
quantum state, delivering the alert essentially takes O(1). In terms
of communication, the alert is transmitted via quantum teleportation
using only two classical bits, regardless of the distance or number of
hops. The heavy lifting, transferring the state is accomplished by pre-
shared entanglement rather than physically relaying a message through
each intermediate node. Thus, the end-to-end alert latency in qloV
remains low and does not scale with network diameter (beyond the
negligible time for two bits to travel at light speed). In our experiments,
this translated to a tangible speedup, the quantum-enhanced pipeline
achieved hazard detection and notification roughly 80% faster than an
equivalent classical pipeline under the same conditions.

Resilience and Fault Tolerance: gloV inherently offers stronger
resilience to network dynamics. In classical networks, if an intermedi-
ate node on the alert’s route fails or if the topology changes suddenly
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(a common occurrence in vehicular environments), the message gets
delayed or lost until a new route is discovered and established. This
can introduce significant lag during critical emergency notifications. In
qloV, the alert’s quantum state is not tied to a single route; it can be
re-routed via entanglement swapping through alternate nodes without
waiting for any route discovery. The entangled network effectively
provides a redundant overlay of connectivity. Even if one path is
disrupted (e.g., a particular vehicle drops out or a link is broken),
there are other entangled links that can deliver the state to the target,
analogous to having multiple virtual shortcuts across the network. This
makes the hazard alert dissemination fault tolerant.

Computational & Analytical Advantage: Apart from networking
gains, qloV leverages quantum computing to handle high-dimensional
sensor data more efficiently. The EQFM encodes all seven sensor read-
ings into a single multipartite quantum state. Through quantum par-
allelism and interference, the VQC effectively evaluates many combi-
nations of sensor features simultaneously. A classical machine learning
model would need to explicitly account for higher-order feature inter-
actions which could mean an explosion in the number of parameters or
a very deep network or otherwise miss those subtleties. In our quantum
model, those interactions are naturally present in the Hilbert space of
the qubits. The state space of n qubits is 2"-dimensional, enabling it
to represent extremely complex joint distributions without increasing
circuit depth. By contrast, a classical model’s complexity (in terms
of required features or layers) often grows polynomially or worse as
the number of input variables increases. While our current quantum
hardware and simulation limits meant we tested this on 7 sensors, the
theoretical scaling is in favor of the quantum approach as we would
scale to dozens of sensors, a quantum state can capture the expo-
nentially growing feature space with modest circuit growth, whereas
a classical approach would struggle with feature combinatorics. We
acknowledge that present quantum hardware is not yet capable of
demonstrating a large-scale advantage on this front, but our analysis
indicates that for sufficiently complex sensing tasks (e.g., involving
many sensors and nonlinear correlations), qloV’s quantum classifier
could achieve better scaling in both speed and accuracy compared to
classical algorithms.

7. Conclusions and future work

Our research demonstrates the application of a VQC for environ-
mental monitoring, specifically for toxic gas detection. We integrated
quantum computing with vehicular communication networks, high-
lighting quantum technology’s potential in complex real-world systems.
By optimizing quantum circuit parameters and manipulating quan-
tum states, the VQC achieved high precision across multi-dimensional
parameter spaces. The incorporation of depolarizing noise models en-
hanced the framework’s robustness, tested on the IBMOpenQASM 3
platform. Empirical results closely aligned with theoretical predic-
tions, confirming the model’s resilience and fidelity retention in the
presence of environmental noise. These outcomes validate the feasibil-
ity of quantum-enhanced communication systems in dynamic settings
like vehicular networks for environmental monitoring, demonstrat-
ing quantum computing’s practical applicability beyond theoretical
models.

Deploying qloV in a real-world setting will require overcoming
significant hardware constraints. Current quantum processors are noise-
prone and limited in depth — for example, the 127-qubit IBM device
used in our tests has two-qubit gate error rates around 1%-2% and
coherence times on the order of 100 ps. This restricts the complexity of
quantum circuits that can be executed with high fidelity. In designing
our VQC, we mitigated this by using a relatively shallow circuit and in-
corporating error mitigation in simulation. Additionally, vehicles would
need to be equipped with specialized quantum communication hard-
ware. Devices such as entangled photon sources, quantum memories,
and single-photon detectors are not yet miniaturized or robust enough
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for in-vehicle use. It is likely that initially the heavy quantum computa-
tion will reside in edge/cloud quantum servers, with vehicles carrying
only lightweight quantum sensors or transceivers. The need for stable
distribution of entanglement to moving vehicles may also necessitate
quantum repeaters or satellite links, which are active areas of research.
We have demonstrated the potential benefits of qloV under certain
assumptions (e.g., reliable entanglement distribution and manageable
noise levels), but bridging the gap to a deployed system will require
advances in both quantum hardware and vehicular technology. These
hardware considerations temper our results: while qloV shows speed
and accuracy gains in concept, its real-world implementation hinges
on future improvements in quantum device scalability and reliability.
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